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Abstract

We show that with improved training, the standard approach for differentially
private GANs – updating the discriminator with noisy gradients – achieves or
competes with state-of-the-art results for private image synthesis. Existing instanti-
ations of this approach neglect to consider how adding noise only to discriminator
updates disrupts the careful balance between generator and discriminator necessary
for successful GAN training. We show that a simple fix restores parity: taking
more discriminator steps between generator steps. Furthermore, with the goal of
restoring parity, we experiment with further modifications to improve discriminator
training and see further improvements in generation quality. For MNIST at a
privacy budget of ε = 10, our private GANs improve the record FID from 48.4 to
13.0, as well as downstream classifier accuracy from 83.2% to 95.0%.

1 Introduction

A recent line of work has studied leveraging deep generative models to produce differentially private
synthetic data. Initial efforts focused on privatizing generative adversarial networks (GANs) [14] by
using differentially private stochastic gradient descent (DPSGD) [1] to update the GAN discriminator
– an approach referred to as DPGAN [33, 6, 27]. Follow-up work has studied alternative approaches
to privatizing GANs [18, 20, 8, 31], as well as other generative modelling frameworks, such as
maximum mean discrepancy [15, 29], Sinkhorn divergences [7], and energy-based models [9].

Towards generating high-dimensional, complex data, these studies have primarily focused on image
synthesis, which has served as the testbed of choice for research in (non-private) generative modelling.
For the task of labelled image synthesis, the literature has corroborated that departing from the
baseline DPGAN approach, either in the privatization scheme, or modelling framework altogether,
leads to significant improvements in generation quality. Proposed explanations attribute these results
to inherent limitations of the DPGAN framework, suggesting that: (1) privatizing discriminator
training is sufficient for privacy, but may be overkill when only the generator needs to be released
[20]; or (2) adversarial objectives may be unsuited for training under privacy [7].

We demonstrate that the reported poor results of DPGANs should not be attributed to inherent
limitations of the framework, but rather, training issues. More precisely: we propose that the
asymmetric noise addition in DPGANs (adding noise to discriminator updates only) weakens the
discriminator relative to the generator, disrupting the careful balance necessary for successful GAN
training. To account for this, we propose to take more discriminator steps between generator updates.
With this change, DPGANs improve significantly (see Figure 1), achieving or competing with
state-of-the-art results in private image synthesis.

Furthermore, we demonstrate that this perspective on private GAN training (“restoring parity to a
discriminator weakened by DP noise”) is an effective heuristic for improving private GANs. We make
other modifications to discriminator training – large batch sizes and discriminator step schedules –
and see futher improvements.

∗Work performed in part while interning at Huawei.
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Figure 1: Our DPGAN results on labelled MNIST synthesis at (10, 10−5)-DP. (a) FID over training
runs varying nD. We find that increasing nD, the number of discriminator steps taken between
generator steps, significantly improves image synthesis results. Using nD = 50 instead of nD = 1
on our baseline DPGAN improves FID from 205.9 → 19.4, which is also an improvement over
the record FID of 48.4 from [7]. nD = 50 also improves downstream classification accuracy to
92.9% (see Figure 2a), improving over the the record accuracy of 83.2% from [7]. (b) Corresponding
synthesized images. We observe that large nD improves visual quality, and low nD leads to mode
collapse.

2 Preliminaries

Our goal is to train a generative model on sensitive data that is safe to release, i.e., it does not leak the
secrets of individuals in the training dataset. We do this by ensuring the training algorithm A – which
takes as input the sensitive dataset D ∈ U and returns the parameters of a trained (generative) model
θ ∈ Θ – satisfies differential privacy.

Definition 1 (Differential Privacy [13]). A randomized algorithm A : U → Θ is (ε, δ)-differentially
private if for every pair of neighbouring datasets D,D′ ∈ U , we have

P{A(D) ∈ S} ≤ exp(ε) · P{A(D′) ∈ S}+ δ for all S ⊆ Θ.

We adopt the add/remove definition of DP, and say two datasets D and D′ are neighbouring if they
differ in at most one entry, that is, D = D′ ∪ {x} or D′ = D ∪ {x}.
We highlight one convenient property of DP, known as closure under post-processing, which says
that interacting with a privatized model (e.g., using it to compute gradients on non-sensitive data,
drawing samples from it) does not lead to any further privacy violation.

DPSGD. A gradient-based training algorithm can be privatized by employing differentially private
stochastic gradient descent (DPSGD) [25, 5, 1] as a drop-in replacement for SGD. DPSGD involves
clipping per-example gradients and adding Gaussian noise to their sum, which effectively bounds
and masks the contribution of any individual point to the final model parameters. Privacy analysis of
DPSGD follows from a number of classic tools in the DP toolbox: the Gaussian mechanism, privacy
amplification by subsampling, and composition [12, 1, 4, 32]. We employ the DPSGD analysis of
[21] implemented in the Opacus library [34].

DPGANs. Algorithm 1 details the training algorithm for DPGANs, which is effectively an instanti-
ation of DPSGD. Note that only gradients for the discriminator D must be privatized (via clipping
and noise), and not those for the generator G due to post-processing.

3 Frequent discriminator steps improves private GANs

In this section, we discuss our main finding: the number of discriminator steps taken between each
generator step (nD from Algorithm 1) plays a significant role in the success of private GAN training.
For a fixed setting of DPSGD hyperparameters, there is an optimal range of values for nD that
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Figure 2: DPGAN results targeting (10, 10−5)-DP under different discriminator update frequencies
nD. (a) MNIST downstream classification accuracy over training runs, which mirrors FID scores
(seen in Figure 1a). Going from to nD = 1 to nD = 50 improves accuracy from 33.7%→ 92.9%.
(b) & (c) We obtain similar results for FashionMNIST training runs. Note that the optimal nD is
higher (around nD ≈ 100). At nD = 100, we obtain an FID of 91.5 and accuracy of 71.1%, which
compares favourably to the record FID of 128.3 and record accuracy of 75.5% reported in [7] for
(10, 10−5)-DP generation of FashionMNIST.

t = 50K t = 100K t = 150K t = 200K

Figure 3: Evolution of samples drawn during a training run at nD = 10, when targeting (10, 10−5)-
DP. This setting reports its best FID and downstream accuracy at t = 50K iterations (ε ≈ 2.85). As
training progresses, we observe mode collapse alongside deterioration in evaluation metrics.

maximizes generation quality, in terms of both visual quality and utility for downstream classifier
training. This value is often quite large (nD ≈ 100 in some cases).

3.1 Experimental details

Setup. We focus on labelled generation of MNIST and FashionMNIST. To build a strong baseline,
we begin from an open source PyTorch [23] implementation2 of DCGAN [24] that performs well
non-privately, and copy their training recipe. We adapt their architecture to our purposes: removing
BatchNorm layers (which not compatible with DPSGD) and adding label embedding layers to enable
labelled generation. Training this configuration non-privately yields labelled generation that achieves
FID scores of 3.2 on MNIST and 15.9 on FashionMNIST. Finally, we note that these models are not
small: D and G have 1.72M and 2.27M trainable parameters respectively.

Privacy implementation. To privatize training, we use Opacus [34] which implements per-example
gradient computation and the RDP accounting of [21]. For our baseline setting, we use the following
DPSGD hyperparameters: we keep the non-private (expected) batch size B = 128, and use a noise
scale σ = 1 and clipping norm C = 1. Under these settings, we have the budget for T = 450, 000
discriminator steps when targeting (10, 10−5)-DP.

Evaluation. We evaluate our generative models by examining the visual quality and utility for
downstream tasks of generated images. Following prior work, we measure visual quality by computing
the Fréchet Inception Distance (FID) [16] between 60, 000 generated images and 10, 000 real images
from the test set.3 To measure downstream task utility, we again follow prior work, and train a CNN
classifier on 60, 000 generated image-label pairs and report its accuracy on the real test set.

2Courtesy of Hyeonwoo Kang (https://github.com/znxlwm). Code available at this link.
3We use an open source PyTorch implementation to compute FID: https://github.com/mseitzer/

pytorch-fid
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3.2 More frequent discriminator steps improves generation quality

We plot in Figures 1a and 2 the evolution of FID and downstream accuracy during DPGAN training
for both MNIST and FashionMNIST, under varying discriminator update frequencies nD. The effect
of this parameter has outsized impact on the final results. For MNIST, nD = 50 yields the best
results; on FashionMNIST, the best FID is obtained at nD = 200 and the best accuracy at nD = 100.

We emphasize that increasing nD, the frequency of discriminator steps relative to generator steps,
does not affect the privacy cost ε of Algorithm 1. For any setting of nD, we perform the same number
of discriminator steps (noisy gradient queries on real data) – what changes is the total number of
generator steps taken over the course of training, which is reduced by a factor of 1/nD.

3.3 Private GANs are on a path to mode collapse

In Figures 1a and 2a, we observe that at low discriminator update frequencies (nD = 10), the best
FID and accuracy scores occur early in training, well before the privacy budget we are targeting is
exhausted.4 At 50, 000 discriminator steps (ε ≈ 2.85), nD = 10 has better FID (30.6) and accuracy
(83.3%) than the other settings. However, these results degrade by the end of training. In Figure 3,
we plot the evolution of generated images in this setting over the course of training, and observe
qualitative evidence of mode collapse, co-occurring with deterioration in evaluation metrics.

These results suggest that fixing other DPSGD hyperparameters, there is an optimal setting for
the discriminator step frequency nD that strikes a balance between: (1) being too low, causing the
model performance peak early in training and undergo mode collapse; resulting in all subsequent
training to consume additional privacy budget without improving the model; and (2) being too high,
preventing the generator from taking enough steps to converge before the privacy budget is exhausted
(an example of which is pictured in Figure 2a). Striking this balance results in the most effective
utilization of privacy budget towards improving the generator.

4 Why does taking more steps help?

Figure 4 compares the accuracy of the GAN discriminator (on held-out real and fake examples)
immediately before each generator step, between non-private training and private training for dif-
ferent settings of nD. Non-privately, discriminator accuracy stays around 60% throughout training.
Introducing DP (nD = 1) leads to a qualitative difference: DP causes discriminator accuracy to drop
to 50% immediately, and never recovers. For other settings of nD, we make three observations: (1)
Larger nD corresponds to higher accuracy; (2) The generator improves during the periods in which
the discriminator stays above 50% accuracy; and (3) accuracy decreases throughout training, and the
degradation of results co-occurs with accuracy of the discriminator dropping below 50%.

Based on these observations, we propose the following explanation on why more steps helps:

• Generator improvement occurs when our discriminator is capable of distinguishing between
real and fake data.

• The asymmetric noise addition introduced by DP to the discriminator makes the task difficult.

• Allowing the discriminator to train longer on a fixed generator improves its accuracy,
recovering the non-private case where the generator and discriminator are balanced.

5 Better generators via better discriminators

Our proposed explanation in Section 4 provides a suggestion for improving GAN training: effectively
use our privacy budget to maximize the number of generator steps taken when the discriminator has
a high accuracy. We experiment with modifications to the private GAN training recipe to improve
discriminator accuracy, which translate to improved generation.

4This observation has been reported in [22], serving as motivation for their remedy of taking a mixture
of intermediate models encountered in training. We are not aware of any mentions of this aspect of DPGAN
training in papers reporting DPGAN baselines for labelled image synthesis.
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5.1 Larger batch sizes

Several recent works have demonstrated that for classification tasks, large batch sizes improve the
performance of DPSGD, after tuning for the optimal noise scale σ accordingly [28, 2, 11]. GAN
training is typically conducted with small batch sizes (for example, DCGAN uses B = 128, which
we adopt; StyleGAN uses B = 32). Therefore it is interesting to see if large batch sizes indeed
improve private GAN training. We scale up batch sizes, considering B ∈ {64, 128, 512, 2048}, and
search for the optimal noise scale σ and nD. We target two settings, the high privacy (ε = 1) and low
privacy (ε = 10) regimes.

We report the best results from our hyperparameter search in in Table 1. We find that larger batch
sizes leads to improvements: for ε = 10, the best MNIST and FashionMNIST results are achieved at
B = 2048. For ε = 1, the best results are achieved at B = 512.

5.2 Discriminator step scheduling

Our observations from Section 3 and 4 motivate us to consider a discriminator step frequency schedule.
As pictured in Figure 4, discriminator accuracy drops during training as the quality of generated
images improve, which co-occurs with degradation of results. In this scenario, we want to take more
steps to improve the discriminator. However, using a large discriminator update frequency at the
beginning of training is wasteful – as evidenced by the fact that low nD achieves the best FID and
accuracy early in training. Hence we propose to start at a low discriminator update frequency, and
ramp up when our discriminator is performing poorly.

The accuracy on real data must be released with DP. While this is feasible, it introduces the additional
problem of having to find the right split of privacy budget for the best performance. We observe that
discriminator accuracy is related to discriminator accuracy on fake samples only (which are free to
evaluate on, by post-processing). Hence we use it as a proxy to assess discriminator performance.

The step schedule is parameterized by two terms, β and d. β is the decay parameter used to compute
the exponential moving average (EMA) of discriminator accuracy on fake batches before each
generator update. We use β = 0.99 in all settings. d is the accuracy threshold that upon falling below,
we increase the update frequency. We try d = 0.6 and d = 0.7, finding that 0.7 works better for
large batches. Additionally, we promise a grace period of 2/(1− β) = 200 generator steps before
moving on to the next update frequency. This formula is motivated by the fact that β-EMA’s value is
primarily determined by its last 2/(1− β) observations.

The additional benefit of the step schedule is that it means we do not have to search for the optimal
update frequency. Although the step schedule introduces the extra hyperparameter of the threshold d,
we found that these two settings (d = 0.6 and 0.7) were sufficient to improve over results of a much
more extensive hyperparameter search.

5.3 Comparison with state of the art

Table 1 summarizes our best experimental settings. In the low privacy/high ε regime, most of our
results are dramatically better than prior work4 – for example, decreasing FID from 48.4 to 13.0 and
increasing accuracy from 83.2% to 95.0% on MNIST. In the high privacy/low ε regime, improvements
are not quite as extreme, but can still be significant (FID for MNIST), and only compare negatively to
state-of-the-art for accuracy on Fashion MNIST. Broadly speaking, we see an improvement from
taking larger batch sizes, and then another with an adaptive step schedule. We provide some example
generated images in Figures 5 and 6 for ε = 10, and Figures 7 and 8 for ε = 1.

6 Discussion and related work

DP generative modelling. Differentially private GANs (DPGANs) were introduced by Xie et al.
[33]. Subsequent works proposed alternative privatizations schemes for GANs settings [27, 18, 20,
8, 31]; they did not consider a significantly larger number of discriminator steps per generator step.

4We do not compare with two recent works on private generative models [9, 17], as we believe there are
gaps in their privacy analyses. This has been confirmed by the authors of [17], and the sketch of an argument
regarding non-privacy of [9] has been shared with us by others [3].
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MNIST FashionMNIST

Privacy Level Method Reported In FID Acc.(%) FID Acc.(%)

ε = ∞ Real data (This work) 1.0 99.2 1.5 92.5
GAN 3.2 96.8 15.9 80.4

ε = 10

DPGAN5 [8] 179.16 63 243.80 50
[20] 304.86 80.11 433.38 60.98

GS-WGAN [8] 61.34 80 131.34 65
PATE-GAN [20] 253.55 66.67 229.25 62.18
G-PATE [20] 150.62 80.92 171.90 69.34
Datalens [31] 173.50 80.66 167.68 70.61
DP-MERF [7] 116.3 82.1 132.6 75.5
DP-Sinkhorn [7] 48.4 83.2 128.3 75.1

DPGAN
(This work)

19.4 92.9 91.5 71.1
+ large batches 13.2 94.3 66.7 72.1
+ step schedule 13.0 95.0 56.8 74.8

ε = 1

DPGAN [20] 470.20 40.36 472.03 10.53

GS-WGAN [20] 489.75 14.32 587.31 16.61
PATE-GAN [20] 231.54 41.68 253.19 42.22
G-PATE [20] 153.38 58.80 214.78 58.12
Datalens [31] 186.06 71.23 194.98 64.78
DP-MERF [17] 118.3 80.5 102.1 74.6
DP-MERF [29]6 - 80.7 - 73.9
DP-HP [29]6 - 81.5 - 72.3

DPGAN
(This work)

91.7 77.4 151.9 65.0
+ large batches 66.1 73.7 153.2 66.6
+ step schedule 56.2 80.1 121.8 68.0

Table 1: We gather previously reported results in the literature on the performance of various methods
for labelled generation of MNIST and FashionMNIST. For downstream accuracy, we report the best
accuracy among classifiers they use, and compare against our CNN classifier accuracy.

Other private generative models include VAEs [10], maximum mean discrepancy [15], Sinkhorn
divergences [7], energy-based models [9], and normalizing flows [30]. We show that a well-tuned
DPGAN competes with or outperforms these approaches.

Custom approaches versus a well-tuned DPSGD. An ongoing debate pertains to the best tech-
niques and architectures for private ML. Roughly speaking, there are two schools of thought. One
investigates novel architectures for privacy, which may be outperformed by more traditional ap-
proaches in the non-private setting. Some examples include [7, 15, 29], a variety of generative models
specifically designed to be compatible with differential privacy. The other focuses on searching within
the space of tried-and-tested methods that are understood to work well non-privately. Some examples
include the works of [11, 19, 35], who demonstrate that, similar to the non-private setting, large-scale
CNN and Transformer architectures can achieve state-of-the-art results for image classification and
NLP tasks. The primary modifications to the pipeline are along the lines of changing the batch size,
modifying normalization layers, etc., most of which would be explored in a proper hyperparameter
search in the non-private setting. Our work fits into the latter line: we show that novel generative
models introduced for privacy can be outperformed by GANs trained with well-tuned DPSGD.

Tabular data. Our investigation focused on image datasets, namely MNIST and Fashion MNIST,
while many important applications of private data generation involve tabular data. While [26] find
that private GAN-based approaches fail to preserve even basic statistics in these settings, we believe
that our techniques may yield similar improvements.

5We group per-class unconditional GANs together with conditional GANs under the DPGAN umbrella.
6These results are presented graphically in the paper. Exact numbers can be found in their code.
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7 Conclusion

Our most important contribution is to show that private GANs have been underrated by the research
community, and in fact can achieve state-of-the-art results by properly exploring the search space.
We hope and anticipate this will inspire the community to revisit private GANs, and quickly improve
upon our results.
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A Extra figures
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Figure 4: Discriminator accuracy before each generator step. While non-privately the discriminator
maintains 60% accuracy, the private discriminator with nD = 1 is effectively a random guess.
Increasing the number of discriminator steps recovers the discriminator’s advantage early on.

Algorithm 1 TrainDPGAN(D; ·)
1: Input: Labelled dataset D = {(xj , yj)}nj=1. Discriminator D and generator G initializations ϕ0

and θ0. Optimizers OptD, OptG. Privacy parameter δ. Hyperparameters: nD (D steps per G step),
T (# of D steps), B (expected batch size), C (clipping norm), σ (noise multiplier).

2: q ← B/|D| and t, k ← 0 ▷ calculate sampling rate q, initialize counters
3: while t < T do ▷ update D with DPSGD
4: St ∼ PoissonSample(D, q) ▷ sample a real batch St by including each (x, y) ∈ D w.p. q
5: S̃t ∼ G(·; θk)B ▷ sample fake batch S̃t

6: gϕt
←

∑
(x,y)∈St

clipC (∇ϕt
(− log(D(x, y;ϕt))))

+
∑

(x̃,ỹ)∈S̃t
clipC (∇ϕt

(− log(1−D(x̃, ỹ;ϕt)))) ▷ clipped per-example gradients
7: ĝϕt ← 1

2B (gϕt + zt), where zt ∼ N (0, C2σ2I)) ▷ add Gaussian noise
8: ϕt+1 ← OptD(ϕt, ĝθt) and t← t+ 1
9: if nD divides t then ▷ perform G update every nD steps

10: S̃′
t ∼ G(·; θk)B

11: gθk ← 1
B

∑
(x̃,ỹ)∈S̃′

t
∇θk(− log(D(x̃, ỹ;ϕt)))

12: θk+1 ← OptG(θk, gθk) and k ← k + 1
13: end if
14: end while
15: ε← PrivacyAccountant(T, σ, q, δ) ▷ compute privacy budget spent
16: Output: Final G parameters θk. (ε, δ)-DP guarantee.

B Generated samples

We provide a few non-cherrypicked samples from MNIST and FashionMNIST at ε = 1 and ε = 10.
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Figure 5: Some non-cherrypicked MNIST samples from our method, ε = 10.

Figure 6: Some non-cherrypicked FashionMNIST samples from our method, ε = 10.

Figure 7: Some non-cherrypicked MNIST samples from our method, ε = 1.

Figure 8: Some non-cherrypicked FashionMNIST samples from our method, ε = 1.
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