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ABSTRACT

Current interpretable sentiment analysis (ISA) methods frequently underperform
state-of-the-art models, and few of them cast light on the inner working of pre-
trained models. In this work, we fill the gap by addressing four key research
challenges in ISA—knowledge acquisition, knowledge representation, knowledge
learning and knowledge reasoning—in one unified framework. Theoretically, we
propose a novel contrasitive logical knowledge learning (CLK) framework that
can visualize the decisions made through deterministic Talmudic public announce-
ment logic semantics. We apply CLK to current popular sentiment analysis mod-
els to obtain CLK based interpretable ones. Empirically, experimental results of
both binary sentiment analysis tasks and fine-grained sentiment analysis tasks in-
dicate that CLK can achieve an effective trade-off between accuracy and inter-
pretability. Furthermore, we find that CLK can reduce the uncertainty of logical
knowledge for discriminative labels in unbalanced fine-grained sentiment analy-
sis tasks. Besides, we carry out a case study to investigate the fidelity of model
interpretability through knowledge reasoning, which demonstrates that the expla-
nations provided by our method are causally effective for sentiment analysis tasks.

1 INTRODUCTION

Sentiment analysis (also known as opinion mining) is a primary task in natural language processing
that identifies the emotional inclination of humans toward particular topics (Zitnik et al., 2022), it is
commonly used in marketing (Valle-Cruz et al., 2022), customer service (Li et al., 2019), medical
healthcare (Sanglerdsinlapachai et al., 2021), and social media (Arias et al., 2022). Investigating
model interpretability is critical to obtain user trust in high-stake domains (Ito et al., 2020; Zhang
et al., 2013). Several approaches have been proposed for interpretability in sentiment analysis, such
as Tsetlin Machine (Yadav et al., 2021), Hidden Markov Model based methods (Perikos et al., 2021),
and fuzzy rule based methods (Liu & Cocea, 2017). However, while the existing approaches can
provide explanations, the fidelity and rationality of model interpretability are unclear for sentiment
analysis tasks, which is insufficient for user trust. In addition, despite that deep learning models
have shown promising performance (Alaparthi & Mishra, 2020), few interpretable methods have
involved them in sentiment analysis tasks.

According to (Chen et al., 2022), the logical knowledge implicitly in bidirectional recurrent neural
networks (BRNNs) can be represented by Talmudic public announcement logic (TPK) (Abraham
et al., 2013), since TPK has natural temporal characteristics and can model context dependency. In
light of this, it’s possible to learn the interpretable TPK from bidirectional deep neural networks
(BDNNs) by modeling word-label dependency, since the word-label dependency in sequential data
can also be represented by temporal logic. Considering the sequence “I like this novel very much,
but the film is terrible, so I will give a bad review”, label semantics are associated with correlated
words in the sequence. Specifically, the label “positive” is associated with the words “like”, and
the label “negative” is associated with the words “terrible” and “bad”, the predicted label is deter-
mined by the temporal characteristics of these correlated words. A few studies have looked into
the correlation between words and labels in sentiment analysis (Ito et al., 2020), the logical knowl-
edge implicitly in the trained deep learning models is still unspecified although it can help us to
reveal how a BDNN operates. It is worth noting that the knowledge representation of deep learning
models is challenging due to the anisotropy and uncertainty of logical knowledge, where anisotropy
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is produced by the vector representation derived from transformer when using pre-trained models,
meaning that the vectors will be unevenly spaced and filled in a small conical area (Cai et al., 2020;
Ethayarajh, 2019). The uncertainty stems from two avenues. On the one hand, the knowledge of
labels with similar meanings (like ”slightly positive” and ”positive”) has similar logic knowledge,
which is easily confused; on the other hand, logical knowledge trained with model during the train-
ing stage leads to randomness. As a result, the following research questions emerge naturally to fill
the research gap:(1) how to acquire effective logical knowledge and integrate it into model training
in sentiment analysis tasks?(2) how to generate human-understandable explanations for sentiment
analysis tasks and evaluate the fidelity of model interpretability?

To answer the first research question, we propose a contrastive logical knowledge learning (CLK)
method based on the Talmudic public announcement logic (TPK) and contrastive learning. CLK
can be regarded as a component that can be added to any deep learning models, and the challenge
is that models constructed in such a way may suffer from lower performance when the transparency
is brought in, thus the logical knowledge need to be accurate and effective. To address this chal-
lenge, we design a knowledge acquisition module (Figure 1 (a)), a knowledge representation module
(Figure 1 (b)) and a knowledge learning module (Figure 1 (c)) in CLK. The logical knowledge is
obtained from two avenues: firstly, we employ the latent Dirichlet allocation to extract the semantic
knowledge from existing datasets, and further utilize this logical knowledge to form a good label
representation (Section 3.1). Secondly, we learn the potential public announcements of TPK by
calculating the similarity of label representation and word representation (Section 3.3). Based on
the learned public announcements, the logical knowledge can be represented in the form of TPK
(Section 3.2). To address the anisotropy and uncertainty of logical knowledge, we aggregate it with
contrastive learning to enhance the uniformity and reduce uncertainty, thus encouraging the model
to learn more discriminative representations for similar labels (Section 3.3).

To answer the second question, we design a knowledge reasoning module in CLK (Section 3.4),
which can generate human-readable explanations based on TPK semantics and validate the fidelity
of the model interpretability by causal reasoning. By displaying how sentiment changes from the
beginning to the end of sequences, CLK can visualize decisions made in the form of TPK models.
Through reasoning on a structural causal model for sentiment analysis tasks, the effectiveness and
rationality of the model interpretability are investigated. In addition, we conduct extensive experi-
ments on both binary sentiment analysis datasets and fine-grained sentiment analysis datasets, and
the results demonstrate that CLK can achieve an effective trade-off between accuracy and inter-
pretability by leveraging the benefits of both logical knowledge and contrastive learning, especially
compared with pre-trained models on Weibo-8 and Yelp-2 dataset (Section 5). Besides, we con-
duct an ablation study to show how knowledge acquisition module and knowledge learning module
influence model output (Section 5.3).

2 DETERMINISTIC TALMUDIC PUBLIC ANNOUNCEMENT LOGIC

In this section, we briefly introduce the syntax and semantics of of deterministic Talmudic Public
Announcement logic (TPK), and the detailed background of TPK can be found in Appendix B.
Syntax The syntax of TPK is inspired by modal logic and public announcement logic. Fix the
non-empty sets of propositions and modal operators □, ⊟, Y and Y, the minimal syntax of TPK can
be specified in Backus–Naur form as follows:

ϕ ::= pi | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | □ϕ | ⊟ ϕ | Y ϕ | Yϕ (1)

where pi is a propositional letter for i ∈ N, ϕ and ψ are well-formed TPK formulas. Notice that □ is
the standard necessity operator, Y is a yesterday operator for □, ⊟ is a modal operator corresponding
to function ρ, and Y is a yesterday operator for ⊟. ρ is a functional relation that denotes the public
announcement in TPK, which is specified as below.
Definition Based on the above language of TPK, a deterministic TPK (Taimudic public announce-
ment logic) model (Abraham et al., 2013) is defined as a 6-tuple ⟨S,R,R∗, ρ, s0, π⟩ where (S,R, s0)
is a directed tree with root s0 and tree successor relation R, R∗ is the transitive closure of R, ρ:
S → S is a functional relation, π is the valuation function.

For ∀x, y, z, v ∈ S, we say ρ is a public announcement of TPK iff ρ satisfies the following proper-
ties:(a) xρy → y ̸= s0. (b) Let zRx, the successors of z are publicly clarified to be v, where zRv
holds, if we have xρy, with vR∗y. (c) For deterministic actions, xρy ∧ xρz → y = z. (d) Since
every z has a unique successor which is publicly clarified at some point, this means that there exists
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a path the model deterministic. (e) Let D be the distance from the root and u, v ∈ S, whenever uRv
then D(v) = D(u) + 1. xρy ∧ ¬(yRx) ∧ y ̸= x→ D(y) = D(x) 1.
Semantics Formulas of TPK are interpreted over state transition systems whose transitions are
determined by the non-deterministic (deterministic) actions of agents. In TPK, the modal operators
can describe the property of states i.e., the path formula s ⊨ □ϕ is read “ϕ holds in each state that is
accessible to s ”. For ∀t, s ∈ S, the semantics of TPK are as follows: as for the relation R: t ⊨ □A
iff for all s such that tRs we have s ⊨ A; t ⊨ Y A iff for all s such that sRt we have s ⊨ A; If t = s0
then Y A =⊥. As for the functional relation ρ: t ⊨ ⊟A iff for all s such that tρs we have s ⊨ A;
t ⊨ YA iff for all s such that sρt we have s |= A and if no such s exists then ⊥.

Now we can write axioms and attempt to prove completeness based on above operators, but it is not
our purpose in this paper, the interested reader can find more details in (Abraham et al., 2013).

3 METHOD

Figure 1: The overall framework of our proposed method. Dir(·) in (a) denotes a Dirichlet distribu-
tion; q in (b) denotes the ground truth; si (i ≥ 0) in (c) denotes the i-th state in TPK model; a green
(or blue) circle in (d) indicates a variable while a pink circle indicates a confounder.
3.1 KNOWLEDGE ACQUISITION

Latent Dirichlet Allocation (LDA) is a topic model which can give the topic of each document in
the document set in the form of a probability distribution (Blei et al., 2003). There is only one
corresponding label for each input sequence in our sentiment analysis datasets. Firstly, we classify
all sequences into documents based on their labels and obtain corresponding documents.Let Di
represent the sequence-level document of i-th label category, we have Di = {X1, X2, ...XV }, where
Xv denotes the v-th sequence in the document, V denotes the number of sequences labeled as Di
in the datasets, and Nv is the number of words in v-th sequence. By dividing each sequence into
a series of tokens (words) and utilizing these tokens to represent the document, we obtain Di =
{x1, x2, ...xM}, where M is the number of tokens and xm indicates the m-th token, Di denotes the
token-level document of i-th label category. Suppose the document Di has K (K > 0) topics, the
topic probability distribution of Xv is denoted as θv = P (z|Xv), where z = [z1, z2, . . . , zk] is a
topic vector. Thus the topic probability distribution of all sequences in Di can be represented as
Θ = {θv}Vv=1 ∈ RV×K , where the prior distribution of θv is a Dirichlet distribution with prior
parameter α such that P (θv|α) ∼ Dirichlet(θv|α). Assume that there are Nv words in sequence
Xv , and let vector nv = [n1v, n

2
v, . . . , n

k
v ] denote the number of occurrence of each topic in Xv ,

where nkv denotes the number of occurrence of topic zk. Then nv ∼ multi(nv|θv, Nv), where
multi(·) represents the multinomial distribution function. Since a Dirichlet distribution is the prior
distribution of a multinomial distribution (see Appendix F.1), the posterior distribution of θv can
be computed by P (θv|nv, α) ∼ Dirichlet(θv|(α + nv)). Since all sequences in document Di
are independent of each other, the probability of the topic in the corpus can be obtained by (see
Appendix F.2 for more details):

P (z|α) =

V∏
v=1

P (zv|α) =

V∏
v=1

Γ(
∑K

k=1 αk)
K∏

k=1

Γ(αk)

K∏
k=1

Γ(αk + nk
v)

Γ(
∑K

k=1(αk + nk
v))

(2)

Let ϕ = P (w|zk) represent the word probability distribution of zk, then the word probability
distribution of all topics is given by: Φ = {ϕk}Kk=1 ∈ RK×M . Similarly, the prior distribution of ϕk

1TPK may appear to the perceived readers to be similar to temporal logic and traditional announcement
logic, we will discuss their differences in Appendix E .

3



Under review as a conference paper at ICLR 2023

is given by a Dirichlet distribution with prior parameter β such that P (ϕk|β) ∼ Dirichlet(ϕk|β).
Assume that there areNk words in topic zk, and let vector nk = [n1k, n

2
k, . . . , n

m
k ] denote the number

of occurrence of each words in topic zk, then nk ∼ multi(nk|ϕk,Nk) . Similarly, the posterior
distribution of ϕk is given by P (ϕk|nk, β) ∼ Dirichlet(ϕk|(β + nk)). Since these topics in the
document are independent of each other, the word probability distribution in Di can be obtained as
follows (Blei et al., 2003) (see Appendix F.3 for more details):

P (x|z, β) =
K∏

k=1

P (xk|β) =
K∏

k=1

Γ(
∑M

m=1 βm)
M∏

m=1

Γ(βm)

M∏
m=1

Γ(βm + nm
k )

Γ(
∑M

m=1(βm + nm
k ))

(3)

Above information allows us to derive the following formula for joint probability distribution of
word-topic:

P (x, z|α,β) =

K∏
k=1

Γ(
∑M

m=1 βm)
M∏

m=1

Γ(βm)

M∏
m=1

Γ(βm + nm
k )

Γ(
∑M

m=1(βm + nm
k ))

V∏
v=1

Γ(
∑K

k=1 αk)
K∏

k=1

Γ(αk)

K∏
k=1

Γ(αk + nk
v)

Γ(
∑K

k=1(αk + nk
v))

(4)

where P (x, z|α,β) represents the topic-word probability. This paper sets α = 0.01, β = 0.01
and utilizes variational inference-based EM algorithm (Wang et al., 2018) to produce the proba-
bility distributions, then the probability P (x, z|α,β) is solved iteratively. Based on the solved
P (x, z|α,β), we can get the words with high probability under a certain topic by sorting the prob-
ability values. Since we have divided the training data into several documents according to their
labels, we can directly extract T words with the highest probability from these documents based on
P (x, z|α,β), then utilize them to represent the i-th label such that D′

i = {w1, w2, . . . , wT }.

Glove vectors is a word representation tool that considers the statistics of words ( by co-occurrence
matrix) in the corpus to learn word representation (Pennington et al., 2014). To obtain a better word
representation for above T words, we introduce a pre-trained glove model provided by (Pennington
et al., 2014), and get a set of word vectors hD′

i
= {hw1

,hw2
, ...hwT

}, where hwi
is the word vector

of wi based on the pre-trained Glove model. Remark that the total number of these vectors are T
since we have extracted top T (T ≥ 0) words based on P (x, z|α,β). Then, the average of vectors
of all wi can represent Di as hDi

= 1
T

∑T
j=1 hwj

, where hDi
denotes the average vector of Di.

This paper set T = 25 and use hDi
it to initial label embeddings.

3.2 KNOWLEDGE REPRESENTATION

For each input sequence X = (x1, x2, ..., xn), we get the corresponding feature vectors (hidden
states) hei of each word by a base model (or baseline), denoted as h = [he1 ,he2 , ...hen ], where ei
denotes the text embedding vector of xi by the Embedding layer and hei denotes the hidden state of
word xi through a deep learning network. Then we employ two dense layers with different activa-
tion functions to get p = softmax(relu(h)), where function relu(x) = max(0, x) and function
softmax(zi) = ezi∑k

i=1 ezi
. The base model just computes the loss by p and true labels. Despite

knowing this training process, we still know nothing about the logic relationship of the hidden states
in the base model. Inspired by the work of (Chen et al., 2022), we employ the deterministic Talmudic
public announcement logic (TPK) to represent this kind of logical knowledge. As stated in Section
2, TPK is composed of a 6-tuple ⟨S,R,R∗, ρ, s0, π⟩. Thus, for the state set S of a TPK model, we
construct them by the obtained sequence of DNNs such that si = {he1 , ...,hei , r} (i > 0), where
si ∈ S denotes the i-th state; r denotes a propositional letter generated by the learned TPK; the root
s0 is an empty state and denotes the start of the model.

Similarly to (Chen et al., 2022), the connectivity of these states is represented by the successor rela-
tion R and transitive closure R∗ in TPK. Public announcement function ρ in TPK can represent the
logic relationship of hidden states by showing how current states are determined by future informa-
tion. Notice that, this kind of logical relationship always changes during training, necessitating the
training of the model with public announcements. In next subsection, we will discuss how to learn
the public announcements of TPK and how to employ the logical knowledge to guide model train-
ing. The assignment function π can reflect the information distribution of each word (or sequence)
since it stores the true value of each proposition variable. Let Y denote the information of each state,
then π = Distribution{Y}, where Distribution{Y} denotes the information distribution of Y ,
which is established by M in next subsection.
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3.3 CONTRASTIVE LOGICAL KNOWLEDGE LEARNING

The uncertainty of logical knowledge is the main obstacle in learning effective representations.
Different from the work in (Chen et al., 2022), this paper learns potential public announcements
through similarity computing and contrastive learning. Since the label vector hDi

contains the
logical knowledge from datasets, we use these hDi

to initialize label embeddings and then get
el = [eD1 , eD2 , ...eDn ](1 ≤ n ≤ N l), where eDi denotes the embedding vector of i-th label.
Notably, for a non-pretrained based model, we use a DNN (BLTM or BGRU) to encode each label
vector after label embedding, and obtain the label vector hl = [heD1 ,heD2 , ...heDn ](1 ≤ n ≤ N l).
Then we calculate the similarity matrix M ∈ Rn×|N l| of each word vector hej ∈ h and label vector
heDi ∈ hl in CLK as below:

Pi,j = heDi · tanh(f1heDi + f2hej )

Mi,j = Softmax(Pi,j) =
exp(Pi,j)∑n
j=1 exp(Pi,j)

(5)

where f1 and f2 are trained parameters. Remark that, for pre-trained models, we directly use el and
h to calculate the similarity of word vectors and label vectors since the model has been trained. The
information of each state and public announcements of a sequence Xi is stored in Mi,j . Since the
public announcements change the decision of a TPK model, we can obtain them by comparing and
analyzing the maximum values of elements in each row of Mi,j . And a public announcement can be
a word or a phrase (comprise of several words) that changes model’s choices into a another direction
based on M. Theoretically, the logical knowledge inferred from datasets should match what is ac-
tually known. However, there are some distinctions between logical knowledge and real knowledge
in embedding space because of uncertainty and anisotropy. To address this issue, CLK aggregates
the logical knowledge with a contrastive term from the standpoint of distance, thus confining it to a
space congruent with the real knowledge. Given that CLK may shorten the gap between pieces of
similar knowledge in the embedding space through contrastive learning, a contrastive objective Lc is
introduced to guide model training (Hadsell et al., 2006). To make use of the correlation information
of the word-label pairs and local information from base model, the contrastive logical knowledge q̃i
is computed by:

q̃i = Sigmoid(M ′) =
1

1 + e−M ′ =
1

1 + e−Relu(M∪h)
=

1

1 + e−max(0,wT (M∪h)+b)
(6)

where wT and b are two trained parameters. Let qi be the ground truth of Xi, then the contrastive
objective Lc is given by:

Lc(qi, q̃i) = q̃i∥qi∥+ (1− q̃i) ∗ ∥max(margin− qi), 0)∥) (7)
margin ∈ [0, 1] is a given parameter to control the strength of contrastive learning. Through the
objective function Lc, the semantic knowledge of similar labels in embedding space should be as
close as possible, while the different ones should be as far as possible. As stated in (Wang &
Isola, 2020), a good contrastive learning system possess both alignment and uniformity, while it
may collapse when the information is extremely uneven. To avoid this issue, we also introduce a
cross entropy function Lsim(pi, q̃i) = (−

∑n
i=1 q̃i log pi) (pi ∈ p) into the objective function.

Integrating Lsim and Lc into the loss computation, we jointly train the classifier as well as the
contrastive logical knowledge, and the ultimate loss function is given by:

L = e · Lc + (1− e) · Lsim (e ∈ [0, 1)) (8)
where e is a given parameter that control the degree of contrastive loss, larger e indicates that the
model relies on contrastive learning more.

3.4 KNOWLEDGE REASONING

Based on the knowledge representation and contrastive logical knowledge learning, an interpretable
structure M = ⟨S,R,R∗, ρ, s0, π⟩ is learned from the CLK-based deep learning models. Specifi-
cally, for an arbitrary input sequence Xv , a classical TPK model has a form of tree where each word
denotes the time step. With the logical knowledge embedd into models, explanations for sentiment
analysis can be obtained based on the semantics of TPK. For example, as shown in Figure 1 (c) ,
the world under state s3 is non-deterministic since there are different states on the same time step,
and there is a public announcement at sate s′3 such that s′3ρs3, so the model will change it’s decision
and go to another one. Based on such interpretable structures of TPK, we can provide explanations
for users. Human-level knowledge dictates that explanations be logical, effective, and trustworthy;
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causal reasoning can probe these qualities in depth. As a solution, we map a TPK tree to a structural
causal model (SCM) (Shanmugam, 2001) to characterize the logic behind sentiment analysis tasks.
Based on the learned TPK model, we decompose each sequence into the two variables: simple word
I and public announcement T . Then we assume the following SCM:

c := fC(UC) i := fI(c, UI) t := fT (c, UT ) x := fX(i, t, UX) y := fY (x, UY ) (9)

where C is the confounder that influences I and T ; X is the input sequence influenced by I and
T , Y is the predicted label of X and U∗ represents the unmeasured variable. As shown in Figure
1 (d), SCM is represented intuitively by using a directed acyclic graph, where vertices are random
variables, and directed edges represent the direct causality between these variables.Following the
Lewis’s notion of causality (Lewis, 1973; 1977; 1981), we verify the rationality and fidelity of
explanations by generating counterfactual public announcements through a mathematical operator
do(t0) interventions on learned public announcements. For instance, let ρ be a public announcement
of s1 at state sn such that snρs′n and s1R∗sn and s1R∗s′n; we can apply an intervention on variable
T by fixing the value of T as t0, denoted as t := t0. Thus the intervention t := t0 blocks the
influence of the original T on X . The explanation is considered to be effective and trustworthy
iff ¬T → ¬X , since ¬T → ¬X means the SCM corresponding to the explanations is causally
effective (Lewis, 1973; 1981).

4 EXPERIMENTS

4.1 BASELINES

We adopt both glass-box models and black-box models as our baselines, where the glass models
includ Linear Regression(LR) (Molnar, 2022), K Nearest Neighbors (KNN) (Koech & Dombeu,
2021), Decision Tree (DT) (Zhu & Yang, 2016) and Explainable Boosting Machine (EBM) (Nori
et al., 2019). Black-box baselines include BLSTM, BGRU and Bert, where BLSTM (Thireou
& Reczko, 2007) and BGRU (Kim & Lee, 2017) are two widely used non-pretrained models for
sentiment analysis; Bert is a pre-trained state-of-art model proposed in (Devlin et al., 2019), which
has achieved high accuracy in many NLP tasks. For comparison, we also compare our method with
other black-box explainability techniques such as Partial Dependence (Moosbauer et al., 2021),
LIME (Ribeiro et al., 2016) and SHAP (Kokalj et al., 2021). Remark that, we understand that there
are already many models achieving comparable performance combined with BLSTM (or BGRU),
such as BLSTM-CNN (Shen et al., 2017) and BGRU-CNN (Wang et al., 2021). And there are
also other variants of pre-trained models, such as Roberta (Tan et al., 2022). However, this paper
aims to evaluate how interpretable methods influence base models (baselines), i.e., whether model
performance is sacrificed when transparency is brought in. Therefore, we only employ the original
deep learning models as our base models, even though our proposed method can combine with those
variants to form interpretable ones by replacing the DNN model (in Figure 1 (a)) with them.

4.2 DATASETS AND EVALUATIONS

For model training and evaluation, we compiled four public sentiment analysis datasets including
binary datasets and fine-grained datasets. Specifically, IMDB 2 and Yelp-2 3 are binary datasets with
2 label categories. Weibo-8 4 and Yelp-4 are fine-grained datasets with more than 3 label categories.
Note that Yelp-2, Yelp-4 and Weibo-8 are also unbalanced datasets and the datasets description can
be found in Appendix C.1. As we mentioned in knowledge reasoning, it is important to measure not
only how well a model performs but also how well it can be understood. For model performance,
we employ the accuracy as evaluation metrics. For model interpretability, we employ evaluation
metrics and causal reasoning to investigate it, where evaluation metrics are used to evaluate the
degree of fit between the predicted labels by the model and the true labels in the datasets. Following
(Dzikovska et al., 2012; 2013), we use macro average F1-score as the primary evaluation metric
since it is suitable for evaluating unbalanced class distributions (see Appendix C.1).

4.3 DETAILS OF IMPLEMENTATION

In our experiments, we set batch size as 128. For all input sequences, we set the maximum sequence
lengths as 100 tokens. We set embedding size as 100 for non-pretrained models. For pre-trained

2https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
3https://www.yelp.com/dataset
4http://tcci.ccf.org.cn/conference/2013/pages/page04 sam.html
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models, we set the embedding size as 100 for English datasets and 300 for Chinese datasets. We
used BERT-tiny Turc et al. (2019) for English datasets and ALBERT Lan et al. (2019) for Chinese
datasets, which are both denoted as “Bert” in our experimental results. All models are trained with
Adam Optimizer (Kingma & Ba, 2015) on GTX 2080 Ti and RTX 3090. We train our model’s
parameters with the default learning rate of adam in Keras. In our main experiments, we set the
maximum epochs as 200, and we employ earlystopping to control model training withmin delta =
1e − 5 and patience = 6 (Graziotin & Abrahamsson, 2013). In our main experiments, parameter
for contrastive logical knowledge learning are set as e = 0.9 and margin = 0.1 or margin = 0.9.
We run 5 times and use the averaged performance with variance given in Appendix C.1.

5 RESULTS AND DISCUSSION

This part demonstrates how CLK performs on both binary sentiment analysis and fine-grained sen-
timent analysis, together with discusses the sensitivity of parameters and model interpretability.

5.1 ANALYSIS ON CLASSIFICATION RESULTS

IMDB Yelp-2 Weibo-8 Yelp-4

Models P R F1 Acc R R F1 Acc P R F1 Acc R R F1 Acc

LR♢ 52.00 51.98 51.92 52.00 44.19 50.00 46.92 88.39 10.37 12.52 9.71 60.91 44.19 50.00 46.92 88.39
KNN♢ 50.01 50.01 49.87 50.01 69.89 51.81 50.52 87.52 22.83 13.31 11.23 62.93 69.89 51.81 50.52 87.52
DT♢ 52.17 52.10 51.72 52.11 53.89 50.11 47.17 87.57 22.68 14.21 12.62 63.23 53.89 50.11 47.17 87.57
EBM♢ 61.85 61.84 61.83 61.84 87.81 51.71 50.18 88.12 12.03 12.61 9.91 62.88 87.81 51.71 50.18 88.12

BLSTM 81.96 81.79 81.77 81.79 79.75 76.97 77.25 90.14 37.39 16.08 15.95 42.53 72.89 70.47 71.41 71.06
BLSTM+LIME⋆ 81.96 81.79 81.77 81.79 79.75 76.97 77.25 90.14 37.39 16.08 15.95 42.53 72.89 70.47 71.41 71.06
BLSTM+CLK 82.93 82.81 82.79 82.81 83.68 77.06 79.70≀ 91.98 36.53 16.36 16.63≀ 45.28 73.72 70.51 71.69≀ 71.41

BGRU 82.73 82.57 82.54 82.57 84.63 74.82 78.48 91.86 47.13 16.40 17.76 56.56 71.19 71.04 71.00 70.99
BGRU+LIME⋆ 82.73 82.57 82.54 82.57 84.63 74.82 78.48 91.86 47.13 16.40 17.76 56.56 71.19 71.04 71.00 70.99
BGRU+CLK 83.30 83.27 83.26 83.27 83.44 78.02 80.28≀ 92.05 46.72 16.96 18.43≀ 58.02 72.90 71.17 71.61≀ 71.48

BERT 83.99 83.76 83.73 83.76 85.29 82.88 83.89 93.16 31.35 29.30 29.77 64.41 76.42 75.81 75.89 75.43
BERT+LIME⋆ 83.99 83.76 83.73 83.76 85.29 82.88 83.89 93.16 31.35 29.30 29.77 64.41 76.42 75.81 75.89 75.43
BERT+CLK 84.21 84.13 84.12 84.13 86.53 83.26 84.74≀ 93.61 36.89 32.84 33.59≀ 65.54 77.34 76.44 76.77≀ 76.18

Table 1: Results of non-pretrained models and Bert for sentiment analysis tasks, where ♢ denotes
the glass model, LIME⋆ denotes the interpretable techniques like LIME, such as SHAP and Partial
Dependence (PD). ≀ indicates the best macro F1-score on unbalanced datasets and the bold number
indicates the best Acc score over black-box baselines.

As shown in Table 1, our proposed CLK obtains quite similar or higher accuracy compared to the
black-box baselines (BLSTM, BGRU and BERT), while offering a transparent view of the learning
mechanism. When compared to glass-box models, CLK outperforms baselines in binary sentiment
analysis tasks (IMDB and Yelp-2), while demonstrates a lower accuracy in fine-grained analysis
tasks (Weibo-8 and Yelp-4). Due to the fact that Weibo-8 and Yelp-4 are fine-grained and unbalanced
datasets, it is unreasonable to evaluate model performance solely based on accuracy. If readers pay
close attention to the macro F1 score, they may notice that CLK provides a significantly higher
macroF1 score than all glass-box models. Given that all black-box baselines achieve lower accuracy
and a significantly higher macro F1 score in fine-grained analysis tasks than glass-box baselines, it
is possible to conclude that glass-box models are more likely to classify samples as the class with
high proportion in unbalanced datasets. Comparing with the explainability techniques like LIME,
such as SHAP and Partial Dependence (denoted as LIME⋆ in Table 1), we find that such methods
are unable to enhance model performance even though they bring transparency to black-box models.
In contrast, our method can boost model performance while improving model interpretability. It is
also worth noting that although the precision (P) of CLK is lower than the some black-box baselines
on Yelp-2 and Weibo-8, the recall (R), F1-score and Acc results are always higher than baselines,
which also demonstrates the advantages of CLK.

5.2 SENSITIVITY ANALYSIS OF margin

To study the sensitivity of margin in Lc (as stated in Equation 7), we apply our CLK in three
deep learning models including BLSTM, BGRU and Bert. Figure 2 (a)-(f) shows the sensitivity
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Figure 2: The sensitivity of margin for sentiment analysis with e = 0.9, where the horizontal axis
represents the value of margin, and the vertical axis represents the prediction results.

of margin in binary sentiment analysis datasets. When margin > 0.5, we observed that the
performance of most CLK-based models rapidly declined, with the F1 score dropping more quickly
than the Acc. Figure 2 (i)-(n) illustrates the sensitivity of margin in fine-grained sentiment analysis
datasets. The performance of CLK based models slightly fluctuate on Weibo-8 with F1 score much
lower that accuracy. As for Yelp-4 dataset, the performance of CLK based BLSTM (or BGRU)
rapidly degrades when margin > 0.7 , while CLK-based Bert varies with the value of margin.
Note that macro F1-scores of all CLK based models are lower than Acc except for CLK-Based
BLSTM on Yelp-4. Besides, despite the significance of contrastive learning, it should be weighted
with a proper value for good performance.

5.3 ABLATION TEST

Models P R F1 Acc

BLSTM 37.39 16.08 15.95 42.53
+IE 34.55 15.60 15.69 43.77
+KA 40.59 16.49 16.99≀ 47.37
+IE+KL 32.43 15.06 13.63 35.26
+CLK 36.53 16.36 16.63 45.28

BGRU 47.13 16.40 17.76 56.56
+IE 39.37 16.30 15.75 37.12
+KA 36.65 16.51 16.59 41.55
+IE+KL 48.48 16.99 18.29 57.60
+CLK 46.72 16.96 18.43≀ 58.02

BERT 31.35 29.30 29.77 64.41
+IE 7.70 12.22 9.45 63.01
+KA 7.70 12.22 9.45 63.02
+IE+KL 33.87 32.15 32.44 63.69
+CLK 36.89 32.84 33.59≀ 65.54

Table 2: Abalation test on
Weibo-8, where “+KA” indicates
baselines equipped with knowl-
edge acquisition, “+KL” indi-
cates baselines equipped with
knowledge learning, “+IE” in-
dicates baselines equipped with
random initial label embedding
and “+CLK” means “+KA+KL”.

We conduct an ablation test on Weibo-8 dataset since Weibo-
8 is a fine-grained unbalanced sentiment analysis datatset, we
mainly focus on the macro F1-score. During training stage, our
method (CLK) mainly includes knowledge acquisition (denoted
as KA) and knowledge learning (KL). We demonstrate the effect
of each component. As shown in Table 2, BLSTM benefits a lot
from adding knowledge extraction (KA), whereas BGRU and
BERT suffer when equipped with KA but not knowledge learn-
ing (KL). And the performance of all baselines drops when only
equipped with the initial label embedding (IE) method. This
phenomenon is triggered by the properties of the data; Weibo-
8 is a fine-grained dataset with some indistinguishable labels,
such as happiness and like, disgust and sadness. In addition,
Weibo-8 is also an unbalanced dataset, making it more chal-
lenging to classify sequences into indistinguishable labels.

Readers paying close attention to Table 2 may notice that IE
and KA reduce the performances of BERT to the same level,
this is mainly due to the anisotropy and uncertainty of logical
knowledge as we mentioned in Section 1, where the anisotropy
is mainly produced when using pre-trained models (Cai et al.,
2020; Ethayarajh, 2019). What’s more, when equipped with
knowledge learning, BGRU and BERT can be improved by a
large margin, which indicates that ineffective knowledge not
only does not improve the model, but also rather hinders its per-
formance by clouding its decision-making. Hence, contrastive
knowledge learning is essential and effective when learning high-quality representations for indis-
tinguishable labels with unbalanced distribution.

5.4 A CASE STUDY FOR INTERPRETABILITY THROUGH KNOWLEDGE REASONING

Interpretability analysis makes it possible for us to quickly and simply understand how the model
arrives at its predictions. In this case study, we demonstrate the interpretable result from a trained
model (Bert+CLK) with a real positive example in Yelp-2 test data.
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Example 1 Consider the sequence task1001 =“We went for lunch. The waitress took the bread
basket from another table with dirty dishes on it and put it on our table. Open Grated cheese dish
goes around from table to table . This is not sanitary.”

Figure 3: The TPK model of Example 1
.

Question: Why the corresponding prediction is
“negative” rather than “positive”?

Explanation: Because the “not sanitary” (pub-
lic announcement) appears in the following
words, so the model classifies this sequence
into “negative”.

As shown in Figure 3, we can visualize the ex-
planation of this example in the form of TPK
based on the knowledge representation in Sec-
tion 3. In the diagram of TPK models, the arrow → represents successor relation R, double arrow
↠ represents the relation ρ, and s0 is the root of the tree structure. Let the proposition letter p
denote that the sequence is recognized as “positive”, proposition letter q denote that the sequence is
recognized as “negative”.

Then task1003 is correctly classified iff (s′43 ⊨ q), where si and s′i denote the states of ith word
in the sequence. The interpretable results are shown in Figure 3, where s40 ⊨ Y p. At state s42,
we recognise that the reason path with {s0, s1, s3, . . . , s42} contains an incompatibility because it
uses the choice of “positive” and this is incompatible with “not sanitary”. Thus, there is a public
announcement that s42ρs′42, so we have s42 ⊨ ⊟q and s′42 ⊨ Yp. Then, the reason path becomes
{s0, s1, . . . , s42, s′42, . . . , s′43} and ultimately the task1003 is classified as “negative” with s′43 ⊨ q.
From the perspective of human knowledge, it is clear that task1003 is correctly classified, but it’s
still unknown that whether the explanation based on the TPK model in Figure 3 is trustworthy.

Figure 4: The counterfactual TPK model.

As mentioned in subsection 3.4, we investigate the fi-
delity of the explanation by counterfactual reasoning.
Here we generates a counterfactual public announce-
ment for ρ through a mathematical operator do(t0) in-
terventions on task1003. Then we can obtain a coun-
terfactual TPK model as shown in Figure 4, where
s43 ⊨ Y p and s1 ⊨ □p, and the corresponding reason
path is {s0, s1, . . . , s43}. In this counterfactual case,
task1003 is classified as “negative”, which indicates
that the public announcement ρ is causally effective
since ¬T → ¬C. Therefore, we can conclude that the
model derives the prediction “negative” because the “not sanitary” (public announcement) appears;
and the model would classify task1003 as “positive” without the public announcement. Based on
above analysis, it’s possible to derive some intuitions from the point of model interpretability. In
contrast to existing interpretable methods like LIME, SHAP, and PD, our method generates expla-
nations by learning interpretable structures (TPK) from deep learning models. Besides, our method
is proven to be causally successful by counterfactual reasoning, which is a key distinction between
CLK and other interpretable methods like LIME.

6 CONCLUSION

In this paper, we present a novel contrastive logical knowledge learning (CLK) method to learn in-
terpretable TPK models and generate explanations for sentiment analysis tasks. To the best of our
knowledge, this is the first work that uses contrastive learning to optimize the learning of logical
knowledge from datasets and trained models. Our method achieves comparable performance while
adding transparency and interpretability to deep learning models by leveraging the benefits of both
logical knowledge and contrastive learning. Empirically, we conducted extensive experiments to
show the effectiveness of CLK, and our results are competitive both in binary sentiment analysis
tasks and fine-grained sentiment analysis tasks. The case study for model interpretability shows that
CLK can generate human-understandable explanations, and the knowledge reasoning of explana-
tions demonstrates the rationality and fidelity of our method. Our research aims to raise awareness
of the potential of modal logic and contrastive learning in delivering interpretable sentiment analysis.
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A RELATED WORK

Our work adds transparency to deep learning models by learning interpretable TPK models and
generating explanations for sentiment analysis tasks. Additionally, our work extends the logic-based
interpretable method and provides insight into the inner working of deep learning models beyond
visualisation and is adaptable to a variety of explanatory settings. In this section, we briefly review
interpretable approaches for sentiment analysis tasks, contrastive learning and logic-based methods
for providing explanations.

Interpretable sentiment analysis There have been numerous studies on sentiment analysis. Early
sentiment analysis mainly uses lexicon-based methods for text classification, which mainly depend
on dictionaries and corpora (Ravi & Ravi, 2015). Because of the language’s adaptability and lack
of formality, it is difficult to construct a general and efficient rule applicable to all contexts. Many
works utilize machine learning and deep learning models to accomplish sentiment analysis, for ex-
ample, Basiri et al. (2021) uses a bidirectional neural network architecture for sentiment analysis,
Wei et al. (2020) uses a BLSTM with multi-polarity orthogonal attention, and Yang et al. (2016)
uses a hierarchical attention network (HAN). In recent years, with the development of pre-trained
language model, Reimers & Gurevych (2019) utilizes the ELMo embeddings and Munikar et al.
(2019) utilizes BERT deep learning model to improve the performance of sentiment analysis tasks.
Although these models can effectively capture the semantic relationships between words in context,
they lack interpretability for sentiment analysis. Consequently, several studies have been conducted
to investigate the interpretability of models for sentiment analysis. Liu & Cocea (2017) proposes
the fuzzy rule based systems, which can reduce the computational complexity and increase the in-
terpretability. Luo et al. (2018) proposes a query-driven attention mechanism to discover different
spotlights for queries from different aspects and provide explainable results. Perikos et al. (2021)
introduces an efficient method based HMM for sentiment analysis, and Yadav et al. (2021) pro-
vides an interpretable learning approach for the aspect-based sentiment analysis tasks. Despite their
successes, none of the existing work attempted to leverage deep learning models (particularly pre-
trained language models) with human-readable explanations for sentiment analysis tasks, achieving
the state-of-the-art performance.

Contrastive learning. Contrastive learning is a learning paradigm which aims to teach models
to distinguish the targed sample from its corresponing negative samples. This method has been
extensively used in numerous research fields. In the field of natural language process, numerous
contrastive approaches have been utilized on sentence-level. For example, Gao et al. (2021) presents
SimCSE, a simple contrastive learning framework that greatly enhances state-of-the-art sentence
embeddings on semantic textual similarity tasks. Giorgi et al. (2021) proposes a simple framework,
DeCLUTR, to shorten the distance between sentence embeddings in the same text and to widen the
distance between sentence embeddings in different text. Inspired by equivariant contrastive learning
(Dangovski et al., 2021), the generalization of contrastive learning in computer vision, Chuang et al.
(2022) propoeses DiffCSE to learn the sentence embeddings between the original sentence and the
edited sentence. Unlike these previous works, this paper utilizes contrastive learning for the first
time (to the best of our knowledge) to enhance the uniformity and reduce the uncertainty of the
logical knowledge so as to make logical explanation consistent with real knowledge.

Logic-based interpretable methods. There have been plenty of studies employing logic-based
methods to provide explanations in explainable artificial intelligence domains. For example, Fer-
reira et al. (2022) develops a procedure to induce logic-based explanations for a given neural net-
work model. Liu & Lorini (2021) presents a modal language of a ceteris paribus nature which
can provide explanations for binary input classifiers. Barbiero et al. (2022) proposes an end-to-end
differentiable approach which can obtain logic explanations from neural networks using the for-
malism of First-Order Logic. Although these work, the mechanism of deep learning models is still
unknown. To address this issue, (Chen et al., 2022) first investigates the working mechanism of
Gate BRNNs through Talmudic Public Announcement logic. Enlightened by it, this paper employs
Talmudic Public Announcement logic to generate explanations for sentiment analysis, and further
applies proposed method to pre-trained models (Bert) to get interpretable ones, which is missing
from existing works.
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B THE DETAILED BACKGROUND OF TALMUDIC PUBLIC ANNOUNCEMENT
LOGIC

This part provides a general introduction of the kripke model in Modal logic as a preliminary knowl-
edge, and then introduce the basic knowledge of TPK.

B.1 KRIPKE MODEL

Modal logic (Bull, 1979) is typically used to describe the systems which have the expression related
to “necessarily” or “possibly”. And it may be broadly used in belief, deontic, temporal and other
systems. Modal logic K is formulated in the language of classical logic with the added unary
operator □. There are a range of different types of modal logics, all governed by a similar set of
logical axioms and rules. Kripke (1963) (Kaplan, 1966) defined semantics which can be applied
over all the modal logics. Here, we introduce the Kripke model for time action logic.

A Kripke model (or Kripke structure)M for time action logic is a tuple (S,R,Ω, h), where (S,R,Ω)
is a tree with root Ω,

• S: A set of possible worlds.

• R: The accessibility binary relation among the worlds, i.e. R ⊆ S ×S. We write s1Rs2 to
indicate that (s1, s2) ∈ R;

• h: An assignment giving for each atom q of the language a subset h(q) ∈ S.

Satisfaction is of the form t ⊨ A, where t ∈ S and A a wff and is defined recursively as follows:

1. t ⊨ q iff t ∈ h(q) for q atomic.

2. t ⊨ A ∧B iff t ⊨ A and t ⊨ B.

3. t ⊨ ¬A iff t ̸|= A.

4. t ⊨ □A iff for all s such that s is an immediate successor of t in the tree we have s |= A.

5. A holds in the model (S,R,Ω, h) iff Ω |= A.

So the Kripke model of time action logic could always be depicted as a tree structure using successor
functions, which is called a time action model m = (R, R,Ω),

• R = r1, r2, . . . is a set of unary successor functions capable of opereting on Ω. Thus
t = Ωa1a2a3 . . .an is the form of element sequence. The elements of R could be regarded
as actions a ∈ R moving the agent from any state t to a new state ta.

• R is the accessibility binary relation among the states. tRs is hold iff for some a ∈ R we
have s = ta

• Ω is the initial state.

Time comes into the model if we take the view that time moves one unit when the agent perform
any action. So the states can also represent moments, i.e. Time 0, Time 1 . . . and the paths represent
how time moves. There is always one root in the graph, which means the initial state, time 0.

The ordinary dynamic logics deal with actions upon states, whose possible results are clear cut.
However, in some certain cases, actions may depend on the future and therefore may be not clear
cut at the present and need future clarifications. Thus, a public announcement mechanism has been
put forward in (Abraham et al., 2013).

B.1.1 PUBLIC ANNOUNCEMENT

To deal with the future clarifications, a set of public announcements P is defined in a Talmudic K
frame(Abraham et al., 2013). A Talmudic K frame has the form (S,R,P) where

• S is a non-empty set of possible worlds.
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• R is a multi-valued accessibility relation of the form xRYx, where Yx = x1, . . . , xn(x),
which means: one of xi in Yx is accessible to x but it is not clear which one and need to
await a public announcement clarification. The set Yx = x1, . . . , xn(x) is unique in its R
relation to x.
(S,R) is a tree if for any y in S there is at most one x in S such that y is in Yx and xRYx
holds. And define n(x), for x in S the accessibility branching parameter of x.

• P is a set of public announcements with the deterministic form: α = (x, x1, ..., xn(x), y),
y ∈ x1, ..., xn(x) where (x, x1, ..., xn(x), y) ∈ R means: it is hereby announced that y is
the element accessible to x.
While the public announcement can be non-deterministic if it chooses a subset Y of
x1, ..., xn(x). It therefore has the form α = (x, x1, ..., xn(x), Y ), Y is a subset of
x1, ..., xn(x). If Y is allowed to be empty, this means that it is announced that x has no
accessible points.

The public announcement in Talmudic frame is a revision on the relation R, say, we have (S,R, t)
and announce α, then we move to (S,Rα, t). A certain α1 not only expresses the public announce,
but also tells where the current state is supposed to go to, and also give the information about what
time and place the public announcement is made.

B.2 DEFINITION OF A TPK MODEL

Figure 5: A non-deterministic TPK model (Abraham et al., 2013)

Based on above knowledge, a Talmudic public announcement logic model is defined as shown in
Section 2. Remark that, a deterministic TPK model is assumed to be deterministic because the
public announcement ρ leads to at most one successor state when there is a public announcement,
i.e., one state should be the unique clarified successor of the state where public announcement oc-
curs. To make it clear, we now give an example of deterministic TPK and non-deterministic TPK,
respectively.

An example of non-deterministic TPK model is shown in shown in Figure 5. Here the arrow →
represents successor relation R, double arrow ↠ represents the relation ρ, and s0 is the root of the
tree structure.

• It is not a deterministic model, because (s1ρy′∧ s1ρx∧ y′ ̸= x) holds. (or the same for s2)
• Some equivalence relation of distance could be raised, like D(y) = D(x), since we have
xρy ∧ ¬(yRx) ∧ y ̸= x.

• t is publicly clarified at z2 to z1, expressed by s1 ↠ y′ or s2 ↠ y′ or x↠ y, since we have
s1ρy

′, s2ρy′, xρy, with z1Ry′, z1Ry.
• The double arrow ↠ also shows that where the announcement points are supposed to go

to, i.e. s2 or s2 are supposed to go to y′ when the public announcement at z2 is made.
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An example of deterministic TPK model is shown in shown in Figure 6. Similarly, the arrow →
represents successor relation R, double arrow ↠ represents the relation ρ, and s0 is the root of the
tree structure.

Figure 6: A deterministic TPK model

• It is a deterministic TPK model, because the public announcement ρ is deterministic and
leads to at most one successor state, i.e. s′3ρs3 .

• Some equivalence relation of distance could be raised, like D(s3) = D(s′3), since we have
s′3ρs3 ∧ ¬(s′3Rs3) ∧ s3 ̸= s′3.

• The double arrow ↠ also shows that where the announcement points are supposed to go
to, i.e. s1 is supposed to go to s2 when the public announcement at s′3 is made.

C THE SUPPLEMENT OF EXPERIMENTS

C.1 DATASET DESCRIBTION AND EVALUATION

For model training and evaluation, we compiled four public sentiment analysis datasets including
binary datasets and fine-grained datasets.

• IMDB 5 is a common used dataset for binary sentiment analysis containing 5,0000 avail-
able sequences, where “positive:negative=1:1”.

• Yelp-2 6 is a review corpus obtained from Yelp website. We process the raw data and extract
10937 available sequences with 2 label categories, where “positive:negative=9573:1364”.

• Weibo-8 7 is a fine-grained dataset provided by CCF for fine-grained
sentiment analysis. We extract 13250 available sequences with 8 label
categories, where “none:like:disgust:sadness:happiness:anger:surprise:fear=
8313:1224:1004:838:728:718:310:115”.

• Yelp-4 8 is a review corpus obtained from Yelp website. We process the raw data and extract
10937 available sequences with 4 label categories, where “positive:slightly positive:slightly
negative:negative= 2391:4132:3050:1364”.

The division of training samples, validation samples, and test samples is shown in Table 3.

5https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
6https://www.yelp.com/dataset
7http://tcci.ccf.org.cn/conference/2013/pages/page04 sam.html
8https://www.yelp.com/dataset
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dataset sequences train samples validation samples test samples label cataegories

IMDB 50000 250000 5000 2500 2

Yelp-2 10937 7437 1859 1641 2

Weibo-8 13250 9010 2252 1988 8

Yelp-4 10937 7875 1968 1094 4

Table 3: Datasets description and partition.

Macro average F1-score As shown in Table 3, Yelp-2, Yelp-4, and Weibo-8 are imbalanced
datasets, especially Weibo-8. Therefore, appropriate metrics should be used to evaluate the per-
formance of interpretable models. Macro average F1-score is usually used to evaluate the model
performance of unbalanced datasets, which is also widely used to evaluate the model performance
in interpretable learning tasks (Fan et al., 2022; Dzikovska et al., 2012; 2013). For a set of classes
D,each represented with Nd instances in the test samples, the Macro average F1-score is given by:

macro F1 − score =
1

|D|
∑
d∈D

F1(d) (10)

As mentions in (Grandini et al., 2020) , since the numerators of Macro Average Precision and Macro
Average Recall are formed of values in the range [0, 1], Macro-Average methods often compute an
overall mean of different measures. There is no correlation between class size and the numerator
weighting, which makes classes of varying sizes equivalent. This means that large classes are just
as consequential as small ones. The derived measure provides a class-based evaluation of the algo-
rithm; a high Macro-F1 value indicates that the algorithm performs well across all classes, while a
low value indicates that some classes were poorly predicted.

Assume that all classes is equally important for users, it is possible to derive some intuitions from the
equation. The macro average F1-score is harmonistic and can reflect the degree of fit between the
predicted labels by the model and the true labels in the datasets, especially for imbalanced datasets.
Thus, macro average F1-score is used to evaluate the rationality of interpretable models while the
precision and recall are also reported in all experiments.

C.2 BINARY SENTIMENT ANALYSIS

[ht!]

Table 4 demonstrates the experimental results of non-pretrained models and Bert for binary senti-
ment analysis with variance given in the subscript.

C.3 FINE-GRAINED SENTIMENT ANALYSIS

Table 5 demonstrates experimental results of non-pretrained models and Bert for fine-grained senti-
ment analysis with variance given in the subscripts.

D THE CASE STUDY ABOUT MODEL INTERPRETABILITY IN ORIGINAL
VERSION

Understanding why the model generates incorrect predictions is more valuable than understanding
why it generates correct predictions, especially for high-stakes domains, due to the fact that the
majority of deep learning models are unable to achieve 100% accuracy in practical applications.
Knowing the reasons behind the model’s erroneous choices helps to minimize risks, make more
informed decisions and raise the fidelity of interpretable models.

Our proposed CLK can be used to provide explanations based on various sentiment analysis datasets.
In our main experiments, we conduct extensive experiments on Yelp, IMDB and Weibo datasets.
Here, we we demonstrate the interpretable result from a trained model (Bert+CLK) with a real
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Models P R F1 Acc

IMDB

LR♢ 52.00 ±0 51.98 ±0 51.92±0 52.00±0

KNN♢ 50.01±1e−5 50.01 ±1e−5 49.87±1e−5 50.01±1e−5

DT♢ 52.17 ±0 52.10 ±0 51.72 ±0 52.11 ±0

EBM♢ 61.85±0 61.84 ±0 61.83±0 61.84±0

BLSTM 81.96 ±2e−5 81.79 ±1e−5 81.77 ±1e−5 81.79 ±1e−5

BLSTM+LIME⋆ 81.96 ±2e−5 81.79 ±1e−5 81.77 ±1e−5 81.79 ±1e−5

BLSTM+Ours 82.93 ±1e−5 82.81 ±1e−5 82.79 ±1e−5 82.81±1e−5

BGRU 82.73 ±2e−5 82.57 ±3e−5 82.54 ±3e−5 82.57 ±3e−5

BGRU+LIME⋆ 82.73 ±2e−5 82.57 ±3e−5 82.54 ±3e−5 82.57 ±3e−5

BGRU+Ours 83.30 ±2e−5 83.27 ±2e−5 83.26 ±2e−5 83.27 ±2e−5

Bert 83.99 ±3e−6 83.76 ±1e−5 83.73 ±1e−5 83.76 ±1e−5

BertLIME⋆ 83.99 ±3e−6 83.76 ±1e−5 83.73 ±1e−5 83.76 ±1e−5

Bert+Ours 84.21 ±2e−6 84.13 ±6e−7 84.12 ±6e−7 84.13 ±6e−7

Yelp-2

LR♢ 44.19 ±0 50.00 ±0 46.92 ±0 88.39 ±0

KNN♢ 69.89 ±3e−3 51.81 ±2e−5 50.52 ±1e−4 87.52 ±1e−5

DT♢ 53.89 ±0 50.11 ±0 47.17 ±0 87.57 ±0

EBM♢ 87.81 ±0 51.71 ±0 50.18 ±0 88.12 ±0

BLSTM 79.75 ±3e−3 76.97 ±1e−3 77.25 ±4e−3 90.14 ±4e−3

BLSTM+LIME⋆ 79.75 ±3e−3 76.97 ±1e−3 77.25 ±4e−3 90.14 ±4e−3

BLSTM+Ours 83.68 ±3e−4 77.06±6e−4 79.70≀±2e−4 91.98 ±2e−5

BGRU 84.63±8e−4 74.82 ±2e−4 78.48 ±8e−5 91.86 ±3e−5

BGRU+LIME⋆ 84.63±8e−4 74.82 ±2e−4 78.48 ±8e−5 91.86 ±3e−5

BGRU+Ours 83.44 ±3e−4 78.02 ±3e−4 80.28≀±1e−4 92.05 ±1e−5

Bert 85.29 ±1e−3 82.88±3e−4 83.89 ±1e−4 93.16 ±3e−5

Bert+LIME⋆ 85.29 ±1e−3 82.88±3e−4 83.89 ±1e−4 93.16 ±3e−5

Bert+Ours 86.53 ±2e−4 83.26 ±1e−4 84.74≀ ±2e−5 93.61 ±1e−5

Table 4: Results of non-pretrained models and Bert for binary sentiment analysis with variance given
in the subscript, where ♢ denotes the glass model, LIME⋆ denotes the explainability techniques like
LIME, such as SHAP and Partial Dependence. ≀ indicates the best macro F1-score on unbalanced
datasets and the bold number indicates the best Acc socre over black-box baselines.
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Dataset Models P R F1 Acc

Weibo-8

LR♢ 10.37±3e−3 12.52±2e−7 9.71±1e−6 60.91±2e−4

KNN♢ 22.83±2e−3 13.31 ±1e−5 11.23 ±2e−5 62.93±2e−6

DT♢ 22.68 ±0 14.21 ±0 12.62 ±0 63.23 ±0

EBM♢ 12.03 ±0 12.61 ±0 9.91 ±0 62.88 ±0

BLSTM 37.39±4e−4 16.08 ±1e−5 15.95 ±1e−4 42.53 ±5e−3

BLSTM+LIME⋆ 37.39±4e−4 16.08 ±1e−5 15.95 ±1e−4 42.53 ±5e−3

BLSTM+Ours 36.53 ±3e−3 16.36±1e−4 16.63≀ ±1e−4 45.28 ±1e−3

BGRU 47.13 ±3e−3 16.40 ±2e−5 17.76±1e−4 56.56 ±1e−3

BGRU+LIME⋆ 47.13 ±3e−3 16.40 ±2e−5 17.76±1e−4 56.56 ±1e−3

BGRU+Ours 46.72±4e−4 16.96±3e−6 18.43≀±1e−5 58.02±1e−3

Bert 31.35 ±3e−5 29.30 ±1e−4 29.77±4e−5 64.41 ±1e−4

Bert+LIME⋆ 31.35 ±3e−5 29.30 ±1e−4 29.77±4e−5 64.41 ±1e−4

Bert+Ours 36.89 ±4e−4 32.84±1e−4 33.59≀±1e−4 65.54±1e−5

Yelp-4

LR♢ 44.19±2e−3 50.00±2e−5 46.92±1e−4 88.39±1e−3

KNN♢ 69.89 ±1e−4 51.81±1e−4 50.52±1e−4 87.52±2e−4

DT♢ 53.89 ±0 50.11 ±0 47.17 ±0 87.57 ±0

EBM♢ 87.81 ±0 51.71 ±0 50.18 ±0 88.12 ±0

BLSTM 72.89±2e−4 70.47±2e−4 71.41±2e−4 71.06±1e−4

BLSTM+LIME⋆ 72.89±2e−4 70.47±2e−4 71.41±2e−4 71.06±1e−4

BLSTM+Ours 73.72±1e−4 70.51 ±1e−4 71.69≀ ±2e−5 71.41±1e−5

BGRU 71.19 ±2e−4 71.04±4e−5 71.00±1e−4 70.99 ±1e−4

BGRU+LIME⋆ 71.19 ±2e−4 71.04±4e−5 71.00±1e−4 70.99 ±1e−4

BGRU+Ours 72.90 ±2e−4 71.17 ±4e−4 71.61≀ ±2e−4 71.48 ±1e−4

Bert 76.42 ±1e−4 75.81±2e−4 75.89±1e−4 75.43 ±1e−4

Bert+LIME⋆ 76.42 ±1e−4 75.81±2e−4 75.89±1e−4 75.43 ±1e−4

Bert+Ours 77.34 ±1e−4 76.44 ±1e−4 76.77≀ ±1e−4 76.18 ±1e−4

Table 5: Results of non-pretrained models and Bert for fine-grained sentiment analysis with vari-
ance given in the subscripts, where ♢ denotes the glass model, LIME⋆ denotes the explainability
techniques like LIME, such as SHAP and Partial Dependence. ≀ indicates the best macro F1-score
on unbalanced datasets and the bold number indicates the best Acc socre over black-box baselines.
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example in SST-2 test data, where SST-2 9 is a binary sentiment analysis dataset provided by (Socher
et al., 2013).
Example 2 Consider the sequence task1001 =“day is not a great bond movie , but it is a good bond
movie , which still makes it much better than your typical bond knock-offs.”
The TPK model for this example is shown in Figure 7(a). Now we give the detail of each state in
TPK. In this paper, all actions refer to get a word and classify the obtained sequence. Although
they’re important in sentiment analysis tasks, these actions are not the root cause of different states,
so we do not label actions in the logic graph of the TPK model. Indeed, the action could be seen as
the successor relation. As we mentioned in Section 3.2, for the state sets S in TPK, we construct
them by the obtained sequence of DNNs such that si = {he1 , ...,hei , r} (i > 0), where si ∈ S
denotes the i-th state; r denotes a propositional letter generated by the learned TPK. Since hei is
the hidden state of xi, we utilize the corresponding tokens (words) to demonstrate the transition of
states in TPK. Therefore, the information of each state in Example 2 is as below:

- s0 is the start state of model
- a1={getting a new token “day”, and recognizing the obtained sequence as “negative”}
- s1={“day”, p}
- a2={getting a new token “is”, and recognizing the obtained sequence as “negative”}
- s2={“day is”, p}
- . . .
- a15={getting a new token “movie”, and recognizing the obtained sequence as “negative”}
- s15={“day is not a great bond movie, but it is a good bond movie”, p}
- a16={getting a new token “,”, and recognizing the obtained sequence as “positive”}
- s16={“day is not a great bond movie , but it is a good bond movie,”, p }
- a′16={getting a new token “,”, and recognizing the obtained sequence as “positive”}
- s′16={“day is not a great bond movie , but it is a good bond movie,”, q }
- s16ρ1s′16
- . . .
- a′27={getting a new token “bond”, and recognizing the obtained sequence as “positive”}
- s′27={“day is not a great bond movie , but it is a good bond movie, which still makes it

much better than your typical bond”, q }
- a′28={getting a new token “knock-offs”, and recognizing the obtained sequence as “posi-

tive”}
- s′28={“day is not a great bond movie , but it is a good bond movie, which still makes it

much better than your typical bond knock-offs”, q }
- a′′28={getting a new token “knock-offs”, and recognizing the obtained sequence as “nega-

tive”}
- s′′28={“day is not a great bond movie , but it is a good bond movie, which still makes it

much better than your typical bond knock-offs”, p }
- s′28ρ2s

′′
28

The above information of each state in TPK indicates the sentimental information of parts of a
sentence and the development of a sentence’s overarching sentiment from beginning to end. As a
result, both the overarching sentiment and the sentiment of individual sentence components can be
displayed and analyzed. And the explanations can be obtained based on these states and successor
relation in TPK. Now we elaborate the explanation generating and reasoning process as follows.

Question: Why the corresponding prediction is “negative” rather than “positive”?

Explanation: Because the “knock-offs” (public announcement) appears in the following words, so
the model classifies this sequence into “negative”.

9https://nlp.stanford.edu/sentiment/

22

https://nlp.stanford.edu/sentiment/


Under review as a conference paper at ICLR 2023

(a) (b) (c)

Figure 7: (a) shows the TPK model of Example 2, (b) shows the counterfactual TPK model for ρ2,
(c) shows the counterfactual TPK model for ρ1 in Example 2.

As shown in Figure 7(a), we can visualize the explanation of this example in the form of TPK based
on the knowledge representation in Section 3. In the diagram of TPK models, the arrow → represents
successor relationR, double arrow ↠ represents the relation ρ, and s0 is the root of the tree structure.
Let the proposition letter p denote that the sequence is recognized as “negative”, proposition letter
q denote that the sequence is recognized as “positive”. Then task1001 is correctly classified iff
(s′28 ⊨ q), where si and s′i denote the states of ith word in the sequence. The interpretable results
are shown in Figure 7(a), where s15 ⊨ Y p. At state s16, we recognise that the reason path with
{s0, s1, s3, . . . , s16} contains an incompatibility because it uses the choice of “negative” and this is
incompatible with it being a good movie. Thus, there is a public announcement that s16ρ1s′16, so
we have s16 ⊨ ⊟q and s′16 ⊨ Yp. Then, the reason path becomes {s0, s1, . . . , s16, s′16, . . . , s′27}.
Similarly, there is another public announcement that s′28ρ2s

′′
28 at state s′28 with s′28 ⊨ ⊟p and s′′28 ⊨

Yq, ultimately the task1001 is classified as “negative” with s′′28 ⊨ p . From the perspective of
human knowledge, it is clear that task1001 is incorrectly classified. Based on interpretation of TPK
model, we observed that the sequence is correctly classified before s′27, but there is a (wrong) public
announcement at s′′28, resulting in the wrong prediction.

To investigate whether the explanation based on the TPK model in Figure 7(a) is trustworthy, we
generate a counterfactual state for ρ2 through a mathematical operator do(t0) interventions on s′28.
Then we can obtain a counterfactual TPK model as shown in Figure 7(b), where s15 ⊨ Y p and s′16 ⊨
□q. Moreover, there is only one public announcement ρ1 such that s16ρ1s′16, and the corresponding
reason path is {s0, s1, . . . , s16, s′16, . . . , s′28}. In this counterfactual case, task1001 is classified as
“positive”, which indicates that the public announcement ρ2 is accurate.

Similarly, we can also prove that ρ1 is accurate by employing the counterfactual reasoning. Specifi-
cally, we generate counterfactual states for ρ1 through interventions. Then we obtain another coun-
terfactual TPK model as shown in Figure 7(c), where s28 ⊨ Y p and s1 ⊨ □p. Therefore, we
can derive that s16ρ1s′16 and s′28ρ2s

′′
28 is accurate, which further demonstrate that the explanation

provided by TPK models is trustworthy.

Therefore, the model derives a wrong prediction is because there is a word “knock-offs” in task1001,
which results in s′28ρ2s

′′
28; and the model can classify task1001 correctly as “positive” without the

word “knock-offs” in task1001. Based on the above reasoning process, we can summarize that all
public announcements are accurate, and the corresponding explanation is trustworthy. Finally, it
should be noted that the proposed methods are not constrained to the domain of sentiment analysis,
but can be used for any text classification endeavor.

E DISCUSSION AND COMPARISON WITH OTHER LOGIC

E.1 COMPARING WITH BRANCHING TIME TEMPORAL LOGIC

TPK is different from the existing branching time temporal logic such as Computation Tree Logic
(CTL) in essence (Heljanko et al., 1997). On the one hand, temporal operators in CTL are restricted

23



Under review as a conference paper at ICLR 2023

to the possible future paths from a given state, and some temporal operators in CTL, such as next,
globally, and until, are not available in TPK. It is worth noting that the true value of the formula in
the current state in CTL will not be affected by future states, i.e., time cannot be reversed, nor can
historical results be modified by returning from the future. On the other hand, public announcement
is the key of TPK, i.e., a current state depends on the future and therefore may be not clear cut at
the present and need future clarifications. So TPK and CTL aren’t directly comparable, but there
are some common ideas between these two in terms of the representation of the past and future of a
state.

E.2 COMPARING WITH EPISTEMIC LOGIC

Talmudic logic treats states much like the quantum superposition of states and when there is a public
announcement we get a collapse onto a pure state. This is similar to how the epistemic model of the
agent changes after a public announcement occurs in epistemic logic (EL) and dynamic epistemic
logic (DEL) (Ågotnes & Alechina, 2006). One of the main purposes of the public announcement
both in TPK and epistemic logic is to update the existing model and increase its certainty. But
this idea is implemented by different ways in two types of logical systems. Besides, a public an-
nouncement in EL or DEL deletes some possible worlds after an announcement, while a public
announcement in TPK deletes some accessibility links after an announcement. Technically, these
two approaches are similar but not equivalent.

F PROOF OF SOME EQUATIONS IN KNOWLEDGE ACQUISITION

F.1 CONJUGATION OF DIRICHLET DISTRIBUTION AND MULTINOMIAL DISTRIBUTION

Dirichlet(p|α) =
Γ(

∑K
k=1 αk)

K∏
k=1

Γ(αk)

K∏
k=1

pαk−1
k (11)

Likelihood function of multinomial distribution:

Multinomial(n|p,N) =

(
N
n

) K∏
k=1

pnk

k (12)

Thus:

Dirichlet(p|α)Multinomial(n|p,N)∫ 1

0
Dirichlet(p|α)Multinomial(n|p,N)dp

=

K∏
k=1

pαk+nk−1
k∫ 1

0

K∏
k=1

pαk+nk−1
k dp

∼ Dirichlet(p|α+ n) (13)

We can write it as below:

Dirichlet(p|α) +Multinomial(n|p,N) = Dirichlet(p|α+ n) (14)

F.2 PROOF OF EQUATION 2

The prior distribution of θv is Dirichlet(θv|α) as below:

P (θv|α) ∼ (Dirichlet(θv|α)

=
Γ(

∑K
k=1 αk)

K∏
k=1

Γ(αk)

K∏
k=1

θv
αk−1
k (15)
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Thus, the posterior distribution of θv is given by:

P (θv|nv, α) ∼ Dirichlet(θv|(α+ nv))

=
Γ(

∑K
k=1(αk + nkv))

K∏
k=1

Γ(αk + nkv)

K∏
k=1

θv
αk+nk

v−1 (16)

Then the topic probability distribution of Xv is given by:

P (zv|α) =

∫
P (zv|θvP (θv|nv, α)dθv

=

∫ K∏
k=1

(θv(k)
nk
v )
Γ(

∑K
k=1 αk)

K∏
k=1

Γ(αk)

K∏
k=1

θv(k)
αk−1dθv

=
Γ(

∑K
k=1 αk)

K∏
k=1

Γ(αk)

∫ K∏
k=1

θv(k)
nk
v+αk−1dθv

=
Γ(

∑K
k=1 αk)

K∏
k=1

Γ(αk)

K∏
k=1

Γ(αk + nkv)

Γ(
∑K

k=1 αk)
(17)

Thus, the topic probability distribution is as below :

P (z|α) =

V∏
v=1

P (zm|α) =

V∏
v=1

Γ(
∑K

k=1 αk)
K∏

k=1

Γ(αk)

K∏
k=1

Γ(αk + nkv)

Γ(
∑K

k=1(αk + nkv))
(18)

F.3 PROOF OF EQUATION 3

Similarly, the prior distribution of ϕk is a Dirichlet distribution with prior parameter β such that:

P (ϕk|β) ∼ (Dirichlet(ϕk|β) =
Γ(

∑M
m=1 βm)

M∏
m=1

Γ(βm)

M∏
m=1

ϕk
βm−1
m (19)

And, the posterior distribution of ϕk is given by:

P (ϕk|nk, β) ∼ Dirichlet(ϕk|(β + nk))

=
Γ(

∑M
m=1(βm + nmk ))

M∏
m=1

Γ(βm + nmk )

M∏
m=1

ϕk
βm+nm

k −1
m (20)
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So we can obtain the word probability distribution of the k-th topic by:

P (xk|β) =
∫
P (xk|ϕk)P (ϕk|β)dϕk

=

∫ M∏
m=1

(ϕk(m)
nm
k
Γ(

∑M
m=1 βm)

M∏
m=1

Γ(βm)

M∏
m=1

ϕk(m)
βm−1dϕk

=
Γ(

∑M
m=1 βm)

M∏
m=1

Γ(βm)

∫ M∏
m=1

ϕk(m)
nk

m+βm−1dϕk

=
Γ(

∑M
m=1 βm)

M∏
m=1

Γ(βm)

M∏
m=1

Γ(βm + nmk )

Γ(
∑M

m=1 βm + nmk )
(21)

Thus, when given the topic the word distribution is calculated by:

P (x|z, β) =
K∏

k=1

P (xk|β)

=

K∏
k=1

Γ(
∑M

m=1 βm)
M∏

m=1
Γ(βm)

M∏
m=1

Γ(βm + nmk )

Γ(
∑M

m=1(βm + nmk ))
(22)

F.4 PROOF OF EQUATION 4

Finally, the joint probability distribution for topic-word is as follows:

P (x, z|α,β) = P (x|z, β)P (z|α)

=

K∏
k=1

Γ(
∑M

m=1 βm)
M∏

m=1
Γ(βm)

M∏
m=1

Γ(βm + nmk )

Γ(
∑M

m=1(βm + nmk ))

V∏
v=1

Γ(
∑K

k=1 αk)
K∏

k=1

Γ(αk)

K∏
k=1

Γ(αk + nkv)

Γ(
∑K

k=1(αk + nkv))
(23)
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