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ABSTRACT

Ptychography is a computational method of microscopy that recovers high-
resolution transmission images of samples from a series of diffraction patterns.
While conventional phase retrieval algorithms can iteratively recover the images,
they require oversampled diffraction patterns, incur significant computational
costs, and struggle to recover the absolute phase of the sample’s transmission
function. Deep learning algorithms for ptychography are a promising approach
to resolving the limitations of iterative algorithms. We present PtychoFormer, a
hierarchical transformer-based model for data-driven single-shot ptychographic
phase retrieval. PtychoFormer processes subsets of diffraction patterns, generat-
ing local inferences that are seamlessly stitched together to produce a high-quality
reconstruction. Our model exhibits tolerance to sparsely scanned diffraction pat-
terns and achieves up to 3600 times faster imaging speed than the extended pty-
chographic iterative engine (ePIE). We also propose the extended-PtychoFormer
(ePF), a hybrid approach that combines the benefits of PtychoFormer with the
ePIE. ePF minimizes global phase shifts and significantly enhances reconstruc-
tion quality, achieving state-of-the-art phase retrieval in ptychography.

1 INTRODUCTION

Microscopic and sub-microscopic imaging of tissue, cells, proteins, and crystals are a crucial tool
in biological and materials sciences. Optical microscopic imaging relies on expensive lenses and
capturing devices and is limited by the diffraction limit and lens aberrations. Furthermore, optical
imaging requires high-contrast material, necessitating staining of transparent materials, making it
impractical for live cell imaging. Coherent diffractive imaging (CDI) is a ”lensless” approach to
imaging small, transparent objects by capturing downstream diffraction patterns free of lens aber-
rations. Ptychography is a natural extension of CDI that captures high-resolution images by illu-
minating a sample at multiple scan points with a coherent light probe. The coherent source for
ptychography can be visible light, x-rays, or even electrons. Electron ptychography has captured
some of the highest-resolution atomic images ever recorded (Jiang et al., 2018).

During ptychography, the sample is illuminated by the coherent probe at multiple scan points, and
diffraction patterns of overlapping regions are captured. Since only the intensity of the interference
can be captured downstream, losing the phase measurement, retrieving the sample’s image poses
a classic inverse problem. Phase retrieval algorithms, like the ptychographic iterative engine (PIE)
(Rodenburg & Faulkner, 2004) and its variants, use the diffraction patterns to iteratively recover the
sample’s image as a transmission function. This transmission function comprises of an amplitude,
representing the intensity distribution of the sample, and a phase, which carries information about
the sample’s refractive index variations and internal material properties.

Conventional phase retrieval algorithms can recover the transmission function but have significant
drawbacks. Firstly, their slow, iterative computation, typically taking minutes to hours to converge,
makes real-time imaging impractical. Secondly, these algorithms require heavily dense scanning,
which causes numerous data collection to image a sample. Thirdly, the recovered transmission
function is prone to global phase shift, resulting in inaccurate phase recovery, as shown in the recov-
ered phase using extended-PIE (ePIE) (Maiden & Rodenburg, 2009) in Figure 1. In contrast, deep
learning (DL) based phase retrieval algorithms offer a significant speed advantage. These networks
are commonly convolutional neural networks (CNNs) trained to recover the transmission function
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Figure 1: Comparison of the ground truth against the phase reconstructions from our proposed
methods, PtychoFormer and extended-PtychoFormer (ePF), and ePIE. Sum squared error (SSE),
the objective function for ePIE, cannot distinguish between globally shifted phase values, showing
comparable SSE values between ePF and ePIE despite distinct line profiles. ePIE reconstruction
is affected by a substantial global phase shift, while ePF achieves better estimation by leveraging
PtychoFormer for initialization.

from the diffraction patterns in a single forward pass, enabling rapid reconstruction in under a sec-
ond. DL methods also exhibit more tolerance to sparse scan patterns, reducing the need to capture
numerous diffraction patterns for the region of interest (Guan & Tsai, 2019; Cherukara et al., 2020;
Pan et al., 2023).

Despite these advancements, many existing DL methods, particularly those relying on CNNs, fail
to account for the spatial relationships between overlapping diffraction patterns—a fundamental
aspect of ptychography, noted by Konijnenberg (2017). This oversight limits the effectiveness of
current models in capturing the intricate dependencies across diffraction patterns. Transformers,
which have revolutionized natural language processing (NLP) and computer vision (CV) tasks by
leveraging self-attention mechanisms (Jia et al., 2022), offer a promising solution. Their ability to
capture long-range dependencies and contextual relationships (Vaswani et al., 2017) makes them
well-suited for ptychography, where understanding the spatial dependencies of diffraction patterns
is vital.

In our work (a) we introduce PtychoFormer, a hierarchical transformer-based architecture designed
to scale effectively with large datasets, (b) Our input scheme preserves the relative scanned posi-
tion of each diffraction pattern, and the architecture enables spatial awareness by leveraging this
spatial information. (c) PtychoFormer outperforms previous DL phase retrieval methods in mul-
tiple phase and amplitude reconstruction tasks and is up to 3600 times faster than ePIE in our
simulation. Finally, (d) we propose a hybrid approach, extended-PtychoFormer (ePF), combining
PtychoFormer with ePIE. ePF reduces NRMSE by 73.59% for amplitude and 47.30% for phase
compared to ePIE while also minimizing the global phase shifts and accelerating convergence.

In Section 2, we describe the process of ptychography, the phase problem, and the ambiguity of the
global phase shift. Section 3 highlights related works in iterative and DL phase retrieval algorithms.
Section 4 details the formulation of PtychoFormer and ePF, and Section 5 provides the empirical
results by comparing them with other methods. Lastly, we discuss our findings and future directions
in Section 6 and Section 7, respectively.

2 BACKGROUND

In ptychography, the imaging sample is described by the complex-valued transmission function,
T (x, y). At any spatial coordinate (x, y), the transmission function is defined in terms of its ampli-
tude, A(x, y), and phase, ϕ(x, y), as

T (x, y) = A(x, y) · eiϕ(x,y). (1)

The strict oversampling condition, where adjacent illumination areas must significantly overlap
when capturing the diffraction patterns, is essential to recovering T (x, y). This stems from a well-
known constraint of light detectors, like the charged-coupled devices (CCDs) or photographic plates,
which only measure the light intensity of the exiting light and lose the phase (i.e. the phase problem).
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Figure 2: Comprehensive overview of the simulation using PtychoFormer and extended-
PtychoFormer (ePF). (a) depicts the transmission function T (x, y) characterized by its amplitude
A(x, y) and phase ϕ(x, y). The light probe P (x, y) propagates through the sample to produce the
diffraction pattern I(u, v) in the far field. I(u, v) are then grouped into sets of nine and placed in
separate channels. (b) illustrates how PtychoFormer processes the sets in parallel to reconstruct local
patches of T (x, y) and then stitches them to complete the reconstruction. ePF framework builds on
this approach by introducing an additional step (c), where the initial estimate from PtychoFormer is
fed into ePIE for iterative refinement, further improving the reconstruction accuracy of T (x, y).

The measured intensity of the diffraction pattern, Ij(u, v), is defined as

Ij(u, v) = |F {T (x, y) · P (x−Xj , y − Yj)}|2 , (2)

where F denotes the Fourier transform, P (x, y) is the complex probe function, (u, v) is the recip-
rocal space coordinates, and (Xj , Yj) are the lateral offsets at the jth scan position. Phase retrieval
algorithms resolve the phase problem by numerically approximating the lost phase using the over-
sampled patterns. Without oversampling, the reconstruction would suffer from the ambiguities of
the phase problem (Shechtman et al., 2015).

The global phase shift is a trivial ambiguity in the reconstructed transmission function, T̂ (x, y), that
has yet to be solved. It accounts for additional constant and linear terms to the phase, as

T̂ (x, y) = A(x, y) · eiϕ(x,y) · ei(a+bx+cy) = A(x, y) · ei(ϕ(x,y)+a+bx+cy), (3)

where a, b, and c are real-valued coefficients. The constant phase term, a, emerges from the phase
problem, where the magnitude of the sample’s phase is uncertain during reconstruction, allowing a
to take any value in T̂ (x, y). The linear phase terms, b and c, can appear when the diffraction patterns
are off-centered in the computational window in Fourier space (Guizar-Sicairos et al., 2011). Hence,
transmission estimates from conventional phase retrieval algorithms do not contain the correct ab-
solute phase values and instead provide only relative phase shifts, due to the ambiguity introduced
by the global phase shift.

3 RELATED WORK

In this section, we discuss the current state of conventional phase retrieval algorithms and existing
DL phase retrieval algorithms for ptychography.

Iterative Phase Retrieval Algorithms. The PIE algorithm (Rodenburg & Faulkner, 2004) laid the
groundwork for phase retrieval algorithms in ptychography. Maiden & Rodenburg (2009) further
advanced this approach with the ePIE algorithm, which improved convergence and reconstruction
quality by iteratively approximating the transmission and probe function from the diffraction pat-
terns. While several adaptations have since been developed, like mPIE (Maiden et al., 2017), MAIC-
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Figure 3: Input scheme depicted in (a) groups the diffraction patterns into subsets of nine and are
placed in separate channels. This way, the spatial relation between each pattern is preserved. (b)
showcases the stitching process, where Local predictions are cropped and feathered at the edges. (c)
compares the reconstructions with and without feathering, whereby feathering effectively eliminates
the grid artifacts present in the reconstruction without feathering.

PIE (Dou et al., 2020), and refPIE (Wittwer et al., 2022b), these algorithms are slow while requiring
precise parameter tuning and densely scanned diffraction patterns for optimal performance.

Deep Learning Phase Retrieval Algorithms. DL phase retrieval algorithms eliminated the
need for parameter tuning and dense scans, while substantially improving the reconstruction
speed—enabling real-time imaging (Babu et al., 2023). However, many CNNs proposed for phase
retrieval, such as PtychoNet (Guan & Tsai, 2019), PtychoNN (Cherukara et al., 2020), and PtyNet
(Pan et al., 2023), process diffraction patterns one at a time, preventing them from leveraging the in-
dispensable information from neighboring patterns. Gan et al. (2024) proposed PtychoDV to address
this limitation by using a ViT and a deep unrolling network to process multiple diffraction patterns,
each as a one-dimensional latent vector, with its scanned coordinates as positional embedding. Al-
though injecting coordinates provides a rough spatial indication, coordinates alone inadequately
capture the overlap between the vectorized patterns with high granularity.

4 PTYCHOFORMER

We detail the pre and post-processing, and architectural details of PtychoFormer and extended-
PtychoFormer in this section. To reconstruct the phase and amplitude of a sample, multiple diffrac-
tion images are pre-processed by arranging them according to relative spatial positions before in-
putting to our transformer-based model. Local sub-regional predictions from the model are then
seamlessly stitched together via feathering to minimize grid artifacts. Optionally, the predicted out-
puts are iteratively refined using ePIE in the extended-PtychoFormer, our hybrid approach. Figure 2
provides an overview of our reconstruction process.

Input Processing. Our devised input scheme, depicted in Figure 3(a), handles up to nine spatially
overlapping diffraction patterns, each separated into distinct channels. The diffraction patterns are
arranged according to their relative scanned coordinates, maintaining the inherent overlap between
adjacent patterns. This organization allows the model to focus on learning the informational and
positional dependencies between the patterns. This input scheme has been tested on various scan
patterns and with different numbers of diffraction patterns, shown in Figure 5(b).

Model Architecture. The PtychoFormer architecture, illustrated in Figure 4 and detailed in Ap-
pendix A, leverages a Mix Transformer (MiT) encoder from the SegFormer architecture (Xie et al.,
2021), along with a convolutional decoder to achieve efficient phase retrieval. In our research, we
encountered several challenges that shaped our architectural choices.

The primary challenge was devising an encoder that effectively captures long-range dependencies
between adjacent diffraction patterns. While CNNs excel at local feature extraction, they have
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Figure 4: PtychoFormer leverages a Mix Transformer (MiT) encoder and a convolutional decoder.
The encoder includes four MiT stages that progressively reduce spatial resolution while increasing
feature channels. The decoder upsamples the encoder outputs, adjusts feature channels, and refines
the resolution to produce the amplitude and phase estimates.

limited receptive fields without substantially increasing the convolutional window size. In con-
trast, transformers, with their self-attention mechanisms, naturally capture long-range dependencies,
which is crucial for understanding the relationships between diffraction patterns in our research.

Employing standard transformers like the Vision Transformer (ViT) (Dosovitskiy et al., 2021) in-
troduces new challenges. (1) ViT extracts only a single-resolution feature map, lacking the expres-
siveness to capture informative representation of the diffraction pattern to generate the transmission
function. (2) Self-attention has quadratic time and space complexity relative to input length, creating
a computational bottleneck that slows inference speed. (3) ViT relies on fixed positional encoding
(PE) to retain spatial information of input patches, inhibiting innate handling of multi-resolution in-
puts and degrading performance with untrained input resolution—a significant limitation given the
varying resolutions from different scan configurations in our research.

To address this, we adopted the MiT encoder, which offers several advantages. (1) MiT’s hierarchi-
cal architecture and overlapping patch merging enable the extraction of multi-level feature maps at
different resolutions, similar to CNNs. This allows the encoder to capture information at varying
scales by combining coarse and fine-grained details. Integrating features from different layers, each
capturing specific aspects of the diffraction images, results in rich feature representations essential
for accurate image generation. (2) MiT employs Spatial Reduction Attention (Wang et al., 2021),
which reduces the spatial dimensions of key and value sequences before the attention operation by
a predefined reduction ratio. This approach has been shown to reduce computational and memory
costs substantially than traditional self-attention, alleviating the computational bottleneck. (3) The
Mix Feed Forward Network (Mix-FFN) replaces fixed PE with a zero-padded 3×3 convolution. As
demonstrated by Islam et al. (2020), zero-padded convolutions implicitly encode positional infor-
mation. Xie et al. (2021) empirically established that this method not only outperforms fixed PE but
is also less sensitive to untrained input resolutions, aiding the handling of multi-resolution inputs in
our experiments.

While SegFormer utilizes a multilayer perceptron (MLP) decoder designed for segmentation tasks,
this is not optimal for image generation. MLPs inherently lose local spatial coherence due to their
fully connected layers, which is detrimental when maintaining spatial relationships are crucial. On
the contrary, convolutions preserves locality and are translationally equivariant due to weight sharing
and local connectivity. A convolutional decoder can also leverage the multi-level feature maps from
the MiT encoder more appropriately than an MLP, effectively integrating spatially localized features.
Therefore, we replaced the MLP decoder with a convolutional decoder.

Feathering. Our phase retrieval approach reconstructs local patches of the transmission, requiring
an effective stitching algorithm. Typically, the patches are placed in their respective coordinates and
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Figure 5: A subset of probe functions we used are shown in (a). Probe A is the primary probe Pty-
choFormer is trained on and probe B is presented in the finetuning dataset, while probe C is reserved
for testing. The grid formation in (b) is used for pre-training, and the other scan configurations are
used for finetuning.

average the pixel values of the overlapping regions (Cherukara et al., 2020; Guan & Tsai, 2019;
Pan et al., 2023). However, even a slight difference in contrast between adjacent inferences leads
to grid artifacts. To avoid this, we use a technique called feathering to ensure smooth transitions
between adjacent patches. As visualized in Figure 3(b), we crop the patches to disregard the edges
of each patch, where predictions are intentionally omitted, so only the central, well-defined regions
of each patch contribute to the final reconstruction. We then linearly taper the pixel values from
where the overlap starts up to the edge of the cropped patches. The feathered patches are placed in
their respective coordinates, and the pixel values are summed in the overlapping regions, effectively
preventing any stitching artifacts (Figure 3(c)).

Extended-PtychoFormer. The extended-PtychoFormer (ePF) is our hybrid approach that inte-
grates PtychoFormer and ePIE. One of the challenges in algorithms like ePIE is their susceptibility to
convergence on local minima, leading to inaccurate estimates of the transmission function (Maiden
et al., 2017). ePF leverages PtychoFormer to provide a well-informed initial estimate through the
stitched prediction, serving as a robust starting point for ePIE. This strategy, similar to object ini-
tialization (Wittwer et al., 2022a), aims to improve the convergence speed and the reconstruction
accuracy.

5 EXPERIMENTS

In this section, we present the experimental setup, which includes the dataset creation, training
implementation, and evaluation metrics. We then present key advantages of PtychoFormer, such as
its tolerance to sparse scan patterns and strong transfer learning capabilities across different probe
functions and scan patterns. Following this, we compare PtychoFormer against DL methods like
PtychoNN and PtychoNet. Lastly, we discuss how PtychoFormer and ePF compares against the
ePIE algorithm.

5.1 EXPERIMENTAL SETUP

Lack of training data can be a significant challenge in real-world settings; therefore, we explore
the generalization capabilities of PtychoFormer. We devise a pre-training, fine-tuning, and testing
pipeline to simulate real-world settings where certain experiments may only have a few samples to
fine-tune. We generate the synthetic data and split up the dataset as follows.

Diffraction Pattern Generation. The synthetic benchmarks require us to generate diffraction
patterns to train and test the model using standard images. Each diffraction pattern requires a pair of
images, one for the amplitude and the other for the phase. Each pair of images is used to obtain the
transmission function T (x, y) following Eq. 1. Amplitude and phase pixel values are normalized to
[0.05, 1] and [−π, π], respectively.

Each 128 × 128 diffraction pattern is generated using Eq. 2 by illuminating T (x, y) with a probe
along a prescribed scan configuration, visualized in Figure 5. Since the probe inherently imposes a
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finite support constraint, where T (x, y) outside the illumination area is zero, we masked out the cor-
responding labels, A(x, y) and ϕ(x, y), in the regions that are not illuminated. Refer to Appendix B
for details on label masking.

Datasets. Our training dataset is based on the Flickr30k (Young et al., 2014) dataset. We se-
lect 28,600 images from the dataset to create the pre-training and finetuning datasets. Each im-
age is center-cropped, resized, and converted to grayscale during pre-processing. Images are then
randomly flipped and rotated to expand the dataset, ultimately generating 62,000 unique pairs of
images. The pre-training dataset only uses probe A, presented in Figure 5(a), in a grid scan with
varying lateral offsets between diffraction patterns. Specifically, this dataset contains 244,800 sam-
ples of 36 different pixel-wise lateral offsets between adjacent scan points, ranging from 20 to 55
pixels (68.7% to 20.3% spatial overlaps).

A key requirement for the model is to adjust to new ptychographic setup conditions without needing
a large amount of data. The fine-tuning dataset is designed to introduce new probe functions and
scan patterns beyond the training data to adjust the model to new settings. Therefore, we generate
fine-tuning samples by introducing 9 new probe functions, including probe B in 5(a), and 7 alternate
scan patterns, visualized in Figure 5(b), that are not present in the pre-training dataset.

We devise multiple test sets to perform an ablation study on various scenarios. We hold out 3,100
images from the Flickr30K dataset for testing. We also introduce an unseen probe function (probe
C) and a 60-pixel lateral offset grid scan (14.9% spatial overlap) to measure the out-of-distribution
performance of our model on unseen setups. To test different domains of inputs, we further evaluate
the model on two new datasets, Flower102 (Nilsback & Zisserman, 2008) and Caltech101 (Li et al.,
2022). Further details of each dataset can be found in Appendix E.

Training Details. We trained PtychoFormer using the mean absolute error (MAE) loss function
to minimize the absolute pixel-wise difference between the target label, Y , and prediction, Ŷ , with
a batch size of 32. We normalized the phase of Y and Ŷ to [0,1] before computing the loss to
ensure a balanced loss from the amplitude and phase channel for stable training. See appendix C for
improved training curves resulting from phase normalization.

Evaluation Metrics. We used MAE and normalized root mean squared error (NRMSE) to sep-
arately evaluate the amplitude and phase reconstructions, where Ŷ and Y represent the target and
estimated values for either amplitude or phase. Similar to Gan et al. (2024), we customized the
NRMSE to measure the reconstruction quality after removing the global phase shift. This ensures
that our evaluation reflects the true performance of the reconstruction without being skewed by
global shifts. Our NRMSE is defined as

NRMSE =
∥(Ŷ − ã)− Y ∥

∥Y ∥
, (4)

where ã corrects the constant phase offset a when computing the NRMSE of phase reconstructions.
We determine ã as the average pixel-wise difference between Ŷ and Y . Since the diffraction images
in our simulations are centered, we disregard the linear phase term as per Eq. 3 and correct only
the constant phase offset using ã. This term is zero when computing the NRMSE of the amplitude
reconstructions.

5.2 RESULTS

We investigate the performance of our model using PtychoNN and PtychoNet as our baseline models
for our experiments. We also examine the generalization capabilities of PtychoFormer on unseen
probe functions and new datasets.

Comparison with Deep Learning Methods. We compare PtychoFormer with PtychoNN and
PtychoNet. The implementation and training environments of PtychoNN and PtychoNet follow
what is outlined in Cherukara et al. (2020) and Guan & Tsai (2019), respectively. PtychoNN and
PtychoNet are trained to convergence on the pre-training set and all three models are tested on
Flickr30K test set. We can see in Figure 6 that PtychoFormer significantly outperforms both Pty-
choNN and PtychoNet for both amplitude and phase retrieval. PtychoFormer reduces NMRSE by
25.93% and 41.18% for amplitude reconstruction over PtychoNN and PtychoNet, respectively. All
models found phase reconstruction to be more challenging than amplitude, as reflected in the higher
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Figure 6: (a) and (b) compare the reconstruction quality of PtychoFormer, PtychoNet, and Pty-
choNN, measured using normalized root mean squared error (NRMSE) and mean absolute error
(MAE), respectively. Results are averaged from 3100 test samples, comprising of 6 × 6 diffraction
patterns, each with 20-pixel lateral offsets. (c) depicts the amplitude and phase reconstructions along
with the NRMSE values. PtychoFormer consistently outperforms PtychoNN and PtychoNet across
all metrics and eliminates the impact of grid artifacts that heavily affect the latter methods.

MAE and NRMSE values for phase. But PtychoFormer performs better phase reconstruction as
well as compared to PtychoNN and PtychoNet, reducing NMRSE by 61.05% and 55.33%, respec-
tively. Figure 6(c) also highlights the benefit of feathering, as PtychoNN and PtychoNet are further
affected by grid artifacts from their stitching algorithm. PtychoFormer, on the other hand, has a
smooth reconstruction along the local prediction boundaries.

Low to No Data Experiments. As mentioned before, we require the model to be usable under data-
constrained scenarios. We evaluate PtychoFormer under low data availability constraints, where
only fine-tuning is possible, as well as no data scenario, where only the pre-trained model is used.
For low-data tests, as mentioned before, we introduce new scan patterns and probe functions. For
each new configuration, the model is only trained on 2,000 new samples. Remarkably, we see little
to no degradation in performance when introducing new scan patterns. The full tables of results are
presented in Table 2 and 3 of Appendix F.

We also evaluate PtychoFormer’s performance without any further retraining on new data. While our
model is only trained on the Flickr30K dataset, we test the model on the Flower102 and Caltech101
datasets. We use probe A and grid scan patterns with 20-pixel lateral offset for the experiments.
PtychoFormer achieves 0.18 ± 0.06 (amplitude) and 0.51 ± 0.26 (phase), and 0.28 ± 0.09 (amplitude)
and 0.97 ± 0.65 (phase) on the Flower102 and Caltech101 datasets, respectively. These results
highlight the model’s generalized understanding of phase retrieval, even when applied to untrained
datasets.

5.3 IMPROVEMENTS OVER EPIE

While ePIE is the gold standard for ptychographic phase retrieval, it does have significant drawbacks.
The PtychoFormer and ePF are designed to alleviate such drawbacks while achieving comparable
reconstruction performance. We compare the performance of PtychoFormer and ePF against ePIE.
The ePIE algorithm follows the implementation from Maiden & Rodenburg (2009) and iterates until
its objective function, sum squared error (SSE), converges. See Appendix D for implementation
details of ePIE.

As mentioned before, a significant drawback of ePIE and similar iterative phase retrieval algorithms
is the global phase shift phenomenon. As PtychoFormer is trained in absolute phase values during
training, PtychoFormer mitigates global phase shifts. As illustrated in figure 7(f) and (g), ePIE has a
high MAE while a comparably lower NRMSE. As the NRMSE is corrected with a global phase shift
factor, this shows that ePIE has converged on a shifted phase value. In contrast, PtychoFormer does
not suffer from a global phase shift as the MAE and NRMSE are similar. By iteratively improving
the PtychoFormer’s single-shot prediction, ePF surpasses ePIE on both metrics. Figure 1 visualizes
the significant reduction in global phase shifts when using ePF compared to ePIE alone, as seen in
both the reconstructed phase images and the corresponding line profiles. However, ePF does not
eliminate the global phase shift, as evident in the slight difference between the line profiles of the
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Figure 7: Reconstruction results of PtychoFormer, ePIE, and ePF across various lateral offsets be-
tween diffraction patterns are shown in (a), (b), and (c) with normalized root mean squared error
(NRMSE) for each reconstruction. (d) and (e) plot the average mean absolute error (MAE) and
NRMSE of the amplitude reconstructions and (f) and (g) plot the average MAE and NRMSE of
phase reconstructions for each algorithm across different pixel-wise lateral offsets. ePF consistently
outperforms ePIE in all metrics and PtychoFormer showcases a robust tolerance to sparser scans
than ePIE.

ground truth and ePF. We predict it can be improved with further improvements to the DL-based
initialization.

Another critical drawback of ePIE is the computation cost to recover transmission functions. In
our experiments with 18×18 diffraction patterns, ePIE, with GPU support, took approximately 0.34
seconds per iteration and 800 to 1500 iterations to converge, resulting in 5 to 8.5 minutes to recover
the sample’s transmission. In contrast, PtychoFormer completed a one-shot prediction and stitching
process in just 0.14 seconds. This translates to a speed-up of 2100 to 3600 times faster than ePIE.
Furthermore, ePF reduces the iteration count required for ePIE to converge by approximately 100
iterations in our experiment, leveraging the well-informed estimate from PtychoFormer.

Finally, in Figure 7(a), we observe improved performance over ePIE on sparse scan patterns for
both PtychoFormer and ePF. Increasing the offset size reduces the spatial overlap and enables the
scanning of a larger area with fewer diffraction patterns. This translates to fewer imaging samples
being required and speeding up data collection. The recommended overlap for ePIE is 60% to
70% spatial overlap (Maiden & Rodenburg, 2009) with limited performance beyond. Our methods
preserved structural integrity in both the amplitude and phase reconstruction even with a 60-pixel
offset (14.9% spatial overlaps) between adjacent patterns. In contrast, ePIE, depicted in Figure 7(b),
exhibited significant artifacts at sparser scans. With 60-pixel offset, PtychoFormer outperforms
ePIE, as evidenced by its lower MAE and NRMSE values in Figure 7(d–g). All results from various
step sizes for ePIE, PtychoFormer, and ePF can be found in Appendix F Table 6.

6 DISCUSSION

We can see that PtychoFormer and ePF improve performance in both DL and iterative algorithms.
By processing multiple diffraction patterns simultaneously, PtychoFormer captures their positional
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relationships, leading to higher-quality reconstructions than models that rely on single diffraction
patterns. This spatial awareness stems from our input scheme, which preserves the spatial infor-
mation of diffraction patterns, and the use of the MiT encoder to effectively capture the spatial
relationships well. Our model also generalizes well across different probe functions and scan pat-
terns with minimal fine-tuning and maintains its fidelity even with reduced spatial overlap. ePF uses
PtychoFormer, enabling iterative refinement on the data-driven predictions. Importantly, ePF not
only outperforms ePIE in terms of reconstruction accuracy but also significantly minimizes global
phase shifts, a persistent challenge in phase retrieval.

While we have strong performance on simulated data, transitioning from simulations to real-world
applications poses challenges, particularly due to the potential for global phase shifts in the training
data. The difficulty lies in the need to train the model on ground truth data generated by conventional
algorithms, which may themselves introduce global phase shifts. To address this, calibrated or
corrected phase measurements should be used to fine-tune PtychoFormer, allowing it to produce
rapid and accurate estimates without global phase shifts. This correction of phase shifts can involve
using objects with known phase shifts (Godden et al., 2016), employing interferometric techniques
(Cai et al., 2004), or other phase calibration techniques to ensure reliable training data for real-world
applications.

7 CONCLUSION

PtychoFormer offers a new paradigm in DL phase retrieval for ptychography. It provides a ro-
bust and versatile solution capable of processing multiple diffraction patterns while preserving the
knowledge of their relative scan points. PtychoFormer enables real-time imaging, which is crucial
for applications requiring rapid imaging, but this speed comes at the expense of quality. The model
also generalizes well across different probe functions and scan patterns with minimal fine-tuning
and maintains its fidelity even with reduced spatial overlap. This adaptability suggests that Pty-
choFormer could be extended to other imaging modalities requiring phase retrieval, such as X-ray
ptychography used to study molecular structures. Moreover, the integration with iterative meth-
ods, as seen in ePF, underscores the potential of hybrid approaches in balancing speed and recon-
struction quality. ePF allows researchers to obtain a rough estimate of the transmission function in
real-time using PtychoFormer, followed by a more accurate refinement using ePIE. While this re-
search has made many significant strides in developing an improved DL phase retrieval algorithm for
ptychography, many potential avenues exist to explore. Future work could involve validating Pty-
choFormer’s performance with real ptychographic data and further refining the model to eliminate
the need for post hoc corrections.

REPRODUCIBILITY STATEMENT

We plan to publicly release the code for models, datasets, and experiments represented in the paper.
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A IMPLEMENTATION DETAILS OF PTYCHOFORMER

The PtychoFormer architecture leverages a Mix Transformer (MiT) encoder with a convolutional
decoder to achieve efficient phase retrieval. Utilizing the MiT-B0 encoder, from the SegFormer
architecture (Xie et al., 2021), ensures both computational efficiency and high performance. Key
features such as the spatial reduction attention and elimination of fixed positional embedding within
the MiT contribute to the efficiency. PtychoFormer processes an input X ∈ R9×H×W , and outputs
Ŷ ∈ R2×H×W , where H and W are the height and width of the input image.

The encoder consists of four stages, each processing the input at different spatial resolutions. These
stages incorporate multiple layers of MiT encoder blocks, with 4, 6, 8, and 12 self-attention heads,
respectively. In the first stage, the input is processed to H

2 × W
2 with 64 feature channels, by

performing patch embedding followed by MiT Block 1. The successive MiT stages progressively
decrease the resolution by a factor of 2 while increasing the feature channels to 128, 256, and 512,
respectively.

The decoder upsamples the outputs from each stage of the encoder using bi-cubic interpolation to
H
2 ×W

2 and passes them through the convolution layer to augment the feature channels to 256. These
outputs are concatenated to form a 1024 × H

2 × W
2 matrix. Then a convolutional block, followed

by a transposed convolutional block, reduces the feature channels and upsamples the resolution to
128×H×W . Each block is followed by batch normalization and a GELU activation function. The
final convolutional layer reduces the feature channels to a 2×H ×W matrix. The tanh function is
applied to the first channel, then multiplied by π, resulting in a range of [-π, π]. The second channel
uses the sigmoid function to yield a range of [0,1]. The two output channels correspond to the phase
and amplitude estimates, respectively.

B LABEL DETAIL

Figure 8: The top row shows the label associated with a single diffraction pattern, where the am-
plitude and phase are masked to match the illuminated region. The second row displays a 3x3 grid
of diffraction patterns in nine separate channels to preserve the spatial dependencies, and the corre-
sponding labels are masked to match the illuminated region as well.

To ensure the model accurately predicts only the information encoded within the diffraction patterns,
proper label creation is crucial. Specifically, we mask out the regions in the labels that correspond
to areas outside the effective scan point and the radius of the illumination area, preventing the model
from learning parts of the transmission function not represented in the diffraction data.

In the top row of Figure 8, you can see an example of a label created for a single diffraction pat-
tern. The label reflects the amplitude and phase values only within the illuminated region, with

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

areas outside of the illumination masked out to exclude irrelevant information. The second row of
Figure 8 demonstrates a 3x3 grid of diffraction patterns, each associated with its respective label.
These diffraction patterns are separated into channels, with zero-padding applied to areas outside
the diffraction data to maintain consistent input dimensions. This setup enforces the proper learning
of the transmission function within the bounds of what the diffraction data encodes.

C PHASE NORMALIZATION DURING TRAINING

Figure 9: Comparison of average mean absolute error of the test set across training steps for normal-
ized and unnormalized phases during training, based on 20 trials each. The shaded areas represent
the standard error. Normalized training exhibits improved generalization and stability than unnor-
malized training.

During training, we employed a phase normalization technique that scales the phase predictions
and labels from their original range of [-π, π] to [0,1]. This normalization ensures that the loss
values for both amplitude and phase components are within the same range, resulting in similar
gradient magnitudes during optimization. Without normalization, computing the mean absolute
error (MAE) between images with ranges of [0,1] (amplitude) and [-π, π] (phase) would lead to
disproportionately larger errors from the phase component due to its wider range. This imbalance
can cause the optimization process to focus excessively on minimizing the phase loss, potentially
leading to instability during training.

To assess the effectiveness of our normalization approach, we conducted 20 training trials with both
unnormalized and normalized phases. Despite normalizing the phase during training, we evaluated
the models on the test set using the original unnormalized phase values to measure true performance.
We measured the raw MAE scores between the amplitude and phase predictions and their ground
truths. The results, shown in Figure 9(a) and (b), indicate that models trained with phase normal-
ization consistently achieve lower MAE on the test set. This demonstrates that phase normalization
not only stabilizes the training process but also leads to improved generalization and reconstruction
accuracy.

D EPIE IMPLEMENTATION

The ePIE algorithm refines the estimate of the transmission function, T̂ (x, y), through an iterative
process. This process aims to minimize the sum of the squared differences between the diffraction
patterns produced from the estimated transmission function, Îj(u, v), and the measured diffraction
pattern, Ij(u, v), at each scanning position j.

We suppose the estimated probe measurement, P (x, y), is known and the diffraction s are captured
before running ePIE. In our experiment, we set the initial amplitude and phase values of T̂ (x, y) to
be ones and zeros, respectively.
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1. Compute the estimated exit wave: At iteration k for the jth scan position, the exit wave is
computed as

ψ̂k,j(x, y) = T̂k(x, y)× Pk(x−Xj , y − Yj), (5)
where (Xj , Yj) encodes the scanning shifts for the jth diffraction pattern. The finite support
constraint at each position, Sj , is represented as

T̂k(x, y) =

{
T̂k(x, y) if (x, y) ∈ Sj

0 if (x, y) /∈ Sj
. (6)

2. Update the exit wave: Replace the amplitude of the estimated exit wave with the measured
amplitude. First, apply a Fourier transform F to the exit wave:

Ψ̂k,j(u, v) = F
(
ψ̂k,j(x, y)

)
. (7)

Update the exit wave using the measured amplitude:

Ψupd
k,j(u, v) =

Ψ̂k,j(u, v)

|Ψ̂k,j(u, v)|
×
√
Ij(u, v). (8)

Finally, revert to the spatial domain using the inverse Fourier transform:

ψupd
k,j (x, y) = F−1(Ψupd

k,j(u, v)). (9)

3. Update the transmission function estimate using the following equation,

T̂ upd
k (x, y) = T̂k(x, y) + α

P̄k(x−Xj , y − Yj)

|Pk(x−Xj , y − Yj)|2max

(
ψupd
k,j (x, y)− ψ̂j(x, y)

)
, (10)

where P̄ (x, y) is the conjugate of P (x, y) and α is the step size that controls how fast
the transmission function is updated. This equation adjusts T̂ upd

k (x, y) based on the differ-
ence between the updated exit wave ψupd

k,j (x, y) and the previous estimate ψ̂j(x, y). The

expression P̄k(x−Xj ,y−Yj)
|Pk(x−Xj ,y−Yj)|2max

removes the probe function from the exit wave and is used
to weight the update, focusing on areas with stronger illumination. Lastly, we update the
transmission function in the area covered by the finite support constraint at position j,

T̂k+1(x) =

{
T upd
k (x) if (x, y) ∈ Sj

T̂k(x) if (x, y) /∈ Sj
. (11)

4. Update the probe function by removing the transmission function from the exit wave, sim-
ilar to the previous step using the following equation,

Pk+1(x, y) = Pk(x, y) + β
T̄k(x+Xj , y + Yj)

|T̂k(x+Xj , y + Yj)|2max

(
ψupd
k,j (x, y)− ψ̂j(x, y)

)
, (12)

where T̄k(x, y) is the conjugate of T̂k(x, y) and β is the step size for updating the probe
function.

5. After iterating through every scan point j, increment k and repeat steps 1− 4.
6. Repeat the iterative process until the sum squared error function (SSE) converges to a suf-

ficiently small value. This cost function at the kth iteration is measured as

L[T̂k(x)] =
∑
j

(
Ij(u, v)− Îj(u, v)

)2

, (13)

such that
Îj(u, v) = |Ψ̂k,j(u, v)|2. (14)

After convergence, the phase of T̂ (x, y) is confined between −π and π, resulting in phase wrapping
where values exceeding this range. To retrieve the continuous phase, we apply a phase unwrapping
algorithm, as introduced by Herráez et al. (2002), which is implemented in the scikit-image library.
This post-processing step ensures that the reconstructed phase is free of discontinuities caused by
wrapping.
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E DATASET DETAILS

Dataset Source Probe Functions Scan Configurations Lateral Offset
Pre-training Flickr30k 1 Grid 20 - 55

Fine-tuning Flickr30k 2, 3, 4, 5, 6,
7, 8, 9, 10, 11 Grid 20

Flickr30k 1

5 - 8
Diffraction Patterns,
Diamond, Random,
Grid, Parallelogram

–

Test Flickr30k 1 Grid 20, 30, 40,
50, 60

Flickr30k
2, 3, 4, 5, 6,

7, 8, 9, 10, 11,
Test Probe

Grid 20

Flickr30k 1
5 - 8 Diffraction Patterns,

Diamond, Random,
Parallelogram

–

Flower102 1 Grid 20
Caltech101 1 Grid 20

Table 1: Details of the pre-training, finetuning, and test datasets are showcased in this table. For
each dataset, we present the source of the raw images and the probe functions, scan configurations,
and pixel-wise lateral offsets the dataset contains.

Figure 10: Amplitude and phase profiles for 12 probe functions, including the Test Probe. Probes 1
and 2 are referred to as Probe A and Probe B in the main body of the paper, while the Test Probe is
referred to as Probe C. Each probe demonstrates variations in amplitude and phase, which are used
to train the model to be resilient to different probe functions.
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This appendix and Table 1 provide detailed information about the pre-training, fine-tuning, and test
datasets. As a preliminary, probes A, B, and C, from the main body of text, are relabeled as we
present all 12 probe functions. As visualized in Figure 10, the 11 training probes are numerically
labeled from 1 - 11, such that probes 1 and 2 correspond to probes A and B, and probe C is labeled
as the test probe.

The Flickr30k (Young et al., 2014) is the primary dataset we used in our experiment, where we allo-
cated 28,600 images for training and 3,100 images for testing. The pre-training dataset consists of
all training images to generate diffraction patterns using a grid scan pattern with 36 different lateral
offsets between adjacent scan points, ranging from 20 to 55 pixels. These offsets correspond to
spatial overlaps between diffraction patterns ranging from 68.7% to 20.3%. The pre-training dataset
consists of these 36 configurations, each containing 6,800 triplets of nine simulated diffraction pat-
terns along with the corresponding amplitude and phase labels, totaling 244,800 data points. We
only used probe 1 in this dataset.

The finetuning dataset uses a subset of the training images to create a smaller dataset that introduces
7 additional scan patterns and 9 new probe functions (i.e. probe 2 - 11). The scan patterns included
various configurations using probe 1, from 5 to 8 diffraction patterns and grid, diamond, parallelo-
gram, and random layouts using 9 diffraction patterns. Probes 2 - 11 were used in a grid scan with a
constant lateral offset of 20 pixels. The finetuning dataset included 2,000 samples per configuration,
totaling 36,000 data points.

We created five test datasets, out of which three were created using the allocated test images
from Flickr30k, to evaluate the model’s performance under various scenarios, including out-of-
distribution conditions. The first test dataset consists of grid scan with lateral offsets of 20, 30,
40, 50, and 60 pixels between adjacent scan points. These offsets correspond to spatial overlaps of
68.7%, 53.6%, 39.4%, 26.3%, and 14.9%, respectively. We created 100 samples for each of these
grid scans. The second dataset contains grid scans of 20 pixel offset using probes 2 - 11, and the test
probe, each with 200 samples. The third dataset includes configurations using the seven new scan
patterns introduced in the fine-tuning dataset. To assess the model’s ability to generalize to different
domains, we further evaluated it on two new datasets: Flower102 (Nilsback & Zisserman, 2008) and
Caltech101 (Li et al., 2022). We created 8,000 samples from each dataset.

F SIMULATION RESULTS

This section presents the empirical results from our simulations, providing the exact mean and stan-
dard deviation values for various probe functions, scan configurations, and comparisons of different
phase retrieval methods. Tables 4 and 6 are included here in the appendix, as the corresponding
results are visualized as charts in the main body of the paper.

We evaluated 12 distinct probe functions corresponding to different illumination patterns during
diffraction, detailed in Table 2. Additionally, Table 3 presents the results from eight different scan
configurations, demonstrating how the geometry of diffraction scans influences reconstruction accu-
racy. Notably, the grid formation yielded the lowest errors for both amplitude and phase reconstruc-
tions. This is likely because the model was primarily trained on grid configurations and only later
fine-tuned on other scan setups, giving it an advantage when reconstructing from grid data compared
to more irregular formations, such as random configurations.

Table 4 compares the performance of PtychoFormer with two other deep learning-based meth-
ods, PtychoNet and PtychoNN, under 20-pixel offsets between each diffraction pattern. Pty-
choFormer consistently demonstrates superior performance in both amplitude and phase reconstruc-
tions, achieving lower MAE and NRMSE values. Moreover, this trend continues across larger off-
sets, even on an unseen lateral offset (i.e. 60 pixels), shown in Table 5. In Table 6, we compare the
performance of PtychoFormer, extended-PtychoFormer (ePF), and ePIE across different lateral off-
sets between diffraction patterns. As discussed in the main body, PtychoFormer exhibits persistent
performance across different offsets, while ePIE showcases severe degradation. The degradation is
present for ePF, but consistently outperforms ePIE.

Fourier Ring Correlation (FRC) analysis (Koho et al., 2019), shown in Figure 11, reveals that
PtychoFormer effectively recovers low to midrange spatial frequencies, but struggles with high-
frequency details. The 1/7 threshold is an empirically validated criterion for distinguishing between
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Probe Function Amplitude NRMSE Phase NRMSE
Probe 1 (A) 0.24 ± 0.10 0.79 ± 0.52
Probe 2 (B) 0.28 ± 0.10 0.95 ± 0.74
Probe 3 0.23 ± 0.11 0.81 ± 0.58
Probe 4 0.25 ± 0.11 0.76 ± 0.61
Probe 5 0.24 ± 0.11 0.76 ± 0.74
Probe 6 0.25 ± 0.10 0.87 ± 0.81
Probe 7 0.25 ± 0.11 0.83 ± 0.68
Probe 8 0.27 ± 0.09 0.83 ± 0.62
Probe 9 0.27 ± 0.10 1.00 ± 0.82
Probe 10 0.29 ± 0.11 1.11 ± 1.22
Probe 11 0.28 ± 0.11 1.02 ± 0.84
Test Probe (C) 0.22 ± 0.10 0.83 ± 0.77

Table 2: Normalized root mean squared error (NRMSE) values for 11 probe functions used during
training and the test probe used exclusively for testing. The table presents the NRMSE for both
amplitude and phase reconstructions, demonstrating the model’s ability to generalize across various
probe functions, including an unseen probe function.

Scan Configuration Amplitude NRMSE Phase NRMSE
Five Diffraction Patterns 0.27 ± 0.11 0.71 ± 0.37
Six Diffraction Patterns 0.27 ± 0.09 0.69 ± 0.36
Seven Diffraction Patterns 0.26 ± 0.10 0.68 ± 0.44
Eight Diffraction Patterns 0.27 ± 0.10 0.77 ± 0.46
Diamond Formation 0.26 ± 0.09 0.67 ± 0.46
Parallelogram Formation 0.29 ± 0.12 0.71 ± 0.45
Grid Formation 0.20 ± 0.09 0.66 ± 0.32
Random Formation 0.26 ± 0.08 0.72 ± 0.43

Table 3: Amplitude and phase normalized root mean squared error (NRMSE) values for various scan
configurations using probe A are presented. Values represent the average NRMSE of 100 test data
by comparing the reconstructed central squares to the ground truth. PtychoFormer shows similar
performance across different scan configurations even with minimal training.

Method Amplitude Phase

MAE NRMSE MAE NRMSE

PtychoFormer 0.08 ± 0.03 0.20 ± 0.08 0.76 ± 0.36 0.67 ± 0.44
PtychoNet 0.13 ± 0.04 0.34 ± 0.12 1.27 ± 0.38 1.50 ± 0.72
PtychoNN 0.10 ± 0.04 0.27 ± 0.09 1.31 ± 0.38 1.72 ± 0.7

Table 4: Mean absolute error (MAE) and normalized root mean squared error (NRMSE) for ampli-
tude and phase reconstructions of three deep learning models showcases PtychoFormer’s exceptional
performance. Results are averaged from 3,100 test images, each comprising 6 × 6 diffraction pat-
terns with 20-pixel lateral offsets.

Method Amplitude Phase

MAE NRMSE MAE NRMSE

PtychoFormer 0.10 ± 0.03 0.26 ± 0.06 0.82 ± 0.23 0.76 ± 0.33
PtychoNet 0.17 ± 0.03 0.53 ± 0.07 1.35 ± 0.21 1.45 ± 0.32
PtychoNN 0.15 ± 0.03 0.47 ± 0.05 1.35 ± 0.21 1.71 ± 0.39

Table 5: Mean absolute error (MAE) and normalized root mean squared error (NRMSE) for am-
plitude and phase reconstructions are taken by averaging the performance across 3,100 test images,
each comprising 6 × 6 diffraction patterns with 60-pixel lateral offsets. Even on unseen scan, Pty-
choFormer outperforms PtychoNN and PtychoNet.
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Method Lateral
Offset

Amplitude Phase

MAE NRMSE MAE NRMSE

PtychoFormer 20 0.08 ± 0.04 0.20 ± 0.09 0.75 ± 0.33 0.66 ± 0.32
ePF 20 5.89e-9 ± 3.72e-9 1.51e-8 ± 2.33e-8 0.44 ± 0.64 0.12 ± 0.19
ePIE 20 8.74e-5 ± 5.62e-4 7.66e-4 ± 4.50e-3 1.15 ± 0.93 0.17 ± 0.30

PtychoFormer 30 0.08 ± 0.03 0.21 ± 0.08 0.70 ± 0.29 0.66 ± 0.41
ePF 30 1.44e-4 ± 4.22e-4 1.81e-3 ± 5.23e-3 0.33 ± 0.46 0.14 ± 0.20
ePIE 30 2.52e-3 ± 3.46e-3 0.02 ± 0.03 1.15 ± 0.90 0.23 ± 0.32

PtychoFormer 40 0.09 ± 0.03 0.22 ± 0.07 0.72 ± 0.26 0.70 ± 0.36
ePF 40 2.72e-3 ± 2.77e-3 0.02 ± 0.02 0.30 ± 0.41 0.16 ± 0.19
ePIE 40 0.01 ± 0.01 0.07 ± 0.04 1.13 ± 0.99 0.34 ± 0.35

PtychoFormer 50 0.09 ± 0.03 0.23 ± 0.07 0.73 ± 0.25 0.69 ± 0.30
ePF 50 0.02 ± 0.01 0.07 ± 0.04 0.35 ± 0.68 0.26 ± 0.23
ePIE 50 0.07 ± 0.04 0.21 ± 0.10 1.36 ± 1.34 0.65 ± 0.32

PtychoFormer 60 0.10 ± 0.03 0.26 ± 0.07 0.78 ± 0.21 0.75 ± 0.31
ePF 60 0.09 ± 0.04 0.24 ± 0.10 0.83 ± 0.96 0.55 ± 0.26
ePIE 60 0.17 ± 0.04 0.41 ± 0.08 1.83 ± 1.02 1.10 ± 0.21

Table 6: Comparison of reconstruction performance for PtychoFormer, ePF, and ePIE across differ-
ent lateral offsets highlights the remark performance of ePF. The table reports mean absolute error
(MAE) and normalized root mean squared error (NRMSE) for amplitude and phase reconstructions.
Results are averaged from 100 test datasets, each consisting of 6 × 6 diffraction patterns.

Figure 11: Average Fourier Ring Correlation (FRC) of 100 test samples under 20-pixel lateral off-
sets to illustrate the correlation between the reconstruction and the ground truth across different
spatial frequencies. Shaded areas of the graph represent the standard deviation of FRC values. Pty-
choFormer exhibits a high correlation in the low and mid spatial frequencies while showing a dip in
high spatial frequency. However, ePF showcases a near perfect amplitude correlation and a subtle
improvement in phase correlation than ePIE.
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meaningful signal and noise. The average FRC curves for both amplitude and phase drop below
the threshold at normalized spatial frequencies of 0.71 to 0.95, highlighting its limitations in cap-
turing fine details. However, ePF showcases better FRC values than ePIE. Notably, ePF exhibits
near-perfect mean FRC of the amplitude reconstruction and slight improvement in the phase.
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