
Under review as a conference paper at ICLR 2023

EFFICIENT HYPERDIMENSIONAL COMPUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperdimensional computing (HDC) uses binary vectors of high dimensions to
perform classification. Due to its simplicity and massive parallelism, HDC can be
highly energy-efficient and well-suited for resource-constrained platforms. How-
ever, in trading off orthogonality with efficiency, hypervectors may use tens of
thousands of dimensions. In this paper, we will examine the necessity for such
high dimensions. In particular, we give a detailed theoretical analysis of the re-
lationship among dimensions of hypervectors, accuracy, and orthogonality. The
main conclusion of this study is that a much lower dimension, typically less than
100, can also achieve similar or even higher detecting accuracy compared with
other state-of-the-art HDC models. Based on this insight, we propose a suite of
novel techniques to build HDC models that use binary hypervectors of dimensions
that are orders of magnitude smaller than those found in the state-of-the-art HDC
models, yet yield equivalent or even improved accuracy and efficiency1. For im-
age classification, we achieved an HDC accuracy of 96.88% with a dimension of
only 32 on the MNIST dataset. We further explore our methods on more complex
datasets like CIFAR-10 and show the limits of HDC computing.

1 INTRODUCTION

Hyperdimensional computing (HDC) is an emerging learning paradigm inspired by an abstract rep-
resentation of neuron activity in the human brain using high-dimensional binary vectors. Compared
with other well-known training methods like artificial neural networks (ANNs), HDCs have the ad-
vantage of high parallelism and low energy consumption (low latency). This makes HDCs well
suited to resource-constrained applications such as electroencephalogram detection, robotics, lan-
guage recognition and federated learning (Hsieh et al., 2021; Asgarinejad et al., 2020; Neubert et al.,
2019; Rahimi et al., 2016). HDCs are also easy to implement in hardware (Schmuck et al., 2019;
Salamat et al., 2019).

Unfortunately, the practical deployment of HDC suffers from low model accuracy and is always
restricted to small and simple datasets. To solve the problem, one commonly used technique is in-
creasing the hypervector dimension (Neubert et al., 2019; Schlegel et al., 2022; Yu et al., 2022). For
example, running on the MNIST dataset, hypervector dimensions of 10,000 are often used. Duan
et al. (2022) and Yu et al. (2022) achieved the state-of-the-art accuracies of 94.74% and 95.4% sep-
arately this way. In these and other state-of-the-art HDC works, hypervectors are randomly drawn
from the hyperspace {−1,+1}d, where the dimension d is very high. This ensures high orthogonal-
ity, making the hypervectors more independent and easier to distinguish from each other (Thomas
et al., 2020). As a result, accuracy is improved and more complex application scenarios can be tar-
geted. However, the price paid due to higher dimension is in higher energy consumption possibly
negating the advantage of HDC altogether (Neubert et al., 2019). This paper addresses this tradeoff.

In this paper, we will analyze the relationship between hypervector dimension and accuracy, as well
as between dimension and orthogonality. In our analysis, we found that strict orthogonality can
be obtained for small d. We will show that a dimension d of only 2⌈log2 n⌉ is sufficient to yield
n vectors in {−1, 1}d with strict orthogonality. Dimensions higher than that are not necessary. If
we relax orthogonality to ε-quasi-orthogonality (Kainen & Krkova, 2020), we will show that it is
even easier to construct the hypervectors. Further, it is intuitively true that high dimensions will
lead to high orthogonality (Thomas et al., 2020), contrary to popular belief, we found that as the

1https://anonymous.4open.science/r/LowHDC-F74B/README.md

1



Under review as a conference paper at ICLR 2023

dimension of the hypervectors d increases, the upper bound for inference accuracy actually decreases
(Statement 3.1 and Statement 3.2). In particular, if the hypervector dimension d is sufficient to
represent a vector with K classes (d > log2 K) then, the lower the dimension, the higher the
accuracy. The key insight of our work is this: In HDC, it is not the higher dimension, that is the
determinant of accuracy, and the required orthogonality for a given problem can be achieved at
lower hypervector dimensions using our proposed techniques.

Based on the analysis, we propose a combination of a novel trainable binary kernel-based en-
coder with the majority rule (shown in Figure 3) to reduce the hypervector dimension signifi-
cantly while maintaining state-of-art accuracies. Running on the MNIST dataset, HDC accuracies
of 96.88/97.23% were achieved with hypervector dimensions of only 32/64. The total number of
calculation operations of our method is a mere 7% of the previous state-of-art related works where
hypervectors dimensions of 10,000 or more were needed. We further explored our methods on
CIFAR-10 and an HDC accuracy of 46.18% was achieved. Both our analysis and experiments show
that dimensions of 5,000 or even 10,000 used by the state-of-the-art in HDC are not necessary.

The contribution of this paper is as follows:

• We give a comprehensive analysis of the relationship between hypervector dimension and
the accuracy of HDC. Both the worst-case and average-case accuracy are studied. Mathe-
matically, we explain why relatively lower dimensions can yield higher model accuracies.
This contradicts the standard assumption in HDC. Furthermore, the relationship between
orthogonality and hypervector dimension is also discussed. Based on the analysis, we can
reduce the dimension by nearly three orders of magnitude.

• We introduce a kernel-based binary encoder and two HDC retraining algorithms. With
these techniques, we can achieve higher detection accuracies using much smaller hyper-
vector dimensions (latency) and better orthogonality compared to the state-of-the-art.

Organisation This paper is organized as follows. First, the basic workflow and background of
HDC are introduced. Then, we describe our main dimension-accuracy and dimension-orthogonality
analysis in Section 3. In Section 4, we present a trainable binary encoder and two HDC retraining
approaches to improve accuracy while at the same time reducing energy consumption. We then
show our experimental results and comparison with state-of-the-art HDCs in Section 5, followed
by a discussion and conclusion.

2 BACKGROUND

Hyperdimensional computing encodes binary hypervectors with typical dimensions of 5,000 to
10,000 to represent the data. Using the MNIST dataset as an example, HDC encodes one float32-
type image f = f0, f1, ..., f783 to hypervectors by binding and adding the value hypervectors v
and position hypervectors p together. Both these two hypervectors are independently drawn from
the hyperspace {−1,+1}d randomly. Mathematically, we can construct representation r for each
image as followed:

r = sgn
(
(vf0

⊗
pf0 + vf1

⊗
pf1 + ...+ vf783

⊗
pf783)

)
,

where sgn(·) is the sign function that binarizes the sum of hypervectors and returns -1 or 1. sgn(0)
is randomly assigned to 1 or -1.

⊗
is the binding operation that perform coordinate-wise (element-

wise) multiplication. For example, [−1, 1, 1,−1]
⊗

[1, 1, 1,−1] = [−1, 1, 1, 1].

For training, all hypervectors r1, ..., r60,000 that of the same digit are added together. The majority
rule is then used to generate the representation Rc for class c

Rc = sgn

(∑
i∈c

ri

)
. (1)

For inference, the encoded test image is compared with the representation of each class Rc, and the
most similar one is selected. Cosine similarity, L2 distance, and Hamming distance are commonly

2



Under review as a conference paper at ICLR 2023

used similarity measures in previous works. According to Frady et al. (2021), the inner product has
the same function with Hamming distance for binary hyper vectors with values of -1 and 1, which
we used in this work. The workflow is shown in the Appendix A.3.

3 HIGH DIMENSIONS ARE NOT NECESSARY

Compared to traditional ANNs, the use of binary vectors and simple, point-wise computation in
HDC holds the promise of low energy consumption while achieving competitive accuracies. The
Achilles Heel is in the high dimensions needed that potentially negated the gains. In this section, we
will study the need for high hypervector dimensions in terms of both accuracy and orthogonality.

Through an analysis of the relationship between dimension and accuracy, we will show that a higher
hypervector dimension does not necessarily lead to higher accuracy. We will show that for a classifi-
cation task that has only two classes, a higher hypervector dimension results in both lower worst-case
and average-case accuracy.

We then study the relationship between dimension and orthogonality and show that good orthogo-
nality does not require high dimensions. This opens the door to performing HDC with significantly
lower dimension hypervectors.

3.1 DIMENSION-ACCURACY ANALYSIS

To simplify the analysis of the HDC, we consider the following assumptions of hypervectors without
loss of generality. We assume that the hypervectors are uniformly distributed over a d-dimensional
unit ball:

X = {x ∈ Rd
∣∣∥x∥2 ≤ 1}.

Moreover, we assume that hypervectors x are linearly separable and each class with label i can be
represented by Ci:

Ci = {x ∈ X |θi · x > θj · x, j ̸= i}, 1 ≤ i ≤ K

where θi ∈ [0, 1]d are support hypervectors that are used to distinguish classes i from other classes.
This is a reasonable assumption as long as we select d sufficiently large so that there exists a mapping
(encoder) to embed the raw data into a d-dimensional unit ball.

Similarly, we define the prediction class Ĉi by θ̂i as followed:

Ĉi = {x ∈ X |θ̂i · x > θ̂j · x, j ̸= i}, 1 ≤ i ≤ K.

When we apply the majority rule to separate the above hypervectors x, we are approximating θi with
θ̂i in the sense of maximizing the prediction accuracy. Here each θ̂i ∈ {0, 1}d is a binary vector.

Therefore we define the worst-case K-classes prediction accuracy over hypervectors distribution X
in the following expression:

AccwK,d := inf
θ1,θ2,...,θK

sup
θ̂1,θ̂2,...,θ̂K

Ex

[ K∑
i=1

∏
j ̸=i

1{θi·x>θj ·x}1{θ̂i·x>θ̂j ·x}

]
.

Statement 3.1 Assume K = 2, as the dimension of the hypervectors d increases, the worst-case
prediction accuracy decreases with the following rate:

Accw2,d = 2 inf
θ1,θ2

sup
θ̂1,θ̂2

Ex

[
1{θ1·x>θ2·x}1{θ̂1·x>θ̂2·x}

]

= inf
θ1,θ2

sup
θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]

= 1−
arccos( 1√∑d

j=1(
√
j−

√
j−1)2

)

π
→ 1

2
, d → ∞

3



Under review as a conference paper at ICLR 2023

Figure 1: Worst-case Accuracy Accw2,d Figure 2: Average-case Accuracy Acc2,d

The first equality is by the symmetry of distribution X . The second equality is the evaluation of
expectation over X and the detail is given in Lemma A.1. For the third equality, the proof is given
in Lemma A.3 and Lemma A.4.

In the next statement, we further consider the average-case. Assume the prior distribution P for
θ1, ...θK ∼ U [0, 1]d. We can define the average accuracy in the following expression:

AccK,d := Eθ1,θ2,...,θK∼P sup
θ̂1,θ̂2,...,θ̂K

Ex

[ K∑
i=1

∏
j ̸=i

1{θi·x>θj ·x}1{θ̂i·x>θ̂j ·x}

]
.

Statement 3.2 Assume K = 2, as the dimension of the hypervectors d increases, the average case
prediction accuracy decreases:

AccK,d = Eθ1,θ2∼U [0,1]d sup
θ̂1,θ̂2

Ex

[
1{θ1·x>θ2·x}1{θ̂1·x>θ̂2·x}

]

= Eθ1,θ2∼U [0,1]d sup
θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]

= Eθ1,θ2∼U [0,1]d

[
1−

arccos
(
supdj=1

∑j
i=1 |θ1−θ2|(i)√
j∥θ1−θ2∥

)
π

]
.

Here |θ1 − θ2|(i) denotes the i-th maximum coordinate for vector |θ1 − θ2|.

As the exact expression for the average-case accuracy is harder to evaluate, we do the Monte Carlo
simulation which sampling θ1 and θ2 1000 times to evaluate the expectation form. We then show
the curve of AccwK,d and AccK,d over dimension from 1 to 1000 in Figure 1 and 2. It is easy to
find that a high dimension for HDCs is not necessary for both the worst-case and average-case, the
upper bound of accuracy will drop slowly when the dimension increases.

According to Tax & Duin (2002), we can approximate multi-class case where K ≥ 3 by one-
against-one binary classification. Therefore, we define the quasi-accuracy of K-class classification
as follows:

Quasi-AccK,d =

∑
i ̸=j Accij2,d

K(K − 1)
,

where Accij2,d can be either the average-case or worst-case accuracy that distinguishes class i and j.
Since the accuracy Accij2,d for binary classification decreases as the dimension increase, the quasi-
accuracy follows the same trend.

4



Under review as a conference paper at ICLR 2023

3.2 DIMENSION-ORTHOGONALITY ANALYSIS

For strict orthogonality, we first construct a Hadamard matrix sequence {Hk} (Horadam, 2012) as
followed:

H0 = [1];

H1 =

[
H0 H0

H0 −H0

]
;

...

Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
.

According to the definition of Hadamard matrix, if we take n rows from H⌈log2 n⌉, we can find n hy-
pervectors with strict orthogonality in 2⌈log2 n⌉-dimensional space. Then, we can give the following
statement:

Statement 3.3 Dimension d of only 2⌈log2 n⌉ is needed to find n strictly orthogonal hypervectors,
which indicates the unnecessity of high dimension.

Further, if the Hadamard conjecture (Horadam, 2012) holds (for each positive integer k, there exists
a Hadamard matrix of order 4k), the number d can be bounded above by n+ 3.

We then consider the quasi-orthogonality since there is no enforcement of strict orthogonality in
HDC’s practice.

Definition 3.1 (ε−quasiorthogonality) For two unit vectors x and y, we call them quasi-
orthogonal:

|xT y| ≤ ε.

Based on the definition and recent progress on quasi-orthogonality (Kainen & Krkova, 2020) (shown
in A.1), we can draw the following conclusion:

Statement 3.4 If orthogonality has been relaxed to ε-quasiorthogonality for ε ∈ (0, 1), the number
of d-dimensional vectors with ε-quasiorthogonality is exponential with respect to the dimension:

n = O(ec(ε)d).

Here c(ε) is a constant related to ε.

Both Statement 3.3 and 3.4 indicate that even in the low dimension case, it is still feasible to find
hypervectors with high (quasi-)orthogonality.

4 METHODS

As shown in Figure 3, we first combine a kernel-based binary encoder with a fully-connected layer
and train the whole network with cross-entropy loss function. Since the whole structure is binary,
the straight-through estimator (STE) (Bengio et al., 2013) is used for back-propagation. Next, the
fully-connected layer is replaced with a majority rule for power-saving. Weight sharing indicates that
we use the same weights before and after we replacing the FC layer with the majority rule. Then,
representations of each class Rc can be obtained with Equation 1. To improve Rc, we train the
combination of the binary encoder and majority rule with STE (Algorithm 2 Step 1) and recompute
the final representations Rc of each class c. Finally, all hypervectors are trained with Algorithm 2
Step 2 for higher detection accuracy.

4.1 BINARY KERNEL-BASED ENCODER

The binary kernel-based encoder is composed of k binary neural netwrok (BNN) style layers. Unlike
the standard BNNs whose input is in floating point numbers, both the input and activation values

5



Under review as a conference paper at ICLR 2023

Training Data

Layer 1

...

Layer k

FC

STE

Training Data

Layer 1

...

Layer k

Weight 

Encoder

Majority Rule

Testing Data

Layer 1

...

Layer k

Majority Rule

Training

STE

Froze

EncoderTransferring 

...

...

...

...

Training Data

Encoder

HyperVector

Similarty Check

Inference

Figure 3: Workflow of Our HDC.

used in our structure have been quantized to 0 and 1. Since the information transmitted among layers
is binary, we can replace the multiplication operations with addition operations. In particular, we
only need to sum up the weights whose corresponding inputs are 1. Weights whose corresponding
inputs are 0 can be ignored. For each neuron i at layer l, if the sum up if higher than 1, a ‘1’ is
output. Otherwise, we output 0. Mathematically, :

xl
i =

0, (
∑n

j=0 w
l
i,j,xl−1

j =1
+ bli) ≤ 1

1, (
∑n

j=0 w
l
i,j,xl−1

j =1
+ bli) > 1

(2)

, where xl
i indicates the output of layer l at neuron i, wl

i,j and bli indicates the weight and bias at
layer l (j is the index of neurons in l − 1 layer, and i is the neuron index at l th layer.), wi,j,xl−1=1

indicates the weight whose corresponding inputs xl−1 are 1.

G(x) is the gradient for the backpropagation. However, because the whole function is not continuous
and not differentiable at the turning points, we use the method of the straight-through estimator to
simulate the gradient. Thus G(x) is set as 1 to make the whole network trainable: G(x) ≈ 1.

After the training, we remove the fully connected layer and run the encoder to generate the binary
representation Rb

c of each class. The majority rule is used here, shown in Algorithm 1.

Algorithm 1 representation Generation:

Require: N number of training data x;
Ensure: Trained binary encoder E; Repre-

sentation Rc for class c with dimension
of d;Binary Representation Rb

c; Outputs
of encoder y; Pre-defined Threshold θ;

1: y = E(x); Rc = 0
2: for i = 1 to N do
3: Rc[i]+ = yc
4: end for
5: for i = 1 to d do
6: if Rc[i] > θ then
7: Rb

c[i] = 1
8: else
9: Rb

c[i] = 0
10: end if
11: end for

Algorithm 2 HDC Retraining:

Require: Training data x with label Rc;
Trained Encoder E; N training epochs.

1: Step1:
2: for epoch= 1 to N do
3: y = E(x)
4: L = mse(y, Rb

c) //Bp: STE
5: end for

6: Step2:
7: y = E(x)
8: if y! = Rb

c then
9: Rccorrect+ = lr ∗ y

10: Rcwrong
− = lr ∗ y

11: end if
12: Generate Rb

c (Algorithm 1, line 5-9)

6



Under review as a conference paper at ICLR 2023

4.2 RETRAINING

Here, we introduce a two-step retraining method. As shown in Algorithm 2, training data are first
sent to the encoder in batches. The mean squared error is used as the loss function to update weights
in the encoder. Then, we freeze the encoder and update the representation of each class. If the
output y is wrongly detected as class cwrong which should belong to class ccorrect, we minus the
representation of wrong class Rcwrong by the multiplication of learning rate and y. Meanwhile, we
add the representation of the correct class Rcright

by the multiplication of the learning rate and y as
well. Then, the modified Rc are sent to Algorithm 1 to generate the binary representation Rb

c.

4.3 INFERENCE

As we have already computed the representation of each class, we can simply compare the similarity
between the resulting hypervector (computed by sending the test data to the same encoder) and
the representation of all classes. Then, we output the class with the highest similarity. We turn
the value of 0 in Rb

c to −1 and do the inner product for similarity check. Orthogonality of the
resulting representation Rc can be evaluated with Equation 3. The closer Ō is to 0, the better the
orthogonality.

Ō =
1

K(K − 1)

∑
c1 ̸=c2

|Rb
c1 ∗R

b
c2

T |
d

(3)

5 RESULTS

We have implemented our schemes in CUDA-accelerated (CUDA 11.7) PyTorch version 1.13.0. The
experiments were performed on an Intel Xeon E5-2680 server with two NVIDIA A100 Tensor Core
GPUs and one GeForce RT 3090 GPU, running 64-bit Linux 5.15. MNIST dataset2 and CIFAR103

are used in our experiments.

5.1 A CASE STUDY OF OUR TECHNOLOGIES

Here, we will describe how our approaches improve the digit recognition task step by step.

5.1.1 TRAINING THE ENCODER

We build a three-layer binary kernel-based encoder to enhance the HDC model. For each layer, we
set the output channel number as 32, kernel size as 6, and stride as 2.

We first discuss the relationship between the pre-defined threshold mentioned in Algorithm 1 with
accuracy. As shown in Figure 4, running on the MNIST dataset, taking the hypervector dimension
of 16 as an example (full ablation studies are shown in the Appendix), we find that the threshold
has good robustness against the noise. The detection accuracy remains almost the same when the
threshold varies from 500 to 5000 (the max number in Rc after encoder without majority rule is
around 6500) and good orthogonality is also achieved.

We further consider the relationship between the dimension and inference accuracy with the most
suitable threshold. As shown in Figure 5, we can achieve an HDC accuracy of 96.82/97.23% with
a dimension of only 32 and 64. Also, the accuracy will drop when the dimension is higher than 128,
which is consistent with Statement 3.1.

5.1.2 HDC RETRAINING

Thus far, we have shown how we can achieve the-state-of-art HDC accuracy with the smallest hy-
pervector dimension. We can in fact improve the results using retraining techniques we will describe
in this section. For example, with a dimension of 32, we can push the accuracy to 96.88% with our

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html

7



Under review as a conference paper at ICLR 2023

Figure 4: Threshold Study. The orthogonality is
measured using Equation 3

Figure 5: Dimension Study

two-step training (0.05% and 0.01% accuracy improvement with steps 1 and 2, respectively). How-
ever, as shown in Figure 5, there is almost no accuracy drop after replacing the fully-connected layer
with the majority rule, which indicates accuracy improvement after retraining may not be signifi-
cant for the MNIST datasets. Therefore, we will explore our retraining methods on the CIFAR-10
dataset. Using the same hypervector dimension, a baseline accuracy (trained encoder+majority rule)
of 38.42% was achieved. After retraining step 1 and step 2, the accuracy has improved by 0.21%
and 0.42% respectively. The final accuracy increased to 39.05% in a matter of minutes.

5.2 EXPERIMENTAL RESULTS

Our full set of experiment results is shown in Table 1 where we compare our accuracy, dimension,
and number of operations with other state-of-the-art HDC models. In this paper, HDC accuracies of
96.88% and 97.23% with d = 32 and 64 were achieved for the MNIST dataset. We also applied our
techniques to a larger dataset to test whether they work in more complex situations. For the CIFAR-
10 dataset, an HDC accuracy of 39.05% with d = 32 was achieved with 1.17M computations.
When we increase the dimension to 128, we can achieve an HDC accuracy of 46.18% with 4.34M
computations.

A number of state-of-the-art HDC works were chosen for comparison. TD-HDC, proposed by
Chuang et al. (2020), is a threshold-based framework to dynamically choose an execution path.
They can improve the accuracy-energy efficiency trade-off and achieve an HDC accuracy of 88.92%
on MNIST with their pure binary HD model. Hassan et al. (2021) used a basic HDC model on the
MNIST dataset in their case study. They encoded the pixels based on their black/white value and
used majority sum operation in the training stage to combine similar samples. They achieved an
HDC accuracy of 86% on the MNIST dataset. HDC is also used in federated learning and secure
learning. FL-HDC by Hsieh et al. (2021) focused on the combination of HDC and federated learn-
ing. They introduced the polarized model into the federated learning field to reduce communication
costs and managed to control the accuracy drop by retraining. 88% accuracy was achieved on the
MNIST dataset. SecureHD (Imani et al., 2019b) adapted a novel encoding and decoding method to
perform securely learning tasks with the idea of HDC. Their accuracy on the MNIST dataset was
95% for federated training. More recently, LeHDC (Duan et al., 2022), by transferring the HDC
classifier into the binary neural network, has used the learning-based HDC to achieve 94.74% on the
MNIST dataset and 46.10% on the CIFAR-10 dataset. QuantHD (Imani et al., 2019a) and SearcHD
(Imani et al., 2019c) are two methods that introduce multi-model and retraining into the HDC field.
In LeHDC, they report the accuracy of the CIFAR-10 dataset with the methods of QuantHD and
SearcHD as baselines, which are 22.66% and 28.42%. Compared with HDC, binary neural net-
works always require additional multiplication operations at least in the first layer because of the
floating point input, which is much more expensive and was not considered in our comparison.

For inference, cosine similarity and Hamming distance are used in most state-of-the-art works. Since
cosine distance requires additional multiplication and division operations which are quite expensive,

8



Under review as a conference paper at ICLR 2023

we chose Hamming distance instead. The number of operations in Hamming distance is linearly
proportional to the dimension of the hypervectors, which indicates that our method only needs 0.32%
operations compared with other HDCs with a dimension of 10,000.

Table 1: Comparison with related works.

Accuracy Dimension Inference
Encoder addition/Boolean op count Similarity
MNIST

SearcHD 84.43% 10,000 7.84M/7.84M Hamming
FL-HDC 88% 10,000 7.84M/7.84M Cosine
TD-HDC 88.92% 5,000 3.92M/3.92M Hamming
QuantHD 89.28% 10,000 7.84M/7.84M Hamming
LeHDC 94.74% 10,000 7.84M/7.84M Hamming
SecureHD 95% 10,000 7.84M/7.84M Cosine
This work 96.88% 32 1.15M/0 Hamming
This work 97.23% 64 1.19M/0 Hamming

CIFAR-10
SearcHD 22.66% 10,000 10.24M/10.24M Hamming
QuantHD 28.42% 10,000 10.24M/10.24M Hamming
LeHDC 46.10% 10,000 10.24M/10.24M Hamming
This work 39.05% 32 1.17M/0 Hamming
This work 46.18% 128 4.34M/0 Hamming

6 DISCUSSION

Our analysis of the relationship between orthogonality and the number of classes also affects the
results. This has been largely ignored in other HDC works. Taking the MNIST dataset as an ex-
ample, the state-of-the-art works use hypervectors of dimensions 5,000 to 10,000 to ‘distinguish’
pixel values that range from 0 to 255. However, if quantization is applied to input data and a proper
encoder is used to extract the information from the original picture, theoretically, a much smaller
dimension (K reduced to 10 because the MNIST dataset has 10 labels) is needed. This also explains
why our method and other HDCs cannot work on more complex datasets like ImageNet where the
number of classes is large.

7 CONCLUSION

In this paper, we considered the dimension of the hypervectors used in HDC. We presented a detailed
analysis of the relationship between dimension and accuracy as well as the relationship between
dimension and orthogonality to demonstrate that it is not necessary to use high dimension to get a
good performance in HDC. We showed that it is the orthogonality that affects accuracy. Previous
works have been using high dimensions to achieve higher orthogonal because they used randomly
drawn hypervectors. We showed that the orthogonality required to solve the problem can be achieved
without resorting to high dimensions. As a result, we can reduce the dimensions from the tens of
thousands used by the state-of-the-art to merely tens, while achieving the same level of accuracy.
Computing operations during inference have been reduced to a tenth of that in traditional HDCs.
Running on the MNIST dataset, we achieved an HDC accuracy of 96.88% using a dimension of
only 32. All our results are reproducible using the code we have made public.

REFERENCES

Fatemeh Asgarinejad, Anthony Thomas, and Tajana Rosing. Detection of epileptic seizures from
surface EEG using hyperdimensional computing. In 2020 42nd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 536–540. IEEE, 2020.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013.

9



Under review as a conference paper at ICLR 2023

Yu-Chuan Chuang, Cheng-Yang Chang, and An-Yeu Andy Wu. Dynamic hyperdimensional com-
puting for improving accuracy-energy efficiency trade-offs. In 2020 IEEE Workshop on Signal
Processing Systems (SiPS), pp. 1–5. IEEE, 2020.

Shijin Duan, Yejia Liu, Shaolei Ren, and Xiaolin Xu. LeHDC: Learning-based hyperdimensional
computing classifier. arXiv preprint arXiv:2203.09680, 2022.

E Paxon Frady, Denis Kleyko, Christopher J Kymn, Bruno A Olshausen, and Friedrich T
Sommer. Computing on functions using randomized vector representations. arXiv preprint
arXiv:2109.03429, 2021.

Eman Hassan, Yasmin Halawani, Baker Mohammad, and Hani Saleh. Hyper-dimensional comput-
ing challenges and opportunities for AI applications. IEEE Access, 2021.

Kathy J Horadam. Hadamard matrices and their applications. Princeton University Press, 2012.

Cheng-Yen Hsieh, Yu-Chuan Chuang, and An-Yeu Andy Wu. FL-HDC: Hyperdimensional comput-
ing design for the application of federated learning. In 2021 IEEE 3rd International Conference
on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–5. IEEE, 2021.

Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna, Sahand Salamat, Jan M
Rabaey, and Tajana Rosing. QuantHD: A quantization framework for hyperdimensional com-
puting. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39
(10):2268–2278, 2019a.

Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Messerly, Patric Liu, Farinaz Koushanfar, and
Tajana Rosing. A framework for collaborative learning in secure high-dimensional space. In
2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 435–446. IEEE,
2019b.

Mohsen Imani, Xunzhao Yin, John Messerly, Saransh Gupta, Michael Niemier, Xiaobo Sharon Hu,
and Tajana Rosing. SearcHD: A memory-centric hyperdimensional computing with stochastic
training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39
(10):2422–2433, 2019c.

Paul C Kainen and Vera Krkova. Quasiorthogonal dimension. In Beyond traditional probabilistic
data processing techniques: Interval, fuzzy etc. Methods and their applications, pp. 615–629.
Springer, 2020.

Peer Neubert, SteKanervafan Schubert, and Peter Protzel. An introduction to hyperdimensional
computing for robotics. KI-Künstliche Intelligenz, 33(4):319–330, 2019.

Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing. In Proceedings of the 2016 international symposium
on low power electronics and design, pp. 64–69, 2016.

Sahand Salamat, Mohsen Imani, Behnam Khaleghi, and Tajana Rosing. F5-HD: Fast flexible
FPGA-based framework for refreshing hyperdimensional computing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 53–62, 2019.

Kenny Schlegel, Peer Neubert, and Peter Protzel. A comparison of vector symbolic architectures.
Artificial Intelligence Review, 55(6):4523–4555, 2022.

Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, binarized bundling, and combi-
national associative memory. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 15(4):1–25, 2019.

David MJ Tax and Robert PW Duin. Using two-class classifiers for multiclass classification. In
2002 International Conference on Pattern Recognition, volume 2, pp. 124–127. IEEE, 2002.

Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. Theoretical foundations of hyperdimen-
sional computing. arXiv preprint arXiv:2010.07426, 2020.

Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher De Sa. Understanding hyperdimensional com-
puting for parallel single-pass learning. arXiv preprint arXiv:2202.04805, 2022.

10



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 ABLATION STUDY

We show the full threshold study with dimensions varied from 8 to 1024:

Figure 6: Threshold Study

A.2 LEMMA AND PROOF

Lemma A.1

Ex

[
1{θ1·x>θ2·x}1{θ̂1·x>θ̂2·x}

]
=

1

2
(1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2

π
).

Proof. Consider the plane spanned by vector θ1 − θ2 and θ̂1 − θ̂2 and the projection of x to this
plane, the two indicator function requires the angle < Px, θ1 − θ2 > and angle < Px, θ̂1 − θ̂2 >
to be smaller than π

2 . Evaluating the expectation over X is equivalent to evaluating the intersection

region of two semicircles. Therefore the result is
π−arccos(

(θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

2π .

Lemma A.2 When the coordinates of vector ∆θ are ordered by absolute value: 1 ≥ |∆θ1| ≥
|∆θ2| ≥ · · · ≥ |∆θd|. Then we have the following equality:

sup
∆θ̂∈{−1,0,1}d

∆θ ·∆θ̂

∥∆θ∥2∥∆θ̂∥2
= sup

1≤j≤d
{
∑j

i=1 |∆θj |√
j∥∆θ∥2

}.

Proof. By the definition of the supremum, iterate over the list ∆θ̂ ∈ [e1, e1 + e2, . . . , e1 + e2 +
· · ·+ ed], ei is the unit vector with the same sign as ∆θi, we know

sup
∆θ̂∈{−1,0,1}d

∆θ ·∆θ̂

∥∆θ∥2∥∆θ̂∥2
≥ sup

1≤j≤d
{
∑j

i=1 |∆θj |√
j∥∆θ∥2

}.

Now we show the ≤ part. We show that when the ∆θ’s coordinates are ordered, the optimal ∆θ̂ is
of the form

(sign(∆θ1), . . . , sign(∆θj), 0, . . . , 0).

For any ∆θ̂ with norm
√
j,

∆θ ·∆θ̂ ≤
j∑

i=1

|∆θj |.

11



Under review as a conference paper at ICLR 2023

Therefore,

sup
∆θ̂∈{−1,0,1}d

∆θ ·∆θ̂

∥∆θ∥2∥∆θ̂∥2
= sup

j
sup

|∆θ̂|=
√
j,

∆θ ·∆θ̂

∥∆θ∥2∥∆θ̂∥2
≤ sup

1≤j≤d
{
∑j

i=1 |∆θj |√
j∥∆θ∥2

}.

Lemma A.3

inf
θ1,θ2

sup
θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]
≤ 1−

arccos( 1√∑d
j=1(

√
j−

√
j−1)2

)

π
.

Proof. We will show the ≤ part by construction. Set θ1 = (1,
√
2 −

√
1, . . . ,

√
d −

√
d− 1), θ2 =

(0, 0, . . . , 0). According to the Lemma A.2 and the monotonicity of arccos function, we have

inf
θ1,θ2

sup
θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]
≤ sup

θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]

= 1−
arccos(supθ̂1,θ̂2

θ1−θ2)·(θ̂1−θ̂2)

|θ1−θ2||θ̂1−θ̂2)|
)

π

= 1−
arccos( 1√∑d

j=1(
√
j−

√
j−1)2

)

π
.

Lemma A.4

inf
θ1,θ2

sup
θ̂1,θ̂2

[
1−

arccos( (θ1−θ2)·(θ̂1−θ̂2)

∥θ1−θ2∥2∥θ̂1−θ̂2∥2
)

π

]
≥ 1−

arccos( 1√∑d
j=1(

√
j−

√
j−1)2

)

π
.

Proof. If there exists θ∗1 , θ
∗
2 such that the LHS is smaller than 1 −

arccos( 1√∑d
j=1

(
√

j−
√

j−1)2
)

π , by
monotonicity we know

C0 := sup
θ̂1,θ̂2

(θ∗1 − θ∗2) · (θ̂1 − θ̂2)

|θ∗1 − θ∗2 || θ̂1 − θ̂2 |
<

1√∑d
j=1(

√
j −

√
j − 1)2

=: Cd.

Denote ∆θ∗ = θ∗1 − θ∗2 . Without loss of generality, we assume ∆θ∗ ∈ [0, 1]d, ∥∆θ∗∥2 = 1 and

∆θ∗1 ≥ ∆θ∗2 ≥ · · · ≥ ∆θ∗d.

Starting from ∆θ∗1 , . . . ,∆θ∗d, we construct another feasible solution ∆θ1, . . . ,∆θd without increas-
ing the corresponding supremum value beyond C0. However, if we compare ∆θ1, . . . ,∆θd element-
wisely with (

√
k −

√
k − 1)C0, 1 ≤ k ≤ d, the first ∆θk that is not equal to (

√
k −

√
k − 1)C0 is

greater than (
√
k −

√
k − 1)C0, this gives us the contradiction to the C0’s definition.

Also notice
∑d

i=1(∆θ∗i )
2 = 1, C0 < Cd, there always exists index k satisfying ∆θ∗k > (

√
k −√

k − 1)C0.

Assume the first θi that is not equal to (
√
i −

√
i− 1)C0 is still smaller than (

√
i −

√
i− 1)C0.

By the above paragraph, we can find the first θk, k > i with θ∗k > (
√
k −

√
k − 1)C0.

Then we adjust (θ∗i , θ
∗
k) to ((

√
i −

√
i− 1)C0,

√
(θ∗i )

2 + (θ∗k)
2 − (

√
i−

√
i− 1)2C2

0 ). We
can verify that the assumed inequalities continue to hold. (There are cases for (θ∗i )

2 +

12



Under review as a conference paper at ICLR 2023

(θ∗k)
2 − (

√
i −

√
i− 1)2C2

0 ≤ (
√
k −

√
k − 1)2C2

0 , then we just end this modification with

(
√

(θ∗i )
2 + (θ∗k)

2 − (
√
k −

√
k − 1)2C2

0 , (
√
k −

√
k − 1)C0) and then repeat the procedure. )

As the above procedure repeats, number #{k|θk = (
√
k−

√
k − 1)C0} is strictly increased. When

it stopped, the first non-(
√
k −

√
k − 1)C0 term is larger than the (

√
k −

√
k − 1)C0 and this gives

us the contradiction.

Definition A.1 (Hadamard matrix) A Hadamard matrix is a square matrix with each entry being
1 or −1 and whose rows are mutually orthogonal.

HHT = dId.

Theorem A.1 (Kainen & Krkova, 2020) The ε-quasiorthogonal dimension of Rd,

dimε(d) := max{|X| : X ⊂ Sn−1, x ̸= y ∈ X ⇒ |x · y| ≤ ε} ≥ edε
2/2.

A.3 WORKFLOW OF TRADITIONAL HDCS

Testing Data

Majority Rule

...

Training Data

Encoder

HyperVector

Similarty Check

Inference

Majority Rule

Training

Encoder

Figure 7: Workflow of Traditional HDC.

, where Rb
c indicates the binary final representation of each class c.

A.4 EXPLANATION OF THE LOW ACCURACY FOR LOW-DIMENSION (d ≤ 64) IN NUMERICAL
EXPERIMENTS

As can be seen from Figure 1, 2 and Figure 5, the current Statement 3.1 and 3.2 do not predict the
low accuracy for dimension d ≤ 64. This is caused by the breaking down of the assumption that
data can be embedded in a d-dimensional linearly separable unit ball.

Consider a different setup in that the underlying dimension for data is fixed to be m. Each class is
defined to be:

Ci = {x ∈ Bm|θi · x > θj · x, j ̸= i}, 1 ≤ i ≤ K.

Assume that the linear projection of data from m-dimensional linearly separable unit ball to d-
dimensional (d < m) space in a coordinate-wise approach. It is equivalent to optimizing over the
following hypervector set

Θco1,...,cod = {θ|θi ∈ {0, 1}, i ∈ {co1, . . . , cod}; θi = 0, i ̸∈ {co1, . . . , cod}},

Here co1, . . . , cod are the coordinates index of the projected space.

13



Under review as a conference paper at ICLR 2023

The worst-case K-classes prediction accuracy of the m-dimensional data projected onto a d-
dimensional subspace is

AccwK,m,d := inf
θ1,θ2,...,θK∈[0,1]m

sup
co1,...,cod

sup
θ̂1,θ̂2,...,θ̂K∈Θco1,...,cod

Ex

[ K∑
i=1

∏
j ̸=i

1{θi·x>θj ·x}1{θ̂i·x>θ̂j ·x}

]
≤ AccwK,m,d+1

≤ AccwK,m.

The monotonicity comes from the fact that the two supremums are taken over a monotonic hyper-
vector set Θ sequence.

When we randomly project the high-dimensional data into a low-dimensional space, the accuracy of
the majority rule suffers from two types of error, namely, misclassification and misrepresentation.

Here the misclassification error refers to the error from approximating a d-dimensional linearly
separable data while the misrepresentation error refers to the error caused by the difference between
the projected distribution from the m-dimensional unit ball and a d-dimensional uniform distribution
over the unit ball.

The misclassification error is characterized by the Statement 3.1 and 3.2. However, when the dimen-
sion d is small, the misrepresentation error can be much larger. This explains the left part (d ≤ 64)
of the curves in our numerical experiments.

A.5 ADDITIONAL NUMERICAL RESULTS

Here we provide the numerical results when the weights in encoder is changed from floats to inte-
gers. The results in Table 2 shows that performance does not degenerate when the integer weights
are used in the encoder.

Table 2: Additional numerical results for integer encoder weights on MNIST.

Dimension Accuracy
16 90.83%
32 95.12%
64 95.63%
128 95.73%

14


	Introduction
	Background
	High dimensions are not necessary
	Dimension-accuracy analysis
	Dimension-orthogonality analysis

	Methods
	Binary Kernel-based Encoder
	Retraining
	Inference

	Results
	A case study of our technologies
	Training the Encoder
	HDC Retraining

	Experimental Results

	Discussion
	Conclusion
	Appendix
	Ablation study
	Lemma and proof
	Workflow of Traditional HDCs
	Explanation of the low accuracy for low-dimension (d 64) in numerical experiments
	Additional numerical results


