
OTOv3: Towards Automatic Sub-Network Search
Within General Super Deep Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Existing neural architecture search (NAS) methods typically rely on pre-specified1

super deep neural networks (super-networks) with handcrafted search spaces be-2

forehand. Such requirements make it challenging to extend them onto general3

scenarios without significant human expertise and manual intervention. To over-4

come the limitations, we propose the third generation of Only-Train-Once (OTOv3).5

OTOv3 is perhaps the first automated system that trains general super-networks and6

produces high-performing sub-networks in the one shot manner without pretraining7

and fine-tuning. Technologically, OTOv3 delivers three noticeable contributions8

to minimize human efforts: (i) automatic search space construction for general9

super-networks; (ii) a Hierarchical Half-Space Projected Gradient (H2SPG) that10

leverages the dependency graph to ensure the network validity during optimization11

and reliably produces a solution with both high performance and hierarchical group12

sparsity; and (iii) automatic sub-network construction based on the super-network13

and the H2SPG solution. Numerically, we demonstrate the effectiveness of OTOv314

on a variety of super-networks, including StackedUnets, SuperResNet, and DARTS,15

over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10,16

and SVNH. The sub-networks computed by OTOv3 achieve competitive even17

superior performance compared to the super-networks and other state-of-the-arts.18

1 Introduction19

Deep neural networks (DNNs) have achieved remarkable success in various fields, which success is20

highly dependent on their sophisticated underlying architectures (LeCun et al., 2015; Goodfellow21

et al., 2016). To design effective DNN architectures, human expertise have handcrafted numerous22

popular DNNs such as ResNet (He et al., 2016) and transformer (Vaswani et al., 2017). However,23

such human efforts may not be scalable enough to meet the increasing demands for customizing24

DNNs for diverse tasks. To address this issue, Neural Architecture Search (NAS) has emerged to25

automate the network creations and reduce the need for human expertise (Elsken et al., 2018).26

Among current NAS studies, gradient-based methods (Liu et al., 2018; Yang et al., 2020; Xu et al.,27

2019; Chen et al., 2021b) are perhaps the most popular because of their efficiency. Such methods28

build an over-parameterized super-network covering all candidate connections and operations, param-29

eterize operations via introducing auxiliary architecture variables with weight sharing, then search a30

(sub)optimal sub-network via formulating and solving a multi-level optimization problem.31

Despite the advancements in gradient-based methods, their usage is still limited due to certain32

inconvenience. In particular, their automation relies on manually determining the search space for a33

pre-specified super-network beforehand, and requires the manual introduction of auxiliary architecture34

variables onto the prescribed search space. To extend these methods onto other super-networks, the35

users still need to manually construct the search pool, then incorporate the auxiliary architecture36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



variables along with building the whole complicated multi-level optimization training pipeline. The37

whole process necessitates significant domain-knowledge and engineering efforts, thereby being38

inconvenient and time-consuming for users. Therefore, it is natural to ask whether we could reach an39

Objective. Given a general super-network, automatically generate its search space, train it once, and40

construct a sub-network that achieves a dramatically compact architecture and high performance.41

OTOv3 OTOv2 Other NAS
General DNNs ✓ ✓ ✗
Autonomy ✓ ✓ ✓–

Remove Connections ✓ ✗ ✓
Remove Operations ✓ ✗ ✓
Slim Operations ✓† ✓ ✗
† Support while is not the focus and discussed in this work.

Achieving the objective is severely challenging in terms42

of both engineering developments and algorithmic de-43

signs, consequently not achieved yet by the existing44

NAS works to the best of our knowledge. However, the45

objective has been recently achieved in an analogous46

task so-called structured pruning (Lin et al., 2019) by47

the second generation of Only-Train-Once framework (OTOv2) (Chen et al., 2021a, 2023). From48

the perspective of computational graph, the standard NAS could be considered as removing entire49

redundant connections (cutting edges) and operations (vertices) from super-networks. Structured50

pruning can be largely interpreted as a complementary NAS that removes the redundancy inside each51

vertex (slims operations) but preserves all the connections. OTOv2 first achieves the objective in the52

view of structured pruning that given a general DNN, automatically trains it only once to achieve53

both high performance and a slimmer model architecture without pre-training and fine-tuning.54

OTOv3 Library Usage
1 from only_train_once import OTO
2 # General Super-Network
3 oto = OTO(super_net, cut_edges=True)
4 optimizer = oto.h2spg()
5 # Train as normal
6 optimizer.step()
7 oto.construct_subnet(cut_edges=True)

We now build the third-generation of Only-Train-Once55

(OTOv3) that reaches the objective from the perspective56

of the standard NAS. OTOv3 automatically generates a57

search space given a general super-network, trains and58

identifies redundant connections and vertices, then builds59

a sub-network that achieves both high performance and60

compactness. As the library usage presented aside, the61

whole procedure can be automatically proceeded, dramatically reduce the human efforts, and fit for62

general super-networks and applications. Our main contributions can be summarized as follows.63

• Infrastructure for Automated General Super-Network Training and Sub-Network Searching.64

We propose OTOv3 that perhaps the first automatically trains and searches within a general super-65

network to deliver a compact sub-network by erasing redundant connections and operations in the66

one-shot manner. As the previous OTO versions, OTOv3 trains the super-network only once without67

the need of pre-training and fine-tuning and is pluggable into various deep learning applications.68

• Automated Search Space Generation. We propose a novel graph algorithm to automatically69

explore and establish a dependency graph given a general super-network, then analyze the de-70

pendency to form a search space consisting of minimal removal structures. The corresponding71

trainable variables are then partitioned into so-called generalized zero-invariant groups (GeZIGs).72

• Hierarchical Half-Space Projected Gradient (H2SPG). We propose a novel H2SPG optimizer73

that perhaps the first solves a hierarchical structured sparsity problem for general DNNs. H2SPG74

computes a solution xH2SPG
∗ of both high performance and desired hierarchical group sparsity75

in the manner of GeZIGs. Compared to other optimizers, H2SPG considers the hierarchy of76

dependency graph to produce sparsity for ensuring the validness of the subsequent sub-network.77

• Automated Sub-Network Construction. We propose a novel graph algorithm to automatically78

construct a sub-network upon the super-network parameterized as x∗
H2SPG. The resulting sub-79

network returns the exact same outputs as the super-network thereby no need of further fine-tuning.80

• Experimental Results. We demonstrate the effectiveness of OTOv3 on extensive super-networks81

including StackedUnets, SuperResNet and DARTS, over benchmark datasets including CIFAR10,82

Fashion-MNIST, ImageNet, STL-10, and SVNH. OTOv3 is the first framework that could auto-83

matically deliver compact sub-networks upon general super-networks to the best of our knowledge.84

Meanwhile the sub-networks exhibit competitive even superior performance to the super-networks.85

2 Related Work86

Neural Architecture Search (NAS). Early NAS works utilized reinforcement learning and evolu-87

tion techniques to search for high-quality architectures (Zoph & Le, 2016; Pham et al., 2018; Zoph88

et al., 2018), while they were computationally expensive. Later on, differentiable (gradient-based)89

2



methods were introduced to accelerate the search process. These methods start with a super-network90

covering all possible connection and operation candidates, and parameterize them with auxiliary91

architecture variables. They establish a multi-level optimization problem that alternatingly updates92

the architecture and network variables until convergence (Liu et al., 2018; Chen et al., 2019; Xu et al.,93

2019; Yang et al., 2020; Hosseini & Xie, 2022). However, these methods require a significant amount94

of handcraftness from users in advance to manually establish the search space, introduce additional95

architecture variables, and build the multi-level training pipeline. The sub-network construction is96

also network-specific and not flexible. All requirements necessitate remarkable domain-knowledge97

and expertise, making it difficult to extend to general super-networks and broader scenarios.98

Automated Structured Pruning for General DNNs. Structure pruning is an orthogonal but related99

paradigm to standard NAS. Rather than removing entire operations and connections, it focuses on100

slimming individual vertices (Han et al., 2015). Similarly, prior structure pruning methods also101

required numerous handcraftness and domain knowledge, which limited their broader applicability.102

However, recent methods such as OTOv2 (Chen et al., 2023) and DepGraph (Fang et al., 2023) have103

made progress in automating the structure pruning process for general DNNs. OTOv2 is a one-shot104

method that does not require pre-training or fine-tuning, while DepGraph involves a multi-stage105

training pipeline that requires some manual intervention. In this work, we propose the third-generation106

version of OTO that enables automatic sub-network searching and training for general super-networks.107

108
Hierarchical Structured Sparsity Optimization. We formulate the underlying optimization109

problem of OTOv3 as a hierarchical structured sparsity problem. Its solution possesses high group110

sparsity indicating redundant structures and obeys specified hierarchy. There exist deterministic111

optimizers solving such problems via introducing latent variables (Zhao et al., 2009), while are112

impractical for stochastic DNN tasks. Meanwhile, stochastic optimizers rarely study such problem.113

In fact, popular stochastic sparse optimizers such as HSPG (Chen et al., 2021a), DHSPG (Chen et al.,114

2023), proximal methods (Xiao & Zhang, 2014) and ADMM (Lin et al., 2019) overlook the hierarchy115

constraint. Incorporating them into OTOv3 typically delivers invalid sub-networks. Therefore, we116

propose H2SPG that considers graph dependency to solve it for general DNNs.117

3 OTOv3118

OTOv3 is an automated one-shot system that trains a general super-network and constructs a sub-119

network. The produced sub-network is not only high-performing but also has a dramatically compact120

architecture that is suitable for various shipping environments. The entire process minimizes the need121

for human efforts and is suitable for general DNNs. As outlined in Algorithm 1, given a general super-122

networkM, OTOv3 first explores and establishes a dependency graph. Upon the dependency graph,123

a search space is automatically constructed and corresponding trainable variables are partitioned124

into generalized zero-invariant groups (GeZIGs) (Section 3.1). A hierarchical structured sparsity125

optimization problem is then formulated and solved by a novel Hierarchical Half-Space Projected126

Gradient (H2SPG) (Section 3.2). H2SPG considers the hierarchy inside the dependency graph and127

computes a solution x∗
H2SPG of both high-performance and desired hierarchical group sparsity over128

GeZIGs. A compact sub-networkM∗ is finally constructed via removing the structures corresponding129

to the identified redundant GeZIGs and their dependent structures (Section 3.3).M∗ returns the exact130

same output as the super-network parameterized as x∗
H2SPG, eliminating the need of fine-tuning.131

Algorithm 1 Outline of OTOv3.

1: Input: A general DNNM as super-network to be trained and searched (no need to be pretrained).
2: Automated Search Space Construction. Establish dependency graph and partition the trainable

parameters ofM into generalized zero-invariant groups GGeZIG and the complementary GCGeZIG.
3: Train by H2SPG. Seek a high-performing solution x∗

H2SPG with hierarchical group sparsity.
4: Automated Sub-NetworkM∗ Construction. Construct a sub-network upon x∗

H2SPG.
5: Output: Constructed sub-networkM∗ (no need to be fine-tuned).

3.1 Automated Search Space Construction132

The foremost step is to automatically construct the search space for a general super-network. However,133

this process presents significant challenges in terms of both engineering developments and algorithmic134

designs due to the complexity of DNN architecture and the lack of sufficient public APIs. To overcome135

3



Conv1 BN1Input

Conv2 BN2

Conv3 BN3

Conv5 BN5

MaxPool

Conv4 BN4AvgPool

Concat Conv6 Conv7 BN7

Conv8 BN8

Linear1AvgPool Output

(a) A demo super-network (DemoSupNet) to be trained and search.

Input Conv1-BN1

Conv5-BN5

Conv7-BN7

Conv8-BN8

Output

Conv2-BN2

MaxPool-Conv3-BN3

AvgPool-Conv4-BN4

Concat Conv6

AvgPool-Linear1

(b) Dependency Graph.
K̂2 K̂3 K̂4 K̂5 K̂6 K̂7 K̂8b2 b3 b4γ2 β2 β3γ3 γ4 β4 γ5 γ7 γ8β5 β7 β8

GC

GeZIG
= {g1, g9}

g2 g3 g4 g5 g6 g7 g8

K̂1 γ1 β1

g1

W1

g9

GGeZIG = {g2, g3, · · · , g8}G = GGeZIG

⋃
GC

GeZIG

(c) Generalized Zero-Invariant Groups.

Figure 1: Automated Search Space Construction. K̂i and bi are the flatten filter matrix and bias vector
for Conv-i, respectively. γi and βi are the weight and bias vectors for BN-i. Wi is the weight
matrix for Linear-i. The columns of K̂6 are marked in accordance to its incoming segments.

these challenges, we propose a concept called generalized zero-invariant group (GeZIG) and formulate136

the search space construction as the GeZIG partition. We have also developed a dedicated graph137

algorithm to automatically conduct the GeZIG partition for general super-networks.138

Generalized Zero-Invariant Group (GeZIG). The key of search space construction is to figure139

out the structures that can be removed from the super-network. Because of diverse roles of operations140

and their complicated connections inside a DNN, removing an arbitrary structure may cause the141

remaining DNN invalid. We say a structure removal if and only if the DNN after removing it is still142

valid. A removal structure is further said minimal if and only if it does not contain multiple removal143

structures. Zero-Invariant Group (ZIG) is proposed in (Chen et al., 2021a, 2023) that describes a144

class of minimal removal structures satisfying a zero-invariant property, i.e., if all variables in ZIG145

equal to zero, then no matter what the input is, the output is always as zero. ZIG depicts the minimal146

removal structure inside each operation and is the key for realizing automatic one-shot structured147

pruning. We generalize ZIG as GeZIG that describes a class of minimal removal structures satisfying148

the zero-invariant property but consists of entire operations. More illustrations regarding ZIG versus149

GeZIG are present in Appendix. For simplicity, throughout the paper, the minimal removal structure150

is referred to the counterpart consisting of operations in entirety. Consequently, automated search151

space construction becomes how to automatically explore the GeZIG partition for general DNNs.152

Automated GeZIG Partition. As specified in Algorithm 2, automated GeZIG partition involves153

two main stages. The first stage explores the super-networkM and establishes a dependency graph154

(Vd, Ed). The second stage leverages the affiliations inside the dependency graph to find out minimal155

removal structures, then partitions their trainable variables to form GeZIGs. For intuitive illustrations,156

we elaborate the algorithm through a small but complex demo super-network depicted in Figure 1a.157

Dependency Graph Construction.Dependency Graph Construction. Given a super-networkM, we first construct its trace graph (V, E)158

displayed as Figure 1a (line 3 in Algorithm 2), where V represents the set of vertices (operations) and159

E represents the connections among them. As OTOv2 (Chen et al., 2023), we categorize the vertices160

into stem vertices, joint vertices, accessory vertices, and unknown vertices. Stem vertices refer to the161

operations that contain trainable variables and can transform the input tensors into different shapes,162

e.g., Conv and Linear. The accessory vertices are the operations that may not have trainable163

variables and have an single input, e.g., BN and ReLU. Joint vertices aggregate multiple inputs into a164

single output, e.g., Add and Concat. The remaining vertices are considered as unknown.165

4



Algorithm 2 Automated Search Space Construction.

1: Input: A super-networkM to be trained and searched.
2: Dependency graph construction.
3: Construct the trace graph (E ,V) ofM.
4: Initialize an empty graph (Vd, Ed).
5: Initialize queue Q ← {S(v) : v ∈ V is adjacent to the input of trace graph}.
6: while Q ≠ ∅ do
7: Dequeue the head segment S from Q.
8: Grow S in the depth-first manner till meet either joint vertex or multi-outgoing vertex v̂.
9: Add segments into Vd and connections into Ed.

10: Enqueue new segments into the tail of Q if v̂ has outgoing vertices.
11: Find minimal removal structures.
12: Get the incoming vertices V̂ for joint vertices in the (Vd, Ed).
13: Group the trainable variables in the vertex v ∈ V̂ as gv .
14: Form GGeZIG as the union of the above groups, i.e., GGeZIG ← {gv : v ∈ V̂}.
15: Form GCGeZIG as the union of the trainable variables in the remaining vertices.
16: Return trainable variable partition G = GGeZIG∪GCGeZIG and dynamic dependency graph (Vd, Ed).

We begin by analyzing the trace graph (V, E) to create a dependency graph (Vd, Ed), wherein each166

vertex in Vd serves as a potential minimal removal structure candidate. To proceed, we use a queue167

container Q to track the candidates (line 5 of Algorithm 2). The initial elements of this queue are168

the vertices that are directly adjacent to the input ofM, such as Conv1. We then traverse the graph169

in the breadth-first manner, iteratively growing each element (segment) S in the queue until a valid170

minimal removal structure candidate is formed. The growth of each candidate follows the depth-first171

search to recursively expand S until the current vertices are considered as endpoints. The endpoint172

vertex is determined by whether it is a joint vertex or has multiple outgoing vertices, as indicated173

in line 8 of Algorithm 2. Intuitively, a joint vertex has multiple inputs, which means that the DNN174

may be still valid after removing the current segment. This suggests that the current segment may175

be removable. On the other hand, a vertex with multiple outgoing neighbors implies that removing176

the current segment may cause some of its children to miss the input tensor. For instance, removing177

Conv1-BN1 would cause Conv2, MaxPool and AvgPool to become invalid due to the absence178

of input in Figure 1a. Therefore, it is risky to remove such candidates. Once the segment S has been179

grown, new candidates are initialized as the outgoing vertices of the endpoint and added into the180

container Q (line 10 in Algorithm 2). Such procedure is repeated until the end of graph traversal.181

Ultimately, a dependency graph (Vd, Ed) is created, as illustrated in Figure 1b.182

Form GeZIGs.Form GeZIGs. We proceed to identify the minimal removal structures in (Vd, Ed) to create the GeZIG183

partition. The qualified instances are the vertices in Vd that have trainable variables and all of their184

outgoing vertices are joint vertices. This is because a joint vertex has multiple inputs and remains185

valid even after removing some of its incoming structures, as indicated in line 12 in Algorithm 2.186

Consequently, their trainable variables are grouped together into GeZIGs (line 13-14 in Algorithm 2187

and Figure 1c). The remaining vertices are considered as either unremovable or belonging to a188

large removal structure, which trainable variables are grouped into the GCGeZIG (the complementary189

to GGeZIG). As a result, for the super-networkM, all its trainable variables are encompassed by the190

union G = GGeZIG ∪ GCGeZIG, and the corresponding structures in GGeZIG constitute its search space.191

3.2 Hierarchical Half-Space Projected Gradient (H2SPG)192

Given a super-networkM and its group partition G = GGeZIG ∪ GCGeZIG, the next is to jointly search193

for a valid sub-network M∗ that exhibits the most significant performance and train it to high194

performance. Searching a sub-network is equivalent to identifying the redundant structures in GGeZIG195

to be further removed and ensures the remaining network still valid. Training the sub-network196

becomes optimizing over the remaining groups in G to achieve high performance. We formulate a197

hierarchical structured sparsity problem to accomplish both tasks simultaneously as follows.198

minimize
x∈Rn

f(x), s.t. Cardinality(G0) = K, and (Vd/VG0 , Ed/EG0) is valid, (1)

where f is the prescribed loss function, G=0 := {g ∈ GGeZIG|[x]g = 0} is the set of zero groups in199

GGeZIG, which cardinality measures its size. K is the target group sparsity, indicating the number of200

5



Input Conv1-BN1

Conv5-BN5

Conv7-BN7

Conv8-BN8

Output

Conv2-BN2

MaxPool-Conv3-BN3

AvgPool-Conv4-BN4

Concat Conv6

AvgPool-Linear1

disconnected

Figure 2: Check validness of redundant candidates. Target group sparsity K = 3. Conv7-BN7 has
larger redundancy score than Conv2-BN2. Dotted vertices are marked as redundant candidates.

GeZIGs that should be identified as redundant. The redundant GeZIGs are projected onto zero, while201

the important groups are preserved as non-zero and optimized for high performance. A larger K202

dictates a higher sparsity level that produces a more compact sub-network with fewer FLOPs and203

parameters. (Vd/VG0 , Ed/EG0) refers to the graph removing vertices and edges corresponding to204

zero groups G0. This graph being valid is specified for NAS that requires the zero groups distributed205

obeying the hierarchy of super-network to ensure the resulting sub-network functions correctly.206

Problem (1) is difficult to solve due to the non-differential and non-convex sparsity constraint and207

the graph validity constraint. Existing optimizers such as DHSPG (Chen et al., 2023) overlook the208

architecture evolution and hierarchy during the sparsity exploration, which is crucial to (1). In fact,209

they are mainly applied for pruning tasks, where the connections and operations are preserved (but210

become slimmer). Consequently, employing them onto (1) usually produces invalid sub-networks.211

Algorithm 3 Hierarchical Half-Space Projected Gradient

1: Input: initial variable x0 ∈ Rn, initial learning rate α0,
warm-up steps Tw, target group sparsity K, momentum
ω, dependency graph (Vd, Ed) and group partitions G.

2: Warm-up Phase.
3: for t = 0, 1, · · · , Tw − 1 do
4: Calculate gradient estimate∇f(xt) or its variant.
5: Update next iterate xt+1 ← xt − αt∇f(xt).
6: Calculate redundancy score st,g for g ∈ GGeZIG.
7: Update sg ← ωsg + (1− ω)st,g for g ∈ GGeZIG.
8: Construct Gr and GCr given scores, G, (Vd, Ed), and K.
9: Hybrid Training Phase.

10: for t = Tw, Tw + 1, · · · , do
11: Compute gradient estimate∇f(xt) or its variant.
12: Update [xt+1]GC

r
as [xt − αt∇f(xt)]GC

r
.

13: Select proper λg for each g ∈ Gr.
14: Compute [x̃t+1]Gr

via subgradient descent of ψ.
15: Perform Half-Space projection over [x̃t+1]Gr

.
16: Update [xt+1]Gr

← [x̃t+1]Gr
.

17: Return the final iterate x∗
DHSPG+.

Outline of H2SPG. To effectively212

solve problem (1), we propose a novel213

H2SPG to consider the hierarchy and214

ensure the validness of graph architec-215

ture after removing redundant vertices216

and connections during the optimiza-217

tion process. To the best of our knowl-218

edge, H2SPG is the first the optimizer219

that successfully solves such hierar-220

chical structured sparsity problem (1),221

which outline is stated in Algorithm 3.222

H2SPG is built upon the DHSPG in223

OTOv2 but with dedicated designs224

regarding the hierarchical constraint.225

In general, H2SPG is a hybrid multi-226

phase optimizer that first partitions227

the groups of variables into impor-228

tant and potentially redundant seg-229

ments, then employs specified updat-230

ing mechanisms onto different seg-231

ments to achieve a solution with both232

desired hierarchical group sparsity233

and high performance. The variable partition considers the hierarchy of dependency graph (Vd, Ed) to234

ensure the validness of the resulting sub-network graph. Vanilla stochastic gradient descent (SGD) or235

its variant such as Adam (Kingma & Ba, 2014) optimizes the important variables to achieve the high236

performance. Half-space gradient descent (Chen et al., 2021a) identifies redundant groups among the237

candidates and projects them onto zero without sacrificing the objective function to the largest extent.238

Warm-Up Phase.Warm-Up Phase. To proceed, H2SPG first warms up all variables by conducting SGD or its variants239

Tw steps (line 4-5 in Algorithm 3). During each warm-up step t, a redundancy score of each group240

g ∈ GGeZIG is computed upon the current iterate xt and exponentially averaged by a momentum241

coefficient ω (line 6-7 in Algorithm 3). Larger redundancy score indicates the group exhibits less242

prediction power, thus may be redundant. The redundancy score calculation is modular, where we243

follow DHSPG to consider the cosine similarity between negative gradient −[∇f(xt)]g and the244

projection direction −[x]g as well as the average variable magnitude. After warm-up, the redundancy245

scores of all groups in GGeZIG are sorted. We then perform a sanity check and select the groups with246

top-K redundancy scores as the redundant group candidates Gr ⊆ GGeZIG. The complementary groups247

6



Input Conv1-BN1

Conv5-BN5

Conv7-BN7

Conv8-BN8

Output

Conv2-BN2

MaxPool-Conv3-BN3

AvgPool-Conv4-BN4

Concat Conv6

AvgPool-Linear1

(a) Identified redundant structures.
K̂2 K̂3b2 b3γ2 β2 β3γ3

g2 g3

K̂6

g6

K̂8 γ8 β8

g8

[x∗

DHSPG
]g2∪g3∪g8 = 0

(b) Redundant generalized zero-invariant groups.

Conv1 BN1Input

Conv5 BN5

Conv4 BN4AvgPool Conv6

Conv7BN7Linear1 AvgPoolOutput

(c) Constructed sub-network.

Figure 3: Redundant removal structures idenfitications and sub-network construction.

with lower redundancy scores are marked as important ones and form GCr := G/Gr. The sanity check248

verifies whether the remaining graph is still connected after removing a vertex. If so, the current249

vertex is added into Gr; otherwise, the subsequent vertex is turned into considerations. As illustrated250

in Figure 2, though Conv7-BN7 has a larger redundancy score than Conv2-BN2, Conv2-BN2 is251

marked as potentially redundant but not Conv7-BN7 since there is no path connecting the input and252

the output of the graph after removing Conv7-BN7. This mechanism largely guarantees that even if253

all redundant candidates are erased, the resulting sub-network is still functioning as normal.254

Hybrid Training Phase.Hybrid Training Phase. H2SPG then engages into the hybrid training phase to produce desired group255

sparsity over Gr and optimize over GCr for pursuing excellent performance till the convergence. This256

phase mainly follows DHSPG (Chen et al., 2023), and we briefly describe the steps for completeness.257

In general, for the important groups of variables in GCr , the vanilla SGD or its variant is employed to258

minimize the objective function to the largest extent (line 11-12 in Algorithm 3). For redundant group259

candidates in Gr, we formulate a relaxed non-constrained subproblem as (2) to gradually reduce the260

magnitudes without deteriorating the objective and project groups onto zeros only if the projection261

serves as a descent direction for the objective during the training process (line 13-16 in Algorithm 3).262

minimize
[x]Gr

ψ([x]Gr
) := f ([x]Gr

) +
∑
g∈Gr

λg ∥[x]g∥2 , (2)

where λg is a group-specific regularization coefficient and dedicately selected as DHSPG. H2SPG263

then performs a subgradient descent of ψ over [x]Gr , followed by a Half-Space projection (Chen264

et al., 2021a) to effectively produce group sparsity with the minimal sacrifice of the objective function.265

At the end, a high-performing solution x∗
H2SPG with desired hierarchical group sparsity is returned.266

3.3 Automated Sub-Network Construction.267

We finally construct a sub-network M∗ upon the super-network M and the solution x∗
H2SPG by268

H2SPG. The solution x∗
H2SPG should attain desired target hierarchical group sparsity level and achieve269

high performance. As illustrated in Figure 3, we first traverse the graph to remove the entire vertices270

and the related edges fromM corresponding to the redundant GeZIGs being zero, e.g., Conv2-BN2,271

MaxPool-Conv3-BN3 and Conv8-BN8 are removed due to [x∗
H2SPG]g2∪g3∪g8 = 0. Then, we272

traverse the graph in the second pass to remove the affiliated structures that are dependent on the273

removed vertices to keep the remaining operations valid, e.g., the first and second columns in K̂6274

are erased since its incoming vertices Conv2-BN2 and MaxPool-Conv3-BN3 has been removed275

(see Figure 3b). Next, we recursively erase unnecessary vertices and isolated vertices. Isolated276

vertices refer to the vertices that have neither incoming nor outgoing vertices. Unnecessary vertices277

refer to the skippable operations, e.g., Concat and Add (between Conv7 and AvgPool) become278

unnecessary. Ultimately, a compact sub-networkM∗ is constructed as shown in Figure 3c. By the279

definition of GeZIGs, the redundant GeZIGs (have been projected onto zeros) contribute none to the280

model outputs. Consequently, theM∗ returns the exact same output as the super-networkM with281

x∗
H2SPG, which avoids the necessity of further fine-tuning the sub-network.1282

1Remark here that the sub-network is still compatible to be fine-tuned afterwards if needed.

7



4 Numerical Experiments283

In this section, we employ OTOv3 to one-shot automatically train and search within general super-284

networks to construct compact sub-networks with high performance. The numerical demonstrations285

cover extensive super-networks including DemoSupNet shown in Section 3, StackedUnets (Ron-286

neberger et al., 2015; Chen et al., 2023), SuperResNet (He et al., 2016; Lin et al., 2021), and287

DARTS (Liu et al., 2018), and benchmark datasets, including CIFAR10 (Krizhevsky & Hinton,288

2009), Fashion-MNIST (Xiao et al., 2017), ImageNet (Deng et al., 2009), STL-10 (Coates et al.,289

2011) and SVNH (Netzer et al., 2011). More implementation details of experiments and OTOv3290

library and limitations are provided in Appendix A. The dependency graphs and the constructed sub-291

networks are depicted in Appendix C. Ablation studies regarding H2SPG is present in Appendix D.292

Table 1: OTOv3 on extensive super-networks and datasets.
Backend Dataset Method FLOPs (M) # of Params (M) Top-1 Acc. (%)

DemoSupNet Fashion-MNIST Baseline 209 0.82 84.9
DemoSupNet Fashion-MNIST OTOv3 107 0.45 84.7
StackedUnets SVNH Baseline 184 0.80 95.3
StackedUnets SVNH OTOv3 115 0.37 96.1

DARTS (8 cells) STL-10 Baseline 614 4.05 74.6
DARTS (8 cells) STL-10 OTOv3 127 0.64 75.1

DemoSupNet on Fashion-MNIST. We first experiment with the DemoSupNet presented as Fig-293

ure 1a on Fashion-MNIST. OTOv3 automatically establishes a search space of DemoSupNet and294

partitions its trainable variables into GeZIGs. H2SPG then trains DemoSupNet from scratch and295

computes a solution of high performance and hierarchical group-sparsity over GeZIGs, which is296

further utilized to construct a compact sub-network as presented in Figure 3c. As shown in Table 1,297

compared to the super-network, the sub-network utilizes 54% of parameters and 51% of FLOPs to298

achieve a Top-1 validation accuracy 84.7% which is negligibly lower than the super-network by 0.2%.299

StackedUnets on SVNH. We then consider a StackedUnets over SVNH. The StackedUnets is300

constructed by stacking two standard Unets (Ronneberger et al., 2015) with different down-samplers301

together, as depicted in Figure 5a in Appendix C. We employ OTOv3 to automatically build302

the dependency graph, establish the search space, and train by H2SPG. H2SPG identifies and303

projects the redundant structures onto zero and optimize the remaining important ones to attain304

excellent performance. As displayed in Figure 5c, the right-hand-side Unet is disabled due to305

node-72-node-73-node-74-node-75 being zero.2 The path regarding the deepest depth for306

the left-hand-side Unet, i.e., node-13-node-14-node-15-node-19, is marked as redundant307

as well. The results by OTOv3 indicate that the performance gain brought by either composing multi-308

ple Unets in parallel or encompassing deeper scaling paths is not significant. OTOv3 also validates309

the human design since a single Unet with properly selected depths have achieved remarkable success310

in numerous applications (Ding et al., 2022; Weng et al., 2019). Furthermore, as presented in Table 1,311

the sub-network built by OTOv3 uses 0.37M parameters and 115M FLOPs which is noticeably lighter312

than the full StackedUnets meanwhile significantly outperforms it by 0.8% in validation accuracy.313

DARTS (8-Cells) on STL-10. We next employ OTOv3 on DARTS over STL-10. DARTS is a314

complicated super-network consisting of iteratively stacking multiple cells (Liu et al., 2018). Each315

cell is constructed by spanning a graph wherein every two nodes are connected via multiple operation316

candidates. STL-10 is an image dataset for the semi-supervising learning, where we conduct the317

experiments by using its labeled samples. DARTS has been well explored in the recent years.318

However, the existing NAS methods studied it based on a handcrafted search space beforehand to319

locally pick up one or two important operations to connect every two nodes. We now employ OTOv3320

on an eight-cells DARTS to automatically establish its search space, then utilize H2SPG to one shot321

train it and search important structures globally as depicted in Figure 6c of Appendix C. Afterwards,322

a sub-network is automatically constructed as drawn in Figure 6d of Appendix C. Quantitatively, the323

sub-network outperforms the full DARTS in terms of validation accuracy by 0.5% by using only324

about 15%-20% of the parameters and the FLOPs of the original super-network (see Table 1).325

2Recall the definition of GeZIG, if one GeZIG equals to zero, its output would be always zero given whatever
inputs. Therefore, node-72-node-73-node-74-node-75 only produces zero output even if its ancestor
vertices may have non-zero parameters. As a result, the right-hand-side Unet is completely disabled.

8



Table 2: OTOv3 over SuperResNet on CIFAR10.

Architecture Top-1 Acc (%) # of Params (M) Search Cost
(GPU days)

Zen-Score-1M(Lin et al., 2021) 96.2 1.0 0.4
Synflow† (Tanaka et al., 2020) 95.1 1.0 0.4
NASWOT† (Mellor et al., 2021) 96.0 1.0 0.5
Zen-Score-2M(Lin et al., 2021) 97.5 2.0 0.5
SANAS-DARTS (Hosseini & Xie, 2022) 97.5 3.2 1.2∗
ISTA-NAS(He et al., 2020) 97.5 3.3 0.1
CDEP (Rieger et al., 2020) 97.2 3.2 1.3∗
DARTS (2nd order) (Liu et al., 2018) 97.2 3.1 1.0
PrDARTS (Zhou et al., 2020) 97.6 3.4 0.2
P-DARTS (Chen et al., 2019) 97.5 3.6 0.3
PC-DARTS (Xu et al., 2019) 97.4 3.9 0.1
OTOv3-SuperResNet-1M 96.3 1.0 0.1
OTOv3-SuperResNet-2M 97.5 2.0 0.1
† Reported in (Lin et al., 2021).
∗ Numbers are approximately scaled based on (Hosseini & Xie, 2022).

SuperResNet on CIFAR10.326

Later on, we switch to a327

ResNet search space as Zen-328

NAS (Lin et al., 2021), re-329

ferred to as SuperResNet.330

SuperResNet is constructed331

by stacking several super-332

residual blocks with vary-333

ing depths. Each super-334

residual blocks contain mul-335

tiple Conv candidates with336

kernel sizes as 3x3, 5x5337

and 7x7 separately in paral-338

lel (see Figure 7a). We then339

employ OTOv3 to one-shot automatically produce two sub-networks with 1M and 2M parameters. As340

displayed in Table 2, the 1M sub-network by OTOv3 outperforms the counterparts reported in (Lin341

et al., 2021) in terms of search cost (on an NVIDIA A100 GPU) due to the efficient single-level342

optimization. The 2M sub-network could reach the benchmark over 97% validation accuracy. Remark343

here that OTOv3 and ZenNAS use networks of fewer parameters to achieve competitive performance344

to the DARTS benchmarks. This is because of the extra data-augmentations such as MixUp (Zhang345

et al., 2017) on this experiment by ZenNAS, so as OTOv3 to follow the same training settings.346

Table 3: OTOv3 over DARTS on ImageNet and comparison with state-of-the-art methods.
Architecture Test Acc. (%) # of Params (M) FLOPs (M) Search MethodTop-1 Top-5
Inception-v1 (Szegedy et al., 2015) 69.8 89.9 6.6 1448 Manual
ShuffleNet 2× (v2) (Ma et al., 2018) 74.9 – 5.0 591 Manual
NASNet-A (Zoph et al., 2018) 74.0 91.6 5.3 564 RL
MnasNet-92 (Tan et al., 2019) 74.8 92.0 4.4 388 RL
AmoebaNet-C (Real et al., 2019) 75.7 92.4 6.4 570 Evolution
DARTS (2nd order) (CIFAR10) (Liu et al., 2018) 73.3 91.3 4.7 574 Gradient
P-DARTS (CIFAR10) (Chen et al., 2019) 75.6 92.6 4.9 557 Gradient
PC-DARTS (CIFAR10) (Xu et al., 2019) 74.9 92.2 5.3 586 Gradient
SANAS (CIFAR10) (Hosseini & Xie, 2022) 75.2 91.7 – – Gradient
ProxylessNAS (ImageNet) (Cai et al., 2018) 75.1 92.5 7.1 465 Gradient
PC-DARTs (ImageNet) (Xu et al., 2019) 75.8 92.7 5.3 597 Gradient
ISTA-NAS (ImageNet) (Yang et al., 2020) 76.0 92.9 5.7 638 Gradient
OTOv3 on DARTS (ImageNet) 75.3 92.5 4.8 547 Gradient
(CIFAR10) / (ImageNet) refer to using either CIFAR10 or ImageNet for searching architecture. .

DARTS (14-Cells) on ImageNet. We finally present the benchmark DARTS super-network stacked347

by 14 cells on ImageNet. We employ OTOv3 over it to automatically figure out the search space which348

the code base required specified handcraftness in the past, train by H2SPG to figure out redundant349

structures, and construct a sub-network as depicted in Figure 8d. Quantitatively, we observe that350

the sub-network produced by OTOv3 achieves competitive top-1/5 accuracy compared to other351

state-of-the-arts as presented in Table 3. Remark here that it is engineeringly difficult yet to inject352

architecture variables and build a multi-level optimization upon a search space being automatically353

constructed and globally searched. The single-level H2SPG does not leverage a validation set as354

others to favor the architecture search and search over the operations without trainable variables, e.g.,355

skip connection, consequently the achieved accuracy does not outperform PC-DARTS and ISTA-NAS.356

We leave further accuracy improvement based on the automatic search space as future work.357

5 Conclusion358

We propose the third generation of Only-Train-Once framework (OTOv3). To the best of knowledge,359

OTOv3 is the first automated system that automatically establishes the search spaces for general360

super-networks, then trains the super-networks via a novel H2SPG optimizer in the one-shot manner,361

finally automatically produces compact sub-networks of high-performance. Meanwhile, H2SPG is362

also perhaps the first stochastic optimizer that effectively solve a hierarchical structured sparsity363

problem for deep learning tasks. OTOv3 further significantly reduces the human efforts upon the364

existing NAS works, opens a new direction and establishes benchmarks regarding the automated365

NAS for the general super-networks which currently require numerous handcraftness beforehand.366

9



References367

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task368

and hardware. arXiv preprint arXiv:1812.00332, 2018.369

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin370

Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning371

framework. In Advances in Neural Information Processing Systems, 2021a.372

Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic,373

generic, user-friendly. In The Eleventh International Conference on Learning Representations,374

2023.375

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging376

the depth gap between search and evaluation. In Proceedings of the IEEE/CVF international377

conference on computer vision, pp. 1294–1303, 2019.378

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive darts: Bridging the optimization gap for nas379

in the wild. International Journal of Computer Vision, 129:638–655, 2021b.380

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised381

feature learning. In Proceedings of the fourteenth international conference on artificial intelligence382

and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.383

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale384

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,385

pp. 248–255. Ieee, 2009.386

Tianyu Ding, Luming Liang, Zhihui Zhu, Tianyi Chen, and Ilya Zharkov. Sparsity-guided network387

design for frame interpolation. arXiv preprint arXiv:2209.04551, 2022.388

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture389

search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.390

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards391

any structural pruning. arXiv preprint arXiv:2301.12900, 2023.392

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.393

MIT press Cambridge, 2016.394

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks395

with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.396

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search397

via mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision398

and Pattern Recognition, pp. 11993–12002, 2020.399

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image400

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,401

2016.402

Ramtin Hosseini and Pengtao Xie. Saliency-aware neural architecture search. Advances in Neural403

Information Processing Systems, 35:14743–14757, 2022.404

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint405

arXiv:1412.6980, 2014.406

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,407

Department of Computer Science, University of Toronto, 2009.408

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,409

2015.410

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.411

Zen-nas: A zero-shot nas for high-performance deep image recognition. In 2021 IEEE/CVF412

International Conference on Computer Vision, ICCV 2021, 2021.413

10



Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via414

structure-sparsity regularized filter pruning. IEEE transactions on neural networks and learning415

systems, 31(2):574–588, 2019.416

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv417

preprint arXiv:1806.09055, 2018.418

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for419

efficient cnn architecture design. In Proceedings of the European conference on computer vision420

(ECCV), pp. 116–131, 2018.421

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without422

training. In International Conference on Machine Learning, pp. 7588–7598. PMLR, 2021.423

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading424

digits in natural images with unsupervised feature learning. 2011.425

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search426

via parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,427

2018.428

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image429

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,430

volume 33, pp. 4780–4789, 2019.431

Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are useful: penalizing432

explanations to align neural networks with prior knowledge. In International conference on433

machine learning, pp. 8116–8126. PMLR, 2020.434

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical435

image segmentation. In International Conference on Medical image computing and computer-436

assisted intervention, pp. 234–241. Springer, 2015.437

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-438

mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In439

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.440

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and441

Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the442

IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.443

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks444

without any data by iteratively conserving synaptic flow. Advances in neural information processing445

systems, 33:6377–6389, 2020.446

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz447

Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,448

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information449

Processing Systems, volume 30. Curran Associates, Inc., 2017.450

Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture search for medical451

image segmentation. IEEE access, 7:44247–44257, 2019.452

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking453

machine learning algorithms, 2017.454

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.455

SIAM Journal on Optimization, 24(4):2057–2075, 2014.456

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.457

Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint458

arXiv:1907.05737, 2019.459

11



Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas: Efficient and460

consistent neural architecture search by sparse coding. Advances in Neural Information Processing461

Systems, 33:10503–10513, 2020.462

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical463

risk minimization. arXiv preprint arXiv:1710.09412, 2017.464

Peng Zhao, Guilherme Rocha, and Bin Yu. The composite absolute penalties family for grouped and465

hierarchical variable selection. 2009.466

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Chu Hong Hoi. Theory-inspired path-467

regularized differential network architecture search. Advances in Neural Information Processing468

Systems, 33:8296–8307, 2020.469

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint470

arXiv:1611.01578, 2016.471

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures472

for scalable image recognition. In Proceedings of the IEEE conference on computer vision and473

pattern recognition, pp. 8697–8710, 2018.474

12


