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Abstract

Multi-Label Online Continual Learning (MOCL)
requires models to learn continuously from end-
less multi-label data streams, facing complex chal-
lenges including persistent catastrophic forget-
ting, potential missing labels, and uncontrollable
imbalanced class distributions. While existing
MOCL methods attempt to address these chal-
lenges through various techniques, they all over-
look label-specific region identifying and feature
learning - a fundamental solution rooted in multi-
label learning but challenging to achieve in the
online setting with incremental and partial super-
vision. To this end, we first leverage the inher-
ent structural information of input data to evalu-
ate and verify the innate localization capability
of different pre-trained models. Then, we pro-
pose CUTER (CUT-out-and-Experience-Replay),
a simple yet versatile strategy that provides fine-
grained supervision signals by further identifying,
strengthening and cutting out label-specific re-
gions for efficient experience replay. It not only
enables models to simultaneously address catas-
trophic forgetting, missing labels, and class imbal-
ance challenges, but also serves as an orthogonal
solution that seamlessly integrates with existing
approaches. Extensive experiments on multiple
multi-label image benchmarks demonstrate the
superiority of our proposed method. The code is
available at https://github.com/wxr99/Cut-Replay
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Figure 1. Two unique challenges in MOCL compared with tradi-
tional OCL: (1) Massive missing past and future labels in both
coming data stream and memory buffer. (2) Severe class imbalance
that persists in the memory buffer even with re-balancing strategies
like CEBS(Wei & Li, 2019a; Yan et al., 2021).

1. Introduction
Online continual learning (OCL) enables models to learn
from continuous, endless data streams. Significant progress
has been made in this area through various techniques to mit-
igate catastrophic forgetting, such as knowledge distillation,
gradient regularization, and experience replay.

However, these OCL approaches focus primarily on single-
label classification, while real-world data often exhibit mul-
tiple semantic concepts and objects, motivating the study
of Multi-Label Online Continual Learning (MOCL) (Kim
et al., 2020). Figure 1 shows an illustrative example. At
each time step t, the training data Dt concerning label space
Yt for task t arrive in a streaming manner. For each ex-
ample (x, y) ∈ Dt, y ⊂ Yt denotes the tagged relevant
label set. Given a sequence of T tasks, the objective of
MOCL is to efficiently adapt the learning model to the
current task while preventing catastrophic forgetting of pre-
viously learned tasks.

Compared to single-label scenarios, MOCL faces two spe-
cific data challenges: (1) Pervasive missing labels: samples
in task t are only annotated with labels from Yt, even when
containing objects from old classes Y1:t−1 or future classes

1

https://github.com/wxr99/Cut-Replay


Cut out and Replay: A Simple yet Versatile Strategy for Multi-Label Online Continual Learning

Yt+1:T . These unlabeled classes become false negatives,
aggravating catastrophic forgetting. (2) Uncontrollable im-
balanced classes: the categories often follow a long-tailed
distribution. Training on such data would lead the model
to be biased towards overfitting the head classes and under-
fitting the tail classes. The co-occurrence of head and tail
classes within one sample further complicates this issue.

Several works have attempted to address these challenges.
(Kim et al., 2020) first identified the severe forgetting of
minority classes in long-tailed scenarios and proposed a
Partitioning Reservoir Sampling (PRS) strategy to balance
head and tail classes in replay-based approaches. To ad-
dress the computational inefficiency of PRS, (Liang & Li,
2022) developed Optimizing Class Distribution in Memory
(OCDM), which reformulates memory updates as a sample
selection optimization problem solvable through a linear-
time greedy algorithm. The challenge of missing labels in
MOCL was first highlighted by (Du et al., 2022), which
introduced an Augmented Graph Convolutional Network
(AGCN). This model generates predictions for previously
seen classes while modeling dynamic label relationships
across sequential tasks and mitigating forgetting through
distillation and relationship-preserving losses. Building on
this, (Dong et al., 2023) proposed the Knowledge Restore
and Transfer (KRT) framework, which combines dynamic
pseudo-labeling for old classes with session-specific knowl-
edge transfer. More recently, (Du et al., 2024) tackled both
challenges simultaneously through two key components:
Asymmetric Knowledge Distillation (AKD) and Online Re-
labeling (OR). AKD rebalances the learning process by
emphasizing negative label learning in classification loss
while reducing the impact of overconfident predictions in
distillation loss. OR complements this by recovering miss-
ing labels in the memory buffer through online relabeling.

Although these works demonstrate promising results, their
feature learning mechanisms have inherent limitations with
multi-label data. The conventional approach of extracting a
single feature vector per example, along with techniques like
pseudo-labeling and resampling, suffers from co-occurrence
bias between head and tail classes. This limitation is par-
ticularly critical with missing labels and class imbalance,
where discriminative feature learning requires minimizing
interference from label co-occurrence patterns.

With the above understanding, we resort to label-specific
feature learning, which was shown to be superior to uni-
fied sample-wise features in offline multi-label learning
(Zhang & Wu, 2014). Suppose we can successfully identify
label-specific regions in images through a straightforward
cut-out-and-replay mechanism, i.e., cutting out these re-
gions and storing them in the memory buffer for replay.
This mechanism would naturally avoid label co-occurrence
interference and missing label issues. Furthermore, with

object-level regions and supervision signals stored in the
buffer, it enables more effective experience replay under the
same memory overhead, where class imbalance is easily
addressed by controlling class distributions in the buffer.

To this end, we propose CUTER (CUT-out-and-Experience-
Replay), a simple yet versatile approach that efficiently
localizes, strengthens, and cuts out label-specific regions for
MOCL with richer fine-grained supervision signals. Mo-
tivated by the recent inspiring trials on vision pre-trained
models’ ability for zero-shot coarse segmentation (Caron
et al., 2021; Siméoni et al., 2021; Wang et al., 2023b), we
make a thorough study of the pre-trained modes’ localiza-
tion capability. Through extensive empirical validations
over several widely used pre-trained models (e.g., DINO,
MoCo, MAE), and established theoretical supports from
graph theory, we show that the averaged Fiedler value (sec-
ond smallest eigenvalue of graph Laplacian) of the feature
patch similarity graph can serve as a valid evaluation mea-
sure for selecting pre-trained models good at localizing
precise label-specific regions. The identified salient regions
are then selectively stored in a memory buffer based on their
prediction confidence and label alignment, effectively trans-
forming multi-label image classification replay into multiple
single-label sub-image classification tasks. To further com-
bat the forgetting impact of the model’s localization ability
during the continual learning process, we draw inspiration
from image segmentation principles and incorporate a low-
rank constraint on the feature-based similarity adjacency
matrix to improve inter-patch separability for more precise
region cropping, supported by graph spectral theory.

Serving as an orthogonal solution to exiting OCL models, it
enables seamless integration with existing models to address
catastrophic forgetting, missing labels, and class imbalance
challenges. We conduct extensive experiments on multiple
multi-label image benchmarks, showing that our method
significantly outperforms state-of-the-art methods in MOCL.
In summary, our main contributions are threefold: i) We
introduce label-specific learning into MOCL and conduct
the first systematic analysis of pre-trained models’ potential
for MOCL; ii) We propose CUTER, a simple yet versatile
replay strategy that simultaneously enhances model perfor-
mance while addressing catastrophic forgetting, missing
labels, and class imbalance; iii) Extensive experiments and
ablation studies demonstrate that CUTER not only achieves
state-of-the-art performance but also serves as a comple-
mentary component that can be seamlessly integrated with
existing approaches.

2. Method
In this section, we focus on better extracting and utiliz-
ing label-specific regions to address MOCL problem. Our
method consists of three key steps. First, we propose
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an annotation-free evaluation protocol to assess the zero-
shot localization potential of popular pre-trained models in
MOCL. Second, leveraging the selected pre-trained model
and its localization capability, we design a simple yet ver-
satile cut-out-and-replay strategy for effective and efficient
region-label matching, cropping, and storage. Finally, to
prevent the deterioration of model’s localization capability
during MOCL progression, we incorporate a regulariza-
tion term that continuously consolidates and strengthens the
model’s localization and segmentation abilities.

2.1. Zero-Shot Localization Assessment for Pre-trained
Models

A key prerequisite for our cut-out-and-replay strategy is
identifying suitable pre-trained models through their inher-
ent localization capabilities. Recent studies have shown
that advanced vision pre-trained models can naturally local-
ize objects through feature clustering (Caron et al., 2021;
Siméoni et al., 2021), making them potential candidates for
MOCL. However, conventional evaluation metrics requir-
ing ground truth boxes or masks are impractical, as most
multi-label datasets lack such annotations. This motivates
our development of an annotation-free evaluation protocol.

To address this challenge, we propose a novel evaluation
metric inspired by graph theory and spectral clustering. Our
key insight stems from examining popular unsupervised
localization methods like Normalized Cut (NCut)(Shi &
Malik, 2000), Mask Cut (MCut)(Wang et al., 2023a), and
Token Cut (TCut)(Wang et al., 2023b). These methods
perform better when feature maps form graphs with stronger
separation (weaker connectivity), which is mathematically
characterized by the Cheeger constant:
Definition 2.1. (Royle & Godsil, 2001) Let G = (V,E,W )
be a weighted graph with vertex set V , edge set E, and edge
weight matrix W . The Cheeger constant h(G) is defined as:

h(G) = min
S⊂V

C(S, V \ S)
min{C(S, V ), C(V \ S, V )}

where S is a non-empty subset of V , V \ S represents its
complement and C(·) measures the similarity between two
sets, e.g., C(A,B) =

∑
vi∈A,vj∈B Wij .

Although computing the Cheeger constant is NP-hard,
we can leverage its relationship with the graph’s Fiedler
value as shown in the following Lemma 2.2. Given a
sample’s feature map θ(x), we can construct a weighted
undirected graph G = (V,E,A) where vertices repre-
sent feature vectors of image patches and edge weights
Aij = exp(− ||θ(xi)−θ(xj)||2

2σ2 ) encode patch connectivity
using a Gaussian kernel. The Fiedler value λ2 is then com-
puted as the second smallest eigenvalue of the graph Lapla-
cian matrix L = D − A, where D is an N × N diagonal
degree matrix with elements d(i) =

∑
j Aij .
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Figure 2. Correlation between the averaged Fiedler Value and
zero-shot detection performance (AP50) on Pascal VOC07 and
MSCOCO.

Lemma 2.2. (Chung, 1997) For a weighted undirected
graph G, let λ2 be its Fiedler value, h(G) be its Cheeger
constant, and ∆ = maxi d(i) be the maximum degree in
the graph. Then we have:

λ2

2
≤ h(G) ≤

√
2∆λ2

Based on this theoretical foundation, we propose to assess a
model’s potential zero-shot localization capability by com-
puting the average Fiedler value of features extracted from
a small subset of the downstream dataset. As shown in
Figure 2 and Figure 3, they reveal a clear correlation be-
tween zero-shot localization performance and the averaged
Fiedler value of patch feature graphs. This aligns with graph
theory principles: a lower average Fiedler value indicates
weaker graph connectivity (Royle & Godsil, 2001), suggest-
ing stronger feature separability and thus better suitability
for partition-based operations like MCut and NCut.

Applying this metric to evaluate popular pre-trained mod-
els, including MoCo(He et al., 2020; Chen et al., 2020;
Chen* et al., 2021), DINO(Caron et al., 2021; Oquab et al.,
2023), MAE(He et al., 2022), and iBOT(Zhou et al., 2022),
we uncover that multi-crop consistency training signifi-
cantly enhances innate localization ability. In contrast,
reconstruction-based training inherently encourages feature
sharing during recovery, potentially limiting the effective-
ness of spectral clustering-based localization methods. We
leave the detailed analysis in Appendix D. In summary,
when partial downstream task data is available, we can
evaluate models by computing their average Fiedler value.
However, when facing completely unknown future tasks,
selecting a model pre-trained with multi-crop consistency is
likely a more reliable choice.

2.2. Selective Replay via Label-Region Matching

After selecting the initialization model based on the pro-
posed average Fiedler value, the next obstacle for imple-
menting our envisioned cut-and-replay strategy lies in estab-
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Figure 3. Visual comparison of detection (coarse bounding boxes) and segmentation (coarse masks) capabilities across pre-trained models
using ViT-S/16 backbone, obtained via two-round MaskCut (Wang et al., 2023a).

lishing precise one-to-one correspondence between image
region and its associated label.

Lasl =
1

|Ck|

|Ck|∑
c=1

{
(1− pc)

γ+

log(pc), yc = 1,

pγ
−

c log(1− pc), yc = 0,
(1)

To achieve this goal, for each incoming data pair (x, y),
we make the prediction p = f(x) and apply the asym-
metric loss (Eq.1) like most MOCL methods, where yc
represents the binary label indicating the presence of class
c, and γ+, γ− denote the positive and negative focusing
parameters respectively. Subsequently, we employ MCut
to generate a list of binary masks {mj}Nj=1 that identify
potential foreground objects, where N is a hyper-parameter
determining the number of MCut iterations (MCut’s de-
tailed background and procedure is provided in Appendix B).
These binary masks are then used to derive bounding boxes
{(hj

1, w
j
1, h

j
2, w

j
2)}Nj=1, enabling us to extract N potential

foreground objects {xj
obj}Nj=1 from the input image x.

The extracted objects {xj
obj} are then resized and fed into

the classification model again to obtain foreground object
prediction pjobj = f(xj

obj). Our experimental results in
Table 6 (CUTER vs CUTER w/ Fixed Backbone) demon-
strate that for object localization in MOCL, using a model
trained with asymmetric loss (Eq.1) (Ridnik et al., 2021)
outperforms using a fixed pre-trained backbone like DINO,
showing superior performance in identifying current task
classes (Ck) and localizing regions corresponding to given
labels. After making the cut out through this continuously

updated model, we aim to replay these extracted objects
instead of the entire image as done in previous works.
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Figure 4. Class distribution in the memory buffer (size=1000) for
different re-balancing methods after training on VOC dataset.

This storage process of {xj
obj}Nj=1 consists of two steps.

First, to establish reliable label-region correspondences, we
retain only the objects that maintain high classification confi-
dence post-resizing and correspond to a single label. Specif-
ically, for a prediction pjobj , we select extracted object xj

obj

into the candidate set for the memory buffer if:

pjobj,(1) > τ ∧ pjobj,(2) < 0.5 (2)

where pjobj,(k) denotes the k-th largest element in pjobj and τ
is the confidence threshold. Meanwhile, to balance the class
distribution in the memory buffer, we employ two thresholds
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Figure 5. Visualization of model’s zero-shot localization capability
on PASCAL VOC dataset during MOCL training.

τ1 and τ2 (τ1 < τ2) based on class frequency. For any class
with frequency less than half of the most frequent class, we
use the lower threshold τ1, while assigning τ2 to the others.

Second, we adopt a modified rebalanced reservoir sam-
pling strategy for the memory buffer. For a new candidate
object, its sampling probability is 1 − m/mmax, where
m denotes the number of samples with predicted label
y = argmax(pjobj) in the memory buffer, and mmax rep-
resents the count of the most frequent class. To maintain
class balance, we randomly remove samples from the most
frequent class when the buffer is full. This straightfor-
ward sampling strategy achieves better class balance than
OCDM(Liang & Li, 2022) and PRS(Kim et al., 2020) with
lower computational overhead, as shown in Figure 4. By
storing only regions with single-label correspondence, we
enable direct control over class distribution while preserving
more discriminative information with reduced memory cost.

2.3. Localization-Aware Feature Regularization

Thus far, we have introduced our cut-and-replay strategy for
preserving single-label regions and their corresponding fea-
tures. While this strategy effectively maintains model’s clas-
sification performance on past classes through a memory-
efficient replay mechanism and demonstrates strong adapt-
ability to new classes, we observe that the inherited localiza-
tion capability from pre-trained models gradually deterio-
rates during MOCL progression - a phenomenon analogous
to the catastrophic forgetting in continual learning. As il-
lustrated in Figure 5, this deterioration manifests as higher
averaged Fiedler value and more failed object localizations.

In previous section, our analysis reveals a strong correlation
between the model’s localization performance and the aver-
aged Fiedler value of patch feature graphs. This naturally
raises the question: can we enhance localization accuracy,
and consequently improve MOCL performance, by mini-
mizing the Fiedler value of feature maps’ graph Laplacian?

However, direct optimization of the Fiedler value through
neural networks is infeasible due to the non-differentiable

Algorithm 1 CUTER w/ regularization for multi-label on-
line continual learning

1: Input: Online streaming data (x, y), pre-trained en-
coder θ0, classifier ϕ, model f = ϕ ◦ θ

2: Initialize: Memory buffer M ← {}, Candidate set
C ← {}, θ ← θ0

3: for i = 1 to N do
4: Implement MCut to obtain foreground object xobj :
5: Minimize Eq.4
6: Calculate mask using Eq.6
7: Select objects into candidate set C based on:
8: Prediction pobj = f(xobj)
9: Selection threshold (Eq.2)

10: end for
11: Compute adjacency matrix A on features θ(x) and loss

using Eq.3
12: Replay memory data (xm, ym) according to Eq.1
13: Update model parameters f
14: ifM is not full then
15: Put candidate set C in memory bufferM
16: end if
17: ifM is full then
18: Update memory bufferM by sampling from C with

class-balanced probabilities
19: end if

nature of eigenvalue sorting operations on graph Laplacian
matrices. Inspired by spectral perturbation theory for sym-
metric matrices, we approach this challenge from a different
perspective. For effective object localization, an ideal fea-
ture map should exhibit high intra-object feature similarity
while maintaining low inter-object correlations. This prop-
erty can be mathematically represented by an adjacency
matrix A that approximates a symmetric block diagonal
structure, where the rank k corresponds to the number of
distinct objects in the input image x. Such structured adja-
cency matrices are theoretically guaranteed to yield optimal
bipartitions under NCut or MCut criteria.

Without loss of generality, we can assume that during train-
ing, the adjacency matrix of each feature graph can be de-
composed as A = A∗ + ϵ, where A∗ represents an ideal
block diagonal matrix and ϵ denotes a non-sparse noise ma-
trix. Based on these assumptions, we can prove that the
Fiedler value of the feature graph is directly upper bounded
by the norm of this perturbation matrix ϵ.
Theorem 2.3. For any adjacency matrix A can be written
as the sum of a block diagonal matrix A∗ and a noise matrix
ϵ with zero diagonal entries, the second smallest eigenvalue
(Fiedler value) of A’s Laplacian matrix L satisfies:

λ2(L) ≤ ∥ϵ∥2 + ∥ϵ∥∞

Theorem 2.3 provides us a calculable and differentiable
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Table 1. Comparison results on PASCAL VOC dataset with memory size being 1000× 224× 224× 3.

Method Source Task Average Performance Last Performance
Avg mAP Avg CF1 Avg OF1 mAP CF1 OF1

RS

OCL

75.05±1.28 60.32±1.35 61.29±0.74 59.71±1.75 39.88±1.04 46.09±1.24
GSS 76.01±1.24 60.84±0.82 62.37±1.14 58.64±1.29 40.10±0.82 45.13±0.90
iCarl 72.67±3.14 56.24±2.31 58.46±1.78 50.77±2.18 36.51±1.70 41.02±1.91
NsCE 75.24±1.41 64.42±1.05 65.30±0.97 56.87±1.14 40.78±1.22 42.39±1.50
KRT* MLCIL 59.45±1.17 46.49±0.88 57.12±1.38 38.90±0.77 33.47±1.14 36.82±0.95

APPLE 76.24±1.25 67.01±2.12 66.74±1.23 58.27±0.82 43.77±1.03 50.21±0.98
PRS

MOCL

75.87±0.82 58.15±1.46 61.62±1.69 54.67±0.64 42.15±1.15 43.87±0.86
OCDM 76.14±1.14 52.84±0.79 65.08±1.11 45.35±1.12 36.41±0.25 40.45±1.01
AGCN 75.06±1.01 62.37±0.89 61.87±2.04 57.21±0.74 42.06±1.47 44.79±1.91

AGCN++ 74.14±0.78 65.04±1.24 63.55±1.45 55.34±0.87 40.06±0.75 44.21±1.14
CUTER w/ Rl 82.07±0.53 72.19±0.70 75.27±0.57 67.89±1.28 51.35±0.98 59.98±1.17

alternative to enhance the model’s localization capacity. Al-
though during MOCL training we cannot obtain the ideal
adjacency matrix A∗ for each sample’s features to directly
constrain the corresponding noise matrix ϵ, considering that
we hope to guide the adjacency matrix A toward an ideal
block diagonal structure, directly imposing constraints on
A is also a viable choice, as shown in Eq.3.

L = Lasy(f, x, y) +R(A) (3)

This matrix decomposition perspective relates to robust
graph structure learning through noise suppression. Draw-
ing from common regularization terms in graph learning
(low-rank, sparsity, and smoothness), we find the nuclear
norm R(A) = ||A||∗ particularly effective for reducing the
noise matrix ϵ in MOCL (Figure 5). Detailed comparisons
and more analysis are presented in Table 3 and Appendix D.

Up till now, we have fully presented our proposed cut-
out-and-experience-replay strategy (CUTER) for MOCL
with a detailed algorithm procedure in Algorithm 1. For
proofs(Appendix C.2), detailed explanations (Appendix
D.2), please refer to Appendix.

3. Experiments
3.1. Datasets and Experimental Setting

Datasets. Following the experimental frameworks of pre-
vious works(Dong et al., 2023; Liang & Li, 2022), we eval-
uate our method on three benchmark datasets: MS-COCO
2014(Lin et al., 2014), PASCAL VOC 2007(Everingham
et al., 2015), and NUS-WIDE(Chua et al., 2009). Specifi-
cally, PASCAL VOC 2007 consists of 5,011 training and
4,952 test images spanning 20 classes, averaging 2.4 labels
per image. MS-COCO contains 82,081 training and 40,504
validation images across 80 classes, with an average of 2.9
labels per image. As NUS-WIDE is no longer publicly
available, we reconstructed the dataset by re-scraping from
Flickr, obtaining 126,034 training and 84,226 test images
across 81 classes, with an average of 2.4 labels per image.

Experiments Setup. Following prior studies (Mai et al.,
2021; Liang & Li, 2022; Dong et al., 2023), we partition the
datasets into several tasks with disjoint given label sets but
overlapping ground truth support sets, simulating a realistic
multi-label data stream. Unlike some multi-label class incre-
mental studies that rely on a base task, we argue that with
pre-trained models, this online learner should be capable of
rapid adaptation to dynamic data streams from any starting
point. Thus, we divide PASCAL VOC 2007 into 5 tasks
with 4 classes each, MS-COCO into 8 tasks with 10 classes
each, and NUS-WIDE into 8 tasks where the first task has
11 classes and the remaining tasks have 10 classes each. For
all datasets, the order of class assignments to tasks follows
the lexicographical order of class names, as described in
(Dong et al., 2023; Du et al., 2024; 2025).

Baseline Methods. In our experiments, we compare
CUTER with 10 advanced continual learning methods span-
ning OCL, multi-label class incremental learning (MLCIL),
and MOCL. For comprehensive evaluation, we adapt four
OCL methods to our MOCL setting by modifying their clas-
sifier architectures and classification loss functions, includ-
ing representative replay-based methods RS(Chaudhry et al.,
2019b), GSS(Aljundi et al., 2019b), iCarl(Rebuffi et al.,
2017), and the recent comprehensive approach NsCE(Xinrui
et al., 2024). We also evaluate six multi-label continual
learning methods across MLCIL and MOCL categories.
Among these, KRT(Dong et al., 2023), APPLE(Song et al.,
2024), AGCN and AGCN++(Du et al., 2022; 2023) pri-
marily address missing labels through knowledge distilla-
tion or label correlation, while PRS(Kim et al., 2020) and
OCDM(Liang & Li, 2022) focus on class imbalance via
carefully designed sampling strategies. Additional details
on each method are provided in the Appendix E.1.

Evaluation Metrics. Following (Du et al., 2023; 2024),
we use several standard metrics: mean average precision
(mAP), per-class F1 score (CF1), and overall F1 score (OF1).
Beyond conventional multi-label classification evaluation,
we report both cross-task average performance (on seen
classes) and model’s final performance on all classes C1:K .
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Table 2. Comparison results on MSCOCO dataset with memory size being 1000× 224× 224× 3.

Method Source Task Average Performance Last Performance
Avg mAP Avg CF1 Avg OF1 mAP CF1 OF1

RS

OCL

48.12±1.78 32.21±1.04 37.36±0.92 18.97±2.01 6.44±1.56 12.84±1.05
GSS 49.41±0.84 32.85±0.70 38.26±0.55 25.67±1.34 11.82±0.96 17.40±1.18
iCarl 47.51±1.30 33.09±0.86 37.51±1.09 19.24±1.37 7.62±1.38 12.51±0.89
NsCE 51.24±0.95 37.10±1.10 44.73±0.96 26.19±1.24 17.07±1.04 22.30±0.94
KRT* MLCIL 44.34±0.95 39.06±1.08 43.51±1.17 36.51±0.87 27.41±0.92 30.16±1.15

APPLE 48.67±1.28 42.34±0.85 46.86±1.31 38.47±0.94 30.12±1.08 33.51±0.67
PRS

MOCL

51.79±1.08 33.64±1.32 38.06±0.94 27.95±1.98 15.33±2.47 18.22±1.29
OCDM 55.45±0.87 46.78±1.02 50.59±0.92 40.56±0.80 28.45±0.71 31.29±0.52
AGCN 56.45±0.92 48.03±1.35 51.27±0.91 37.48±0.73 27.82±0.96 32.38±1.29

AGCN++ 54.31±0.82 47.69±0.47 52.27±0.85 36.45±0.74 29.64±0.83 33.05±0.71
CUTER w/ Rl 60.14±0.60 51.53±0.61 54.92±0.62 47.82±0.60 35.94±0.71 39.18±0.65

Implementation Details. After evaluating the localiza-
tion capacity of different pre-trained models, we adopt
ImageNet-21k pre-trained (DINO v1) ViT-S/16 as our back-
bone. All methods compared in Tab 1, Tab 2 and Tab 4
use the same backbone and pre-trained initialization, except
KRT which uses TresnetM, as our attempts to reproduce
KRT with ViT-S/16 did not yield superior performance to
the original TresnetM implementation. We follow the data
augmentation strategy from (Dong et al., 2023). All exper-
iments in the main text were repeated five times, and we
report the mean and standard deviation. Additional imple-
mentation details are provided in the Appendix E.1.

3.2. Overall Performance

At first, we conduct a comprehensive evaluation of our pro-
posed CUTER by comparing its performance with several
existing state-of-the-art MOCL methods and various con-
tinual learning variants. Our comparison includes online
continual methods, multi-label class incremental learning
methods (MLCIL), and MOCL methods. While there are
more recent MLCIL methods like CSC and RebLL(Du et al.,
2024; 2025), we excluded them from our comparison due
to their unavailable implementation details (no public code
links) and different experimental settings. Tables 1, 2, and 4
display both average and overall performance across three
synthetic benchmark datasets. The results demonstrate that
our proposed method, CUTER, consistently outperforms
other approaches. Notably, CUTER shows particularly sig-
nificant performance improvements in the later tasks of
continual learning, with more pronounced advantages in
terms of last performance on all classes.

Secondly, we compare three commonly used regularization
in robust graph structure learning as additional loss terms
for localization capacity consolidation. Specifically, we
implement low rank regularization Rl = ∥A∥∗, sparse reg-
ularization Rsp = ∥A∥l1/∥A∥l2, where ∥A∥l1 and ∥A∥l2
represent the l1 and l2 norms calculated after flattening ma-
trix A into a vector, following the definition and constraints
of sparsity from (Xinrui et al., 2024), and smooth regular-

ization Rsm = 1
2

∑N
i,j=1 Aij(θ(xi)− θ(xj))

2, where θ(xi)
represents the feature corresponding to the i-th patch of the
input image. As demonstrated in Table 3, compared with
Rl which can consistently boost model’s performance, Rsm

and Rsp often lead to performance degradation. We hy-
pothesize that this inconsistency might stem from potential
conflicts between these so-called ideal graph structures and
the model’s classification objectives, which we discuss in
detail in Appendix D.

Thirdly, we evaluate CUTER as a plug-in component for
other popular technique in methods including PRS, OCDM,
KRT, and AGCN. For fair comparison, we use a basic ver-
sion (Cut.Rep) without re-balanced sampling and low-rank
regularization. As shown in Table 5, our strategy effec-
tively complements different re-balanced sampling methods,
and can be further enhanced by techniques like knowledge
distillation and graph-based label mining.

Additional visualization and experimental results, including
mAP curves throughout the training, performance across
different backbone architectures (pre-trained initializations),
and throughput evaluations of different methods, can be
found in Appendix E.2.

3.3. Ablation Studies

In this section, we conduct a series of ablation studies to
investigate the specific effects of different proposed compo-
nents. From Table 5 and Table 6, we can draw several con-
clusions: (1) Each component (cut and replay, re-balanced
sampling, and low rank regularization) provides consistent
performance improvements, with cut and replay (Cut.Rep)
showing the most significant effect. (2) While our pro-
posed re-balanced sampling method may not consistently
outperform other carefully designed sampling methods like
PRS and OCDM across all datasets and settings, it achieves
comparable results with a lower computational cost (O(B)
compared with O(B|M|) in OCDM, where B is the batch
size). (3) Compared with a fixed backbone, updating the
model continuously during training improves performance,
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Table 3. Comparison of different regularization terms for preserving localization ability.

Model Cut.Rep Rl Rsp Rsm
VOC COCO NUSWIDE

Avg mAP Last mAP Avg mAP Last mAP Avg mAP Last mAP
CUTER w/ Rsp ✓ ✓ 78.34±0.76 66.27±0.85 58.68±1.03 46.74±0.62 49.73±0.50 37.06±1.16
CUTER w/ Rsm ✓ ✓ 79.01±0.84 65.63±0.92 58.31±0.68 44.90±0.85 50.14±0.76 38.09±1.34
CUTER w/ Rl ✓ ✓ 82.07±0.53 67.89±1.28 60.14±0.60 47.82±0.60 51.14±0.72 37.17±1.46
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Figure 6. Sensitivity analysis on coefficient α and confidence thresholds τ1 and τ2.

Table 4. Comparison results on NUSWIDE dataset with memory
size being 1000× 224× 224× 3.

Method Avg mAP Avg CF1 Last mAP
RS 43.90±1.08 36.79±0.76 26.78±0.59

GSS 44.28±0.76 37.01±1.14 28.22±0.90
iCarl 43.50±0.83 35.74±0.95 27.60±0.85
NsCE 45.72±0.52 34.95±0.75 27.14±0.60
KRT* 47.30±1.07 39.70±1.24 31.25±1.19

APPLE 47.53±0.76 40.89±0.97 32.40±1.34
PRS 42.74±0.84 35.01±0.92 22.78±0.72

AGCN 49.16±0.97 38.41±1.05 33.49±0.88
AGCN++ 49.03±1.35 40.17±1.28 32.09±1.41
OCDM 40.05±0.42 33.66±0.87 29.41±0.65

CUTER w/ Rl 51.14±0.72 42.92±1.03 37.57±1.46

Table 5. Cut and Replay (CutRep) works as a plug-in component
for several MOCL methods (Averaged mAP reported).

Method VOC MSCOCO NUSWIDE
Cut.Rep 77.92±0.78 53.40±0.82 46.30±1.02

Cut.Rep w/ PRS 81.35±1.02 58.72±0.94 50.69±0.45
Cut.Rep w/ OCDM 81.09±0.67 57.90±0.73 51.21±1.38

CUTER 79.45±0.92 59.23±0.72 50.51±0.64
CUTER w/ KRT 79.37±1.25 57.09±1.32 50.56±0.95

CUTER w/ AGCN 76.95±1.14 59.31±0.94 48.95±0.89

as it naturally leads to better localization and cut-out quality
on the current task.

3.4. Sensitivity Analysis

In this section, we analyze the impact of coefficient α of the
low rank regularization term and the thresholds τ1 and τ2
on foreground object selection for memory buffer in expe-
rience replay. As shown in Figure 6, our proposed method
has demonstrated relatively robust outcomes when α, τ1, τ2
remain within certain ranges. It should be noted that co-

efficient α shouldn’t be too large since in our method this
low rank regularization is implemented without a common
constraint to regulate the magnitude of changes in adjacency
matrix A. Therefore, an excessively big α would cause A
to approach a zero matrix, which is obviously undesirable.
Meanwhile, an excessively large τ1 would make it diffi-
cult for the model to select a sufficient number of tail-class
samples, thereby affecting the overall performance.

4. Conclusion
In this study, we highlight the fundamental question behind
two key challenges (pervasive missing labels and uncontrol-
lable class imbalance) that existing MOCL methods strive to
tackle. By exploring and leveraging the innate localization
capacity of widely used pre-trained models, we propose
a method called CUTER to comprehensively address the
existing limitations of MOCL methods through identifica-
tion and replay of regions corresponding to different given
labels. Additionally, we further explore how to enhance
model localization (unsupervised detection and segmenta-
tion) performance in such an online incremental learning
framework from the perspective of graph spectral theory.
Our method not only achieves a remarkable performance
boost but also differs significantly from existing MOCL ap-
proaches. We hope this study can bring fresh perspectives
to the area of multi-label learning in this continual setting.

Impact Statement
This research aims to advance the field of Machine Learn-
ing. While our work has potential societal implications, we
believe discussing specific scenarios is beyond the scope of
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Table 6. Ablation studies. We denote low rank regularization as Rl, sparse regularization as Rsp, and smooth regularization as Rsm.
CUTER− refers to CUTER using a fixed backbone for object localization and the later cut out operation.

Model Rep Cut.Rep Re-balance Rl
VOC COCO NUSWIDE

Avg mAP Last mAP Avg mAP Last mAP Avg mAP Last mAP
Baseline(RS) ✓ 75.05±1.28 59.71±1.75 48.12±1.78 18.97±2.01 43.90±1.08 26.78±0.59

Cut.Rep ✓ 77.92±0.78 64.52±1.07 53.40±0.82 31.17±0.69 46.30±1.02 30.41±0.73
Cut.Rep w/ Rl ✓ ✓ 78.24±0.93 63.95±0.76 56.37±0.64 33.84±1.01 48.12±0.85 31.46±0.71

CUTER− ✓ ✓ 78.62±0.77 64.95±0.83 59.01±0.45 45.19±0.80 49.67±0.72 36.42±0.91
CUTER ✓ ✓ 79.45±0.92 66.09±1.03 59.23±0.72 45.79±0.85 50.51±0.64 37.35±0.42

CUTER w/ Rl ✓ ✓ ✓ 82.07±0.53 67.89±1.28 60.14±0.60 47.82±0.60 51.14±0.72 37.17±1.46

this technical paper.
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A. Detailed Related Works
A.1. Online Continual Learning

OCL serves as a more realistic extension of continual learning, addressing scenarios where data distributions dynamically
change over time, in contrast to traditional batch learning where complete task datasets are available upfront(Gunasekara
et al., 2023). To mitigate catastrophic forgetting, most OCL methods maintain a memory buffer for experience replay,
employing various strategies for memory management and sample selection(Chaudhry et al., 2019a;b; Aljundi et al., 2019a;b;
Chaudhry et al., 2020; Shim et al., 2021; Wang et al., 2022; Caccia et al., 2022; Ghunaim et al., 2023; Xinrui et al., 2024).
Additionally, researchers have explored approaches to enhance feature learning and classifier adaptation in single-pass
training scenarios(Rebuffi et al., 2017). Recent advances incorporate techniques such as contrastive learning(Mai et al.,
2021; Cha et al., 2021), mutual information maximization(Gu et al., 2022; Guo et al., 2022), and prototype learning(Zhu
et al., 2021; Wei et al., 2023) to improve model discriminative power and overall performance.

A.2. Multi-label Classification

Multi-label learning has long been a fundamental paradigm in machine learning(Zhang & Zhou, 2013; Wei & Li, 2019b; Li
et al., 2024), attracting substantial research attention. In this review, we focus on works that extract label-specific features or
regions, which are closely related to our approach. These studies can be broadly categorized into two groups.

The first category decomposes multi-label classification into binary (one-vs-rest) subproblems, where each label is mapped
to a distinct feature subset. This category encompasses three main approaches: (1) Clustering-based methods (Zhang
& Wu, 2014; Ren et al., 2019) partition the feature space into label-specific clusters by exploiting both independent and
co-occurrence patterns between features and labels; (2) Label correlation mining approaches (Huang et al., 2015; 2016;
Hang & Zhang, 2022) discover and utilize the interdependencies among labels by constructing label correlation matrix
through a specially designed module like graph encoder(Hang & Zhang, 2021) to guide feature selection, typically through
matrix factorization or graph-based techniques; (3) Regularized feature learning methods (Wei et al., 2018; Li et al.,
2022; 2025) impose structural constraints on the feature selection process, often using ℓ1 or group sparsity regularizers
to encourage label-specific feature sparsity. However, since these methods operate on abstract feature vectors rather than
spatial representations, they cannot support direct sample-level operations like cut-out augmentation.

The second category adopts a more direct approach by leveraging visual attention mechanisms to localize label-specific
regions (Chen et al., 2019; Narayan et al., 2021; Li et al., 2023). Specifically, these methods either utilize the inherent
attention mechanisms in deep networks, employ visualization techniques like Grad-CAM (Selvaraju et al., 2017), or
incorporate dedicated attention modules (Wang et al., 2017; Gao & Zhou, 2021). While these approaches achieve coarse-
grained localization of label-relevant regions, their attention maps often focus on local discriminative features rather than
complete object regions. This limitation makes them less suitable for MOCL, which requires precise object boundaries and
comprehensive object representations.

Noting the extensive approaches proposed for label-specific feature learning in traditional multi-label learning(Yu & Zhang,
2021; Hang & Zhang, 2021; Hang et al., 2022; Hang & Zhang, 2022; Chen et al., 2019; Narayan et al., 2021; Li et al., 2023),
we emphasize that they rely on complete label set with heavy computation overload, or fail to identify the label specific
regions, which are inherently defected by the high-efficiency requirement of MOCL task encountering the missing label
factor.

A.3. Multi-label Online Continual Learning

Multi-label online continual learning or multi-label class incremental learning emerge as a novel research field that integrates
the advantages of continual learning and multi-label learning(Zhang & Zhou, 2007; 2013; Zhang & Wu, 2014; Zhang
et al., 2020; Wei et al., 2021). Beyond the widely discussed catastrophic forgetting, existing MOCL studies primarily
address two key challenges: (1) the missing past and future labels inherent to the intersection of continual learning and
multi-label classification; (2) the intrinsic and uncontrollable class imbalance prevalent in conventional multi-label data
streams. Researchers have addressed missing label challenges by leveraging stored historical models through techniques
proven effective in multi-label learning and continual learning, such as GCN(Du et al., 2022; 2023; 2025), knowledge
distillation(Dong et al., 2023) and vision language model(Zhao et al., 2025). The class imbalance problem has been tackled
through carefully designed sampling strategies for replay methods. Notable examples include PRS(Kim et al., 2020), which
employs heuristic sampling, and OCDM(Liang & Li, 2022), which utilizes optimization-based sampling, both aiming to
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mitigate the impact of long-tailed class distributions in continual multi-label scenarios. However, these existing methods
overlook the root cause of these challenges and a crucial issue in multi-label learning(Zhao et al., 2016; Wang et al., 2017;
Gao & Zhou, 2021): how to identify and discriminate label-specific regions and their corresponding features in an online
manner? Our work directly addresses this fundamental question.

B. Preliminaries
In this section, we first review two unsupervised segmentation techniques: Normalized Cut(Shi & Malik, 2000) and Mask
Cut(Wang et al., 2023a), which motivate our investigation into label-specific region identification in MOCL.

Normalized cut (NCut) formulates image segmentation as a graph partitioning problem. Let G = (V,E) be a weighted
undirected graph, where V denotes the vertex set with each vertex v corresponding to an image patch (feature patch), E
represents the edge set, and W is the edge weight matrix with entries Wij encoding the similarity between vertices i and j.
NCut aims to partition the graph into disjoint sets A (background) and B (foreground object b) by minimizing the NCut
energy E(A,B, V ):

E(A,B, V ) =
C(A,B)

C(A, V )
+
C(A,B)

C(B, V )
, (4)

where C measures the similarity between two sets, e.g., C(A,B) =
∑

vi∈A,vj∈B Wij .

Meanwhile, mask cut (MCut) extends NCut to identify multiple objects per image by iteratively applying NCut to a masked
similarity matrix. At the t-th iteration, after obtaining the bipartition from NCut, the algorithm divides patches into two
disjoint groups (background at and object bt) and constructs a binary mask M t, where

M t
ij =

{
1, if Mij > mean(bt)
0, otherwise

(5)

Upon determining the foreground group bt, MCut updates the node similarity W t+1
ij by masking out nodes corresponding to

the foreground from previous stages t:

W t+1
ij =

(vi
∏t

s=1 M̂
s
ij)(vj

∏t
s=1 M̂

s
ij)

||vi||2||vj ||2
(6)

where M̂s
ij = 1−Ms

ij . With the updated W t+1
ij , MCut iteratively minimizes Eq.4 and calculates Eq.6 to generate multiple

segmentation masks for distinct objects.

C. Theoretical Foundations of CUTER
C.1. Relationship Between Normalized Cut and Graph Spectral Theory

As discussed in Section B, the Normalized Cut (NCut) can be formulated as a graph partitioning problem. Given a graph
G = (V,E) with vertex set V , edge set E, and edge weights Wij representing the similarity between nodes i and j, the
objective is to partition the graph into disjoint subsets A and B that: (1) minimize the inter-subset similarity, and (2)
maximize the intra-subset similarity. The NCut objective function is defined as:

C(A,B)

C(A, V )
+
C(A,B)

C(B, V )

where C measures the similarity between two sets: C(A,B) =
∑

vi∈A,vj∈B Wij .

The NCut problem is NP-hard due to its discrete nature. To make it computationally tractable, it is relaxed into a continuous
optimization problem using spectral graph theory. This involves the graph Laplacian L = D −W . To prevent nodes with
extremely large degrees from dominating the graph structure, the symmetric normalized Laplacian Lsym is employed:

Lsym = I −D−1/2WD−1/2 (7)

The problem can then be reformulated as minimizing y⊤Lsymy subject to constraints ensuring y is balanced and orthogonal
to the trivial solution (i.e., y⊤D1 = 0, where 1 is the all-ones vector). After relaxing y to take continuous values, the
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problem becomes:
min
y

y⊤Lsymy

subject to:
y⊤D1 = 0, y⊤Dy = 1

The solution is the eigenvector corresponding to the second smallest eigenvalue of Lsym. This continuous solution can be
discretized through thresholding to obtain the final partition. For a complete proof, refer to (Shi & Malik, 2000).

C.2. Proof of Theorem 2.3

In this section, we first give a detailed description of the adjacency matrix of each feature graph. The features of input
data can be divided into different patches, by using functions like Gaussian kernel to construct an undirected graph, with a
N ×N adjacency matrix A. Then, without loss of generality, we can make the following assumption:

Assumption C.1. The adjacency matrix A of each feature graph can be decomposed as an ideal block diagonal matrix A∗

and a non-sparse and potentially high rank noise matrix ϵ:

A = A∗ + ϵ

With Assumption C.1, we can rewrite the graph Laplacian L as:

L = D −A = D∗ +∆D − (A∗ + ϵ)

where ∆D = D −D∗ with D∗ is a N ×N diagonal degree matrix with elements d(i) =
∑

j A
∗
ij . Thus, we can write the

elements of ∆D as:

∆Dii =

N∑
j=1

(Aij −A∗
ij) =

N∑
j=1

ϵij .

Since it’s clear to see that ∆D is also a diagonal matrix, we have:

||∆D||2 = maxi|∆Dii| ≤ maxi

N∑
j=1

|ϵij | = ||ϵ||∞.

We can conclude that ||∆D||2 is directly upper bounded by ϵ. Based on this, we can now turn to analyze the upper bound of
the disturbation of graph Laplacian. It easy to conclude that:

∆L = L− (D∗ −A∗) = ∆D − ϵ.

Thus, we have:
||∆L||2 ≤ ||∆D||2 + ||ϵ||2 ≤ ||ϵ||∞ + ||ϵ||2.

It means that if we can bound λ2(L) by ||∆L||2, we can finish this proof. Before doing this part, we first introduce an
important Lemma:

Lemma C.2. (Courant-Fischer Formula (Zhang, 1997)) For a Hermitian A ∈ CN×N ,

λk = min
dim(S)=n−k+1

max
0̸=x∈S

x∗Ax

x∗x
= max

dim(S)=k
min

0̸=x∈S

x∗Ax

x∗x
, k = 1 : n.

From Lemma C.2, the Courant–Fischer theorem yields the following upper and lower bounds:

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B).

from which it follows that

max
k
|λk(A+B)− λk(A)| ≤ max(|λn(B)|, |λ1(B)|) = ∥B∥2.
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This inequality shows that the eigenvalues of a Hermitian matrix are well conditioned under perturbation. We can rewrite
the inequality in the symmetric form

max
k
|λk(A)− λk(B)| ≤ ∥A−B∥2.

By substituting L for A and L∗ = D∗ −A∗ for B and taking k = 2, we have:

λ2(L)− λ2(L
∗) ≤ ||∆L||2.

Then, according to Assumption C.1, we can deduce that L∗ is also an ideal block diagonal matrix, therefore its second
smallest eigenvalue λ2(L

∗) = 0. Combined with our previous results, we obtain:

λ2(L) ≤ ||∆L||2 ≤ ||ϵ||∞ + ||ϵ||2.

This completes the proof.

D. Analysis on Models’ Localization Ability
D.1. Pre-trained Model

In this section, we discuss pre-trained models’ localization capabilities and their underlying mechanisms. Based on the
experimental results shown in Figure 2 and Table 7, we observe a clear hierarchy in terms of zero-shot object localization
ability and potential for MOCL: contrastive learning models with multi-crop augmentation (e.g., DINO v1, DINO v2)
demonstrate superior localization capabilities compared to standard contrastive learning approaches (e.g., MoCo, SimCLR),
which in turn outperform conventional supervised training methods. Reconstruction-based methods like MAE and iBOT
exhibit relatively weaker performance in this aspect. We exclude CUTLearn from this comparison as it is a specialized
model designed specifically for zero-shot detection that requires additional fine-tuning, making it fundamentally different
from the aforementioned general-purpose pre-trained models.

When examined through the lens of spectral graph theory, these results become more intuitive. The consistency between
augmented views employed in contrastive learning naturally guides the model to focus on the most salient objects in
images. This effect is particularly pronounced because pre-training datasets like ImageNet are typically single-labeled
and object-centered, making multi-crop augmentation consistency especially effective. This training dynamic implicitly
encourages feature similarity among patches belonging to the same object, thereby enhancing the separability of the feature-
constructed graph (metric like cheeger constant). In contrast, supervised learning demonstrates weaker performance in this
aspect, though it still retains some localization capability since images from the same class typically contain similar objects,
leading to comparable feature representations even without explicit intra-image contrasting. However, mask reconstruction
pre-training methods, despite their proven effectiveness in feature learning for various downstream tasks, show the poorest
performance in this aspect. From a feature graph perspective, the indiscriminate random masking and reconstruction likely
diminishes the feature coherence between different patches of the same object, which adversely affects direct feature-based
zero-shot localization or segmentation capabilities.

D.2. Further Analysis on Low-rank Regularization

Constraining the nuclear norm of a matrix A (i.e., minimizing ∥A∥∗, the sum of singular values of A) has a significant
impact on reducing both the spectral norm ∥∆A∥2 and the infinity norm ∥∆A∥∞, where ∆A = ϵ = A−A∗. Below, we
present a detailed explanation.

Reduction in Spectral Norm ∥∆A∥2: Minimizing ∥A∥∗ applies soft-thresholding to the singular values of A, reducing the
rank of A and suppressing the singular values of ∆A:

∥∆A∥2 ≤ ∥∆A∥∗.

Reduction in Infinity Norm ∥∆A∥∞: Low-rank matrices have limited row variability, which constrains ∥∆A∥∞. Since:

∥∆A∥∞ ≤
√
n∥∆A∥2,

reducing ∥∆A∥2 indirectly reduces ∥∆A∥∞.
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Similarly, sparse regularization shows comparable effects in de-noising ϵ. However, unlike low-rank regularization, it
disrupts the inherent structural properties of ViT parameters (Darcet et al., 2023), potentially compromising classification
capacity. This may explain its inferior performance in MOCL, as shown in Table 3. As for smooth regularization, we argue
it may not benefit localization ability since overly similar node features could hinder spectral clustering-like operations.

E. Additional Experiments and Implementation Details
E.1. Implementation Details

In this part, we provide implementation details and configurations of the methods compared in Table 1, Table 2, and Table 4:

For RS(Chaudhry et al., 2019b), GSS(Aljundi et al., 2019b), iCarl, and NsCE(Xinrui et al., 2024), we adopted their original
codebases with minor modifications to their classifier architectures and classification loss functions. For methods employing
prototypical classifiers (iCarl and NsCE), we computed cosine similarities and applied a threshold of 0.5 to determine
positive labels. Regarding the classification loss, we replaced the conventional cross-entropy loss designed for single-label
scenarios with the asymmetric loss widely adopted in multi-label classification settings.

For PRS(Kim et al., 2020), we directly used their provided code1 with their reported optimal hyper-parameter ρ = 0.5.
As for OCDM(Liang & Li, 2022), since their code was not publicly available but shares similar principles with PRS, we
implemented it using the same hyper-parameter ρ = 0.5 and report our reproduction results.

For KRT and APPLE, both designed for Multi-label Class Incremental Learning, we ensured fair comparison by implement-
ing vanilla experience replay based on the official KRT codebase2, with each method trained for one epoch.

For AGCN and AGCN++, we utilized the official implementation of AGCN3 with their reported optimal hyper-parameters.
Since AGCN++(Liang & Li, 2022) code was not publicly available but follows similar principles to AGCN, we implemented
it using the same hyper-parameters and report our reproduction results.

For other common hyperparameters such as learning rate, weight decay, and batch size, we conducted a grid search and
report the best results for all compared methods. Unless otherwise specified above, we consistently used the AdamW
optimizer with a learning rate of 1e-4, and a weight decay of 1e-4. For PASCAL VOC, we set the data stream batch size as
12, memory buffer sampling batch size of 6. For COCO and NUSWIDE, we set the data stream batch size as 20, memory
buffer sampling batch size of 5.

E.2. Additional Experiments

We first provide a detailed visualization of different methods’ performance (mAP%) across various datasets. As shown in
Figure 7, our proposed CUTER consistently demonstrates superior performance throughout the entire training process. We
observe that MLCIL methods (e.g., APPLE and AGCN++) exhibit significantly degraded performance compared to their
offline implementations, especially in the early training stages. This performance gap highlights a key distinction between
MOCL and MLCIL: methods relying on iterative pseudo-labeling struggle to adapt to high-velocity data streams.

Secondly, we investigate how backbone architectures and pre-training strategies affect the downstream performance of
MOCL, as shown in Table 7. Our method relies more heavily on backbones with strong localization capabilities and their
corresponding pre-training approaches. As discussed in Appendix D, DINO pre-trained ViT models demonstrate superior
performance. We also reproduced OCDM, a current SOTA MOCL method, for comparative analysis. The results show
that our method maintains its advantages when using ViT as the backbone, while performance with ResNet backbones is
relatively weaker. This discrepancy may be attributed to our treatment of ResNet feature maps - although we divided them
into patches similar to ViT’s approach and applied MCut for foreground object detection and cropping, this adaptation may
not be optimal for CNN-based architectures.

Thirdly, we analyze the model throughput of our approach compared to state-of-the-art methods. As shown in Figure 8,
while vanilla experience replay (RS) achieves the highest model throughput, it demonstrates relatively weaker performance.
Our method achieves superior results at the cost of increased computational overhead, primarily due to the multi-round
MCut operations that cannot be parallelized on GPUs. Additionally, computing the rank approximation (nuclear norm) for

1https://github.com/cdjkim/PRS
2https://github.com/witdsl/KRT-MLCIL
3https://github.com/Kaile-Du/AGCN
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Figure 7. Overall training results on PASCAL VOC, MSCOCO and NUSWIDE. We include 5 different methods across the OCL, MLCIL
and MOCL methods.

Table 7. Performance comparison across different backbone architectures and pre-training methods.
Model Backbone Pre-training Method VOC COCO NUSWIDE

Avg mAP Last mAP Avg mAP Last mAP Avg mAP Last mAP
CUTER w/ Rl Vit-S Supervised 79.56 63.82 57.92 43.04 48.36 35.42

OCDM Vit-S Supervised 75.35 44.21 53.26 39.84 41.05 26.87
CUTER w/ Rl Vit-S MoCo v3 80.47 64.92 58.10 45.72 50.29 34.70

OCDM Vit-S MoCo v3 75.94 46.32 56.14 42.75 40.85 30.01
CUTER w/ Rl Vit-T DINO v1 81.84 67.50 59.38 47.95 52.08 36.68
CUTER w/ Rl Vit-S DINO v1 82.07 67.89 60.14 47.82 51.14 37.47
CUTER w/ Rl Vit-B DINO v1 83.25 68.14 61.08 45.70 50.91 37.52

OCDM Vit-S DINO v1 76.14 45.35 55.45 40.56 40.37 29.41
CUTER w/ Rl Vit-S MAE 77.31 60.45 56.42 44.06 47.24 32.40

OCDM Vit-S MAE 75.42 45.18 56.03 41.53 41.26 29.68
CUTER w/ Rl ResNet50 Supervised 74.35 46.80 46.34 37.15 38.30 22.53

OCDM ResNet50 Supervised 72.32 36.71 41.89 30.72 27.94 17.80
CUTER w/ Rl ResNet50 MoCo v3 75.04 48.31 47.20 37.48 40.06 23.41

OCDM ResNet50 MoCo v3 75.31 47.05 42.45 30.30 33.45 21.08
CUTER w/ Rl ResNet50 DINO v1 76.43 50.42 48.52 40.35 40.42 23.79

OCDM ResNet50 DINO v1 75.09 48.42 46.31 33.17 39.28 21.55
CUTER w/ Rl ResNet50 MAE 73.62 45.14 43.52 36.68 37.45 22.15

OCDM ResNet50 MAE 74.25 44.97 42.13 35.90 38.07 21.94

the graph adjacency matrix requires maintaining and calculating gradients for multiple foreground object predictions. These
factors create a trade-off between model throughput and performance. Future work will focus on developing acceleration
techniques and adaptive processing strategies based on data stream velocities.

Finally, we visualize the localization capabilities of our CUTER model during multi-object continual learning on PASCAL
VOC. We evaluate this from two perspectives: first, by calculating the average Fiedler value of the constructed feature
graphs; second, by measuring the zero-shot localization performance (AP50) between the generated bounding boxes and
their corresponding ground truth for each incremental task. As shown in Figure 8, as training progresses, the connectivity of
constructed graphs from streaming data gradually decreases while their separability improves. This enhancement in graph
separability correlates with increased accuracy of the generated pseudo bounding boxes.

F. Limitation
In the main text, our discussions primarily focus on scenarios using the ViT backbone as we need the structure like image
patch to form feature patch which help us construct the graph. While CNN-based backbones like ResNet can also construct
similar image patches, as shown in Appendix E.2, CUTER’s performance somewhat degrades in these cases. Additionally,
we acknowledge that performing cut-out operations introduces additional computational overhead as shown in Figure 8,
which may sometimes affect the model’s generalizability in online settings. However, as a pioneering work investigating
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Figure 8. Left: Average model throughput comparison across 9 methods evaluated on 6 datasets. Right Evolution of localization
performance: tracking the localization capabilities of our proposed CUTER model on PASCAL VOC from two perspectives.

object localization in MOCL, these limitations also point to promising directions for our future research.
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