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ABSTRACT

The rapid development of large-scale AI has made intelligent robots increasingly
viable for applications such as parcel sorting in warehouses. Coupled with ad-
vances in mobile communication, robots can now cooperate efficiently; however,
conventional AI-based solutions often face low resource utilization and limited ro-
bustness, which hinders both sorting accuracy and handling efficiency. To address
this, we propose a robust Foundation Model (FM)-empowered O-RAN framework
that enables secure, robust, and real-time robot cooperation. An adaptive FM-
splitting algorithm decomposes tasks into sequential sub-missions to improve sort-
ing accuracy, while robustness training ensures resilience to environmental varia-
tions. Additionally, a cooperative path planning algorithm optimizes the number
of active robots, reducing handling latency and energy consumption. Experiments
demonstrate stable GPU utilization, up to 90% sorting accuracy, a 13.9% reduc-
tion in latency, and enhanced operational safety compared with conventional FM-
based approaches.

1 INTRODUCTION

The rapid development of Artificial Intelligence (AI) is accelerating the intelligence of the Internet of
Things (IoT) Xu et al. (2024), driving sixth-generation (6G) mobile communications to evolve from
merely providing high-speed connectivity toward enabling intelligent and secure device interactions.
Within this context, robots are emerging as key enablers in domains such as smart manufacturing,
healthcare, and smart agriculture Kiyokawa et al. (2024). Owing to their cost-effectiveness, robots
can collaborate to accomplish both repetitive and complex tasks, thereby reducing labor costs while
ensuring operational reliability and safety.

However, several critical challenges still hinder the efficiency and safety. Firstly, it is challenging to
achieve accurate parcel sorting due to limited onboard computing resources and the heterogeneous
requirements of parcel distribution. Secondly, maintaining reliable and high-throughput information
exchange is a significant challenge due to constrained communication resources. Thirdly, the con-
siderable physical distance between robots and the cloud server introduces high transmission delays,
which compromise low-latency communication.

We can deploy an Open Radio Access Network (O-RAN) at the network edge Tang et al. (2023);
Polese et al. (2023) to optimize resource scheduling. Through RAN Intelligent Controllers (RIC),
O-RAN enables customized communication resource scheduling to improve the accuracy and relia-
bility of parcel sorting. The RIC consists of the Non-Real-Time RIC (Non-RT RIC) and the Near-
Real-Time RIC (Near-RT RIC). The Non-RT RIC leverages rApps to support mission planning and
assist robots in performing precise parcel classification. In contrast, the Near-RT RIC runs within
the RAN to provide real-time parcel handling services with strict latency guarantees. Both RICs
can dynamically allocate computing resources to generate safe and feasible motion paths, thereby
enhancing not only the efficiency and accuracy of parcel handling in multi-robot cooperation.

Unfortunately, existing AI algorithms remain highly dependent on specific datasets. As one of the
most promising AI paradigms, the Foundation Model (FM) leverages a transformer architecture
with self-attention to estimate RAN resources with high precision Sun et al. (2024). Compared
with traditional ensemble learning methods Stenhammar et al. (2024), FM enables broader task

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

generalization through self-supervised learning. By training on large-scale datasets, FM can support
O-RAN in synthesizing new robotic scenario data, thereby enhancing the RIC’s capability to make
precise scenario estimations for efficient and reliable parcel sorting and handling. Furthermore,
FM allows the RIC to explore customized RAN resource scheduling strategies for seamless and
collision-free robot cooperation. In return, O-RAN provides real-time scheduling feedback to FM,
enabling accurate and robust model adaptation to diverse distribution service requirements.

With this motivation, we propose a robust FM-empowered O-RAN framework. Unlike the conven-
tional O-RAN architecture Tang et al. (2023), our approach introduces a hierarchical FM training
paradigm that enables multi-component cooperation. The main contributions of this work are sum-
marized as follows.

• We propose a robust FM-empowered O-RAN framework, which represents the first explo-
ration of integrating Foundation Models with O-RAN in robot-oriented scenarios. Within
O-RAN, we construct customized rApps and xApps in the respective RICs to enhance
RAN optimization through fine-grained communication resource scheduling. Based on
these scheduling results, the framework can coordinate an appropriate number of robots
to achieve reliable and safe parcel sorting and handling. Furthermore, the terminal–edge
cooperative paradigm improves computing resource utilization and shortens FM training
time.

• To enhance sorting accuracy, we design an adaptive FM-splitting algorithm deployed in
the Non-Real-Time RIC (Non-RT RIC). This algorithm dynamically partitions the FM to
generate customized rApps tailored to specific parcel distribution areas, destinations, and
latency requirements. These rApps guide robots to perform cooperative parcel sorting in a
pipelined manner, thereby ensuring high-accuracy sorting.

• To achieve low-latency and reliable parcel handling, we develop a cooperative path plan-
ning algorithm implemented in the Near-Real-Time RIC (Near-RT RIC). This algorithm
enables xApps to determine the optimal number of robots for cooperative handling based
on their positions, velocities, and energy levels. It then optimizes handling paths to im-
prove planning efficiency while reducing energy consumption, thereby ensuring timely and
highly reliable parcel handling.

2 ROBUST FOUNDATION MODEL EMPOWERED RAN FRAMEWORK

In this section, we provide detailed descriptions with three functional layers: (i) Robust cooperative
FM construction, (ii) parcel sorting with Non-RT rApps, and (iii) parcel handling with Near-RT
xApps.

As shown in Fig. 1, the FM construction is regarded as the foundation of the framework with two
core components: information collection and FM model aggregation. The former allows robots
to implement cooperative data collection using embedded sensors, including the number of parcels,
the status of neighbors, and the surrounding physical obstacles for lightweight sub-FMs requisitions.
With all the sub-FMs, the edge RAN can aggregate the sub-FM to an FM to implement global robot
management and RAN resource optimization for accurate parcel sorting and real-time handling.

We implement the parcel sorting on the SMO side with a time-insensitive characteristic for accurate
sorting. We mainly analyze the sorting mission from the perspective of different delivery desti-
nations. Explicitly, we propose an adaptive FM splitting algorithm to implement accurate parcel
sorting based on the different delivery destinations. Specifically, our algorithm can dynamically
split the FM into three customized sub-FMs based on parcel information in the Non-RT RIC (at
the SMO): Region-FM-rApp (R-FM-rApp), Destination-FM-rApp (D-FM-rApp), and Latency-FM-
rApp (L-FM-rApp). The R-FM-rApp classifies parcels according to distribution regions.

We then propose an adaptive model splitting algorithm to acquire customized xApps, the Energy-
FM-xApp (E-FM-xApp) and the Path-Planning-FM-xApp (PP-FM-xApp), based on robot informa-
tion such as positions, velocities, and energy for low-latency handling operations.

Based on the E-FM-xApp, we can enable robots to estimate changes of energy for associating with
the feasible parcel handling mission. The estimation result conducts robots to invite suitable col-
laborators to move to suitable positions in advance using an information request way with an event-
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Figure 1: Illustration of robust FM-empowered O-RAN framework for parcel sorting and handling
in robot-based warehouse management scenarios.

triggered mechanism for cooperative and reliable parcel handling Wang et al. (2023). We also en-
hance the information exchange efficiency by only transmitting lightweight E-FM-xApp parameters.
This makes use of achieving sustainable parcel handling performance with enhanced robot cooper-
ation.

The PP-FM-xApp, running on the CU side, enables robots to implement dynamic path optimization
with the prediction results of the trajectories of neighboring robots based on their positions and
parcel information. The handling Path optimization is estimated with two key parts: autonomous
path adjustment and cooperative path planning. Explicitly, robots first engage in decision-sharing
behavior to obtain handling path decisions from their neighbors. We can detect whether overlapping
parcel handling paths exist or not. When overlapping parcel handling paths are detected, the robots
can utilize the PP-FM-xApp to generate a new path for autonomous path adjustment. We can invoke
a robot negotiation algorithm to implement cooperative path adjustment Cao et al. (2024). This
method can jointly consider potential physical collisions and parcel handling latency to optimize
newly generated paths for real-time parcel handling.

3 PARCEL SORTING AND HANDLING ALGORITHM DESIGNS WITH ROBUST
FMS

In this section, we provide corresponding algorithms for accurate parcel sorting and handling, which
consist of three parts: Robust FM construction FM splitting for accurate parcel sorting and FM
cooperation for real-time parcel handling.

3.1 ROBUST FM CONSTRUCTION

Foundation models are vulnerable to several security risks during training, including data poisoning
(injection of malicious samples into large-scale corpora), privacy leakage, and backdoor insertion
(hidden triggers that cause targeted misbehavior). Moreover, these models often exhibit high sensi-
tivity to adversarial perturbations, which compromises their reliability in safety-critical applications.
To mitigate these risks, we design a robust training method: adversarial training formulates learning
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Figure 2: Illustration of cooperative FM construction.

as a min–max optimization problem Razaviyayn et al. (2020):

min
θ

E(x,y)

[
max
δ∈S

L
(
fθ(x+ δ), y

)]
, (1)

where θ is model parameters ( weights of a neural network); (x, y) is the input sample x with its
ground-truth label y; fθ(x) is model prediction for input x under parameters θl L(·, ·) is cross-
entropy measuring prediction error; δ is adversarial perturbation applied to input x.; S is a feasible
perturbation set; E(x,y)[·] is expectation over the training data distribution. We explicitly enhance
resistance against input perturbations. Differential privacy can be incorporated to limit information
leakage from individual samples. The FM acquisition is illustrated in Fig. 2. The pre-training
process is quantified as a Stochastic Game (SG) problem with a tuple {Si, Ai, T , ri}, where T is a
transfer function and ri is a reward function. The Ri is formulated by

ri(Si, Ai) =
1

ki

ki∑
k=1

[∆Dj,k +∆Di,k], (2)

where ki is the number of parcels; ∆[f ] = f(t − 1) − f(t); αi and βi can be set as 5 and 0.05,
respectively. The robots can learn a feasible pre-training FM model from the critic network by
minimizing the reward:

FMpre(θ
µ) = ES,A∽Ω

[ 1

M

∑
i

▽θµµ(Ai|Si)▽Ai
Qµ(Si, (A1, · · · , AM ))|Ai=µ(Si)

]
. (3)

Based on the pre-training FM model, A data sampling operation can be enabled to decompose the
data for customized parcel sorting and handling:

Dsorting
K = {(xi, ci, yi)}Ki=1 , Dhandling

K = {(xj , cj , yj)}Mj=1 , (4)

where (xi, ci, yi) and (xj , cj , yj) are information vectors to reflect the parcel sorting and handling,
respectively. We can obtain an accurate parcel sorting FM:

FMsorting = −
C∑

c=1

log pθ(c | x, c), (5)

where x is the input information; c is the training label; p is the prediction function. The parcel
handling FM is formulated by

FMhandling = ∥p− p̂∥1 + λR dSO(3)(q, q̂), (6)

where p and p̂ are predictive and actual translation actions of robots, respectively; q and q̂ are
predictive and actual orientation actions of robots, respectively.

3.2 FM SPLITTING FOR ACCURATE PARCEL SORTING

We present the implementation process of parcel sorting illustrated in Fig. 3. We propose an adaptive
model splitting algorithm that utilizes an attention mechanism to acquire multiple sub-FMs. Specif-
ically, we first formulate the feature vector hk for accurate parcel sorting with different delivery
regions, destinations, and latency:

hk = Eθ(xk,Env), (7)
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Figure 3: Illustration of parcel sorting.
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Figure 4: Illustration of cooperative parcel handling with two kinds of xApps, energy-FM-xApp
(E-FM-xApp) and Path Planning (PP-FM-xApp).

where Eθ is the shared encoder network parameterized by θ. It maps the input pair (xk,Env) into a
latent representation (embedding); xk is the raw input features of parcel k; Env is the environment
information. The corresponding attention heads are then formulated as

pR = softmax(WRhk), pD = softmax(WDhk), pL = softmax(WLhk), (8)

where WR, WD, and WL are weight matrices. We employ the decoder to connect these attention
heads with model parameters using a connection probability:

LR−FM−rApp = α
(
−log pR

yR

)
, LD−FM−rApp = β

(
−log pD

yD

)
, LL−FM−rApp = γ

∑
k

CyL,k p
L
k,

(9)
where α, β, and γ are weights controlling the contribution of the region classification loss. pR, pD,
and pL

k are probability distributions over all region classes; yR and yD are ground-truth class labels
for the current samples. CyL,k is the penalty of predicting class k when the true class is yL.

3.3 MODEL COOPERATION FOR REAL-TIME PARCEL HANDLING

We propose a cooperative parcel handling algorithm based on information on robots and parcels
with two main implementation steps shown in Fig. 4: Gated Recurrent Unit (GRU)-based energy
prediction and Particle Swarm Optimization (PSO)-based cooperative path planning.

In the Near-RT RIC, we input the robot and parcel information into the input gate. We then activate
the reset gate rt using the σ function to determine how much of the previous hidden state should be
forgotten when calculating the new hidden state:

rt = σ(Wrxen,t + Urht−1 + br) , (10)

where Wr, xen,t, Ur, ht−1 are weight matrix, input feature vector at time t, weight matrix for
hidden state ht, and the previous hidden state, respectively. br is the bias vector. We can train the
GRU network to acquire an accurate energy prediction result:

Lpre =
1

T

T∑
t=1

(
Êt − Et

)2
, (11)

where Êt = Wyht + by . With the prediction results, for robot i at the dimension d, the position and
velocity are updated as

Vi,d = ϵVi,d + a1r1(X
g
d −Xi,d) + a2r2(X

p
d −Xi,d), (12)
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Xi,d = Xi,d + Vi,d, (13)
where ϵ is the inertia parameter, a1 and a2 are acceleration coefficients; r1 and r2 are constrained in
[0, 1]; Xg and Xp are global and local optimization results that are updated by

Xg
d = argmin

Xd

g(Xi,d) =

M∑
j=1

∥∥∥Xi,d−hj

∥∥∥
2
, Xp

d = argmin
Xd

g
′
(Xi,d) =

M∑
j=1

∥∥∥Xi,d−h
′

j

∥∥∥
2
, (14)

where hj and h
′

j are global and local prediction values, respectively.

4 PERFORMANCE EVALUATION

Scenario Design: We construct a 3 km × 3 km robot-based parcel sorting and handling scenario
under varying numbers of robots and parcels with different weights using Simio, a digital twin
simulation software, on the NVIDIA GB200 NVL72 server. The parcels are deployed randomly
in the virtual scenario. We equip heterogeneous onboard sensors, such as cameras, LiDAR, and
the Inertial Measurement Unit (IMU), on the robots to enable environmental data collection. The
moving collection path is planned using the differential drive kinematics theory Wei et al. (2024),
combining the information of the Global Positioning System (GPS) sensor. The parcel handling
paths are estimated through energy consumption, which is detected by voltage sensors.

Robust FM Training Deployment: We equip the Manifold, an embedded computer, on the robots
to provide computing resources for cooperative FM training based on local information. We use
the popular Pytorch framework to construct the DDPG algorithm for FM training with actor and
critic networks Chen et al. (2021). Each network consists of three hidden layers, and each hidden
layer has 64 neural units. The learning rate and batch size are set to 0.99 and 128, respectively. We
use a sigmoid activation function to implement data training. Considering the diversity of parcels,
we adopt a stochastic gradient descent optimization method to explore feasible sorting and han-
dling decisions through an iterative learning process. We can implement further FM training and
optimization based on the existing dataset from the intelligent robots for warehouse management
dataset at the edge RAN. Based on this, we implement the fine-tuning training based on the par-
cel sorting and handling dataset using a Euclidean distance based meta-learning method. We also
deploy a conventional GRU network with the Adam optimization method Ławryńczuk & Zarzycki
(2025).

Edge RAN Deployment For the edge RAN design, we use the Bubble RAN solution to replicate
the AI-RAN solution with the MX-PDK development. In the virtual RAN environment, the robot
interaction dataset is used to achieve robot cooperation for parcel handling with key interaction
variables: robot ID, type of parcels, handling start and end times, robot communication types, and
data packet size. The robots can connect to the Bubble RAN via the cellular network. The testbed
is shown in Fig. 6. Several key metrics are selected to highlight our contributions.

1. FM training loss: We leverage the metric to evaluate the FM training performance in the
given robots-based parcel sorting and handling scenario.

2. GPU utilization: We use the metric to reflect the stability of cooperative training.
3. Parcel sorting accuracy: This metric reflects the accuracy of FM training and FM splitting

for accurate sorting.
4. Path planning efficiency: This metric estimates the performance of robot cooperation by

analyzing sorting results with varying numbers of robots and parcels.
5. System response time: We leverage the metric to evaluate the robot management efficiency.

We provide three state-of-the-art benchmarks for comparison: a centralized FM implementation
method He et al. (2024) based on a cloud computing pattern, a distributed FM implementation
method Chen et al. (2024) with cooperative FM construction among robots, and a GRU-based edge
RAN implementation method Ławryńczuk & Zarzycki (2025). The experiment parameters are sum-
marized in Tab. 1.

In Tab 2, we use different ϵ, namely, an upper bound on the adversarial perturbation power, to
test the adversarial robustness performance. These results demonstrate that min–max adversarial
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Table 1: Experiment parameters.

Parameter description Value

Parcel count [30, 70]
Average weight of parcels [8 kg, 16 kg]

Parcel count w/ destination changes [6, 14]
Robot count [20, 60]

Average moving velocity of the robots 8 km/h
Energy budget of a robot 1.4× 102 kJ

Energy consumption [51, 89] kJ/km
Delivery area 3000 m × 3000 m
Learning rate [0.001, 0.009]

Transmission power of robots [60 mW, 100 mW]
Communication bandwidth [50 MHz, 100 MHz]

Gaussian White Noise -96 dBm/Hz
Acceptable maximal system latency 15 minutes

Table 2: Adversarial robustness performance

Method Clean ϵ=1/255 2/255 4/255 8/255 ECE↓

FM-Based (no defense) 84.7 62.5 41.2 18.9 5.3 4.8
AdvTrain (PGD-10) Qi et al. (2024) 82.9 74.6 66.3 52.1 28.7 3.2
Ours 81.4 76.8 69.1 55.9 31.5 2.6
AdvTrain + DP-SGD Thakkar et al. (2024) 79.6 71.1 63.0 48.2 26.9 3.0

training frameworks can substantially enhance the robustness of foundation models against norm-
bounded perturbations while maintaining competitive clean accuracy. Table 3 presents the clean
accuracy, backdoor attack success rate (ASR), and membership inference attack (MIA) AUC of
different defense strategies. These results highlight that no single defense dominates across all
dimensions: adversarially-informed defenses are most effective against backdoors, while differential
privacy provides stronger resistance to privacy leakage. Thus, our solution combines complementary
approaches to yield a more balanced security-robustness trade-off for foundation model training.

Fig. 5(a) illustrates the training loss of the cooperative FM under different numbers of robots, rang-
ing from 20 to 60. We see that across all robots’ numbers, the training loss decreases rapidly before
iteration 200. The performance reflects efficient convergence at the initial stage. As training pro-
gresses, the loss gradually flattens and stabilizes, indicating that the model has reached convergence.
In addition, we observe that configurations with more robots achieve lower training losses compared
to scenarios with fewer robots. This trend demonstrates that increasing the number of cooperating
robots enhances the representational capacity and leads to improved convergence performance. The
results imply that our solution can achieve satisfactory FM acquisition for efficient parcel sorting
and handling.

Fig. 5(b) depicts the GPU utilization of the cooperative FM framework under varying numbers of
robots and parcels, respectively. The GPU utilization is compared across scenarios with 20, 30, and
40 robots. The results indicate that increasing the number of robots generally leads to higher and
more stable GPU utilization. This suggests that larger cooperative groups are able to better exploit
computational resources to minimize idle time and ensure efficient parallel implementation with low
execution latency.

Fig. 5(c) illustrates the confidence error of FM training with respect to the number of iterations. The
confidence error quantifies the gap between the predicted probability distribution and the ground
truth, thereby reflecting the reliability of the decision-making. We see that our solution consistently
achieves lower confidence errors compared to other benchmarks. This demonstrates its ability to
converge faster and maintain more reliable training predictions. Overall, the results highlight that

7
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Table 3: Security evaluation performance

Defense Clean Acc (%) ASR↓ MIA AUC↓ Notes

None (backdoored) 84.2 92.7 0.86 poisoned fine-tune
Fine-tune (clean data) 83.9 38.4 0.79 5 epochs
Spectral Sign. (pruning) 83.1 21.6 0.77 top-1% removal
Activation Clustering 82.7 17.9 0.76 k=2 clusters
Gradient Shaping + AdvTrain 82.1 8.3 0.74 joint defense
DP-SGD (ε=4) 80.5 12.7 0.63 σ=1.2, clip=1.0
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Figure 5: Performance evaluation of FM training.

our solution enhances both the convergence speed and the robustness of FM training, leading to
safer and more reliable robot cooperation in parcel sorting and handling.

We compare parcel sorting accuracy in Fig. 7(a) under different numbers and types of parcels. With
the random deployment of 40 robots with an average weight of 12 kg, our solution achieves the
highest sorting accuracy compared to both benchmarks. This is due to our FM assisting O-RAN in
scheduling communication resources to ensure seamless cooperation among robots for efficient par-
cel sorting. Furthermore, our solution decouples missions into three sorting steps using our model-
splitting method, which guarantees accurate parcel sorting through streamlined pipeline operations.
The latency-FM-rApp also enables robots to sort parcels in real time for low-latency requirements.
Our solution improves the sorting accuracy by 7.1%, 13.8%, and 15% compared to centralized,
distributed, and GRU-based solutions, respectively.

With the sorting results, we evaluate the efficiency of path planning, the ratio of the optimal path
to the actual path with varying numbers of parcels, as illustrated in Fig. 7(b). Under the same de-
ployment conditions as those in Fig. 7(a), our solution consistently achieves a high path planning
efficiency of up to 90% compared to both benchmarks. This is because our energy-FM-xApp allows
robots to select a feasible number of collaborators by estimating the energy consumption for coop-
erative parcel handling. Based on these estimation results, the PP-FM-xApp collaborates with the
robots to implement cooperative path planning through information exchanges utilizing available
communication resources. Our solution shortens the handling paths by 13.9% and 28.2% compared
to distributed and centralized solutions, respectively.

Finally, we compare system implementation latency under different numbers of parcels shown in
Fig. 7(c). With the same deployment scheme as shown in Fig. 7(a), we find that our solution consis-
tently achieves the lowest implementation latency compared to both benchmarks. This improvement
is attributed to our DDPG algorithm, which reduces the FM implementation time through a coop-
erative training manner by exchanging implementation actions. Additionally, our solution enables
the O-RAN to collaborate with the computing resources of different robots to further accelerate
FM training. We can dynamically schedule O-RAN communication resources to ensure reliable
information exchanges for cooperative parcel sorting and handling. Our solution reduces system

8
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Figure 6: Illustration of edge RAN configuration.
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Figure 7: Performance evaluation under different numbers of robots.

implementation latency by 15.8% and 30.4% compared to the distributed and centralized solutions,
respectively.

5 CONCLUSION

In this paper, we have proposed a robust and safe FM-empowered RAN framework to assist robots
in achieving accurate and real-time parcel sorting and handling in a mobile robot scenario. We first
designed an FM splitting algorithm to acquire customized sub-FMs for accurate parcel sorting and
real-time parcel handling. These sub-FMs can empower rApps to provide effective parcel sorting
decisions based on different delivery regions, destinations, and latency. The sub-FMs can also assist
robots in planning feasible handling paths by designing corresponding energy consumption xApps
and path planning xApps. The simulation results demonstrated that our solution achieves accurate
parcel sorting and low-latency parcel handling under different scenarios with various numbers of
parcels and robots.
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A APPENDIX

A.1 RELATED WORK

We provide the state-of-the-art investigations and discussions for foundation model and AI-RAN in
robust robot scenarios.

Foundation Model for robots-based scenarios: To ensure accurate robot navigation, the authors
in Xia et al. (2024) proposed an agent-based foundation model as the new training paradigm for ef-
fective environmental sensing and robot navigation. The solution can generate cross-domain actions
consistent with sensing information, paving the way to realize interactive and collaborative robots.
However, the FM training can lead to the issue of security due to frequent information transmission
between robots and edge RAN. The authors in Chen et al. (2025) developed a FASTNav to train a
lightweight LLM, for reliable robot navigation by reduce the transmission data sizes. The proposed
method contains three modules: fine-tuning, teacher-student iteration, and language-based multi-
point robot navigation. The experiment results the solution can perform high secure and low latency
robot navigation. To ensure reliable path planning, the authors in Qi et al. (2025) proposed a 3-step
trajectory optimization framework for generating a jump motion for a humanoid robot. The frame-
work can joint detect robot postures, centroidal angular momentum, and landing foot placement
for reliable path planning. Nonetheless, the existing works neglect the communication resource
constraint with high-frequency information transmission which can also cause lowly robust robot
cooperation in 6G application scenarios.

RAN empowered reliable communication for robot cooperation: The reliable robot cooperation
needs the support of suitable communication resources. It is important to schedule communication
resources effectively by RAN. The authors in Baruffa et al. (2024) developed a testbed architecture
that combines contemporary communication and cloud technologies to provide microservice-based
mobile applications with the ability to offload part of their tasks to cloud/edge data centers connected
by multi-RAT cellular networks. In addition, the authors in Bolla et al. (2023) presented an optimiza-
tion problem to further explore redundant radio bearers for each robot. Such problem extends the
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current specification on redundant transmissions. Several heuristic methods have been developed to
meet the time-scale requirements that cannot be achieved through exhaustive search. However, such
methods might still lead to high communication costs due to high-frequency information exchanges
among robots. The authors in Chinchilla-Romero et al. (2024) proposed a centralized control so-
lution for automated mobile robots. A techno-economic analysis was designed to assess the total
system cost in an Industry 4.0 robot environment. A sensitivity analysis was also included for the
solution identifying the variables with great impact on the system cost. Unfortunately, the exist-
ing works ignore the undetermined numbers of robots and missions, which can expose significant
pressures for real-time computing and reliable communications among robots.

Based on the discussions mentioned-above, the existing works mainly focus on the study of RAN
optimization and FM training while few of investigations pay attention to variability of numbers of
robots and missions. In addition, it is difficult to ensure reliable and robust FM training based on the
limited computing resources of edge RAN. On the other hand, the existing work may also lead to
low-efficiency robot cooperation due to the neglect of change in physical environments. In this case,
a terminal-edge cooperative robust FM training is feasible to optimize RAN resources for reliable,
accurate, and low-latency robot services.

A.2 PROBLEM FORMULATION

We formulate corresponding objective function to optimize the robots-based parcel sorting and han-
dling with given constraints.

A.2.1 ANALYSIS OF DATA COLLECTION

The robots can implement cooperative sensing by dynamically changing self-positions. We first
formulate the sensing feasibility constraints based on robots’ positions and data size:

xist ≤
∑

v∈N (s)

mivt, (15)

zist ≤ q̄s xist, (16)
where s ∈ S is sensing site with site set S; v ∈ V is the spatial position of robots with position set V;
xist ∈ {0, 1} and mivt ∈ {0, 1} are sensing decision indicator and position indicator, respectively.
xist = 1 when robot i implements the sensing operation for site s at time t; mist = 1 denotes robot
i is in the position v at time t; zist is a continued variance to present the data size (bits) that robot i
collects at site s; q̄s is the maximal data sizes that site s can provide. The two constraints can assist
robots in optimizing self-positions for cooperative sensing.

In addition, we need to ensure comprehensive sensing by improving sensing coverage:∑
i∈M

∑
t∈T

zist ≥ Qs, (17)

where Qs is the minimal acceptable sensing coverage.

A.2.2 ANALYSIS OF PARCEL SORTING ACCURACY

For the parcel sorting accuracy, we give detailed discussions considering delivery regions, destina-
tions, and latency. Explicitly, in terms of the delivery region, we enable the R-FM-rApp to estimate
the current sorting result is whether in the given delivery regions or not:

Rk = I[ ẑk ∈ Zsrv
k ] , (18)

where Rk ∈ {0, 1} is an indicator; ẑk is the estimation result; I is an indicator function. Based on
this, we can give the sorting accuracy ARa considering the delivery regions as follows:

ARa =

∑
k∈K wk Rk∑

k∈K wk
≥ ARa,min, (19)

where wk is a weight of parcel k for different priorities; ARa,min is the acceptable minimal sorting
accuracy.

12
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Considering the delivery destinations, we formulate the corresponding accuracy model. Before that,
we first formulate the destination accuracy indicator Dk:

Dk = I[ ẑk = gk ] , (20)

where gk is the real delivery destination of parcel k. Based on this, we can formulate the destination
accuracy model by

Adest =

∑
k∈K wk Dk∑

k∈K wk
. (21)

With the sorting accuracy for different delivery regions, the sorting accuracy for different destina-
tions Adest|Ra is formulated by

Adest|Ra =

∑
k wk Dk Rk∑
k wk Rk + ε

, (22)

where ε > 0 is a constant value.

In terms of delivery latency, we can further sort the parcels for accurate and real-time handling.
Similarly, we first give the latency accuracy indicator Sk:

Sk = I[ tk ≤ dk ] , (23)

where tk and dk are practical parcel sorting time and maximal acceptable parcel sorting time, re-
spectively. Then, we give the joint optimization with accurate destination and required latency as
follows:

ASLA =

∑
k∈K wk Dk Sk∑

k∈K wk
, (24)

where ASLA is the accuracy indicator for joint optimization of delivery destination and latency. In
this case, we further give the whole sorting accuracy Amix:

Amix = λ1Arange + λ2Adest + λ3ASLA ≥ Amix,min, (25)

where λi ≥ 0,
∑

i λi = 1; Amix,min is the acceptable minimal whole sorting accuracy.

A.2.3 ANALYSIS OF PARCEL HANDLING LATENCY

We analyze the parcel handling latency with two parts: cooperative path planning and dynamic path
adjustment. For the cooperative path planning, the latency mainly includes service latency τ svc

(namely the time of loading and unloading parcels), handling latency, and the waiting latency for
giving way to other robots with collision avoidance. Specifically, the service latency for robot i,
τ svci > 0, is regarded as a constant value with static loading and unloading time. Regarding the
handling latency τhandi of robot i, the planned path for robot i can be represented as PPi. The
average moving velocity of robot i is vi. We can calculate the handling latency as

τhandi =
PPi

vi
. (26)

The waiting latency is defined to avoid physical collisions based on planned paths. In this case, we
can use a graph G(V,E) to present the cooperative parcel handling, where V is the all robot node
set and E is the handling path set. For robot i, we firstly need to guarantee

∑
i∈M mivt ≤ 1,

namely each node matches one robot at the same time t. In addition, the edge capacity constraint
can be formulated as ∑

i∈M

(
aiuv,t + aivu,t

)
≤ capuv, (27)

where aiuv,t = 1 denotes robot i moves from node u to v, and verse visa. capuv is the maximal
robot capability at the edge (u, v). In this case, when robot i and j move towards the same edge at
the same time t, the waiting latency Wi,t can be formulated by

Wi =

∑
i̸=j

I[ai,j,t′ = 1] ·∆i,j,t′

 , (28)
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where I[ai,j,t′ = 1 is an indicator function to present there exist a conflict between robot i and j;
∆i,j,t′ is the waiting time of robot i. In this context, we can constrain the whole path planning
latency of robot i by

tPP
i = τhandi + τ svc +Wi. (29)

The robots can re-adjust their moving paths to cope with the time-varying parcel handling scenarios.
We analyze the dynamic path adjustment with two parts: the path adjustment latency Wadj,i and the
revised handling completion latency Cadj,t. The former can be formulated as

Wadj,i =
∑
t′≤t

I[ai,v,t′ = 0] · Id(t′), (30)

where I[ar,v,t′ = 0] is an indicator function, where ar,v,t′ = 0 denotes robot i is in the idle state in
node v at time t. Id(t′) denotes the idle time of robot i. The latter can be represented as

Cadj(i) = Cu
i + τrep, (31)

where Cu
i is the current handling latency based on the previous path planning decision; τrep is the

computing latency for path adjustment. In this context, the whole parcel handling latency thandlei is
constrained by

thandlei = Wadj,i + Cadj(i) + tPP
i ≤ thandlei,max , (32)

where thandlei,max is the maximal acceptable handling latency.

A.2.4 OBJECTIVE FORMULATION

In addition to the parcel handling latency, the robots’ energy consumption is another important
metric due to battery-powered characteristic. We need to constrain the energy budget. Let υi(t)
(Joules) denote the budget of the robot i at the time slot t that can be spent on parcel handling. The
average cumulative budget Υi (Joules) is defined to restrict the energy consumption of robot i:

Ef
i (t) = φ(vi,t), (33)

where φ(x) is a mapping function with nonlinear character; Ef
i (t) is a variable due to the undeter-

mined obstacle distributions. Based on this, we can formulate the optimization objective as

P1 : min

{
lim

T→∞

1

T

T∑
t=0

[ M∑
i=1

K∑
k=1

a1∆Tk − a2∆Amix

]}
,

s.t.
{

C1 : equation 17, equation 19, equation 25, equation 27, equation 32

C2 : ri ≥ rmin,

where a1 and a2 are weights in Lyapunov theory Matrosov (1962); ∆ is the difference between the
actual and virtual backlog. ∆Tk = b1,k − b2,k, where b1,k and b2,k are the real handling latency and
the expected handling latency for parcel k. We expect to minimize the difference value for real-time
parcel handling. In terms of C1, equation 17, equation 19, equation 25, equation 27, and equation 32
ensure a comprehensive sensing cooperation, accurate parcel sorting with different delivery regions
and destination, respectively, path conflict avoidance, and guarantee of low parcel handling latency.
C2 can guarantee low-latency data transmission for real-time information exchanges among robots,
cooperative FM training, and path planning computing.

A.3 PSEUDOCODE

A.4 DETAILED EXPERIMENT RESULTS

Fig. 8 illustrates the training loss of the cooperative FM under different numbers of robots, ranging
from 20 to 60. We see that across all robots’ numbers, the training loss decreases rapidly before
iteration 200. The performance reflects efficient convergence at the initial stage. As training pro-
gresses, the loss gradually flattens and stabilizes, indicating that the model has reached convergence.
In addition, we observe that configurations with more robots achieve lower training losses compared
to scenarios with fewer robots. This trend demonstrates that increasing the number of cooperating
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Algorithm 1 Accurate parcel sorting and real-time handling with robust FMs.
// Definition: γ = 0.99.
Input: Network parameters θ, state space Si, action space Ai, update weight γ; replay buffer;

system parameter set.
Output: Cooperative sorting and handling results.

1: Construct the FM cooperatively
2: for each episode in all the rounds do
3: Design the reward function using equation 2
4: for each time slot t do
5: for each agent i ∈ M do
6: Obtain the feasible FM models by minimizing the L using equation 3
7: Implement the customized sorting and handling models using equation 4
8: Obtain customized sub-FMs using 5 and 6
9: end for

10: end for
11: end for
12: Accurate parcel sorting
13: Formulate feature vector hk using equation 7
14: for each parcel requirement do
15: Acquire attention heads using equation 8
16: Obtain the output of sub-FMs using equation 9
17: end for
18: Real-time parcel handling
19: for each iteration do
20: Calculate the hidden state of GRU using equation 10
21: Obtain the prediction results using equation 11
22: end for
23: for each exploration time do
24: Update the positions and velocities using equation 12 and equation 13
25: Update the global and local optimization results using equation 14
26: end for
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Figure 8: Training loss of cooperative FM with
different numbers of robots.
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Figure 9: Training loss of cooperative FM
with different numbers of parcels.

robots enhances the representational capacity and leads to improved convergence performance. The
results imply that our solution can achieve satisfied FM acquisition for efficient parcel sorting and
handling.

Fig. 9 presents the training loss of the cooperative LAM model under different numbers of parcels.
We see that the training loss for all solutions decreases sharply within the first 200 iterations followed
by a gradual reduction and eventual stabilization. This behavior indicates that the model converges
effectively under all workload conditions. Another important observation is that scenarios with
a larger number of parcels attain lower training losses compared to cases with fewer parcels. This
result demonstrates that increasing the task load can enhance final performance accuracy for accurate
parcel sorting. Nevertheless, the convergence becomes slightly slower with higher parcel volumes,
which reflects the trade-off between accuracy improvement and training efficiency. We can control
the relations between the two indicators for high-efficiency sorting and handling.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 5 10 15 20

Iterations

50

60

70

80

90

100

G
P

U
 u

ti
li
z
a
ti
o
n

20 robots

30 robots

40 robots

Figure 10: GPU utilization with different num-
bers of robots.

0 5 10 15 20

Iterations

50

60

70

80

90

100

G
P

U
 u

ti
liz

a
ti
o
n

30 parcels

40 parcels

50 parcels

Figure 11: GPU utilization with different
numbers of parcels.

30 40 50 60 70

Number of parcels

0.6

0.7

0.8

0.9

1

S
o
rt

in
g
 a

c
c
u
ra

c
y

Proposed

Centralized

Distributed

GRU-based

(a) Parcel sorting accuracy vs.
number of parcels.

20 30 40 50 60

Number of robots

0.7

0.8

0.9

1

S
o
rt

in
g
 a

c
c
u
ra

c
y

Proposed

Centralized

Distributed

GRU-based

(b) Parcel sorting accuracy vs.
number of robots.
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(c) Parcel sorting accuracy vs.
weights of parcels.

Figure 12: Performance evaluation of sorting accuracy under different numbers of robots, parcels,
and weights of parcels.

Fig. 10 and Fig. 11 depict the GPU utilization of the cooperative FM framework under varying
numbers of robots and parcels, respectively. In Fig. 10, the GPU utilization is compared across
scenarios with 20, 30, and 40 robots. The results indicate that increasing the number of robots
generally leads to higher and more stable GPU utilization. This suggests that larger cooperative
groups are able to better exploit computational resources to minimize idle time and ensuring efficient
parallel implementation with low execution latency. We can obtain the similar result in Fig. 11.
We see that as the number of parcels increases, GPU utilization improves, reflecting the growing
workload and enhanced resource occupancy. The higher task load ensures that the GPU remains
consistently engaged, which improves training efficiency.

Fig. 5(c) illustrates the confidence error of FM training with respect to the number of iterations. The
confidence error quantifies the gap between the predicted probability distribution and the ground
truth, thereby reflecting the reliability of the decision-making. We see that all the solutions exhibit a
decreasing confidence error with increasing iterations, indicating improved training stability. How-
ever, our solution consistently achieves lower confidence errors compared to other benchmarks. This
demonstrates its ability to converge faster and maintain more reliable training predictions. Overall,
the results highlight that our solution enhances both the convergence speed and the robustness of
FM training, leading to safer and more reliable robot cooperation in parcel sorting and handling.

We compare parcel sorting accuracy in Fig. 12(a) under different numbers and types of parcels.
With the random deployment of 40 robots with an average weight of 12 kg, our solution achieves
the highest sorting accuracy compared to both benchmarks. This is due to our FM assists O-RAN in
scheduling communication resources to ensure seamless cooperation among robots for efficient par-
cel sorting. Furthermore, our solution decouples missions into three sorting steps using our model-
splitting method, which guarantees accurate parcel sorting through streamlined pipeline operations.
The latency-FM-rApp also enables robots to sort parcels in real time for low latency requirements.
Our solution improves the sorting accuracy by 7.1%, 13.8%, and 15% compared to centralized,
distributed and GRU-based solutions, respectively.

Fig. 12(b) shows the performance of sorting accuracy under different numbers of robots. Given the
40 parcels with an average weight of 12 kg, our solution guarantees the highest sorting accuracy
compared to all the benchmarks. This is because our FM can achieve deep collaboration among the
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(a) Path planning efficiency vs.
number of parcels.
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(b) Path planning efficiency vs.
number of robots.
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(c) Path planning efficiency vs.
weights of parcels.

Figure 13: Performance evaluation of path planning efficiency under different numbers of robots,
parcels, and weights of parcels.
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(a) System latency vs. number of
parcels.
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(b) System latency vs. number of
robots.
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(c) System latency vs. weights of
parcels.

Figure 14: Performance evaluation of system latency under different numbers of robots, parcels, and
weights of parcels.

R-FM-rApp, the D-FM-rApp, and L-FM-rApp to ensure accurate parcel sorting. In addition, our
solution can collaborate computing resources of robots and edge RAN to improve the parcel sorting
reliability for accurate parcel sorting. Furthermore, the latency-FM-rApp can conduct robots to
optimize the sorting results considering different delivery priorities. Overall, our solution improves
the sorting accuracy by 8%, 12.5%, and 15.9% compared to the centralized, distributed, and GRU-
based algorithm, respectively.

We also illustrate the performance of sorting accuracy with different weights of parcels in Fig. 12(c).
With 40 robots sorting 40 parcels, we can see that sorting accuracy reduces as the weights of parcels
increase for all the solutions. This is because robots might cause a high recognition error for parcels
with heavy weights due to large sizes of parcels. However, our solution still maintains a high sorting
accuracy with up to 90% through robot cooperation. It is because our solution can assist robots
in selecting feasible cooperators to implement cooperative sorting for high sorting accuracy. Ad-
ditionally, our solution can collaborate feasible numbers of robots to match suitable numbers of
parcels considering different weights of parcels. Overall, our solution improves the sorting accuracy
by 9.2%, 15.9%, and 18.8% compared to the centralized, distributed, and GRU-based algorithm,
respectively.

With the sorting results, we evaluate the efficiency of path planning, the ratio of the optimal path
to the actual path with varying numbers of parcels, as illustrated in Fig. 13(a). Under the same
deployment conditions as those in Fig. 12(a), our solution consistently achieves high path planning
efficiency of up to 90% compared to both benchmarks. This is because our energy-FM-xApp allows
robots to select feasible numbers of collaborators by estimating the energy consumption for coop-
erative parcel handling. Based on these estimation results, the PP-FM-xApp collaborates with the
robots to implement cooperative path planning through information exchanges utilizing available
communication resources. Our solution shortens the handling paths by 13.9% and 28.2% compared
to distributed and centralized solutions, respectively.
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With the same deployment as Fig. 12(b), Fig. 13(b) provides the path planning efficiency perfor-
mance with different numbers of robots. The results clearly show that our solution consistently out-
performs the other approaches across all robot configurations. In particular, our solution achieves
efficiency levels close to or above 90%, even as the number of robots increases with high robustness
and scalability. Another important observation is that increasing the number of robots slightly de-
creases the efficiency for all methods, reflecting the higher complexity of coordination in larger robot
groups. Nevertheless, our method maintains a significant advantage over competing approaches,
confirming its effectiveness for high-efficiency parcel handling. Our solution improve the path plan-
ning efficiency by 6.8%, 10.6%, and 17.5% compared to distributed, centralized and GRU-based
solutions, respectively.

Under the same configuration as Fig. 12(c), we give the path planning efficiency performance with
different weights of parcels in Fig. 13(c). It can be observed that our method consistently achieves
the highest efficiency across all weight levels with up to 90% when the parcel weight is relatively
low. Although efficiency decreases slightly as the parcel weight increases to 16, our solution still
outperforms all alternatives by a significant margin. This also demonstrates that heavier parcels
impose greater coordination challenges for all algorithms, but our method remains the most robust
and scalable solution with the aid of terminal-edge cooperation. Our solution improve the path
planning efficiency by 3.3%, 6.8%, and 17.5% compared to distributed, centralized and GRU-based
solutions, respectively.

Finally, we compare system implementation latency under the different numbers of parcels shown
in Fig. 14(a). With the same deployment scheme as shown in Fig. 12(a), we find that our solu-
tion consistently achieves the lowest implementation latency compared to both benchmarks. This
improvement is attributed to our DDPG algorithm, which reduces the FM implementation time
through a cooperative training manner by exchanging implementation actions. Additionally, our so-
lution enables the O-RAN to collaborate with the computing resources of different robots to further
accelerate FM training. We can dynamically schedule O-RAN communication resources to ensure
reliable information exchanges for cooperative parcel sorting and handling. Our solution reduces
system implementation latency by 15.8% and 30.4% compared to the distributed and centralized
solutions, respectively.

With the same deployment as Fig. 12(b), Fig. 14(b) provides the system latency performance with
different numbers of robots. We see that system latency decreases as the number of robots increases
for all solutions, since more robots can share the workload and thus accelerate handling execu-
tion. However, our solution consistently achieves the lowest latency across all robot configurations,
demonstrating superior scalability and efficiency. For example, with 60 robots, our solution reduces
latency to nearly 5 minutes, significantly outperforming the centralized and distributed approaches,
which remain above 10 minutes, and the GRU-based method, which exceeds 15 minutes. These
results confirm that our solution not only leverages additional robotic resources more effectively but
also minimizes communication and cooperation overhead.

Under the same configuration as Fig. 12(c), we give the system latency performance with different
weights of parcels in Fig. 14(c). The results show that system latency increases with parcel weight
for all solutions. This reflects the additional computational and cooperation overhead required for
handling heavier parcels. Our solution consistently achieves the lowest latency across all weight
values, maintaining latency below 15 minutes even for the heaviest parcels. These findings high-
light that while heavier parcels impose greater system latency, our solution demonstrates superior
robustness and scalability, effectively mitigating the latency increase compared to existing baselines.
Our solution reduces system implementation latency by 33.3%, 41.2%, and 47.4% compared to the
distributed, centralized, and GRU-based solutions, respectively.
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