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Abstract

Audio-Visual Speech Recognition (AVSR)001
achieves robust speech recognition in noisy en-002
vironments by combining auditory and visual003
information. However, recent Large Language004
Model (LLM) based AVSR systems incur high005
computational costs due to the high temporal006
resolution of audio-visual speech processed by007
LLMs. In this work, we introduce an efficient008
multimodal speech LLM framework that mini-009
mizes token length while preserving essential010
linguistic content. Our approach employs an011
early av-fusion module for streamlined feature012
integration, an audio-visual speech Q-Former013
that dynamically allocates tokens based on in-014
put duration, and a refined query allocation015
strategy with a speech rate predictor to adjust016
token allocation according to speaking speed017
of each audio sample. Extensive experiments018
on the LRS3 dataset show that our method019
achieves state-of-the-art performance with a020
WER of 0.74% while using only 2.8 tokens per021
second. Moreover, our approach not only re-022
duces token usage by 88.8% compared to the023
previous multimodal speech LLM framework,024
but also improves computational efficiency by025
reducing FLOPs by 36%.026

1 Introduction027

In human communication, watching lip movements028

and listening to sounds are essential for understand-029

ing speech. These multimodal cues, which com-030

bine visual and auditory information, enable peo-031

ple to communicate effectively in bustling cafes,032

crowded streets, and noisy factories. Thanks to033

these practical advantages and significant advances034

in deep learning, Audio-Visual Speech Recog-035

nition (AVSR) technology has made remarkable036

progress through numerous research efforts (Shi037

et al., 2022a; Ma et al., 2023; Afouras et al., 2018a;038

Ma et al., 2021; Serdyuk et al., 2022; Cappellazzo039

et al., 2024). Now, it is easy to find an AVSR model040

that can accurately predict what you have said, even041

in noisy environments. 042

Such rapid progress has been made possi- 043

ble by large-scale audio-visual datasets (Afouras 044

et al., 2018b,a); advanced neural network architec- 045

tures such as RNNs (Elman, 1990), Transformers 046

(Vaswani, 2017), and Conformers (Gulati et al., 047

2020); improved multimodal learning strategies, in- 048

cluding self-supervised learning (Shi et al., 2022a) 049

and knowledge distillation using a pre-trained Au- 050

tomatic Speech Recognition (ASR) model (Ma 051

et al., 2023); carefully designed training methods 052

(Ma et al., 2022; Hong et al., 2023); and the uti- 053

lization of Large Language Models’ (LLMs) lan- 054

guage understanding capabilities as sentence pre- 055

dictors (Cappellazzo et al., 2024). Among these 056

approaches, multimodal speech LLM frameworks 057

have achieved remarkable performance by directly 058

integrating with LLMs and unlocking their en- 059

hanced context modeling capabilities. Despite sig- 060

nificant advancements in integrating LLMs into 061

the multimodal speech domain, these approaches 062

still suffer from high computational costs. This is 063

largely due to multimodal tokens having a higher 064

temporal resolution compared to text tokens, which 065

forces the self-attention mechanism in each LLM 066

layer to process many more tokens, thereby signifi- 067

cantly increasing the computational burden. 068

To address these issues, we aim to develop 069

an efficient multimodal speech LLM framework, 070

namely MMS-LLaMA, for AVSR that minimizes 071

the length of multimodal speech tokens while pre- 072

serving their linguistic content. To achieve this, 073

we construct this framework with three primary 074

components: 1) early av-fusion module shifts the 075

fusion process to an earlier stage, prior to inputting 076

multimodal speech tokens into the LLM. 2) audio- 077

visual speech Q-former (AV Q-Former) is designed 078

to dynamically allocate the number of learnable 079

queries according to the duration of audio-visual in- 080

put, where queries are transformed into multimodal 081

speech tokens. 3) Going one step further, to more 082
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effectively adjust the number of multimodal tokens,083

we propose a speech rate predictor. It accounts for084

differences in speaking speed across each audio085

sample, enabling the assignment of more tokens to086

faster speech.087

Reflecting the growing trend toward efficient088

multimodal models and leveraging insights from089

efficient Large Multimodal Models (LMMs) that090

utilize minimal vision tokens during pre-fusion091

(Zhang et al., 2025), we incorporate their effective092

pre-fusion approach into our multimodal speech093

LLM framework. Concurrently, we explore and in-094

tegrate existing audio-visual fusion strategies into095

our early-AV fusion module, which reduces the096

number of fused sequences by half.097

Even though the number of fused sequences is098

reduced by half, their temporal resolution remains099

higher than that of text tokens. To minimize the100

audio-visual sequence length to similar level of101

text, AV Q-Former is designed. Since the language102

content in audio-visual inputs scales with their du-103

ration, a fixed-length output from a conventional104

Q-Former (Dai et al., 2023) may be inefficient105

for compressing variable-length audio and visual106

modalities. To address this, we propose a novel107

query allocation strategy that adjusts the number108

of multimodal speech tokens based on the dura-109

tion of the audio-visual input. Using this dynamic110

strategy, we empirically determine the minimum111

number of multimodal speech tokens required for112

variable-length inputs and compress the sequence113

to a scale comparable to that of text tokens. Finally,114

to further enhance efficiency, we refine our query115

allocation strategy by incorporating a speech rate116

predictor. Even if two audio-visual inputs have the117

same duration, their language content may differ118

depending on the speaker’s speaking rate. By tak-119

ing this into account, we can assign more queries120

to faster speech segments, thereby generating a121

greater number of multimodal speech tokens and122

preserving their linguistic content.123

Through extensive experiments, we demonstrate124

that using only 2.8 multimodal speech tokens per125

second can effectively preserve language content126

while maintaining performance. Moreover, our ap-127

proach achieves state-of-the-art performance with128

a Word Error Rate (WER) of 0.74% on the LRS3129

dataset. Compared to the previous LLM-based130

multimodal speech framework (Cappellazzo et al.,131

2024) that uses 25 tokens per second, our method132

reduces token usage by 88.8%, employing only 2.8133

tokens per second. Additionally, our approach im-134

proves computational efficiency, reducing FLOPs 135

by 36.6%. 136

2 Related Work 137

2.1 Audio-Visual Speech Recognition 138

Audio-based Automatic Speech Recognition (ASR) 139

is a well-studied and one of the most frequently 140

used technology (Amodei et al., 2016; Kim et al., 141

2017; Prabhavalkar et al., 2023). However, as it pri- 142

marily depends on acoustic inputs, its performance 143

naturally degraded when the input audio is per- 144

turbed with other background noises (e.g., babble 145

noise) (Varga and Steeneken, 1993). Visual Speech 146

Recognition (VSR) aims to employ visual inputs 147

only in speech recognition, using the fact that the 148

visual inputs are not affected by the acoustic noises. 149

A diverse range of literature has been explored on 150

VSR techniques to avoid the impact of background 151

noise on speech recognition performance (Petridis 152

et al., 2017, 2018b; Martinez et al., 2020; Ma et al., 153

2021, 2022, 2023; Kim et al., 2022, 2023, 2024a,b; 154

Yeo et al., 2024b,c,d). 155

Audio-Visual Speech Recognition (AVSR) inte- 156

grates both audio and visual modalities as input, 157

combining the strengths of ASR and VSR tech- 158

niques to enhance the robustness and performance 159

of speech recognition systems, particularly in noisy 160

environments. Early AVSR models (Noda et al., 161

2015; Huang and Kingsbury, 2013; Mroueh et al., 162

2015; Stewart et al., 2013) established the foun- 163

dation for multimodal speech recognition, demon- 164

strating the effectiveness of fusing visual features 165

such as lip movements with audio signals. Ad- 166

vancements in AVSR (Petridis et al., 2018a; Shi 167

et al., 2022b; Hong et al., 2022, 2023) have been 168

fueled by improvements in both data availability 169

(Chung et al., 2017; Afouras et al., 2018b) and 170

model architectures (Vaswani, 2017; Gulati et al., 171

2020). Self-supervised learning has also played a 172

crucial role in advancing AVSR (Shi et al., 2022a; 173

Lian et al., 2023; Haliassos et al., 2024b,a) to fur- 174

ther enhance performance. 175

More recently, two research trends have emerged 176

in the field. One focuses on leveraging pre-trained 177

ASR models, with approaches like pseudo-labeling 178

unlabeled audio-visual data for data augmentation 179

(Ma et al., 2023; Yeo et al., 2024d) or integrating 180

a pre-trained visual encoder with Whisper (Rou- 181

ditchenko et al., 2024). The other trend integrates 182

LLMs with speech features to harness the context 183

modeling capabilities of LLMs, thereby enhancing 184
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the recognition performance (Yu et al., 2024; Yeo185

et al., 2024a; Cappellazzo et al., 2024).186

While recent efforts leveraging LLMs have187

achieved remarkable performance in speech recog-188

nition, they have primarily focused on further189

improving accuracy. In contrast, our goal is to190

limit the computational burden on our multimodal191

speech LLM without sacrificing accuracy, we intro-192

duce the AV Q-Former. By dynamically modifying193

the number of multimodal speech tokens, it effec-194

tively preserves essential linguistic details from195

both the audio and visual streams.196

2.2 Speech Large Language Model197

Early advancements in speech recognition began198

with monolingual English ASR models (Hsu et al.,199

2021; Radford et al., 2023). Building on these200

monolingual models, multilingual speech recogni-201

tion systems (Fathullah et al., 2024; Rubenstein202

et al., 2023) have significantly improved perfor-203

mance, especially for low-resource languages, by204

leveraging the multilingual capabilities of LLMs.205

Building on the contextual understanding capabil-206

ities of LLMs, current Speech LLMs have sig-207

nificantly greatly improved the accuracy, robust-208

ness to noise, and adaptability to diverse accents209

and dialects. Beyond speech recognition, Speech210

LLMs have also expanded to support multitask211

learning, enabling a single model to perform a212

wide range of speech-related tasks (Chu et al.,213

2023; Tang et al., 2023). Qwen-Audio (Chu214

et al., 2023) and SALMONN (Tang et al., 2023)215

scale audio-language pre-training to cover various216

speech-related tasks and diverse audio inputs. De-217

spite these significant progresses, the exploration218

of extending LLMs’ capabilities to the audio-visual219

speech domain remains limited.220

However, most current speech LLMs primar-221

ily focus on audio-based tasks and have not ex-222

plored the effectiveness of adopting utilization of223

speech rate. In contrast, our work incorporates a224

speech rate predictor that dynamically allocates225

resources based on speaking speed of each audio,226

enabling more efficient and robust processing for227

audio-visual speech inputs.228

3 Method229

In this paper, our objective is to minimize the length230

of multimodal tokens while preserving their linguis-231

tic content, thereby enhancing the efficiency of our232

multimodal speech LLM framework. Recent works233

(Yeo et al., 2024a; Cappellazzo et al., 2024) have 234

demonstrated that LLMs can serve as effective mul- 235

timodal speech learners by leveraging their context 236

modeling capabilities. Motivated by this finding, 237

we adopt their framework as our baseline AVSR 238

model. 239

As illustrated in Figure 1, the architecture con- 240

sists of three main components: a visual encoder, 241

an audio encoder, and an LLM decoder that pre- 242

dicts sentences from multimodal tokens. Building 243

on these components, and with the goal of reducing 244

the number of multimodal tokens while retaining 245

essential linguistic information, we introduce three 246

additional modules: the early av-fusion module, 247

the AV Q-Former, and the speech rate predictor. 248

3.1 Early AV-Fusion Module 249

Although pre-fusion techniques that combine vi- 250

sual and text modalities have proven effective at 251

reducing computational costs, their application in 252

multimodal speech LLM frameworks remains un- 253

explored. To extend their effectiveness to the mul- 254

timodal speech domain, we propose an early av- 255

fusion module that fuses visual and audio modal- 256

ities before inputting them into the LLM, thereby 257

halving the sequence length. To design this mod- 258

ule effectively, we investigate three previously pro- 259

posed fusion techniques for audio-visual speech: 260

concatenation, addition, and multimodal attention. 261

Given the audio and video inputs, the visual en- 262

coder and audio encoder extract visual features 263

Xv ∈ RTv×D and audio features Xa ∈ RTa×D 264

that contain linguistic content from lip movements 265

and sound, respectively. Since these features have 266

different temporal resolutions (with audio features 267

typically having a higher resolution than visual fea- 268

tures), we employ a length adapter to resample the 269

audio features so that they match the temporal scale 270

of the visual features. We denote the resampled au- 271

dio features as X′
a ∈ RTv×D. Through this process, 272

we align the audio-visual features along the time 273

dimension and evaluate the effectiveness of three 274

fusion methods based on these aligned features. 275

Concatenation. The audio and visual feature 276

vectors are combined by simply appending one to 277

the other along the feature dimension via concate- 278

nation approach. This can be expressed as follows: 279

Xav = [X′
a;Xv] ∈ RTv×2D (1) 280

Addition. The addition method fuses audio and 281

visual features by performing an element-wise sum. 282
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𝑇𝑇𝑣𝑣: Total frame of audio-visual features
𝐹𝐹𝑣𝑣: Frame rate of audio-visual features
𝑓𝑓𝑄𝑄: Queries allocated per second
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: Learnable Query
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…

Figure 1: Illustration of the MMS-LLaMA framework. Audio and visual features are extracted by separate encoders,
with a length adapter aligning audio frames. Early AV-Fusion merges the two modalities, while a speech rate
predictor estimates speaking speed. Through the query allocation strategy, the appropriate number of queries is
passed to the AV Q-Former, which produces multi-modal speech tokens. These tokens, combined with instruction
embeddings, are then fed into the LLM to generate the output sentence. During training, the parameters of the
encoders, the LLM’s text embedding layer, and the speech rate predictor remain frozen.

It can be formulated as follows:283

Xav = X′
a +Xv ∈ RTv×D (2)284

where, + indicate element-wise summation.285

Multimodal Attention. The multimodal atten-286

tion method fuses audio and visual features based287

on attention mechanism.288

Xav = MHCA(XvWQ,X
′
aWK ,X′

aWV ) (3)289

where MHCA indicate multi-head cross attention,290

Xav ∈ RTv×D, WQ, WK , and WV are learnable291

projection matrices that transform the features into292

the query, key, and value.293

3.2 AV Q-Former294

While these early av-fusion modules reduce the295

length of the audio-visual feature sequence by half,296

there is still a gap compared to the number of text297

tokens. To bridge this gap between audio-visual298

speech and text modalities in terms of token count,299

we introduce a novel AV Q-Former.300

To transform variable-length input sequences301

into fixed-length output queries, the Q-Former is in-302

troduced by Dai et al. (2023) in the vision-language303

domain. By employing a fixed-size window, Tang304

et al. (2023) demonstrates that the Q-Former effec-305

tively compresses audio-based speech tokens into306

text-level queries. Despite this progress, because 307

the window-level Q-Former uses a fixed window 308

size, it captures context information from only a 309

portion of speech tokens in a single query. To ad- 310

dress this limitation, we employ the conventional 311

Q-Former with a novel query allocation strategy. 312

3.2.1 Query Allocation Strategy 313

While Q-Formers allocate a fixed number of 314

queries regardless of input sequence length, the 315

language content of audio-visual inputs is propor- 316

tional to their duration. Therefore, our allocation 317

strategy aims to dynamically adjust the number of 318

queries based on the input length. 319

As shown in Figure 1, the AV Q-Former dynam- 320

ically assigns a number of queries proportional to 321

the length of the audio-visual feature sequence. To 322

achieve this, we define a learnable query sequence 323

Q ∈ RN×Dq , where N denotes the number of 324

queries and Dq represents the embedding dimen- 325

sion of each query. Then, depending on the dura- 326

tion of the input audio and video, the number of 327

queries is allocated proportionally to their respec- 328

tive durations. Let Fv denote the frame rate (in Hz) 329

of the audio-visual feature sequence and assume 330

a query rate fQ (i.e., the number of queries per 331

second), the allocated number of queries is given 332

by 333
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Figure 2: Impact of Query Frequency Variations on
AVSR Performance. This results demonstrates that com-
pressing the audio-visual feature sequence to as low as
query frequency 4 maintains performance.

Nalloc = ⌊fQ × Tv

Fv
⌋ (4)334

We subsequently select the first Nalloc queries335

from the learnable query sequence. It can be for-336

mulated as: Qalloc = Q[: Nalloc] ∈ RNalloc×Dq .337

These queries with audio-visual feature sequence,338

are fed into the Q-Former to generate multimodal339

speech tokens M ∈ RNalloc×Dq . This process can340

be expressed as follows:341

M = Q-Former(Qalloc;Xav) (5)342

Then, we apply two linear layers to project the343

multimodal speech tokens into the LLM’s embed-344

ding space. Next, we concatenate these projected345

tokens with the text instruction embeddings along346

the temporal axis, and then provide the resulting347

sequence as input to the LLM to predict the sen-348

tence. With this allocation strategy, we explore the349

minimum query frequency required to effectively350

compress the audio-visual feature sequence while351

maintaining performance.352

3.3 Speech Rate Predictor353

Through our AV Q-Former, as shown in Figure 2,354

we have confirmed that that performance remains355

robust even when compressing the audio-visual356

feature sequence by leveraging a query frequency357

of 4, which corresponds to 2.8 multimodal speech358

tokens per second (detailed in Section 5.2.1).359

However, performance begins to degrade below360

a query frequency of 4 Hz. This is likely due to361

variations in the speech rate across audio samples,362

which rate usually measured in words per minute.363

Faster speech may contain more linguistic content364

and thus require additional queries, even if the total 365

duration is the same as slower speech. To address 366

this, we propose a speech rate predictor that allo- 367

cates queries more effectively by considering each 368

audio sample’s speech rate. Our goal with this pre- 369

dictor is to optimize the query allocation strategy 370

for enhanced efficiency. 371

To train the speech rate predictor, we first com- 372

pute the average speech rate across the training set 373

and normalize each sample’s speech rate based on 374

this reference. The normalized values serve as tar- 375

get labels, and we train the predictor using Mean 376

Squared Error (MSE) loss with only audio features 377

as input. This training process is performed before 378

training our multimodal speech LLM framework. 379

The pre-trained predictor then estimates the speech 380

rate rs and allocates more queries to higher speech 381

rates (i.e., faster speech). This process can be for- 382

mulated as follows: 383

Nalloc = ⌊fQ × Tv

Fv
× rs⌋. (6) 384

The illustration of the speech rate predictor can be 385

found in the right side of Figure 1. 386

4 Experimental Setup 387

4.1 Dataset 388

Lip Reading Sentences 3 (LRS3) as detailed in 389

(Afouras et al., 2018b), is a widely used dataset 390

designed for audio-visual speech recognition. It in- 391

cludes 433 hours of audio-visual data sourced from 392

TED and TEDx talks, accompanied by human- 393

annotated text transcriptions. 394

VoxCeleb2 as detailed in (Chung et al., 2018), is 395

a dataset designed for speaker recognition. It con- 396

sists of 2,442 hours of multilingual audio-visual 397

data. Following (Shi et al., 2022a), we utilize only 398

the English portion of this dataset, which amounts 399

to 1,326 hours. Moreover, we also use the Whisper 400

ASR model to generate pseudo text transcriptions, 401

which we combine with the LRS3 dataset for train- 402

ing our model. This combined dataset amounts to 403

1,756 hours. 404

4.2 Implementation Details 405

4.2.1 Pre-processing 406

Following (Ma et al., 2023), we resample all audio 407

and video from the LRS3 and VoxCeleb2 datasets 408

to 25 fps and 16 kHz, respectively. Using Reti- 409

naFace (Deng et al., 2020), we crop the mouth 410

region from the face video to a size of 96x96. The 411
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Method Audio
Encoder

Visual
Encoder Decoder Training

Data(hrs)
WER ↓

Noisy Clean

CM-seq2seq (Ma et al., 2021) Conformer Transformer 433 - 2.3

ViT3D-CM (Serdyuk et al., 2022) Conformer LSTM 90K 2.9 1.6

CMA (Kim et al., 2024c) Transformer Transformer 433 4.4 1.5

AV-data2vec (Lian et al., 2023) Transformer Transformer 433 6.7 2.5

auto-avsr (Ma et al., 2023) Conformer Transformer 1902/3448 - 1.0/0.9

LP Conformer (Chang et al., 2024) Conformer LSTM 100K 1.9 0.9

Whisper-Flamingo (Rouditchenko et al., 2024) Whisper AV-HuBERT Whisper 433/1759 5.6/5.6 1.1/0.76

Multi-modal Speech LLM Framework

LLaMA-AVSR (Cappellazzo et al., 2024)
Whisper AV-HuBERT LLaMA 3.1 8B 433 4.2 0.95

Whisper AV-HuBERT LLaMA 3.1 8B 1759 - 0.77

MMS-LLaMA
Whisper AV-HuBERT LLaMA 3.2 3B 433 2.8 0.92

Whisper AV-HuBERT LLaMA 3.2 3B 1759 1.9 0.74

Table 1: Comparisons with state-of-the-art methods on the LRS3 dataset. We report each method’s architecture
(audio encoder, visual encoder, decoder), the amount of training data, token throughput, and WER under both clean
and noisy conditions. The clean condition is evaluated on the original test set, while the noisy condition is evaluated
on a test set with babble noise added at 0-SNR

cropped mouth clips are then converted to grayscale412

and flipped horizontally for data augmentation dur-413

ing the training stage. Audio at a 16 kHz sampling414

rate is mixed with babble noise from the NOISEX415

dataset (Varga and Steeneken, 1993) at a 75% prob-416

ability. After Whisper processing, the audio is417

padded to 30 seconds and converted into an 80-418

dimensional Mel spectrogram, which is then fed419

into the Whisper encoder420

4.2.2 Architectures421

We adopt AV-HuBERT (Shi et al., 2022a) as the422

visual encoder and Whisper (Radford et al., 2023)423

as the audio encoder. For the large language model424

(LLM), we use LLaMA variants: LLaMA 3.2 1B,425

3B, and LLaMA 3.1 8B (Dubey et al., 2024). Our426

AV Q-Former is based on a BERT-large model with427

two Transformer layers, each having an embedding428

dimension of 1024, 16 attention heads, and a feed-429

forward dimension of 4096. Finally, the speech rate430

predictor consists of two Transformer layers with431

a 256-dimensional embedding, 4 attention heads,432

and a feed-forward dimension of 1024.433

4.2.3 Training and evaluation434

We use the Adam optimizer with β1 = 0.9 and435

β2 = 0.98, alongside a cosine learning rate sched-436

uler. The initial learning rate is set to 1e−4, with437

0.5k warm-up steps out of a total 30,000 steps. We438

also employ a minimum learning rate of 1e−5 and439

a final learning rate scale of 0.05. For fine-tuning440

the LLM, we adopt the QLoRA (Dettmers et al., 441

2024) approach with a LoRA rank of 16, an alpha 442

(scaling factor) of 32, and a dropout rate of 0.05, 443

applying LoRA to the query, key, value, and output 444

projection layers. We evaluate performance using 445

beam search decoding (beam size = 5) with a tem- 446

perature of 0.3. All experiments are conducted on 447

8 RTX 3090 GPUs. 448

5 Experimental Results 449

5.1 Comparison with the state-of-the-art 450

methods 451

In order to validate the effectiveness of the pro- 452

posed method, we compare the proposed MMS- 453

LLaMA with the previous state-of-the-art AVSR 454

methods on LRS3 dataset, as shown in Table 1. 455

Traditional approaches, such as CM- 456

seq2seq (Ma et al., 2021), ViT3D-CM (Serdyuk 457

et al., 2022), and auto-avsr (Ma et al., 2023), 458

commonly employ Conformer- or Transformer- 459

based backbones and rely on large-scale datasets 460

to improve AVSR performances. Notably, 461

LP Conformer (Chang et al., 2024) achieved 462

a 0.9% WER using 100K hours of training 463

data. More recent models, including Whisper- 464

Flamingo (Rouditchenko et al., 2024) and 465

LLaMA-AVSR (Cappellazzo et al., 2024), lever- 466

age large-scale pretrained models (e.g., Whisper 467

and LLMs) and have demonstrated superior 468

performance with WERs of 0.77% and 0.76%, 469
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Method
# MMS
Tokens

per second

GPU
Memory

Usage(GB)

FLOPs
(T) WER(%)

Baseline*
(Cappellazzo et al., 2024)

25 18.2 2.24 0.97

+ Early AV Fusion 12.5 14.7 1.81 0.92

+ AV Q-Former

0.826 11.1 1.35 1.99

1.793 12.1 1.39 1.10

2.796 12.2 1.42 0.95

+ Speech Rate Predictor

0.832 11.2 1.35 1.61

1.794 12.2 1.39 0.97

2.797 12.2 1.42 0.92

Table 2: Effectiveness of each proposed component on
LRS3. We report token throughput, gpu memory usage,
FLOPs, and WER. MultiModal Speech (MMS) tokens
indicates the number of tokens derived from one second
of audio-visual input that are fed into the LLM. Note
that in the rows corresponding to AV Q-Former and
Speech Rate Predictor, query frequencies of 1, 2, and 3
are applied from top to bottom. ∗We re-implemented it
to have the same LLM parameters with ours.

respectively. Our MMS-LLaMA surpasses previ-470

ous state-of-the-art methods, achieving a WER471

of 0.74% when trained on 1,759 hours of data.472

When trained on only 433 hours of data, MMS-473

LLaMA obtains a WER of 0.92%, outperforming474

both Whisper-Flamingo and LLaMA-AVSR.475

Under noisy conditions, our model also achieves476

state-of-the-art performance, with a WER of477

1.9%. Notably, our model significantly improves478

performance in noisy conditions, addressing a479

major weakness of previous multimodal speech480

LLM framework that showed a substantial gap481

between noisy and clean conditions. Please note482

that the proposed MMS-LLaMA not only achieves483

the superior performances but also effectively484

reduces the number of tokens with the proposed485

AV Q-Former, which will be evaluated in the486

following subsections.487

5.2 Ablation study488

5.2.1 Validation of the Effectiveness of Each489

Component via Sequential Integration490

To verify the effectiveness of the proposed compo-491

nents in terms of computation cost and WER, we492

have conducted 8 experiments through sequential493

integration. These all models except for baseline,494

are applied concatenation early av-fusion, trained495

using 433 hours training data. Moreover, for fair496

comparison, we re-implemented baseline model*497

(Cappellazzo et al., 2024) using Llama 3.2 3B in-498

stead of LLaMA 3.1 8B, to mitigate the effects of499

Types of
AV-Fusion FLOPs(T)

WER ↓
Noisy Clean

Concatenation 1.50 2.77 0.92
Addition 1.49 3.02 0.97

Multimodal Attention 1.50 3.03 0.87

Table 3: Comparison of different audio-visual fusion
strategies in terms of computational cost (FLOPs), and
WER under noisy and clean conditions.

varying LLM parameter sizes. Table 2 presents 500

a detailed performance comparisons on the LRS3 501

dataset. 502

The baseline uses 25 multimodal speech tokens 503

and achieves a WER of 0.97% with 2.24T FLOPs 504

and 18.2GB gpu memory usage. With the addition 505

of the early av fusion component, token throughput 506

is reduced to 12.5 multimodal speech tokens per 507

second, FLOPs decreases to 1.81T, while the WER 508

improves slightly to 0.92%. 509

Next, we add the AV Q-Former component. Its 510

impact is evaluated under three different query fre- 511

quency configurations of 1, 2, and 3. Please note 512

that the results using query frequencies of 1, 2, and 513

3 are shown from top to bottom in the table, respec- 514

tively. The query frequency of 1 yields the lowest 515

FLOPs of 1.35T and gpu memory usage of 11.1 516

GB, but the WER increases significantly to 1.99%. 517

Increasing the query frequency to 2 and 3 leads to a 518

modest rise in FLOPs of 1.39T and 1.42T, and gpu 519

memory usage of 12.1GB and 12.2GB, while the 520

WER improves to 1.10% and 0.95%, respectively. 521

This demonstrates a trade-off where higher query 522

frequency counts can help recover recognition ac- 523

curacy at the cost of slightly higher computational 524

demands. 525

Similarly, the speech rate predictor is added and 526

evaluated with the same query frequency config- 527

urations. In the first row, FLOPs are maintained 528

at 1.35T, and gpu memory usage slightly incrased 529

0.1 GB, but the WER is reduced to 1.61%. For 530

the 2 and 3 query frequency settings, FLOPs are 531

remained as 1.39T and 1.42T, and gpu memory 532

usage are almost identical, while the WER are im- 533

proved to 0.97% and 0.92%, respectively. One can 534

find that the number of tokens per second is only 535

slightly improved when the speech rate predictor 536

is employed, while bringing huge WER improve- 537

ments, indicating that the test set’s average speech 538

rate is close to 1, but individual samples exhibit 539

varying speech rates. 540

Overall, the sequential integration of the pro- 541

posed components demonstrates that both early av 542
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Types of
LLM

GPU Memory
Usage(GB) Flops(T) WER ↓

Noisy Clean
LLaMA3.2-1B 9.8 1.19 3.11 1.11
LLaMA3.2-3B 12.3 1.50 2.77 0.92
LLaMA3.1-8B 16.7 2.17 2.61 1.02

Table 4: Comparison of gpu memory usage, FLOPs and
WER based on the model size of LLMs.

fusion and the additional modules (AV Q-Former543

and speech rate predictor) can effectively reduce544

computational costs and, under appropriate config-545

urations, maintain or improve recognition accuracy.546

5.2.2 Evaluation of Different Audio-Visual547

Fusion Strategies548

To reduce the computational cost in LLMs, we have549

introduced an early av-fusion module that shifts the550

fusion process to an earlier stage. To determine the551

most effective approach, we conduct ablation study552

by using three different av-fusion techniques: Con-553

catenation, Addition, and Multimodal Attention.554

The results, presented in Table 3, indicate that555

all three fusion techniques exhibit similar FLOPs.556

Under noisy conditions, concatenation achieves557

the best WER of 2.77%, while multimodal atten-558

tion performs best on clean speech with 0.87%559

WER, followed by concatenation of 0.92% WER.560

Because the performance gap in noisy settings is561

more significant than in clean conditions, we adopt562

concatenation as our primary fusion strategy in the563

other experiments.564

5.2.3 Impact of LLM Model Size565

To investigate how the model size of LLMs affects566

AVSR performance, computational cost, and gpu567

memory usage, we conducted experiments using568

three models based on LLaMA with 1B, 3B, and 8B569

parameters. We trained each model on 433 hours570

of data, applied early audio visual fusion through571

concatenation, and incorporated an AV Q Former572

with a query frequency of 5, without including the573

speech rate predictor.574

As shown in Table 4, the LLaMA3.2 3B model575

achieved the best WER of 0.92% under clean con-576

ditions, outperforming both the LLaMA3.2 1B and577

LLaMA3.1 8B models. However, under noisy con-578

ditions, the LLaMA3.1 8B model achieved the best579

WER of 2.61%. These results suggest that larger580

model might perform better under the challenging581

environment. As expected, the larger model in-582

curs higher GPU memory usage and computational583

costs. Given its comparable performance to the 8B584

model, we report results using the LLaMA3.2-3B585

Query
Frequency

Visual
Modality

SNR Level (dB), WER(↓)
∞ 5 2 0 -2 -5

3 - 1.10 1.58 2.66 4.17 6.30 13.54
1 ✓ 1.99 2.36 3.15 4.30 6.62 12.25
2 ✓ 1.10 1.54 2.13 3.34 4.72 9.31
3 ✓ 0.95 1.30 1.83 2.66 4.16 7.44
4 ✓ 0.91 1.32 1.84 2.72 3.95 7.42
5 ✓ 0.92 1.22 1.74 2.91 4.26 7.28

Table 5: WER results at various SNR levels (∞, 5, 2, 0,
-2, -5 dB), where ∞ indicates clean audio, comparing
different query frequencies with and without the visual
modality.

model for other experiments due to its significantly 586

lower computational requirements. 587

5.2.4 Evaluation of Performance Across 588

Various SNR Levels with Different 589

Query Frequencies 590

In this section, we aim to validate the effectiveness 591

of the visual modality and evaluate AVSR perfor- 592

mances across various query frequencies at differ- 593

ent SNR levels. Table 5 presents the WER results 594

spanning from clean settings (∞ dB) to severely 595

noisy conditions (-5 dB). 596

The results indicate that incorporating the vi- 597

sual modality leads to a significant improvement 598

in performance, especially in noisy environments. 599

For example, while a query frequency of 3 with- 600

out the visual modality obtain a WER of 1.10% 601

in clean setting and 13.54% at -5 dB, adding the 602

visual modality with the same query frequency re- 603

duces the WERs to 0.91% and 7.44%, respectively. 604

Moreover, as the query frequency increases from 605

1 to 5, there is a general tendency for performance 606

to improve across all SNR levels, aligning with the 607

trends observed in Figure 2. 608

6 Conclusion 609

We have demonstrated that integrating efficient to- 610

ken compression strategies into multimodal speech 611

LLM frameworks can dramatically reduce com- 612

putational costs while preserving high-level lan- 613

guage content. By employing an early AV-fusion 614

module, a dynamically adaptive AV Q-Former, and 615

a refined query allocation strategy with a speech 616

rate predictor, we achieve state-of-the-art AVSR 617

performance, attaining a WER of 0.74% while us- 618

ing only 2.8 multimodal speech tokens per second. 619

Moreover, our extensive experiments on the LRS3 620

dataset confirm that our method not only achieves 621

a remarkable WER but also reduces FLOPs by 622

36% compared to the previous LLM-based AVSR 623

method. 624
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7 Limitation625

While we have introduced an efficient multimodal626

speech LLM framework, namely MMS-LLaMA,627

its current focus is constrained to the AVSR task.628

This narrow scope may limit the immediate appli-629

cability of our framework to other domains, such as630

multimodal speech dialogue systems. Nonetheless,631

the proposed method efficiently processes audio-632

visual inputs by leveraging the proposed tokens633

reducing scheme. Building on this efficient frame-634

work, we expect that MMS-LLaMA can be ex-635

tended to real-world communication scenarios by636

training the system on large-scale multimodal dia-637

logue corpora.638
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