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Abstract
Open-domain question answering is a challeng-001
ing task with a wide variety of practical appli-002
cations. Existing modern approaches mostly003
follow a standard two-stage paradigm: retriever004
then reader. In this article, we focus on improv-005
ing the effectiveness of the reader module and006
propose a novel copy-augmented generative007
approach that integrates the merits of both ex-008
tractive and generative readers. In particular,009
our model is built upon the powerful gener-010
ative model FiD (Izacard and Grave, 2020b).011
We enhance the original generative reader by012
incorporating a pointer network to encourage013
the model to directly copy words from the re-014
trieved passages. We conduct experiments on015
the two benchmark datasets, Natural Questions016
and TriviaQA, and the empirical results demon-017
strate the performance gains of our proposed018
approach.019

1 Introduction020

Open-domain question answering (ODQA) focuses021

on providing highly precise answers to natural lan-022

guage questions from a large collection of unstruc-023

tured text data (Voorhees, 1999). With the pioneer-024

ing work of DrQA (Chen et al., 2017), modern025

approaches to ODQA commonly adopt a simple026

two-stage retriever-reader pipeline, that firstly re-027

trieve a relatively small number of support passages028

(Karpukhin et al., 2020; Yamada et al., 2021; Min029

et al., 2021b), followed by the reader identifying030

the answer.031

The reader models can be broadly categorized032

into two classes: extractive (Chen et al., 2017;033

Asai et al., 2019; Karpukhin et al., 2020) and gen-034

erative (Lewis et al., 2020a; Izacard and Grave,035

2020b; Wu et al., 2021). Recently, benefiting036

from the powerful ability of large-scale pre-trained037

encoder-decoder language models (Raffel et al.,038

2019; Lewis et al., 2019) and the capability of039

aggregating information from multiple passages040

(Izacard and Grave, 2020b), generative approaches041

Question: where was a hologram for the king filmed?
Passages (Truncated): title: A Hologram for the King (film)
context: Production was set to begin in first quarter of 2014.
Principal photography commenced on March 6, 2014 in Mo-
rocco. Filming also took place in Hurghada in Egypt, as well
as in Berlin and Düsseldorf in Germany. Shooting wrapped in
June 2014.
Answer: Hurghada in Egypt, Berlin and Düsseldorf in Germany
FiD: Dubai in Germany
FiD-PGN: Hurghada in Egypt

Question: who has the most trophies in la liga?
Passages (Truncated): title: La Liga context: A total of 62
teams have competed in La Liga since its inception. Nine teams
have been crowned champions, with Real Madrid winning the
title a record 33 times and Barcelona 25 times.
Answer: Real Madrid
FiD: 33
FiD-PGN: Real Madrid

Table 1: Comparisons of answers generated by FiD and
our approach. The orange text represents supportive
sentences.

have achieved in general better performance than 042

extractive methods. 043

Compared to extractive models, generative mod- 044

els generate text more freely, which makes it often 045

suffer from the problem of producing hallucinated 046

text that is inconsistent to the input or factual inac- 047

curacy. This problem has been addressed in tasks 048

like text summarization and machine translation 049

(Maynez et al., 2020; Zhou et al., 2021). We found 050

that the phenomenon also happens in ODQA. As 051

shown in Table 1, the answer "Dubai in Germany" 052

produced by the generative model FiD (Izacard and 053

Grave, 2020b) is factual incorrect and the answer 054

"33" in the second example is not coherent to the 055

question. While in both cases, the ground-truth 056

answers are present in the retrieved passages. Thus, 057

we hypothesize that if we could put a constraint on 058

the produced words to the input text, the generated 059

answer will be more faithful. 060

Inspired by the work of See et al. (2017), we 061

enhance the generative model with a pointer net- 062

work (Vinyals et al., 2017), that enables the model 063
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Figure 1: The overall architecture of our proposed model. We add a linear layer to calculate the generation
probability, which decides the weights of generating words from vocabulary or copying from source passages.

to directly copy text from the retrieved passages064

while retains the ability of generating new words065

when the true answers are not explicitly present in066

the input. To be more specific, our model fusion-067

in-decoder pointer-generator network (FiD-PGN)068

is built upon the state-of-the-art model FiD. We069

reuse the encoder-decoder attention scores as the070

copy distribution to reduce the computational cost.071

Compared to FiD, we achieve comparative or even072

better accuracy on the Natural Questions (NQ)073

(Kwiatkowski et al., 2019) and TriviaQA (Joshi074

et al., 2017) benchmarks, with less passages used075

in training. Our experiments results show the effec-076

tiveness and efficiency of our model.077

2 Related Work078

2.1 Open-Domain Question Answering079

In this era of data explosion, ODQA offers a way080

to rapidly and accurately fulfill user’s information081

needs, and hence has recently received significant082

attention from both industry and academia (Min083

et al., 2021a). Following the work of DrQA (Chen084

et al., 2017), most recent works build a two-stage085

retriever-reader system to tackle the problem. The086

retriever aims at retrieving supportive passages to087

the given question from a large document corpus.088

The reader intends to find answer of the question089

from the first stage retrieved passages. Early work090

of Chen et al. (2017) adapts a BiLSTM architecture091

with various lexical and semantic features from092

the question and passages as inputs. Later, with093

the emergence of large-scale pre-trained language094

models, readers based on pre-trained models such095

as BERT and T5 (Devlin et al., 2019; Raffel et al.,096

2019) have become a common approach (Yang 097

et al., 2019; Karpukhin et al., 2020; Izacard and 098

Grave, 2020b). 099

2.2 Generative Readers 100

Compared to extractive models which extract exist- 101

ing words from the retrieved passages, generative 102

models are able to produce new words out of the 103

retrieved passages, and thus provide a more flexible 104

modeling framework. Min et al. (2020) and Lewis 105

et al. (2020a) concatenate the given question with 106

top retrieved passages and feed the concatenation 107

to the BART model (Lewis et al., 2019). Izacard 108

and Grave (2020b) separately encodes the ques- 109

tion with each top retrieved passage, then takes 110

the concatenation of the encoder outputs as input 111

to the decoder. Their method provide a way to 112

better aggregate evidence from multiple passages 113

and improve the performance significantly. FiD- 114

KD (Izacard and Grave, 2020a) is an extension of 115

FiD model that increases the accuracy of passage 116

retrieval by training the dense retriever with the 117

guidance of the FiD reader iteratively. 118

2.3 Pointer-Generator Network 119

Pointer-Generator Network (See et al., 2017) is 120

an extension of the sequence-to-sequence model 121

by integrating a copy mechanism (Vinyals et al., 122

2017) into the generator. At each decoding stage, 123

the model is able to either directly copy a word 124

from the input or generate one with certain prob- 125

ability, and thus can be viewed as a combination 126

of extractive and generative approaches. It has 127

been frequently used in natural language tasks like 128

summarization (Gu et al., 2016; See et al., 2017; 129
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Model Reader Size Top-k NQ TriviaQA
DPR (BERT-base) (Karpukhin et al., 2020) 110M 24 41.5 57.9
RAG-Seq (BART-large) (Lewis et al., 2020a) 406M 50 44.5 56.8
FiD (T5-base) (Izacard and Grave, 2020b) 220M 100 48.2 65.0
FiD-KD (T5-base) (Izacard and Grave, 2020a) 220M 100 49.6 68.8
FiD-KD (Our implementation) 220M 25 48.5 67.5
FiD-PGN 220M 25 51.4 68.4

Table 2: Exact match (EM) scores on NQ and TriviaQA test sets. Top-k indicates the number of retrieved passages
used during reader training. The performance of SOTA model is in bold and the second best model is in underline.

Gehrmann et al., 2018) and neural machine trans-130

lation (Luong et al., 2014; Gu et al., 2017), but its131

application to ODQA has been less explored.132

3 Method133

Our model follows the standard two-stage retriever-134

reader framework with a focus on the enhancement135

of the reader module built upon the FiD model.136

We adopt the retriever results of FiD-KD, where a137

dense retriever similar to DPR (Karpukhin et al.,138

2020) is used. A pointer network is integrated into139

the FiD reader to facilitate copying words from the140

retrieved passages. The overall reader architecture141

is depicted in Figure 1.142

Reader Encoder. The reader encoder of our model143

is identical to the one of FiD reader. We firstly con-144

catenate the given question q with each retrieved145

passage pi as xi = [q; pi]. Next, we pass each146

xi individually to the reader encoder, i.e., the en-147

coder of T5 or BART model, and obtain the hid-148

den representations hi = hi,1, hi,2, . . . , hi,n of the149

question-passage pair where hi,j ∈ Rd and d is the150

model dimension. Finally, we concatenate all the151

hidden representations {h1, . . . , hk} as input to the152

decoder.153

Reader Decoder. Our approach mainly differs154

from FiD reader in the decoder module by adding a155

pointer network. Specifically, at each decoding step156

t, let et ∈ Rd be the embedding vector of the input157

token at this step, and denote sLt ∈ Rd as the output158

representation of the last layer L of transformer159

decoder, then the probability of generation is given160

as follows,161

pgen = σ(wT
e et + wT

s s
L
t + b) (1)162

where we ∈ Rd, ws ∈ Rd and b ∈ R are all learn-163

able parameters and σ(·) represents the sigmoid164

function. In addition, the probability of copying is165

1− pgen.166

Next, let V denote the vocabulary containing 167

words for the generative model and |V| be the size 168

of the vocabulary. Then at step t, the probability 169

distribution of words generation over the vocabu- 170

lary is computed as, 171

Pvocab = softmax(WEs
L
t ) (2) 172

where WE ∈ R|V |×d is a learnable weight matrix. 173

Benefiting from the encoder-decoder attention 174

layer in transformer architecture, we directly utilize 175

the cross-attention score αL
t of the last decoder 176

layer L over the source tokens for the target token 177

yt as copy distribution. Then the probability of 178

selecting yt in source sequence is calculated as, 179

Pctx(yt) =
∑

j:x1:k,j=yt
αL
t,j (3) 180

where x1:k denotes the concatenation of the top-k 181

retrieved passages, x1:k,j is the j-th token of x1:k, 182

and αL
t,j is the j-th element of αL

t . If yt is not 183

present in the top-k retrieved passages, the Pctx(yt) 184

will be zero. 185

Finally, put all the above together, the target 186

token yt could both be generated from vocabulary 187

with probability pgen, and copy from the source 188

passages. The final prediction probability is defined 189

as 190

P (yt) = pgenPvocab(yt) + (1− pgen)Pctx(yt). (4) 191

4 Experiments 192

4.1 Datasets 193

We evaluate the performance of our approach on 194

two standard ODQA datasets, NQ and TriviaQA. 195

The NQ dataset comprises real queries that user 196

issued on Google search engine along with answers. 197

The TriviaQA dataset consists of question-answer 198

pairs collected from trivia and quiz-league websites. 199

The details of data statistics are listed at Appendix 200

A. We use the data released on the repository of 201
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Figure 2: Generation probability pgen over training steps
on NQ and TriviaQA.

FiD1, containing question-answer pairs and top-202

100 passages retrieved by FiD-KD.203

4.2 Implementation Details204

We follow the experimental settings as in FiD.205

Our model is initialized with a pre-trained T5-base206

model, and trained using AdamW (Loshchilov and207

Hutter, 2017) algorithm with a learning rate of208

10−4, linear scheduling with 15k total steps and 1k209

warm-up steps. Moreover, we train our model us-210

ing the top-25 retrieved passages for each question211

and set the batch size as 64 due to computational212

limitation. All experiments are run on eight Nvidia213

V100 32GB GPUs.214

4.3 Results215

Table 2 shows the experimental results of our model216

and other approaches on the test sets, evaluated217

with the standard exact match (EM) score (Ra-218

jpurkar et al., 2016). For a fair comparison, we219

retrained the FiD reader on the top-25 retrieved220

passages to match our experimental settings. We221

show the results of different number of passages in222

Appendix B.223

As shown in Table 2, our model outperforms224

FiD-KD on both NQ and TriviaQA datasets under225

the same setting. This demonstrates that the pointer226

network could help to generate answers more accu-227

rately. It is worth noting that, compared with FiD-228

KD trained with the top-100 retrieved passages, our229

model achieves comparative or even better results230

with only 1/4 of the input data and without introduc-231

ing many parameters (only 1537 extra parameters232

are added), indicating the efficiency of our model.233

5 Analysis234

Generation Probability. We explore the proba-235

1https://github.com/facebookresearch/
FiD

Dataset Overlap Type FiD FiD-PGN ∆

NQ

Total 48.5 50.6 2.1
Question Overlap 73.5 70.1 -3.4
Answer Overlap Only 41.0 44.4 3.4
No Overlap 28.8 32.4 3.6

TriviaQA

Total 67.5 68.4 0.9
Question Overlap 88.4 89.6 1.2
Answer Overlap Only 66.9 68.4 1.5
No Overlap 41.5 43.4 1.9

Table 3: Test-train overlap evaluation on NQ and Trivi-
aQA test sets.

bility of generation during training to further in- 236

vestigate the effects of the pointer module. As 237

shown in Figure 2, the generation probability pgen 238

in TriviaQA is always higher than the one in NQ. 239

Note that a higher generation probability means 240

that more tokens are produced from the vocabulary 241

instead of copying from the input. We conjecture 242

that this phenomenon is caused by the different 243

question types. As stated in Rogers et al. (2021), 244

Trivia questions are more like probing questions. 245

Compared to the information-seeking questions in 246

NQ, probing questions tend to need more complex 247

reasoning, and thus it is difficult to directly extract 248

relevant tokens from input texts. Moreover, this 249

observation is also consistent with the results that 250

the improvements of our model over FiD reader is 251

smaller in TriviaQA than the one in NQ (0.9 vs. 2.9 252

EM for TriviaQA and NQ, respectively). 253

Test-Train Overlap Evaluation. The study of 254

test-train overlap (Lewis et al., 2020b) provides 255

valuable insights into the model’s question answer- 256

ing behavior. We evaluate our model on the same 257

test data splits as in Lewis et al. (2020b). Table 3 258

reports the results with respect to three kinds of 259

test-train overlaps. It can be seen that our approach 260

improves most over FiD reader on "No Overlap" 261

category, the most challenging setting, indicating a 262

better generalization ability to question answering. 263

6 Conclusion 264

In this article, we propose a novel FiD-PGN ap- 265

proach for the reader module of ODQA under the 266

standard retriever-reader framework. Specifically, 267

we integrate a pointer network into the FiD reader 268

to allow the model to directly select words from the 269

retrieved passages. Experimental results show that 270

our model outperforms FiD-KD on two benchmark 271

datasets under the same setting, demonstrating the 272

advantages of our method. 273
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A Statistics of datasets274

The summary statistics of both datasets are shown275

in Table 4. It can be seen that TriviaQA has on276

average longer question length than NQ, indicat-277

ing that questions in TriviaQA are relatively more278

complex.279

Statistics NQ TriviaQA
Train 79,168 78,785
Validation 8,757 8,837
Test 3,610 11,313
Avg. Qlen 9.3 16.9
Avg. Alen 2.4 2.2

Table 4: Summary statistics of the two datasets. Avg.
Qlen and Avg. Alen denote the average number of
tokens per question and answer, respectively.

B Training with Varying Number of280

Passages281

Figure 3 shows the performance of our model and282

FiD reader with regard to different number of re-283

trieved training passages. We train both models284

with top-k passages (k ∈ {1, 5, 10, 25}) and evalu-285

ate on the development sets with the same number286

of passages. We can observe that the matching287

scores of both models increase with respect to the288

number of passages used in training, consistent289

with the findings in Izacard and Grave (2020b) that290

sequence-to-sequence model is capable of gather-291

ing information across multiple retrieved passages.292

Moreover, the two models show comparative per-293

formance when the number of training passages is294

small, but when more passages included, our model295

outperforms FiD, especially on the NQ dataset.296

Figure 3: The variation of performance with different
number of retrieved passages used in reader training.
Exact match (EM) scores are measured on the develop-
ment sets of NQ and TriviaQA.
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