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Abstract

The rapid growth of large AI models has raised significant environmental concerns
due to their substantial carbon footprint. Existing carbon accounting methods
for AI models are fundamentally deterministic and fail to account for inherent
uncertainties in embodied and operational carbon emissions. Our work aims to
investigate the effect of these uncertainties on embodied and operational carbon
footprint estimates for large AI models. We propose a Probabilistic Carbon Ac-
counting Model (PCAM), which quantifies uncertainties in the carbon accounting
of large AI models. We develop parameter models to quantify key components (pro-
cessors, memory, storage) in the carbon footprint of AI models. To characterize the
distribution of the parameters, we develop a carbon dataset by aggregating related
data from various sources. Then, we generate the probabilistic distribution of the
parameters from the collected dataset. We compare the performance of PCAM with
LLMCarbon, the state-of-the-art carbon accounting method for large AI models.
PCAM achieves ≤ 7.44% error compared to LLMCarbon’s ≤ 108.51%.

1 Introduction

Large AI models have demonstrated high efficacy across various tasks. However, as model parameters
and training datasets expand, the computational demands for training and deploying large-scale
models grow significantly, leading to notable carbon emissions. For example, recent studies reveal
that training advanced language models like Google’s T5 generates 40% more carbon emissions than
a transcontinental flight between San Francisco and New York [1]. The AI community is increasingly
focused on developing methodologies to tackle social issues [2, 3, 4], particularly in promoting
decarbonization and achieving carbon neutrality by 2050 [5, 6, 7, 8]. Carbon accounting, i.e., to
estimate the carbon footprint of a product, is crucial for understanding the environmental impact
of various operations and for developing strategies to reduce carbon footprints. By quantifying
emissions, organizations can set reduction targets, comply with regulations, and demonstrate their
commitment to sustainability. The carbon footprint of large AI models encompasses two components:
operational carbon (i.e., emissions associated with electricity consumed) and embodied carbon (i.e.,
emissions associated with AI hardware manufacturing).

While existing studies have initiated carbon accounting for AI models [5, 1], current methodologies
exhibit two fundamental limitations. First, they predominantly focus on operational carbon, while
neglecting or applying a simple model to account for embodied carbon. They utilize coarse-grained
average embodied carbon values for one hardware class (e.g., 14nm CPU) directly from Life Cycle
Assessment (LCA) reports, potentially introducing substantial inaccuracies. Second, all existing
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carbon models for AI models are single-deterministic and fail to capture the inherent uncertainty
in the carbon footprint of AI models. The uncertainty in carbon accounting for AI models comes
from (1) geotemporal differences in manufacturing, whereby identical device classes fabricated in
different regions and periods embody distinct emissions due to different electricity carbon intensity
during production; (2) efficiency evolution over time, as yield improvements, and fabrication energy
efficiency gains; and (3) operating context variability, since the operational carbon of AI models
can vary significantly depending on the location and time of the operation due to spatiotemporal
variations in the carbon intensity of electricity.

In this paper, we propose a Probabilistic Carbon Accounting Model (PCAM), which can accurately
estimate the carbon footprint of large AI models by capturing the uncertainty in the carbon modeling.
Specifically, we develop parameter models for each hardware component (e.g., processors, memory,
storage) in the carbon footprint of large AI models. To construct the distribution of the parameters, we
make an effort to develop a hardware and electricity dataset by aggregating data from diverse sources,
including Environmental, Social, and Governance (ESG) reports from hardware manufacturers,
power grid operator statistics, industry reports, and peer-reviewed research publications. Then,
we implement a simple yet effective dual-stage distribution modeling (i.e., converting the related
collected data into frequency histograms followed by Kernel Density Estimation (KDE)), to generate
the continuous probability density functions of the parameters.

We compare the performance of PCAM to LLMCarbon, the state-of-the-art carbon modeling method
for large AI models. The evaluation is conducted based on four representative large AI models (XLM,
T5, GPT-3, and Switch) [5, 9]. We compare the performance at key distribution percentiles (5th,
10th, 50th, 90th, and 95th) of PCAM’s probability density function outputs against the ground truth
based on the collected carbon dataset. Our PCAM outperforms LLMCarbon in both embodied and
operational carbon on all large AI models. The results of PCAM show differences with the ground
truth of only ≤ 2.67% for embodied carbon and ≤ 7.44% for operation carbon, demonstrating
significantly higher accuracy compared to LLMCarbon (≤ 23.02% and ≤ 108.51%, respectively).

Our contributions can be summarised as follows:

• We propose a new Probabilistic Carbon Accounting Model (PCAM) for large AI models
that can generate distribution-based outputs of carbon footprint instead of singular values,
allowing AI developers to make risk-aware and sustainable decisions.

• We characterize the uncertainty in the carbon footprint of large AI models across key
hardware components by generating the distributions of AI hardware-related parameters
through a simple yet effective dual-stage distribution modeling from the collected dataset
based on KDE.

• We make an effort to develop a carbon dataset 1 containing AI hardware-related parameters
(e.g., yield, etc.) across different technology nodes from various technology reports, ESG
reports, LCA reports, and carbon intensity of electricity data across regions from power grid
operators.

2 Background

2.1 Large AI models carbon footprint

The carbon footprint of large AI models includes two components, i.e., operational carbon and
embodied carbon. The operational carbon of large AI models refers to the emissions stemming from
the electricity consumption in the model training or inference. The embodied carbon arises from the
manufacturing processes of the hardware used to execute the AI models. The development of large
AI models requires not only substantial electricity but also extensive computing hardware resources.
For example, training and deploying large AI models require high-performance GPUs (e.g., NVIDIA
A100 [10]) and ML accelerators (e.g., Google TPU [11]). These devices are typically manufactured
with large processor chips using advanced technologies (e.g., 5nm), which results in significant
carbon emissions. This refers to the embodied carbon of large AI models, which is especially notable
in the models operated using the latest high-performance devices. As the proportion of green energy
in the power grid increases and more and more data centers adopt carbon-free energy, the running

1Available at https://github.com/stuabc/PCAM
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Table 1: Carbon emission factors (g/kWh) for energy sources [14]

Emission factors Oil Coal Natural gas Nuclear Wind Solar Hydro Geothermal Biomass Other
Life-cycle emissions 650 820 490 12 11 45 24 38 230 700

carbon of large AI models will be greatly reduced, resulting in embodied carbon accounting for a
non-negligible part of the large AI models’ carbon footprint [12, 13].

2.2 Carbon emission factor and carbon intensity

The carbon emission factor (in g/kWh) is defined as the quantity of carbon emission per unit of
electricity generated by a specific energy source. The carbon emission factors of brown sources (e.g.,
coal, gas, etc.) are much higher than those of green sources (e.g., wind, solar, etc.), as Table 1 shows.

The carbon intensity of electricity is the carbon emission rate (in g/kWh) when the electricity is
generated, i.e., the total amount of carbon emitted (Gram) as against the electricity generation
(Kilowatt−Hour). It is the weighted average of carbon emissions by each energy source due to
the electricity generated by them. Mathematically, the carbon intensity of electricity generated at any
time is as follows:

Carbon Intensity =

∑
efk × Ek∑

Ek
(1)

where efk is the carbon emission factor and Ek is the electricity generated by energy source k.

3 Methodology

3.1 Limitation of existing modeling techniques

The existing carbon modeling techniques for AI models can be summarized as equation 2, where
Cmodel denotes the total carbon footprint of the AI models, including embodied carbon (ECmodel)
and operational carbon (OCmodel), t is the time the model occupies the hardware system, T is the
lifetime of the hardware system, E is the electricity consumed by the hardware system, and CI is the
carbon intensity of electricity.

Cmodel = ECmodel +OCmodel = t/T · ECsystem + E · CI (2)

These existing modeling techniques for AI models’ carbon footprint are fundamentally deterministic
and estimate the carbon emission model as a single deterministic value. These methods typically
rely on lifecycle assessment (LCA) reports that generalize embodied carbon estimates (ECsystem)
across entire product categories (e.g., 28nm CPUs, LPDDR4 DRAM). However, this paradigm fails
to account for critical spatial, temporal, and manufacturing variability that substantially impacts
actual carbon emissions. Specifically, the existing carbon models for AI models fail to capture: (1)
geotemporal differences in manufacturing, whereby the device instances in identical device classes
are fabricated in different regions and periods, e.g., in the winter in Ireland (Intel) or in the summer
in Taiwan (TSMC), embody distinct emissions due to different electricity carbon intensity during
production; It is known that carbon intensity depends on the electricity generation process, which
has spatial and temporal dynamics; (2) efficiency evolution over time, arising from continuous
advancements in process yield and the energy efficiency of fabrication methods; and (3) operating
context variability, since the operational carbon of AI models can vary significantly depending on the
when and where the AI models depoly because of spatiotemporal variations in the carbon intensity of
electricity. These characteristics introduce uncertainty into carbon estimates for AI models; however,
current carbon accounting methods for AI models fail to account for these uncertainties.

3.2 Embodied carbon modeling

We extend the existing carbon modeling methodology of AI models by giving parameter models for
each hardware component and characterizing the uncertainty. Specifically, we analyze the parameter
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Figure 1: Histograms of hourly carbon intensity data (monthly data in China) from five major IC
production regions between 2021-2023 with their individual kernel density estimates (KDEs).
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Figure 2: The distribution of carbon Intensity of processors, memory (DRAM), and storage (DRAM)
fabrication 2021-2023.

value evolution in the fabrication process by collecting data from various sources (e.g., ESG reports,
technology reports, power grid operators, etc.). We leverage KDE to generate the distributions of the
parameters based on the data we collect. KDE is a standard non-parametric estimation technique
used to estimate the probability density function of a random variable by applying a Gaussian kernel
weighting technique to data [15]. It is used when the behavior of a sparse data sample is extrapolated
to resample data to a larger sample size.

3.2.1 Embodied carbon of processors

We model the embodied carbon of large AI models caused by processors as follows: (1) the operation
time of large AI models on processors, denoted as tp, and the processor’s lifetime, denoted as Tp. (2)
the carbon emissions from electricity used during the fabrication process, calculated by multiplying
the Electricity consumption Per unit of die Size (EPS) by the carbon intensity of electricity during
manufacturing CIm; (3) the emissions associated with the raw materials, denoted as MPS (Material
Per Size); and (4) the carbon released by gas (e.g., fluorinated compounds) in the manufacturing
process denoted as GPS (Gas Per Size); (5) the die size of the processor, denoted as DizeSize; (6)
fab yield denoted as Y . Then, we can model the embodied carbon of processors for large AI models
as follows:

ECp
model =

tp ·DieSize

Tp · Ỹ
· ( ˜CIm · ˜EPS +GPS +MPS) (3)

Here, we denote Ỹ as the probabilistic model of yield Y . Similarly, we have ˜CIm and ˜EPS. We
will give the detailed uncertainty characterization of the three parameters in the following.

Carbon intensity distribution in the manufacturing process.

CIm denotes the carbon intensity of electricity consumed during semiconductor manufacturing, a
critical parameter determined by the energy source mix (e.g., solar, wind, coal, etc.) employed in
electricity generation. This metric exhibits spatiotemporal variability due to fluctuations in both
manufacturing schedules and geographic locations. The inherent uncertainty in carbon intensity
primarily comes from temporal variations throughout annual cycles, driven by seasonal patterns in
renewable energy generation and fluctuating electricity demand. When the manufacturing location
is specified, regional fabrication facilities demonstrate distinct carbon intensity distribution derived
from historical carbon intensity data from 2021 to 2023, as illustrated in Figure 1.
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Table 2: Global wafer fabrication capacity by technology by regions in 2020.
Regions US China Taiwan Korea Japan Others
<10nm Logic 0% 0% 69% 31% 0% 0%
10-22nm Logic 28% 6% 40% 9% 5% 12%
28nm+ Logic 8% 33% 30% 5% 10% 14%
Memory(DRAM) 3% 18% 20% 52% 7% 0%
Storage(NAND) 3% 26% 4% 30% 30% 7%

Memory can usually be manufactured by multiple manufacturers (e.g., SK Hynix, Samsung, Micron,
etc.), unlike processor manufacturers, which have a monopoly (e.g., most GPUs are manufactured
by TSMC). For the scenario involving uncertain manufacturing locations, the region selection can
be modeled as a discrete random variable. The probability distribution across geographical regions
is weighted according to their respective contributions to global IC production capacity for specific
process nodes [16]. As detailed in Table 2 from industry reports [17], these capacity allocations serve
as probabilistic weights for regional selection. The composite probability distribution for each process
node is constructed through a mixture modeling approach, incorporating the following components:
(1) regional KDE: non-parametric distributions developed using historical carbon intensity data (2021-
2023) for each major production region; (2) capacity-weighted sampling: a Monte Carlo sampling
strategy where regional selection probabilities correspond to normalized production capacities; (3)
composite distribution formation: aggregation of weighted regional samples through kernel density
smoothing, as visualized in Figure 2. This enables probabilistic modeling of carbon intensity while
accounting for both geographical production distributions and temporal energy mix variations.

Yield Distribution. Semiconductor manufacturing yield is defined as the ratio of defect-free semi-
conductor dies on a wafer to the total number of dies on that wafer. The parameter exhibits inherent
uncertainty that stems primarily from temporal variations in defect density observed across fabrica-
tion facilities. To systematically investigate this phenomenon, we employ TSMC’s historical defect
density data across four distinct process nodes [18], coupled with the application of the Poisson yield
model [19] for temporal yield computation. Following empirical data collection, we generate yield
histograms and subsequently apply KDE [20] to derive comprehensive probability density functions
characterizing yield distributions per unit die size, as visually presented in Figure 3.
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Figure 3: The Kernel Density Estimation of
Yield Ỹ .
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Figure 4: The kernel density estimation of ˜EPS
across different technology nodes.

EPS Distribution. The inherent uncertainty in EPS is from temporal fluctuations in process energy
efficiencies across different fabrication stages. We build the EPS distributions based on the EPS
values from the STEC model [13], the ACT model [12], the imec model [21], and the annual energy
efficiency improvements data from across the TSMC ESG reports [22] across various technology
process nodes (e.g., 5nm, 7nm). To construct the distributions, the analytical procedure involved three
key transformations: First, energy efficiency metrics for each process node are temporally normalized
relative to their baseline year values. Second, raw EPS values are adjusted through division by
these normalized efficiency coefficients to account for technological advancements. Finally, we
implement a dual-stage distribution modeling approach, i.e., converting the processed data into
frequency histograms followed by KDE to derive continuous probability density functions of ˜EPS,
as visualized in Figure 4.
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3.2.2 Embodied carbon of memory

We model the embodied carbon of large AI models caused by memory as follows: (1) the operation
time of large AI models on memory tm and the memory’s lifetime Tm; (2) the carbon released by
the electricity consumed during the process of manufacturing the memory. This is calculated by
multiplying the electricity consumption per unit of size (EPS) by the carbon intensity of a power
grid (CIm) then divided by bit density (BD, in GB/mm2); (3) the carbon released independent of
electricity, such as raw materials, distribution, and packaging, denoted as αm; and (4) the capacity of
memory Cm. Then, we can model the embodied carbon of memory for large AI models as follows:

ECm
model = tm/Tm · Cm · ( ˜CIm · ˜EPS/BD + αm) (4)

Here, the distribution of ˜CIm and ˜EPS for memory is similar to that in processors. We develop the
distribution based on the data we collect from Hynix [23] as Figure 2 shows.

3.2.3 Embodied carbon of storage

We model the embodied carbon of large AI models caused by storage as follows: (1) the operation
time of large AI models on storage ts and the storage’s lifetime Ts; (2) the carbon emissions from the
process of manufacturing the storage, which is determined by multiplying the electricity consumed
per unit of Giga-Byte during the manufacturing process (EPG) by the carbon intensity CIm; (3) the
carbon released independent of electricity such as raw materials, denoted as αS . αS can be found in
the industry reports [24]; and (4) the capacity of storage, denoted as Cs. Then, we can model the
embodied carbon of storage for large AI models and omit the distribution derivation as follows:

ECs
model = ts/Ts · Cs · ( ˜CIm · EPG+ αS) (5)

3.3 Operational carbon

The operational carbon footprint of large AI models (OCmodel) refers to the carbon emissions caused
by the electricity used during operation. It is determined by the electricity consumed by the model
(Eo) and the carbon intensity of the electricity (CIo) as follows:

OCmodel = Eo · C̃Io (6)

where C̃Io represents the distribution of the carbon intensity of that electricity. This uncertainty
comes from the uncertainty of the time and location of model training or inference. Eo can be
recorded by hardware during the model operation, or it can be estimated by the following equations:

Eo =
∑

i∈HardwareSet

(Pi · effi · ni · ti) · PUE (7)

where Pi represents the peak power of hardware i; effi denotes the efficiency of hardware i that
can be estimated by the hardware efficiency model [1]; ni is the number of hardware i; and ti refers
to the execution time for hardware i that can be estimated according to the existing flop model [1].
These hardware units include CPUs, GPUs, memory, storage, and others.

4 Evaluation

4.1 Setup

To comprehensively evaluate PCAM for the carbon footprint of large AI models, we make an effort
to develop a hardware and electricity dataset. This dataset includes hardware-related parameters (e.g.,
EPS, EPG, MPS, BD, etc.) and electricity-related parameters (e.g., CI), which is constructed by
aggregating data from diverse sources, including ESG reports from hardware manufacturers, power
grid operator statistics, industry reports, and peer-reviewed research publications
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Table 3: The hardware information about XLM.
Hardware Number Die Size/Unit Technology Nodes
GPU 512 8.15 cm2 12nm
CPU 64 1.47 cm2 16nm
Storage(SSD) 64 32TB Seagate Nytro 3332
Memory(DRAM) 64 256GB 10nm ddr4

For performance evaluation, we conduct a comparative analysis between PCAM and LLMCarbon,
the current state-of-the-art carbon model for large AI models. The evaluation is performed using
published training data from four representative large AI models (XLM, T5, GPT-3, and Switch)
[5, 9]. We compare the performance at key distribution percentiles (5th, 10th, 50th, 90th, and 95th) by
resampling PCAM’s probability distribution outputs against the ground truth based on the collected
carbon dataset. The evaluation focuses on the training processes of large AI models, as the accounting
methodology is identical for both training and inference. Please note that the carbon footprint can
not be measured by sensors due to its inherent characteristic. The "ground truth" in the following
evaluation is the accounting result based on the carbon dataset we collected without KDE.

4.2 Embodied carbon evaluation

Table 4: The comparison between LLMCarbon and
PCAM on embodied carbon accounting.

Models Total Embodied Carbon (kg) at each Percentile
5th 10th Median 90th 95th

Ground Truth 229.17 236.27 279.75 331.32 352.15
PCAM 235.2 242.74 281.09 339.95 359.93
PCAM ∆ 2.56% 2.67% 0.48% 2.54% 2.16%
LLMCarbon 297.71
LLMCarbon∆ 23.02% 20.64% 6.03% 11.29% 18.29%

CPU Embodied Carbon (kg) at each Percentile
Ground Truth 1.14 1.18 1.49 2.04 2.18
PCAM 1.16 1.19 1.48 2.01 2.12
PCAM∆ 1.72% 0.81% 0.52% 1.45% 2.61%
LLMCarbon 1.55
LLMCarbon∆ 26.50% 23.89% 4.08% 31.47% 40.25%

GPU Embodied Carbon (kg) at each Percentile
Ground Truth 98.69 101.36 133.76 189.11 211.05
PCAM 96.97 99.42 132.29 187.62 209.39
PCAM∆ 1.77% 1.95% 1.11% 0.79% 0.79%
LLMCarbon 141.68
LLMCarbon∆ 66.85% 28.46% 5.59% 33.48% 48.96%

DRAM Embodied Carbon (kg) at each Percentile
Ground Truth 7.97 8.15 10.39 14.47 15.3
PCAM 7.83 8.07 10.26 14.34 15.21
PCAM∆ 1.79% 0.99% 1.27% 0.91% 0.59%
LLMCarbon 10.85
LLMCarbon∆ 26.54% 24.88% 4.24% 33.36% 41.01%

SSD Embodied Carbon (kg) at each Percentile
Ground Truth 105.99 110.23 123.62 145.17 147.74
PCAM 108.25 111.47 122.76 147.05 149.65
PCAM∆ 2.09% 1.11% 0.70% 1.28% 1.28%
LLMCarbon 125.64
LLMCarbon∆ 15.64% 12.27% 1.61% 15.54% 17.59%

We conduct a comparative analysis of
embodied carbon accounting between
PACM and LLMcarbon, utilizing the
published XLM training data [5]. No-
tably, to the best of our knowledge, the
XLM dataset represents the only publicly
available information detailing hardware
infrastructure associated with embodied
carbon for large AI models training. The
hardware configuration, comprising 64
servers with detailed specifications pre-
sented in Table 3, is employed for XLM’s
training process. The training duration
lasts 20.4 days, with all hardware com-
ponents assumed to have a standard op-
erational lifetime of 5 years [5].

The embodied carbon accounting per-
formance of PCAM and LLMCarbon is
compared across different hardware com-
ponents and statistical percentiles, as de-
tailed in Table 4. For total embodied
carbon, PCAM demonstrates great align-
ment with ground truth values across all
percentiles, maintaining a maximum de-
viation of only 2.67% at the 10th per-
centile and achieving remarkable preci-
sion at the median (0.48% deviation).
In contrast, LLMCarbon shows substan-
tially larger deviations ranging from
6.03% at the median to 23.02% at the
5th percentile, demonstrating that the single deterministic model fails to capture uncertainty in
embodied carbon accounting.

Component-wise analysis shows that PCAM outperforms LLMCarbon at each component. For
CPU carbon accounting, PCAM errors are below 2.62% versus LLMCarbon’s around 4% - 40%
deviations. GPU calculations show PCAM’s robust performance with less than 2% deviations across
all percentiles, contrasted by LLMCarbon’s substantial overestimations reaching around 67% at the
5th percentile. The DRAM and SSD comparison follows similar trends, with PCAM errors remaining
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Table 5: The comparison between LLMCarbon and PCAM on different large AI models for opera-
tional carbon accounting.

AI models Carbon Models Operational Carbon in the Spatial Dimension (ton) Operational Carbon in the Temporal Dimension (ton)
5th per. 10th per. Median 90th per. 95th per. 5th per. 10th per. Median 90th per. 95th per.

XLM

Training Day: 20.4;
PUE: 1.1;
Ave. Power: 342 kw;
Num. of device: 512

Ground Truth 2.87 4.93 28.19 56.77 62.74 33.41 34.67 39.78 45.07 46.41
LLMCarbon 30.09 38.86
LLMCarbon ∆ 90.46% 83.62% 6.31% 88.67% 108.51% 16.18% 13.02% 2.37% 13.07% 16.43%
PCAM 2.79 5.13 29.08 57.13 63.71 33.59 34.19 39.07 45.51 46.03
PCAM ∆ 2.87% 3.90% 3.06% 0.63% 1.52% 0.54% 1.40% 1.82% 0.97% 0.83%

T5

Training Day: 20;
PUE: 1.12;
Ave. Power: 310 kw;
Num. of device: 512

Ground Truth 2.6 4.46 25.51 51.36 56.77 30.23 31.37 35.99 40.78 41.99
LLMCarbon 27.23 37.07
LLMCarbon ∆ 90.45% 83.62% 6.32% 88.62% 108.48% 16.19% 13.03% 2.91% 13.06% 16.41%
PCAM 2.42 4.74 25.68 51.19 57.13 30.91 31.98 36.85 40.13 42.83
PCAM ∆ 7.44% 5.91% 0.66% 0.33% 0.63% 2.20% 1.91% 2.33% 1.62% 1.96%

GPT3

Tarinin Day: 14.8;
PUE:1.1;
Ave. Power: 330 kw;
Num. of device:10K

Ground Truth 39.36 67.53 385.49 776.22 857.85 456.83 474.09 543.94 616.31 634.55
LLMCarbon 411.49 559.09
LLMCarbon ∆ 90.43% 83.59% 6.32% 88.64% 108.47% 16.19% 13.03% 2.71% 13.07% 16.41%
PCAM 37.75 69.71 390.21 769.02 869.37 449.87 469.99 535.68 605.95 626.12
PCAM ∆ 4.26% 3.13% 1.21% 0.94% 1.33% 1.55% 0.87% 1.54% 1.71% 1.35%

Switch

Tarinin Day: 27;
PUE:1.1;
Ave. Power: 245 kw;
Num. of device: 1K

Ground Truth 5.33 9.14 52.21 105.13 116.19 61.87 64.21 73.67 83.47 85.94
LLMCarbon 55.73 74.82
LLMCarbon ∆ 90.44% 83.60% 6.32% 88.64% 108.49% 16.19% 13.02% 1.54% 13.07% 16.42%
PCAM 5.01 9.49 52.23 105.04 118.09 61.18 64.88 73.08 83.95 85.08
PCAM ∆ 6.39% 3.69% 0.04% 0.09% 1.61% 1.13% 1.03% 0.81% 0.57% 1.01%

below 1.8% in DRAM (2.1% in SSD) versus LLMCarbon’s around 25% - 40% in DRAM (around
2% - 18% in SSD) deviations.

Our analysis reveals that GPUs exhibit a substantially wider absolute uncertainty range (98.69
- 211.05 kg, ∆= 114.36 kg) in embodied carbon compared to the cumulative variance of other
hardware components, establishing them as the dominant contributor to total embodied carbon
variability. This disproportionate impact stems from two key manufacturing characteristics: First,
GPU production employs advanced semiconductor fabrication processes that require significantly
higher energy, making its embodied carbon particularly sensitive to variations in the carbon intensity
of electricity. Second, the combination of larger die sizes and complex architectures results in lower
yields with greater variation, amplifying the uncertainty in the embodied carbon of GPUs.

Overall, this significant variance underscores critical limitations in conventional deterministic carbon
accounting models like LLMCarbon and highlights the necessity of probabilistic modeling that
explicitly accounts for parameter uncertainties in carbon modeling. These findings challenge the
validity of current sustainability certification paradigms that rely on deterministic embodied car-
bon accounting. We propose that comprehensive environmental impact assessments for large AI
models should adopt distribution-aware evaluation methodologies and report confidence intervals
alongside central estimates to enable more informed decision-making in sustainable large AI models
development.

4.3 Operation carbon evaluation

Table 5 presents the operation carbon evaluation results of PCAM for the four large AI models, XLM,
T5, GPT3, and Switch, based on their published training information [9]. The training information is
listed in Table 5, where “avg. power (W)” conveys the average system power per computing device
(e.g., GPU, TPU, DRAM, etc.); "Num. of device" is the total number of computing devices. We
estimate the electricity consumption of large AI models based on the training data and subsequently
calculate their operational carbon footprint.

To comprehensively evaluate model performance, we conducted comparative analyses across spatial
and temporal dimensions. In the spatial analysis, we maintain a fixed training date while considering
global geographical variations (across 90 regions). Conversely, the temporal analysis fixed the
training location (the USA) while accounting for time-dependent factors (across 2021-2023 years).
Overall, PCAM outperforms LLMCarbon (0.09% - 7.44% vs. 1.54%- 108.51% deviations) in the
operational carbon accounting for each AI model. Besides, the absolute error of the LLMCarbon
is much larger than that of PCAM, e.g., 372.13 t vs. 3.6 t for GPT3 under the 5th percentile in the
spatial dimension.

Besides, spatial variations demonstrate particularly pronounced differences. For example, the devia-
tions of LLMCarbon under the spatial dimension are from 90.43% (5th percentile) to 108.51% (95th
percentile), while that is from 16.18% to 16.43% under the temporal dimension.
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Figure 5: The comparison between LLMCarbon and PCAM on operational carbon accounting in the
US, IT, and DE.

This contrast highlights that geographical factors introduce greater uncertainty in operational carbon
accounting than temporal variations.

5 Case Study

PCAM delivers practical value by enabling risk-aware decision-making through carbon budget
overrun probability assessments, ensuring realistic sustainability targets. It facilitates sensitivity
analysis to pinpoint key uncertainty drivers, guiding operational and hardware prioritization while
aiding manufacturers in green production optimization. For operational choices, PCAM helps
developers schedule computing tasks based on temporal and regional grid carbon intensity. It
also supports multi-source hardware comparisons by evaluating embodied carbon distributions to
inform procurement. Furthermore, PCAM encourages industry-wide engagement by quantifying
supply chain impacts and promoting transparency. Its probabilistic reporting enhances credibility for
compliance while aligning with carbon-aware computing trends by providing confidence bounds for
auditing and long-term planning.

Figure 5 provides a visual comparison of operational carbon estimates between PCAM and LLM-
Carbon for XLM training in three regions: California (US), Germany (DE), and Italy (IT). While
LLMCarbon suggests the US produces lower emissions than IT and IT has lower emissions than
DE, PCAM reveals more nuanced probabilistic outcomes: there is an 81.66% probability of IT’s
operational carbon footprint exceeding that of the US and a 33.06% probability of surpassing DE’s
emissions. This probabilistic approach enables PCAM to provide multi-dimensional insights, em-
powering AI developers to make more informed sustainability decisions.

6 Related Work

The current methodologies for carbon footprint estimation of large AI models predominantly concen-
trate on operational carbon, which is calculated as the product of electricity consumed and carbon
intensity. Most studies predominantly focus on tracking or estimating the electricity consumed. A
subset of studies has developed software-integrated instrumentation to monitor real-time CPU/GPU
power utilization during inference or training phases [25, 26, 27, 28], while alternative approaches
derive energy estimates through the parameters of and hardware (e.g., thermal design power) [29, 30].
However, these methodologies systematically neglect the embodied carbon accounting associated
with AI hardware infrastructure, which is non-negligible in the carbon footprint of large AI models,
as power grids decarbonize and data centers increasingly adopt zero-carbon energy sources.

Regarding embodied carbon modeling, existing frameworks such as SustainableAI [5] estimated the
embodied carbon of large AI models through manufacturer-reported emission factors for hardware
components, which is an average value. LLMCarbon [1] adopts a deterministic parametric model
to estimate the embodied carbon for processors and average values for storage and memory in ESG
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reports. However, these approaches lead to oversimplified modeling constrained by two critical
limitations: (1) fail to capture the effect of temporal and spatial specificity in hardware instance
(e.g., 28nm CPU made in winter in China vs. 28nm CPU made in summer in the US); (2) fail to
capture the effect of heterogeneous manufacturing configurations within device class (e.g., yield and
fabrication efficiency improvement for certain processors). These characteristics lead to uncertainty
in carbon estimates in large AI models, but current large AI models’ carbon models fail to capture
this uncertainty.

7 Limitations and Discussions

This study examines the carbon footprint of large AI models across four life-cycle stages: (1)
Hardware manufacturing, referring to emissions generated during the production of core computing
components; (2) Hardware transport, encompassing emissions from shipping hardware to end-
users; (3) Operational use, comprising emissions resulting from software execution, primarily due to
electricity consumption; and (4) End-of-life processing, involving emissions associated with hardware
recycling. Among these, the operational use phase corresponds to the operational carbon of large AI
models, while the remaining stages contribute to their embodied carbon. Hardware manufacturing
and operational use are the dominant sources of emissions, for instance, over 97% in the case of a
Dell R740 server [31]. In contrast, transport and end-of-life stages make negligible contributions
and are thus excluded from the current scope. Within hardware manufacturing, we focus specifically
on emissions from computer hardware production, such as those arising from material extraction,
energy use, and chemical processing, while ancillary factors like infrastructure, cooling systems, and
human labor are not considered in this study. We acknowledge that these omitted factors also play
a significant role in the overall embodied carbon footprint. A full quantification of their associated
uncertainties requires interdisciplinary collaboration and is reserved for future work.

PCAM only considers the uncertainty of some parameters due to the lack of relevant carbon data.
Inaccuracy comes from using averaged/aggregated data in various aspects (e.g., raw material, supply
chain, packaging, etc.). Intrinsically, carbon data is unique in that it cannot be directly measured by
sensors (unlike electricity) and can only be calculated through accounting models, which leads to the
fact that perfect carbon modeling is difficult. The increasing focus on carbon emissions considerations
among hardware producers drives substantial enhancements in carbon data quality. This trend leads
to more accurate and reliable accounting models for the carbon footprint of large AI models.

8 Conclusion

In this paper, we propose PCAM, a Probabilistic Carbon Accounting Model for large AI Models,
which systematically captures and quantifies the uncertainties inherent in both embodied and oper-
ational carbon emissions. Unlike existing deterministic approaches such as LLMCarbon, PCAM
provides distribution-based carbon footprint estimates, enabling AI developers and policymakers to
make risk-aware decisions. By moving beyond point estimates to probabilistic carbon accounting,
PCAM supports more robust environmental impact assessments, facilitates compliance with emerging
carbon regulations, and promotes transparency in AI sustainability reporting. Future work will expand
PCAM to incorporate additional lifecycle stages and supply chain factors, fostering a more holistic
and actionable framework for carbon-aware AI development. To facilitate the decarbonization of
large AI models, we are open-sourcing the carefully curated carbon dataset compiled in this study,
thereby providing the community with the necessary tools to quantify, understand, and mitigate the
environmental impact of AI model development. We strongly call for collective action across the
industry to enhance the transparency of carbon-related data, including the carbon intensity of power
grids and hardware-related data. Establishing a culture of open and standardized emissions reporting
is fundamental to driving systemic decarbonization. It enables the establishment of credible baselines,
pinpoints optimization hotspots, and paves the way for accountable and verifiable progress across the
entire AI ecosystem.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: We described our claims and contributions clearly in the abstract and introduc-
tion

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .
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Justification: We included the limitations our paper under Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: This is not a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We explained our settings in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We will provide the data on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: We do not have training or test data sets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: Statistical significance is not a part of our theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA] .
Justification: Our experiments do not require extensive hardware computing resources. Any
computer will suffice.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We read the code of ethics carefully.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We discuss the societal impacts in the Introduction Section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This paper does not have risks for data misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: The data are all open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: This paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Table 6: The comparison between PCAM and STEC on the embodied carbon accounting of XLM.

Models Total Embodied Carbon (kg) at each Percentile
5th 10th Median 90th 95th

Ground Truth 229.17 236.27 279.75 331.32 352.15
PCAM 235.20 242.74 281.09 339.95 359.93
PCAM∆ 2.56% 2.67% 0.48% 2.54% 2.16%
STEC 283.01 286.00 294.90 303.02 305.01
STEC∆ 23.49% 21.05% 5.42% 8.55% 13.39%
LLMCarbon 297.71
LLMCarbon∆ 23.02% 20.64% 6.03% 11.29% 18.29%

Appendix

We provide additional experiments to compare PCAM with STEC [13], which is an embodied carbon
accounting model for computer systems. STEC incorporates spatiotemporal variability in the carbon
intensity of electricity used during hardware manufacturing. However, it remains a fundamentally
deterministic model and does not probabilistically account for other key sources of uncertainty, such
as geotemporal manufacturing capacity distribution or efficiency evolution over time (e.g., yield and
fabrication efficiency improvements). To enable a direct quantitative comparison with PCAM at the
AI model level, we extended the STEC methodology by scaling its hardware-level carbon accounting
using the foundational equation (Eq. 2 from the main text) and generating a distribution of embodied
carbon based on the regional electricity carbon intensity frequency data. PCAM outperforms STEC
consistently across all percentiles, with errors under 3% compared to STEC’s under 24%, as Table 6
shows.
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