
Published as a conference paper at ICLR 2025

MONTESSORI-INSTRUCT: GENERATE INFLUENTIAL
TRAINING DATA TAILORED FOR STUDENT LEARNING

Xiaochuan Li♦∗, Zichun Yu✦, Chenyan Xiong✦

♦School of Software, Tsinghua University
✦Language Technologies Institute, Carnegie Mellon University
li-xc20@mails.tsinghua.edu.cn
zichunyu@andrew.cmu.edu
cx@cs.cmu.edu

ABSTRACT

Synthetic data has been widely used to train large language models, but their gener-
ative nature inevitably introduces noisy, non-informative, and misleading learning
signals. In this paper, we propose MONTESSORI-INSTRUCT, a novel data synthesis
framework that tailors the data synthesis ability of the teacher language model
toward the student language model’s learning process. Specifically, we utilize local
data influence of synthetic training data points on students to characterize students’
learning preferences. Then, we train the teacher model with Direct Preference
Optimization (DPO) to generate synthetic data tailored toward student learning pref-
erences. Experiments with Llama3-8B-Instruct (teacher) and Llama3-8B (student)
on Alpaca Eval and MT-Bench demonstrate that Montessori-Instruct significantly
outperforms standard synthesis methods by 18.35% and 46.24% relatively. Our
method also beats data synthesized by a stronger teacher model, GPT-4o. Further
analysis confirms the benefits of teacher’s learning to generate more influential train-
ing data in the student’s improved learning, the advantages of local data influence
in accurately measuring student preferences, and the robustness of Montessori-
Instruct across different student models. Our code and data are open-sourced at
https://github.com/cxcscmu/Montessori-Instruct.

1 INTRODUCTION

Synthetic training data is highly effective in various applications of large language models (LLMs) (Lu
et al., 2023), spanning from general pretraining (Allal et al., 2024; Zhou et al., 2024), instruction-
tuning (Tong et al., 2024) to domain-specific scenarios such as mathematics (Yu et al., 2023) and
coding (Jiang et al., 2024). The advantages of synthetic data include its low cost, convenience, and
flexibility, making them an appealing choice for scaling up training data (Yue et al., 2024), mitigating
the shortage of human labels (Chang et al., 2024), and improving data diversity (Sun et al., 2023).

Typical data synthesis methods (Wang et al., 2023) employ an instruction-tuned teacher model and
prompt it with seed data to generate synthetic training data for a student model. It is widely observed
that the teacher-generated data can be noisy and non-informative (Bauer et al., 2024), their simple and
uniform format may lead to pattern overfitting (Chen et al., 2024), and their biased and ungrounded
content can introduce ambiguity in AI alignment (Liu et al., 2024). These are fundamental challenges
of synthetic data as they can mislead students and sometimes even result in model collapse (Shumailov
et al., 2023a; Seddik et al., 2024).

In this paper, we propose MONTESSORI-INSTRUCT, a novel data synthesis framework designed
to generate more tailored and informative data by directly optimizing the synthesis ability of the
teacher toward the student’s learning preferences. We first leverage influence functions (Koh & Liang,
2017; Yu et al., 2024b) to precisely measure the utility of synthetic data–its ability to effectively
train the students. Then, we optimize the parameters of the teacher model according to the student’s
preferences through Direct Preference Optimization (DPO) (Rafailov et al., 2024). The preference-
optimized teacher then synthesizes influential training data for the students. As shown in Figure 1,
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Figure 1: Data synthesis methods with standard teacher (data synthesizer) and student (target) setups.

rather than employing LLM-as-a-judge (Zheng et al., 2024) to evaluate and filter data by quality (Yuan
et al., 2024) or prompting teachers to generate harder examples (Lee et al., 2024) Montessori-Instruct
directly optimizes the teacher according to students’ learning preferences, leading to more customized,
flexible, and effective synthetic training data for the students.

Our experiments use Montessori-Instruct to synthesize 10K instruction-response pairs with Llama3-
8B-Instruct (Meta, 2024) as teacher and train Llama3-8B/Tinyllama-1.1B (Zhang et al., 2024) as
students. The results show that Montessori-Instruct achieves relative improvements of 18.35% and
46.24% over Self-Instruct on in-domain Alpaca Eval (Dubois et al., 2024) and out-of-domain MT-
Bench (Zheng et al., 2024), respectively. The benefits of Montessori-Instruct are more pronounced
compared to state-of-the-art data synthesis methods such as Self-Reward and LLM2LLM, as well as
data synthesized by the cutting-edge LLM, GPT-4o (OpenAI, 2024). The results on a wide range of
general NLP tasks (e.g., MMLU (Hendrycks et al., 2020) and GSM8K (Cobbe et al., 2021)) further
demonstrate the generalization capabilities of Montessori-Instruct.

Further analyses reveal a strong correlation between the teacher’s optimization process and the
student’s performance, demonstrating that Montessori-Instruct enables the teacher to generate data
aligned with students’ preferences to enhance its learning. Ablation studies highlight the advantages
of using data influence to reflect students’ preferences, the effectiveness of optimizing the teacher
parameters over solely bootstrapping the data, and the robustness of Montessori-Instruct across
different seed data, multiple iterations, and a variety of student models.

Our main contributions are summarized as follows:

1. We propose Montessori-Instruct, a novel data synthesis framework that tailors the data
synthesis ability of the teacher toward the student’s learning.

2. We incorporate influence functions to accurately capture the student’s data preferences and
effectively guide the teacher’s optimization directions.

3. Our empirical results demonstrate the effectiveness and robustness of Montessori-Instruct in
improving students’ learning outcomes by tailoring synthetic data generation to align with
student learning preferences.

2 RELATED WORK

Synthetic data has been shown highly effective in various applications of large language models (Lu
et al., 2023), including pretraining (Allal et al., 2024; Zhou et al., 2024), instruction-tuning (Tong
et al., 2024; Yue et al., 2024), mathematics (Yu et al., 2023) and coding (Jiang et al., 2024). Typical
approaches like Self-Instruct (Wang et al., 2023) leverages an instruction-tuned teacher to generate
instruction-response pairs given a small amount of seed data. Following the similar pipeline, Self-
Guide (Zhao et al., 2024) and Self-Alignment (Sun et al., 2023; Guo et al., 2024) further enhance data
quality for specific tasks, such as safety, truthfulness, and instruction-following, by carefully curating
task-relevant seeds. In parallel, Instruction Backtranslation (Li et al., 2023) and Bonito (Nayak et al.,
2024) collect massive texts from the internet as responses, prompt LLMs to synthesize instructions
reversely, and select high-quality candidates.

Despite its promising potential, synthetic data primarily rely on the teacher’s free-form generations,
thus is inevitably often biased, non-informative, and misleading (Bauer et al., 2024; Liu et al., 2024).
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The discrepancy between synthetic data and real-world sources often results in a misalignment with
human values and preferences (Liu et al., 2024), raising the risk of training student models that are
biased (Feng et al., 2023; Liu et al., 2021), ungrounded (Liu et al., 2022; Patel & Pavlick, 2022),
or misrepresentative of real-world scenarios (Ji et al., 2023; Hu et al., 2024b). It is also observed
that task-specific synthetic data often lacks diversity (Yu et al., 2024a), whereas general synthetic
data suffers from pattern overfitting (Chen et al., 2024) and the memorization of the synthesis
model’s training data (Van Breugel et al., 2023). Another challenge of synthetic data training is the
phenomenon of model collapse (Shu et al., 2023), where the massive noise in unregulated synthetic
data leads to the disappearance of the tails of the original content distribution and ineffective student
models (Seddik et al., 2024).

To address these limitations, researchers have explored various approaches to improve the utility of
synthetic data (Shu et al., 2023; Wang et al., 2024). One line of work focuses on filtering out noisy
synthetic data, using techniques like ranking synthetic data with an additional reward model (Shu
et al., 2023), verifying the truthfulness of responses via programs (Dong et al., 2024), prompting
LLMs to judge the data quality (Zheng et al., 2024), and ensemble of multiple teacher (Lee et al.,
2023). One can also directly adjust the teacher’s synthesis strategies to generate more useful data for
students (Lee et al., 2024; Yuan et al., 2024). For instance, LLM2LLM (Lee et al., 2024) collects
data points that the student answers incorrectly and prompts the teacher to bootstrap similar data,
thereby generating targeted data to strengthen the student’s weaknesses. Another potential path, such
as Self-Reward (Yuan et al., 2024), is to employ LLM-as-a-judge (Zheng et al., 2024) to assign each
response a discrete reward score and optimize the student to generate highly rewarding responses.

The last body of related work is data influence functions (Hampel, 1974), a commonly used technique
for measuring the utility of data on a model’s performance. Influence function (Hampel, 1974;
Koh & Liang, 2017; Bae et al., 2022) quantifies the change in reference loss when a data point is
upweighted in the training set (Koh & Liang, 2017). It often serves as a theoretical tool to analyze data
utility (Choe et al., 2024) and attribute model behavior (Park et al., 2023). Recent work has applied
influence functions to facilitate model-aware data selection in pretraining or instruction-tuning, using
first-order approximation (Xia et al., 2024), linear datamodels (Engstrom et al., 2024), and data
influence models (Yu et al., 2024b). These methods have been shown to be more effective than
traditional rule-based techniques in data selection, mostly notably in the pretraining stage (Engstrom
et al., 2024; Yu et al., 2024b).

3 MONTESSORI-INSTRUCT

This section first introduces the overall framework of MONTESSORI-INSTRUCT (§ 3.1) and then
elaborates its two main components: local data influence collection (§ 3.2) and student-preference-
guided teacher optimization (§ 3.3).

3.1 OVERALL FRAMEWORK

Standard data synthesis methods (Wang et al., 2023; Yuan et al., 2024; Lee et al., 2024) begin with
a teacher model M and a seed prompt p formed using a few-shot sample of example data. The
teacher model processes the seed p to generate a set of N new instructions, {xi | 1 ≤ i ≤ N}, that
follow a similar format to the seed but with a variety of contents. Each generated instruction xi is
then used to prompt the teacher to synthesize the corresponding response yi. This yields a set of
instruction-response pairs {(xi, yi) | 1 ≤ i ≤ N} that are then used to train the student model m.

Montessori-Instruct upgrades this standard data synthesis pipeline with the optimization of the teacher
model toward the student’s learning preferences. The student-preference-guided teacher optimization
starts with prompting the teacher to generate a probing dataset Dprobing using Self-Instruct and then
collecting these data points’ local data influence Im on the student model (§ 3.2). The collected
data preferences form the preference dataset Dpreference, and Montessori-Instruct uses it to update
the teacher model via Direct Preference Optimization (DPO) (Rafailov et al., 2024) (§ 3.3). The
optimized teacher then generates the actual training dataset to train the student model m. The process
can be iterated multiple rounds to continually refine the teacher according to the student’s updated
preferences. This process is illustrated in Figure 2 and discussed in detail in the next two sections.
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Figure 2: Student-Preference-Guided teacher optimization in Montessori-Instruct.

3.2 LOCAL DATA INFLUENCE COLLECTION

A key component of our framework is to precisely measure the utility of synthetic data, i.e., how
good they are at improving the student’s learning outcomes. This question is often approached using
influence functions (Weisberg & Cook, 1982; Koh & Liang, 2017), which was designed to quantify
changes in reference loss when a data point (xi, yi) is upweighted in the training sets Park et al.
(2023), thus reflecting the utility of this data point to the student’s learning.

In order to efficiently calculate the data influence, we follow Yu et al. (2024b) and approximate
influence functions locally, using the change of the model’s reference loss before and after training
on a single data point (xi, yi):

Im(xi;Dref) ≈ −L(Dref | A(yi | xi;m)) + L(Dref | m), (1)
where L(Dref | m) = E(x,y)∼Dref ℓ(y | x;m), (2)

where Dref denotes the reference data that measure the student’s capability, and ℓ(y|x;m) is the loss
of student m on an input-output pair (x, y). A(yi | xi;m) refers to the optimization operation of
student m on data (xi, yi), e.g., one-step training with Adam (Kingma & Ba, 2015) on (xi, yi).

The local data influence, Im(xi;Dref), represents how the instruction-response pair (xi, yi) impacts
the student’s learning outcome as measured on the reference data. A positive Im indicates that
the data benefits the student’s reference performance, while a negative Im shows the opposite. A
complete theoretical derivation of local data influence is provided in Appendix B.

3.3 STUDENT-PREFERENCE-GUIDED TEACHER OPTIMIZATION

After calculating local data influence for each instruction in the probing dataset Dprobing, we pair every
two instructions with positive and negative influence, along with their corresponding seed prompt p,
to construct the preference dataset:

Dpreference = {(p, x+, x−) | Im(x−;Dref) < 0 < Im(x+;Dref)}. (3)

We then apply DPO to optimize the teacher model M toward the student’s learning preferences:

LDPO(M∗;M) = −E(p,x+,x−)∼Dpreference [ logσ(β log
M∗(x+ | p)
M(x+ | p)

− β log
M∗(x− | p)
M(x− | p)

)], (4)

where β is a parameter that controls the deviation from the initial teacher M and σ is the logistic
function. The updated teacher, M∗, after one or multiple iterations, is then used to synthesize the
training data for the student model m.

4 EXPERIMENTAL METHODOLOGIES

This section details our main experimental setups, including a thorough configuration of the data
synthesis process, the chosen baselines, and the evaluation methods.
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Data Synthesis Process. We choose Llama3-8B-Instruct (Meta, 2024) as the teacher, and train
Llama3-8B (Meta, 2024) and Tinyllama-1.1B (Zhang et al., 2024) as students. We merge the text in
instruction and input fields of Alpaca GPT-4 dataset (Taori et al., 2023), consisting of 52K entries,
to create our seed pool. We follow the 8-shot seed proposed in Self-Instruct (Wang et al., 2023) to
prompt the teacher to generate instructions, with 6 out of the 8 randomly sampled from the seed pool
and 2 sampled from the synthetic instructions in the teacher’s previous iterations. Detailed prompts
are provided in Figure 13.

Following Yuan et al. (2024), we initially use the unoptimized teacher model to synthesize 1K
data to warm up the student. Then, we generate 4 instructions for each seed and 1 response for
each instruction and filter out similar instructions whose Rough-L score exceeds 0.7, resulting in a
probing dataset of 10K prompt-instruction-response triplets. For each instruction-response pair in the
probing dataset, we collect local data influence using the loss difference of the student model on the
reference data (Alpaca GPT-4) before and after one-step training. Then, we construct a preference
dataset comprising 6,792 entries, where each entry represents a seed-instruction pair with positive
and negative influences. This preference dataset is used to train the teacher with Direct Preference
Optimization (DPO) (Rafailov et al., 2024). Finally, we use the optimized teacher to synthesize 10K
data to train the student from scratch. In the subsequent iterations, we optimize the teacher using
similar steps, but with the updated student from last iteration to collect data influence. For both the
teacher and student training, we utilize AdamW optimizer (Loshchilov & Hutter, 2019) along with
WSD scheduler (Hu et al., 2024a). Both models are trained for one epoch. For teacher’s generation,
we use vLLM (Kwon et al., 2023) as our decoding engine and provide specific decoding parameters
in Table 5. More details can be found in Appendix A.

Baselines. We compare our method against several mainstream data synthesis baselines. The
simplest baseline is Self-Instruct (Wang et al., 2023), where we use the unoptimized teacher to
synthesize data. Additionally, we select GPT-4o (OpenAI, 2024) as a stronger teacher to synthesize
an equivalent amount of data for comparison. Another baseline is Self-Reward (Yuan et al., 2024),
which employs an LLM-as-a-judge (Zheng et al., 2024) to assign ratings from 1 to 5 points to its
self-synthesized responses. Since we find in our preliminary experiments that Llama3-8B lacks the
ability to effectively score its own responses, we instead employ GPT-4o as an external judge to
score the student’s responses. The results of the original Self-Reward are reported in the Appendix
§ D.3. The final baseline is LLM2LLM (Lee et al., 2024), which evaluates the student’s accuracy
on its seed set and filters out those that result in incorrect answers. In our case, we define data
points with the highest 50% training loss as incorrect examples. The teacher is then prompted to
bootstrap data similar to the incorrectly answered seeds. To align with our setting, we uniformly
conduct two rounds of iterations for Self-Reward and LLM2LLM. For all methods, we synthesize
10K instruction-response pairs to train the student models.

Evaluation Methods. We use Alpaca Eval 2.0 (Dubois et al., 2024) as the in-domain evaluation to
assess the model’s instruction-following ability. We utilize gpt-4-turbo-2024-04-09 as the
evaluator and uniformly compare all methods against the student model trained with Self-Instruct. The
evaluation metrics are standard Winng Rate (WR) and Length Control Winning Rate (LC-WR). For
head-to-head winning rate, we employ the evaluation prompt in both pairwise orders, and if the results
disagree, we count it as a tie. Additionally, we evaluate the model’s generalization performance across
six out-of-domain tasks, including MT-Bench (Zheng et al., 2024), ARC-Challenge (25-shot) (Clark
et al., 2018), GSM8K (8-shot) (Cobbe et al., 2021), HellaSwag (8-shot) (Zellers et al., 2019), GPQA
(0-shot) (Rein et al., 2023), and MMLU (0-shot) (Hendrycks et al., 2020). These tasks span areas
such as multi-turn dialogue, knowledge-based question answering, mathematics, and natural language
reasoning, offering a thorough assessment of our approach’s effectiveness. For MT-Bench, we report
the score out of 10 judged by gpt-4-turbo-2024-04-09. For other tasks, we report normalized
accuracy if it is included in the evaluation results, otherwise, standard accuracy.

5 EVALUATION RESULTS

This section evaluates the effectiveness of Montessori-Instruct (§ 5.1), illustrates the correlation
between the teacher’s learning and the student’s performance (§ 5.2), conducts comprehensive
ablation studies on the effectiveness of local data influence, the optimization of the teacher, the seed
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Table 1: Evaluation of training 8B/1.1B students with different data synthesis methods. Adoption of
a stronger teacher model (GPT-4o) is indicated by ∗. All else use Llama3-8B-Instruct as the teacher
model. The best and second-best performances are marked in bold and underscore, respectively.

In-Domain Out-Of-Domain

Methods Alpaca Eval 2.0 MT-Bench MMLU GPQA ARC-C GSM8K HellaSwag

LC-WR WR Score Accuracy

8B Setting: Student=Llama3-8B

No fine-tuning 2.09% 3.39% 5.597 62.15 24.33 57.85 51.25 81.96

Self-Instruct 50% 50% 6.490 62.42 31.92 59.98 58.76 80.93
Self-Instruct∗ 54.95% 56.39% 5.918 63.41 30.13 60.58 50.42 81.42

Self-Reward∗
Iteration 1 51.87% 55.38% 6.713 62.46 28.19 59.84 53.60 81 .04
Iteration 2 53.49% 57.32% 6.798 62.02 29.08 60.64 56.37 81.13

LLM2LLM
Iteration 1 51.49% 53.12% 6.531 62.18 29.12 57.49 55.28 80.49
Iteration 2 52.63% 55.02% 6.519 62.46 30.04 59.65 57.75 80.57

Montessori-Instruct
Iteration 1 54.92% 58.59% 6.903 62.93 29.91 62.97 58.76 81.22
Iteration 2 56.37% 60.15% 7.163 63.47 31.36 60.17 60.02 81.98

1.1B Setting: Student=Tinyllama-1.1B

No fine-tuning 17.89% 17.56% 1.020 26.16 23.88 37.12 1.97 62.61

Self-Instruct 50% 50% 2.154 26.21 24.78 37.97 1.82 62.47
Self-Instruct∗ 54.02% 55.02% 1.928 26.64 24.33 38.82 2.20 63.17

Self-Reward∗
Iteration 1 47.62% 48.34% 1.804 26.34 23.92 37.64 1.76 62.27
Iteration 2 46.48% 46.95% 1.717 26.09 24.62 38.03 1.76 62.79

LLM2LLM
Iteration 1 52.03% 52.75% 2.243 25.87 24.51 36.86 2.24 62.15
Iteration 2 51.64% 53.52% 2.192 25.62 24.84 36.74 2.31 62.08

Montessori-Instruct
Iteration 1 53.25% 51.77% 2.485 26.23 23.92 37.97 2.35 62.59
Iteration 2 54.37% 54.68% 2.526 26.47 24.88 38.05 2.82 63.54

data and multiple iterations (§ 5.3), and then demonstrates the generalization of the synthetic data
from Montessori-Instruct (§ 5.4).

5.1 OVERALL PERFORMANCE

Table 1 presents the overall performance of Montessori-Instruct compared with the state-of-the-art
data synthesis methods. In the 8B setting, Montessori-Instruct significantly outperforms Self-Instruct
by 6.37% LC-WR and 10.15% WR on Alpaca Eval. Notably, our method still surpasses Self-Instruct
with GPT-4o as the teacher, suggesting that a stronger LLM does not necessarily produce more
beneficial data than a weaker LLM that is tailored to the student’s needs. Compared to Self-Reward
and LLM2LLM, Montessori-Instruct consistently shows better performance across both iterations.
This underscores the advantage of directly optimizing the teacher model’s parameters toward the
student’s preferences derived from data influence.

In addition to in-domain evaluation, Montessori-Instruct also outperforms all the baselines on out-of-
domain tasks, achieving maximum improvements of 0.673 and 0.372 on the MT-Bench in the 8B and
1.1B settings, respectively. This indicates that the teacher optimized by our method does not overfit
the reference tasks and maintains strong robustness and generalization capabilities, whereas other
baselines suffer from performance degradation on out-of-domain tasks.

5.2 CORRELATION BETWEEN TEACHER’S LEARNING AND STUDENT’S PERFORMANCE

This set of experiments examines how the teacher is progressively optimized to align with student
preferences, thereby enhancing the student’s performance. We first zoom in on the teacher’s learning
process to investigate its progressive impact on student models. Figures 3a and 3b compare the
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Figure 3: Figures (a) and (b) illustrate the correlation between the teacher’s learning process and the
performance of the student trained on data synthesized by the intermediate teachers in Alpaca Eval
and MT-Bench. Figure (c) depicts how the distribution of the local data influence of the teacher’s
synthetic data shifts as the teacher is progressively updated. Figure (d) presents the proportion of
training data with positive local data influence during the student’s training.

performance of students trained using synthetic data generated from the teacher’s intermediate
checkpoints. The learning margin reflects the teacher’s learning process, representing the average
difference between selected rewards and corresponding rejected rewards in DPO. A larger margin
indicates that the teacher is more likely to generate the selected synthetic data. The results indicate a
positive correlation between the student’s performance and the teacher’s optimization progress.

We then select several teacher checkpoints to examine the properties of their synthetic data, aiming to
identify changes occurring as the teacher learns. Specifically, we focus on the distribution of local
data influence in the synthetic data, defined as the change in the model’s reference loss before and
after training on a single data point, which indicates the utility of that data for the model. The baseline
reference loss is the loss on the reference set prior to one-step training, i.e., Equation 2. As shown
in Figure 3c, we observe that as the teacher is optimized, the distribution of its synthetic data shifts
towards the positive side, indicating an increased proportion of data with positive local influence in
its synthetic outputs. From the student’s perspective (Figure 3d), which shows the changes in the
proportion of data with positive local influence in the next training batch, this proportion decreases
over time during training. However, the data generated by the updated teacher consistently maintains
a higher proportion of positive influence compared to a regular teacher.

In summary, we attribute the improved performance achieved by Montessori-Instruct to the teacher’s
continuously enhanced ability to synthesize data with higher local influence, by using DPO to
distinguish data with varying influence values. The positive correlation between student performance
and the increased proportion of training data with positive local influence leads to more effective
learning, thereby improving the student’s overall performance.

5.3 ABLATION STUDIES

This subsection demonstrates the effectiveness of the methodological design in Montessori-Instruct
through four ablation studies, summarized in Table 2. The yellow lines show ablations on data
point utility evaluation methods. The red lines represent optimization for responses based on
instructions and optimization for teacher models. The blue lines cover various seed data types: OOD
(Out-Of-Domain), ID (In-Domain), and Test (direct use of the test set).

Effectiveness of Local Data Influence. To evaluate the impact of different methods for obtaining
the influence of a data point, we compare our local data influence against two additional baselines:
(1) LLM-as-a-Judge (Zheng et al., 2024), which leverages GPT-4o to directly assign a 1-5 score
to each instruction-response pair, inspired by Self-Reward, and (2) Training loss, which directly
uses the training loss of each data point as its influence score, inspired by LLM2LLM. As shown
in the yellow lines in table 2, our local data influence consistently outperforms both baselines by a
significant margin. This indicates that local data influence is a more effective metric for capturing
students’ fine-grained data preferences compared to the other methods.

Effectiveness of Teacher Optimization. To analyze the effectiveness of the optimization strategy
on the teacher, we compare our method with two additional ablation baselines: (1) Bootstrap: we
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Table 2: Ablation studies on the effectiveness of the methodological design in Montessori-Instruct.
All experiments were conducted on the Llama3-8B students.

Methodological design Alpaca Eval 2.0 MT-Bench MMLU GPQA ARC-C GSM8K HellaSwag

LC-WR WR Score Accuracy

Effectiveness of Local Data Influence
LLM-as-a-Judge 53.42% 54.93% 6.731 62.93 29.75 62.09 58.82 81.05
Training loss 52.34% 54.99% 6.656 62.54 29.89 61.48 58.76 80.93
Local data influence (Ours) 54.92% 58.59% 6.903 62.93 29.91 62.97 58.76 81.22

Effectiveness of Teacher Optimization
Bootstrap 50.59% 48.14% 6.618 60.67 25.19 57.95 58.13 80.46
Response optimization 51.59% 54.22% 6.556 62.43 27.45 60.42 56.38 81.04
Instruction optimization (Ours) 54.92% 58.59% 6.903 62.93 29.91 62.97 58.76 81.22

Effectiveness of Seed Data
Open Assistant (OOD) 52.28% 54.76% 6.706 62.86 29.74 62.29 58.42 81.24
Alpaca GPT4 (ID) (Ours) 54.92% 58.59% 6.903 62.93 29.91 62.97 58.76 81.22
Alpaca Eval (Test) 57.64% 61.36% 7.147 62.93 30.44 63.06 60.80 81.09

Montessori-Instruct M1
vs.

 Self-Instruct

Montessori-Instruct M2
vs.

 Self-Instruct

Montessori-Instruct M3
vs.

 Self-Instruct

40.3 26.6 33.1

46.7 25.8 27.5

51.9 24.3 23.8

Montessori-Instruct Wins Tie Self-Instruct Wins

(a) Win rates of iterations compared to Self-Instruct

Montessori-Instruct M3
vs.
 M1

Montessori-Instruct M2
vs.
 M1

Montessori-Instruct M3
vs.
 M2

46.3 27.4 26.3

40.2 30.7 29.1

36.8 32.9 30.3

Left Wins (in Left vs. Right) Tie Right Wins

(b) Win rates compared between different iterations

Figure 4: Head-to-head win rates for evaluating 8B models among the Self-Instruct baseline and
three successive iterations updated using Montessori-Instruct.

bootstrap the top 50% influential data by utilizing it as the seed, and (2) Response optimization: we
optimize the teacher by the student’s local data influence of different responses given an instruction.
As shown in red lines in table 2, optimizing the teacher is generally better than merely bootstrapping
influential data, highlighting the necessity of adapting the teacher to the student’s needs. Furthermore,
instruction optimization (Montessori-Instruct) outperforms response optimization across all tasks.
We attribute this to the smaller search space of response optimization, which limits the headroom for
teacher improvement compared to instruction optimization.

Effectiveness of Seed Data. This study examines the impact of the seed data by varying its relevance
to the evaluation tasks. In addition to the Alpaca GPT-4 (in-domain seed data) used in the main
experiments, we also utilize Open Assistant and Alpaca Eval as alternative seed data. Open Assistant
represents an out-of-domain seed, whereas Alpaca Eval is directly sampled from the evaluation task.
Blue lines in table 2 demonstrates that using Alpaca Eval leads to the best performance on itself
while using Open Assistant is less effective compared to in-domain seed data. For more general
NLP benchmarks, changing the seed data results in only slight differences in performance. This
indicates that our method is robust enough to enhance the synthesis ability of teachers, even when
using different seeds.

Effectiveness of Multiple Iterations. We examine the performance differences when applying
Montessori-Instruct over multiple iterations. In each iteration, we begin by constructing a probing
dataset of 2K samples to collect local data influence on the student model from the previous iteration,
followed by updating the previous teacher. As shown in Figure 4a, Montessori-Instruct continues to
outperform Self-Instruct across three iterations, achieving a peak head-to-head win rates of 51.9%.
The results in Figure 4 illustrate the comparison between different iterations, demonstrating that
Montessori-Instruct can yield improvements over previous iterations. We attribute these gains to the
Montessori-Instruct’s ability to capture the data preferences of students at different iterations and to
tailor influential data according to their evolving needs.
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Figure 5: Evaluation results of training four different student models using synthetic data generated
by a teacher optimized for the data preferences of the 1.1B student.

5.4 GENERALIZATION ABILITY OF THE SYNTHESIZED DATA

In this experiment, we study the generalization ability of our teacher optimized toward a small student
(1.1B)’s preferences. Specifically, we utilize the data synthesized by this teacher to train four different
student models—Llama3-8B (Meta, 2024), Mistral-7B (Jiang et al., 2023), Qwen1.5-7B (Bai et al.,
2023), and Gemma2-9B (Team et al., 2024). As shown in Figure 5, the data synthesized by one
teacher leads to consistent performance gains across all the students compared to Self-Instruct. This
finding implies we can directly deploy an optimized teacher to generate data for a variety of student
models, enhancing their performance with a low expense.

5.5 CASE STUDY
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(b) Montessori-Instruct

Figure 6: The most common root verbs (inner circle) and
their top direct noun objects (outer circle) in generated in-
structions

In this section, we present several
cases to visualize the differences be-
tween the instructions synthesized
by Self-Instruct and by Montessori-
Instruct, and showcase the chosen and
rejected data pairs that reflect what
the teacher learns during our optimiza-
tion. Figure 6 shows the word analysis
of root verbs and their corresponding
nouns. We identify the top 10 most
common root verbs (inner circle) and
their top 4 direct noun objects (outer
circle) in the generated instructions.
The results indicate that, compared
to Self-Instruct, Montessori-Instruct
guides the teacher to synthesize more
on writing instructions and providing specific, informative examples, while reducing the frequency of
simple commands like summarizing and translating.

Table 3 compares the chosen and rejected data pairs given the same prompt. Our method discards
low-utility data, such as explanations of simple concepts and sentence translations, and increases
the likelihood of generating complex and informative instructions. This further demonstrates the
effectiveness of using local data influence to differentiate data utility.

6 DISCUSSION AND LIMITATIONS

Synthetic Data Scale. We synthesize 10K data points to verify the effectiveness of our innovative
data synthesis framework. While this 10K dataset outperforms other baselines and demonstrates
strong generalization, its effectiveness when scaled to the volume required for production-level
fine-tuning (around 100K) remains unclear. Expanding the synthetic data volume may introduce
redundancy, a phenomenon commonly observed in data synthesis (Bauer et al., 2024; Liu et al., 2024).
It would be meaningful to study how to balance the quantity and the diversity of the synthetic data,
while this is orthogonal to our main contribution.
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Table 3: Examples of instruction-response pairs with positive and negative influences

Positive Negative
[Instruction]: What is the most efficient way to transport a
given package across a city, considering traffic congestion,
distance, and cost?
[Response]: The most efficient way to transport a pack-
age across a city depends on several factors, including the
package’s size, weight, fragility, and urgency, as well as the
city’s traffic patterns, infrastructure, and regulations. Here
are some general considerations and options to minimize
costs, reduce congestion, and ensure timely delivery:
1. **Distance and Route Optimization**:

* Use online route planners or transportation manage-
ment software to determine the shortest and most efficient
route.

* Consider alternative routes or modes of transportation
if the primary route is congested or closed.
2. **Traffic Congestion Mitigation**:

* Avoid peak hours (7-9 am and 4-6 pm) when possible,
as traffic congestion is typically highest during these times...

[Instruction]: Explain the concept of artificial
intelligence in 100 words.
[Response]: Artificial intelligence (AI) refers
to the development of computer systems that
can perform tasks that typically require hu-
man intelligence, such as learning, problem-
solving, and decision-making. AI systems use
algorithms and data to analyze and interpret in-
formation, allowing them to make predictions,
classify objects, and generate insights. They
can be trained on large datasets to improve their
performance over time, and can even adapt to
new situations and learn from experience. AI
has many applications, including robotics, nat-
ural language processing, image recognition,
and expert systems, and is increasingly being
used in industries such as healthcare, finance,
and transportation.

[Instruction]: Can you write a script for a public service
announcement about the importance of recycling?
[Response]: Here is a script for a public service announce-
ment about the importance of recycling:
[Opening shot of a beautiful park or nature reserve, with a
narrator speaking]
Narrator: ”Imagine a world where our planet is thriving,
where wildlife roams free, and where our communities are
healthy and strong. But to get there, we need to take action.”
[Cut to a shot of a person holding a plastic bottle and throw-
ing it away]
Narrator: ”One of the simplest and most effective ways to
make a difference is by recycling.”...

[Instruction]: Can you translate the following
text from english to spanish: ”the hotel room
was comfortable and clean.”
[Response]: The translation of the text from
English to Spanish is:
”El cuarto de hotel era cómodo y limpio.”
Here’s a breakdown of the translation:
* ”the hotel room” = ”el cuarto de hotel”
* ”was” = ”era” (verb conjugation)
* ”comfortable” = ”cómodo”
* ”and” = ”y” (conjunction)
* ”clean” = ”limpio”
So, the complete sentence in Spanish is: ”El
cuarto de hotel era cómodo y limpio.”

Overhead. Montessori-Instruct introduces an additional computational cost. Compared to Wang
et al. (2023), training an 8B model using our method increases the average processing time per data
by 5.8 seconds (see the Appendix E for details). At the instruction finetuning stage, compute is less
an issue compared to pretraining. The scale is smaller, and generating data is faster and cheaper than
human annotations. Additionally, the most time-intensive step in our method–”collecting local data
influence”–can be independently parallelized on heterogeneous compute systems, allowing for easy
acceleration. As demonstrated in § 5.4, Montessori-Instruct exhibits strong generalization capabilities.
In practice, one can use a smaller model to collect data influence for updating the teacher and then
apply the updated teacher to synthesize data for larger models.

7 CONCLUSION

In this paper, we propose Montessori-Instruct, a novel data synthesis framework that tailors the
teacher for student learning. Montessori-Instruct leverages local data influence to reflect the student’s
learning preferences and to optimize the teacher to produce more influential synthetic training data.
Experimental results demonstrate that Montessori-Instruct significantly outperforms state-of-the-art
data synthesis methods in both in-domain and out-of-domain evaluations, exceeding the performance
of data generated by stronger teacher models like GPT-4o. Further analyses confirm the benefits of
optimizing the teacher toward the student’s preferences in improving student performances. Ablation
studies validate the benefits of using local data influence to reflect data utility and highlight the
benefits of optimizing the teacher over bootstrapping. Our work successfully demonstrates the
potential of incorporating the student’s learning preferences into teacher optimization, and we hope it
inspires further exploration of more effective synthetic data generation frameworks.
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A TRAINING DETAILS

The hyperparameters used during training teachers and students are as follows. We employ the
AdamW optimizer (Loshchilov & Hutter, 2019) with a WSD scheduler (Hu et al., 2024a). For SFT,
the 8B model utilizes a maximum learning rate of 5e−6, while the 1B model uses 1e−5. The WSD
scheduler is configured with a warmup ratio of 0.1, a stable ratio of 0.5, and a decay ratio of 0.4, with
the learning rate decaying to one-thousandth of the maximum. The epoch is set to 1, batch size is
set to 32 and the dropout is 0. We mask non-target tokens, calculating the loss only on target tokens.
If the student model does not have a chat template itself, we apply the Llama3-8B formatted chat
template, as shown in 7, with bos token, eos token and pad token set to <|start header id|>,
<|end header id|>, and <|end header id|>, respectively. For DPO, we use a learning rate
of 1e−6, set β to 0.1, and use a batch size of 2, while other parameters remain the same as in SFT.

Figure 7: Chat Template

Chat Template

{% if messages[0][’role’] == ’system’ %}
{% set offset = 1 %}

{% else %}
{% set offset = 0 %}

{% endif %}

{{ bos token }}
{% for message in messages %}

{% if (message[’role’] == ’user’) !=
(loop.index0 % 2 == offset) %}

{{ raise exception(’Conversation roles
must alternate userassistantuserassistant...’)
}}

{% endif %}

{{ <|start header id|> + message[’role’] +
<|end header id|> + message[’content’] | trim +
eos token }}
{% endfor %}

{% if add generation prompt %}
{{ ’<|start header id|>’ + ’assistant’ +

’<|end header id|>
n
n’ }}
{% endif %}

We use Hugging Face TRL codebase (von Werra et al., 2020) to perform both full parameters fine-
tuning and direct preference optimization. For the 8B model, we employ the Hugging Face Accelerate
codebase (Gugger et al., 2022) to facilitate FSDP training (Zhao et al., 2023). All the parameters
introduced in this section are summarized in Table 4.

Table 4: Training Parameters

Method Learning Rate Weight Decay Warmup Ratio Stable Ratio Decay Ratio

SFT 5.0e− 6 0.0 0.1 0.5 0.4
DPO 1.0e− 6 0.0 0.1 0.5 0.4

Method Minium Learning Rate Epoch Per Device Train Batch Size Gradient Accumulation Train Batch Size
SFT 5.0e− 9 1 2 2 32
DPO 1.0e− 9 1 2 1 2

Method Max Length Dropout BF16 Flash Attention 2 Beta

SFT 1024 0.0 True True -
DPO 1024 0.0 True True 0.1
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B THEORETICAL GUARANTEE OF LOCAL DATA INFLUENCE

This section provides a detailed explanation of the derivation for computing local data influence
and the rationale behind its effectiveness. We referred to the derivation method in Yu et al. (2024b).
We use Dref to represent the reference set and m to represent the student model that we calculate
local data influence on. The derivation begins with the standard influence functions Koh & Liang
(2017); Weisberg & Cook (1982) which quantify the change in reference loss when a data point xi

is upweighted by a small ϵ. We denote the optimal model state after the upweighting as mϵ,xi
=

argminm
1
n

∑n
j=1 L(xj | m) + ϵL(xi | m) and simplify the optimal model under ϵ = 0 case (i.e.,

no upweighting) as m. The influence of upweighting xi is then given by:

Im(xi;Dref)
def
=

dL(Dref | mϵ,xi)

dϵ
|ϵ=0 (5)

= ∇mL(Dref | m)⊤
dmϵ,xi

dϵ
|ϵ=0 (6)

= −∇mL(Dref | m)⊤H−1
m ∇mL(xi | m), (7)

where Hm = 1
n

∑n
j=1 ∇2

mL(xj | m) is the Hessian matrix, which is positive definite. The derivation
from Eq. 6 to Eq. 7 is given by building a quadratic approximation to the empirical risk around m and
tperforming a single Newton step as shown in Koh & Liang (2017). Now let’s consider the scenario
in which xi is incorporated into the training data. In this case, ϵ = 1

n , and the parameter difference
due to the inclusion of xi is m 1

n ,xi
−m ≈ 1

nH
−1
m ∇mL(xi | m) and the influence in Eq. 7 can be

further represented as:

Im(xi;Dref) ≈ n∇mL(Dref | m)⊤(m 1
n ,xi

−m) (8)

≈ n(L(Dref | m 1
n ,xi

)− L(Dref | m)) (9)

∝ −L(Dref | m) + L(Dref | m 1
n ,xi

). (10)

So far, we have successfully derived the method (Eq. 10) of calculating local data influence used
in § 3.2. Using the supervised fine-tuning algorithm A, we denote the model state m 1

n ,xi
as

A(yi | xi;m), which is updated on the synthetic data point (xi, yi) for one step. Replacing the
variables in Eq. 10 with the notation of our method, we can obtain:

Im(xi;Dref) ≈ −L(Dref | A(yi | xi;m)) + L(Dref | m) (11)

C STATISTICS ON SYNTHESIS DATA

We plot the top 20 most common root verbs (inner circle) and their top 4 direct noun objects (outer
circle) in the generated instructions by Self-Instruct (Figure 8), the first iteration of Montessori-
Instruct (Figure 9), and the second iteration of Montessori-Instruct (Figure 10), respectively.

We observe an increasing trend in instructions such as ’write,’ ’provide,’ and ’make,’ as well as a
consistent trend for instructions like ’explain’ and ’describe.’ These commands typically require more
general detailed information and lead to longer, more complex responses. Meanwhile, commands like
’translate’ and ’calculate’ show a decline, as they usually require straightforward answers and simpler
formats. This outcome demonstrates that Montessori-Instruct helps the teacher model generate more
detailed and informative instructions, thereby improving student performance.

We also plot the distribution of tokenized instructions and responses generated by Self-Instruct and
Montessori-Instruct for comparison. As shown in Figures 11 and 12, there is an increasing trend in
the length of instructions, while the length of responses remains relatively unchanged. This aligns
with our design, which focuses on optimizing instructions based on prompts rather than optimizing
responses based on instructions. The increased length of instructions also reflects the teacher’s data
synthesis strategy shifting toward more complex and informative instructions.
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Figure 8: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects (outer
circle) in the generated instructions by Self-Instruct
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Figure 10: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects
(outer circle) in the generated instructions by Montessori-Instruct (iteration 2)
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Figure 11: Distribution of tokenized instructions generated by Self-Instruct and Montessori-Instruct
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Figure 12: Distribution of tokenized responses generated by Self-Instruct and Montessori-Instruct
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D ADDITIONAL EXPERIMENTAL DETAILS

D.1 PROMPTS USED FOR INSTRUCTION GENERATION.

In this section, we present the prompts used in Montessori-Instruct. Figure 13 illustrates how we
prompt the teacher model to generate new instructions. We begin by outlining some requirements for
the teacher, followed by inserting 8-shot seed examples sampled from both the seed pool and the data
pool generated in the previous iteration. We then extract the instruction from the teacher’s output
using regex matching and filter out those with incorrect formats.

Figure 14 displays the prompt used in our ablation studies on the effectiveness of Local Data Influence.
In this study, we evaluated different methods for assessing the utility of synthetic data, one of which
involved using LLM-as-a-Judge (Zheng et al., 2024). We adapted the prompt from Self-Reward (Yuan
et al., 2024) and added an additional point to evaluate the quality of the instruction, resulting in a
maximum score of 6 points.

Figure 13: Prompt for Generating Instructions

Prompt

Generate an instruction. This instruction should be a question
that humans would be ask. It can be in imperative or interrog-
ative form. We will use the instructions you generate to train
models, so you must ensure that the instructions generated are
of high quality and correct and also keep the instruction clear
and concise.
You should:
1. Briefly explain why you generate this instruction.
2. Think about whether you need to add some input to this
instruction so that it can be answered directly. (For example,
for tasks that involve summarizing, you need to provide the
paragraph to be summarized).
3. Return you output strictly following the format:
Your generated instruction should strictly follow the following
format:
<instruction><YOUR INSTRUCTION HERE><YOUR
INPUT HERE></instruction>
If there is no need to add inputs to answer the instruction, you
can skip the <YOUR INPUT HERE> part. If you need to add
inputs, just replace the <YOUR INPUT HERE> with the input.
Now here are some examples of reference instructions, and
please generate only one instruction.

D.2 DECODING STRATEGIES

We list all the parameters used for decoding outputs from language models in Table 5. Separate
parameters are used for generating instructions and responses. A higher temperature is used for
instruction generation to encourage diversity, enabling us to leverage local data influence to identify
more informative instructions. For responses, we use a temperature of 0.6 to reduce uncertainty.
Additionally, two penalty techniques are employed to mitigate duplication issues during synthesis.

D.3 SELF-REWARD RESULTS WITHOUT THE EXTERNAL JUDGE

In this section, we report the results of the original Self-Reward (Yuan et al., 2024) method. Self-
Reward requires the student model to generate responses to given instructions, and then assess their
own responses by generating judgments and scores ranging from 1 to 5 using LLM-as-a-Judge (Zheng
et al., 2024). It then employs Direct Preference Optimization (DPO) to encourage the student to
synthesize higher-scoring responses. However, this approach demands a high level of instruction-
following ability from the student model. The authors of Self-Reward employ Llama2-70B as the
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Figure 14: LLM-as-a-Judge Prompt for evaluating instructions and corresponding responses in our
ablation studies on the effectiveness of Local Data Influence

Prompt

Review the user’s instruction and the corresponding response
using the additive 6-point scoring system described below.
Points are accumulated based on the satisfaction of each crite-
rion:
- Add 1 point if the response is relevant and provides some in-
formation related to the user’s inquiry, even if it is incomplete
or contains some irrelevant content.
- Add another point if the response addresses a substantial
portion of the user’s question, but does not completely resolve
the query or provide a direct answer.
- Award a third point if the response answers the basic ele-
ments of the user’s question in a useful way, regardless of
whether it seems to have been written by an AI Assistant or if
it has elements typically found in blogs or search results.
- Grant a fourth point if the response is clearly written from
an AI Assistant’s perspective, addressing the user’s question
directly and comprehensively, and is well-organized and help-
ful, even if there is slight room for improvement in clarity,
conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored
to the user’s question by an AI Assistant, without extraneous
information, reflecting expert knowledge, and demonstrating a
high-quality, engaging, and insightful answer.
- Award an additional point if you consider this instruction to
be of moderate difficulty, requiring thought and analysis rather
than being a straightforward task.
User:
<INSTRUCTION HERE>
<response><RESPONSE HERE></response>
After examining the user’s instruction and the response:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: \Score:
<total points>”
Remember to assess from the AI Assistant perspective, uti-
lizing web search knowledge as necessary. To evaluate the
response in alignment with this additive scoring model, we’ll
systematically attribute points based on the outlined criteria.

Table 5: Decoding Parameters using vLLM

Generate Instruction Generate Responses

temperature 1 0.6

top p 0.9 0.9

frequency penalty 0 0

presence penalty 1 1

repetition penalty 1.5 1

max token 1024 1024

student model for this reason. In our experimental setup with Llama3-8B and TinyLlama-1.1B, both
models lack sufficient instruction-following capabilities and fail to produce detailed judgments and
valid scores. For example, Llama3-8B’s scores are skewed, clustering around 4 and 5, making it
difficult to differentiate between responses. The 1.1B model’s scores even do not follow the rules in
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Table 6: Evaluation of training 8B/1.1B students using the original Self-Reward settings compared to
Self-Instruct, without relying on external judges.

In-Domain Out-Of-Domain

Methods Alpaca Eval 2.0 MT-Bench MMLU GPQA ARC-C GSM8K HellaSwag

LC-WR WR Score Accuracy

8B Setting: Student=Llama3-8B

No fine-tuning 2.09% 3.39% 5.597 62.15 24.33 57.85 51.25 81.96

Self-Instruct 50% 50% 6.490 62.42 31.92 59.98 58.76 80.93

Self-Reward
Iteration 1 2.45% 4.06% 5.442 61.79 24.30 57.81 49.92 80.75
Iteration 2 2.69% 4.71% 5.428 61.79 23.58 57.64 49.53 80.17

1.1B Setting: Student=Tinyllama-1.1B

No fine-tuning 17.89% 17.56% 1.020 26.16 23.88 37.12 1.97 62.61

Self-Instruct 50% 50% 2.154 26.21 24.78 37.97 1.82 62.47

Self-Reward
Iteration 1 7.79% 8.13% 1.000 23.58 22.30 36.55 0.94 61.92
Iteration 2 6.34% 7.57% 1.000 23.44 22.06 36.49 0.98 61.24

the prompt and fall outside the specified 1 to 5 range. Therefore, in our main experiment, we use
GPT-4o as an external judge to score the student responses. Nonetheless, we also report results here
based on the original Self-Reward settings, where the model judges its own responses without relying
on a more powerful external model.

E COST ANALYSIS

E.1 TIME OVERLOAD

Compared to Self-Instruct (Wang et al., 2023), our method introduces additional overhead in: (1)
collecting local data influence to construct the preference dataset (§ 3.2), (2) and performing DPO
optimization for the teacher model (§ 3.3). The majority of the computational overhead arises from
collecting local data influence. This process begins by generating instructions and responses to create
a probing dataset, distinct from the training set used for fine-tuning the student, and used solely
for calculating local data influence. Then, we traverse the entire probing dataset, fine-tuning the
student model on each individual data point to collect its corresponding local influence. For each data
point, loading the student’s warmed-up checkpoint from disk, training for one step, and evaluating
on the reference dataset are the primary time-consuming steps. We provide a detailed breakdown of
the time required for these steps in table 7 and calculate the average time needed to run the entire
Montessori-Instruct process and resulte in the final student model. The calculations are based on a
probing dataset and training dataset, each consisting of 10K entries.

However, there are two simple ways to reduce the time demand for Montessori-Instruct. First,
the process of collecting local data influence can be parallelized independently on a heterogeneous
compute system to speed up execution, with no need for communication between systems—a common
bottleneck in distributed training. In our experiments, we utilize 8 H100 GPUs to accelerate this
process. Second, as demonstrated in our experiments (§ 5.4), Montessori-Instruct shows strong
generalization capabilities. In practice, a smaller model can be used to collect data influence for
updating the teacher, which can then synthesize data for larger models. This approach significantly
reduces the computational overhead compared to using larger models directly for collecting local
data influence.

22



Published as a conference paper at ICLR 2025

Table 7: Time Overload Statistics

Task Sub task 8B 1B

collect local data influence / per data

generate instructions 0.372s
generate responses 0.031s

load warmuped ckpt from disk 2.69s 1.08s
fine-tune for one step 4.12s 0.79s
eval on reference set 4.19s 1.26s

total 13.403s 3.533s

Task 8B 1B
Time for DPO Training / per data 0.362s

Task Method 8B 1B

Time for obtaining the final student model / per data Self-Instruct 0.486s 0.422s
Montessori-Instruct 5.842s 1.834s

E.2 COST-PERFORMANCE RELATIONSHIP

We provide further clarification on the cost-performance relationship of our method compared
to all baselines. We analyzed the Performance-FLOPs curve of four methods, with a particular
focus on the changes in Self-Instruct’s Alpaca Eval and MT-Bench Score as their FLOPs increase
to levels comparable to those of Montessori-Instruct. We scale the FLOPs of Self-Instruct by
synthesizing additional data. We also marked the Performance-FLOPs relationship of the two
baselines, LLM2LLM and Self-Reward, in the following figures.
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Figure 15: The Performance-FLOPs curve for all four methods.

It can be seen that Self-Instruct quickly reached the upper bound during the scaling-up process, and
even with more FLOPs, no better performance improvement can be achieved. The reason may be
that the data generated by Self-Instruct is severely homogenized. In contrast, the upper bound of our
method is significantly better and continuously grows when we invest more FLOPs into it.

Then we give a computational result of the FLOPs estimated for four methods, as well as the
pretraining and test-time-scaling. The detailed derivation is provided in E.3. The main FLOPs for
Montessori-Instruct come from processing probing data. In the Table 1, we used 10K probing data
to utilize the most resources to achieve the best performance, but as the Figure 3a and Figure 3b
suggests, using around 1K probing data can already achieve better performance than other baselines.
To make a fair comparison, we calculate the FLOPs under 1K probing data. We estimate the FLOPs
as follows (Llama3-8B-Instruct as the teacher, Llama3-8B as the student):

• Self-Instruct: 1.34× 1020 FLOPs

• Self-Reward: 2.11× 1021 FLOPs

• LLM2LLM: 2.3× 1020 FLOPs

• Montessori-Instruct: 6.43× 1020 FLOPs

23



Published as a conference paper at ICLR 2025

• Pretrain Llama3-8B: 1.87× 1024 FLOPs
• Inference-Time Scaling: 1.60× 1023 FLOPs

We can see that Montessori-Instruct’s FLOPs are 7 times less than Self-Reward. Furthermore, if we
use the proxy model (Yu et al., 2024b), such as a smaller-sized model (e.g., 1B parameters for assisting
an 8B model) to process probing data, Montessori’s FLOPs can further reduce to 1.92× 1020 FLOPs.
This makes it comparable to Self-Instruct while still outperforming it. Using a proxy model has
promising potential for enhancing both efficiency and performance, which we leave for future work.
Regarding the pretraining, since the computational cost during the SFT phase is significantly lower
than that during the pretraining phase ( 104 times smaller), even if we increase resource investment
in SFT, its overall consumption remains minimal. Recent work has focused on scaling inference
time to achieve better performance (Snell et al., 2024). However, the inference-time scaling FLOPs
are also significantly larger than those of SFT, being approximately 103 times greater, according to
Sardana et al. (2023). Nevertheless, our teacher training represents a one-time cost. As demonstrated
in Section 5.4, the optimized teacher can assist multiple students in improving their performance
without the need for retraining from scratch.

E.3 DERIVATION OF FLOPS

• When generating synthetic data, the input window includes both prompt and seed data, so
we set the input length to 2048.

• For instruction-based input/output, the input/output length is 128.
• For response-based input/output, the input/output length is 1024.
• For judgment-based input/output using an LLM, the input/output length is 1024.

We define the computational cost of generating one token for an input of length 128 as one unit F .
During instruction fine-tuning, the input and output lengths are 128 and 1024, respectively. The
backward FLOPs are approximately twice the forward FLOPs. For one data sample, the training
FLOPs can be estimated as:

1024F × 3 = 3072F

FLOPs calculations are based on calflops (2024), where F = 1.92T FLOPs.
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Method FLOPs (F)
Self-Reward
Synthesize 10K instructions from seed 16F × 128× 10K = 20480KF
Synthesize 4 responses per instruction 40K× 1024F = 40960KF
Generate 3 judgments per response 40K× 8F × 1024× 3 = 983040KF
Train with 10K pairs using DPO DPO10K

Synthesizes 2K instruction-response-
judge sets

(16F × 128 + F × 1024 + 8F × 1024)
×2K = 22528KF

Perform SFT on student SFT2K

Total ≈ 1100MF + DPO10K

LLM2LLM
Synthesize 10K instructions from seed 16F × 128× 10K = 20480KF
Generate 1 response per instruction 10240KF
Student responds to each instruction F × 1024× 10K = 10240KF
Resynthesize 10K instructions 20480KF
Generate 1 response per instruction 10240KF
Perform SFT on student SFT10K

Total ≈ 120MF
Montessori
Synthesize 1K instructions from seed 2048KF
Generate 1 response per instruction 1024KF
Train student with each instruction SFT10K

Evaluate trained student on validation set 1KF × 1024× 256 = 262144KF
Perform DPO updates on teacher with 6K samples DPO1K

Resynthesize 10K instructions 20480KF
Generate 1 response per instruction 10240KF
Perform SFT on student SFT10K

Total ≈ 340MF + DPO1K

Use a 1B model for probing data ≈ 100MF + DPO1K

Self-Instruct
Synthesize 1K instructions from seed 2048KF
Generate 1 response per instruction 1024KF
Perform SFT on student SFT10K

Total ≈ 70MF

Table 8: FLOPs Computation Table for Different Methods

F EXPERIMENTS UNDER THE SELF-EVOLVE SETTING

In our primary experiment, we leveraged a teacher model to generate tailored synthetic data aimed at
enhancing the capabilities of a different student model. Here, we shift our focus to explore whether
LLMs can harness synthetic data generated by themselves to achieve self-improvement—a
paradigm we term the “Self-Evolve” setting. To investigate this, we adapt our Montessori-Instruct
framework by aligning the student model with the teacher model. Starting from an identical check-
point, the model generates synthetic data for itself, employing influence scores to identify the most
beneficial and tailored samples, and subsequently performs Direct Preference Optimization on itself.
Notably, the fine-tuning process begins anew from the initial checkpoint, rather than building upon
a post-DPO state. We evaluate this paradigm using both Llama3-8B-Instruct, an instruction-tuned
model, and Llama3-8B, its pretrained version, to assess the potential of self-improvement. The results
are presented in Table 9.

Our findings reveal that Llama3-8B-Instruct achieves superior performance across all benchmarks
under the self-evolve setting, exhibiting a consistent upward trend in capability. Remarkably, even
the non-instruction-tuned Llama3-8B demonstrates self-improvement at the 8B parameter scale.
However, while Llama3-8B exhibits gains with each iteration, the rate of improvement diminishes
over time. This suggests that the pretrained model struggles to surpass its instruction-tuned version
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Table 9: Self-improvement performance of Llama3 models across different iterations. The Winning
Rate (WR) and Length-Control Winning Rate (LC-WR) are compared to the Llama3-8B-Instruct
model. The best performances are marked in bold.

Methods Alpaca Eval 2.0 MT-Bench

WR LC-WR Score

Llama3-8B-Instruct 50.00% 50.00% 7.472
Llama3-8B (No fine-tuning) 3.39% 2.09% 5.597

Teacher=Student=Llama3-8B
Iteration 1 26.76% 26.53% 6.224
Iteration 2 35.42% 34.76% 6.308
Iteration 3 39.84% 38.12% 6.386

Teacher=Student=Llama3-8B-Instruct
Iteration 1 53.74% 52.51% 7.563
Iteration 2 56.78% 54.84% 7.595
Iteration 3 58.62% 56.12% 7.611

through self-evolution alone at this stage. We attribute this limitation to the suboptimal quality and
restricted diversity of the synthetic data produced by the models themselves. Shumailov et al. (2023b)
reveals that the perplexity of synthetic training data tends to converge toward a low-value range after
multiple iterations, offering diminishing returns in terms of novel and beneficial information for
model enhancement. We hope that future research will devise innovative strategies to bridge the gap
between synthetic and organic data, unlocking the full potential of self-evolving LLMs.
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