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Abstract

Minimum Bayes-Risk (MBR) decoding is001
shown to be a powerful alternative to beam002
search decoding for a wide range of text gen-003
eration tasks. However, MBR requires a huge004
amount of time for inference to compute the005
MBR objective, which makes the method infea-006
sible in many situations where response time007
is critical. Confidence-based pruning (CBP)008
(Cheng and Vlachos, 2023) has recently been009
proposed to reduce the inference time in ma-010
chine translation tasks. Although it is shown to011
significantly reduce the amount of computation,012
it requires hyperparameter tuning using a devel-013
opment set to be effective. To this end, we pro-014
pose Adaptive Minimum Bayes-Risk (AMBR)015
decoding, a hyperparameter-free method to run016
MBR decoding efficiently. AMBR is derived017
from the observation that the problem of com-018
puting the sample-based MBR objective is the019
medoid identification problem. AMBR uses020
the Correlated Sequential Halving (CSH) algo-021
rithm (Baharav and Tse, 2019), the algorithm022
with the best performance guarantee to date for023
the medoid identification problem, to compute024
the sample-based MBR objective. We evaluate025
AMBR on machine translation, text summariza-026
tion, and image captioning tasks. The results027
show that AMBR achieves on par with CBP,028
with CBP selecting hyperparameters through029
an Oracle for each given computation budget.030

1 Introduction031

The goal of natural language generation is to gen-032

erate text representing structured information that033

is both fluent and contains the appropriate infor-034

mation. One of the key design decisions in text035

generation is the choice of decoding strategy. The036

decoding strategy is the decision rule used to gener-037

ate sequences from a probabilistic language model.038

Beam search has been widely used in many close-039

ended sequence generation tasks including machine040

translation (Wu et al., 2016; Ott et al., 2019; Wolf041

et al., 2020), text summarization (Rush et al., 2015; 042

Narayan et al., 2018), and image captioning (Ander- 043

son et al., 2017). However, beam search is known 044

to have several degeneration problems. For exam- 045

ple, Welleck et al. (2020) reports that beam search 046

can yield infinite-length outputs that the model as- 047

signs zero probability to. 048

Minimum Bayes-Risk (MBR) decoding has 049

recently gained attention as a decoding strategy 050

with the potential to overcome the problems of 051

beam search (Goodman, 1996; Kumar and Byrne, 052

2004; Eikema and Aziz, 2020, 2022; Freitag et al., 053

2022; Bertsch et al., 2023). Unlike beam search 054

which seeks to find the most probable output, MBR 055

decoding seeks to find the output that maximizes 056

the expected utility. MBR decoding involves two 057

steps. It first samples outputs from the probabilis- 058

tic model and then computes the utility between 059

each pair of outputs to find the hypothesis with the 060

highest expected utility. 061

One of the most important shortcomings of MBR 062

decoding is its speed. The computational complex- 063

ity of MBR decoding is O(N ·G+N2 ·U), where 064

N is the number of samples to be used, G is the 065

time to generate a sample, and U is the time to 066

evaluate the utility function. As the utility function 067

is typically a time-consuming neural metric such 068

as BLEURT and COMET (Sellam et al., 2020; Pu 069

et al., 2021; Rei et al., 2020, 2022), O(N2·U) is the 070

dominant factor of the computational complexity. 071

Confidence-based pruning (CBP) has recently 072

proposed to reduce the number of evaluations of the 073

utility function (Cheng and Vlachos, 2023). CBP is 074

shown to be effective in machine translation tasks, 075

significantly reducing the required computation us- 076

ing both lexical and neural utility functions with a 077

negligible drop in the quality. 078

Although CBP is shown to be efficient, the per- 079

formance of CBP is significantly influenced by the 080

choice of hyperparameters. As such, CBP requires 081

a development set for the tuning of these hyper- 082
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parameters. Additionally, CBP cannot dictate the083

speed at which it completes tasks. The hyperpa-084

rameters of CBP only offer indirect control over085

the number of evaluations.086

To this end, we propose Adaptive Minimum087

Bayes-Risk (AMBR) decoding, a hyperparameter-088

free algorithm to compute the sample-based MBR089

objective efficiently. AMBR reformulates the MBR090

objective as the medoid identification problem091

(Rdusseeun and Kaufman, 1987) and solves it us-092

ing the Correlated Sequential Halving (CSH) al-093

gorithm, the best algorithm to date to solve the094

medoid identification problem (Baharav and Tse,095

2019). The strength of AMBR is that it is free096

from hyperparameters. Unlike CBP where it needs097

to tune the hyperparameters to empirically deter-098

mine the best set of hyperparameters to achieve the099

desired trade-off between the speed and the qual-100

ity, AMBR determines the best resource allocation101

automatically from the computational budget spec-102

ified by the user.103

We evaluate the performance of AMBR in ma-104

chine translation, text summarization, and image105

captioning tasks. The empirical results show that106

AMBR is on par with CBP with Oracle hyperpa-107

rameters. They are roughly 4 to 8 times faster than108

MBR with a marginal drop in the output quality.109

The result indicates that using AMBR, MBR decod-110

ing can be run efficiently for a given computation111

budget specified on the fly without hyperparameter112

tuning on a development set.113

2 Background114

Conditional text generation is the task of gener-115

ating an output sequence h given an input se-116

quence x. Probabilistic text generators define a117

probability distribution Pmodel(h|x) over an out-118

put space of hypotheses Y . In this paper, we denote119

Pmodel(h|x) by Pmodel(h) for brevity. The goal of120

decoding is to find the highest-scoring hypothesis121

for a given input.122

One of the most common decision rules is123

maximum-a-posteriori (MAP) decoding. MAP de-124

coding finds the most probable output under the125

model:126

hMAP = argmax
h∈Y

Pmodel(h). (1)127

Although it seems intuitive to solve this MAP objec-128

tive, prior work has pointed out two critical prob-129

lems with this strategy. First, since the size of130

hypotheses set |Y| is extremely large, solving it131

exactly is intractable. Second, the MAP objective 132

often leads to low-quality outputs (Stahlberg and 133

Byrne, 2019; Holtzman et al., 2020; Meister et al., 134

2020). In fact, Stahlberg and Byrne (2019) shows 135

that hMAP is often the empty sequence in their 136

experiment setting. 137

As such, beam search is commonly used as a 138

heuristic algorithm to solve decoding problems 139

(Graves, 2012; Sutskever et al., 2014). Beam search 140

is known to generate higher-quality sequences than 141

MAP decoding in a wide range of tasks. Still, 142

prior work has reported the degeneration issues of 143

beam search such as repetitions and infinite-length 144

outputs (Cohen and Beck, 2019; Holtzman et al., 145

2020). 146

2.1 Minimum Bayes-Risk (MBR) Decoding 147

Unlike MAP decoding which searches for the 148

most probable output, MBR decoding seeks to 149

find the output that maximizes the expected util- 150

ity, thus minimizing the risk equivalently (Kumar 151

and Byrne, 2002, 2004). The procedure is made 152

of two components: a machine translation model 153

and a utility metric. The model Pmodel(y|x) esti- 154

mates the probability of an output y given an input 155

sentence x. The utility metric u(y,y′) estimates 156

the quality of a candidate translation y given a 157

reference translation y′. Given a set of candidate 158

hypothesesH ⊆ Y , we select the best hypothesis 159

according to its expected utility with respect to the 160

distribution of human references Phuman. 161

hhuman = argmax
h∈H

E
y∼Phuman

[u(h,y)]. (2) 162

Because Phuman is unknown, MBR instead uses the 163

model probability Pmodel to approximate Phuman: 164

hmodel = argmax
h∈H

E
y∼Pmodel

[u(h,y)]. (3) 165

For the rest of the paper, we denote Pmodel as P 166

for simplicity if not confusing. As integration over 167

Y is computationally intractable, Eq. (3) is approx- 168

imated by a Monte Carlo estimate (Eikema and 169

Aziz, 2022; Farinhas et al., 2023) using a pool of 170

referencesR sampled from P : 171

hMC = argmax
h∈H

1

|R|
∑
y∈R

u(h,y). (4) 172

In this paper, we investigate algorithms to compute 173

hMC efficiently. 174
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2.2 Computational Complexity of MBR175

Decoding176

The shortcoming of the MBR is that it requires177

a huge amount of computation at inference time.178

The computational complexity of MBR is O(|H ∪179

R| ·G+ |H||R| · U) where G is the upper bound180

of the time to generate a hypothesis, and U is the181

upper bound of the time to evaluate the utility func-182

tion for a pair of hypotheses (Eikema and Aziz,183

2022). Sample-based MBR typically uses the same184

set of hypotheses for the candidate set H and the185

reference poolR (H = R). In this way the compu-186

tational complexity is O(N ·G+N2 · U), where187

N = |H| = |R|. Thus, The bottleneck of the com-188

putation is typically the evaluation of the utility189

function.190

Several approaches have been proposed to im-191

prove the efficiency of MBR decoding before192

confidence-based pruning (Eikema and Aziz, 2022;193

Freitag et al., 2022). N-by-S (NbyS) seeks to194

reduce the total number of evaluations by reduc-195

ing the reference pool (Eikema and Aziz, 2022).196

Eikema and Aziz (2022) provides empirical ev-197

idence showing that increasing the number of198

candidates is more effective than increasing the199

number of references. The computational com-200

plexity of N-by-S with S′(< N) references is201

O(N · G + NS′ · U). Coarse-to-Fine (C2F) re-202

duces the size of the candidate and reference hy-203

potheses using a coarse utility function (Eikema204

and Aziz, 2022). It first runs coarse evaluation us-205

ing a faster utility function (e.g. non-neural lexical206

scoring function). It then selects the top-scoring207

hypotheses as a pruned candidate set and reference208

set. Finally, it runs the MBR decoding with the209

finer utility function using the pruned candidate210

and reference set to output the best hypothesis. In211

this way, the total computation required by C2F is212

O(N · G + N2 · U ′ + N ′S′ · U) where U ′ is the213

computational cost of the coarse utility function,214

N ′, S′(≤ N) are the size of the pruned candidate215

and reference set.216

Reference Aggregation (RA) computes the217

MBR score against aggregated reference represen-218

tations to reduce the computational complexity to219

O(N ·G+N ·UA), where UA is the upper bound220

on the complexity of evaluating the aggregated util-221

ity function (Vamvas and Sennrich, 2024). The222

shortcoming of RA is that it is not applicable to223

non-aggregatable utility functions. For example,224

MetricX-23 (Juraska et al., 2023) is a transformer-225

based metric where the input is a sequence of em- 226

beddings of the tokens instead of the embedding 227

of the whole sentence, making it non-aggregatable. 228

Another example is where the utility function in- 229

volves a reward function. See Appendix A for 230

details. 231

3 Confidence-Based Pruning (CBP) 232

Confidence-based pruning (CBP) is recently pro- 233

posed by Cheng and Vlachos (2023) to significantly 234

reduce the number of evaluations of the utility func- 235

tion. The idea is to iteratively evaluate the hypothe- 236

ses with a subset of the reference set to prune the 237

hypotheses not promising enough. 238

CBP keeps a current candidate setHi and a cur- 239

rent reference setRi during the run. The candidate 240

set starts from the whole candidates (H0 = H) 241

and the reference set starts empty (R0 = ∅). At 242

every iteration i, it draws samples and adds them to 243

the reference set until the size of the reference set 244

reaches the limit ri, where {ri} are hyperparame- 245

ters. Then it computes the incumbent best solution 246

h∗
i at i-th iteration: 247

h∗
i = argmax

h∈Hi

1

|Ri|
∑
y∈Ri

u(h,y). (5) 248

Then it generates a series of bootstrap reference 249

sets R̂b
i which is a with-replacement size-|R| re- 250

sample ofRi. Using a series of bootstrap reference 251

sets, it computes the estimated win ratio of each 252

hypothesis against h∗
i inHi: 253

w(h) =
1

B

B∑
b=1

1[
∑
y∈R̂b

i

u(h,y) ≥
∑
y∈R̂b

i

u(h∗
i ,y)],

(6) 254

where B is the number of bootstrap reference sets. 255

Then, it prunes all candidates from the candidate 256

set with the win ratio lower than 1− α, where α is 257

a hyperparameter. It repeats the process until the 258

size of the candidate set reaches 1 or the sample 259

size scheduler terminates. 260

Although CBP is shown to be significantly more 261

efficient than the standard MBR, there are several 262

shortcomings. First, it requires a hyperparameter 263

tuning using the development set. The sample size 264

scheduler ri and the confidence threshold α need to 265

be tuned to optimize the performance. The number 266

of bootstrap reference sets B is also a hyperparam- 267

eter that needs to be tuned according to the quality 268

and the speed trade-off. Note that the optimal set 269
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Algorithm 1: Adaptive MBR (AMBR)
(Correlated Sequential Halving for MBR)

Input: a set of candidatesH, referencesR, and a
budget T

Output: a hypothesis hAMBR

1: H0 ← H
2: R0 ← ∅
3: N = max(|H|, |R|)
4: for i = 0 to ⌈logN⌉ − 1 do
5: ti = min(max(⌊ T

|Hi|⌈logn⌉⌋, 1), n)
6: Let Ji be a set of ti − |Ri| references sam-

pled fromR \Ri without replacement
7: Ri+1 = Ji ∪Ri

8: for h ∈ Hi do
9: Û(h)← 1

|Ri+1|
∑

y∈Ri+1
u(h,y)

10: end for
11: if ti = n then
12: return argmaxh∈Hi

Û(h)
13: else
14: Let Hi+1 be the set of ⌈|Hi|/2⌉ candi-

dates inHi with the largest Û(h)
15: end if
16: end for
17: return argmaxh∈Hi Û(h)

of hyperparameters is influenced by the desired270

speed-up. If one wants to choose 2x speed-up and271

4x speed-up according to the situation, one needs272

to search for two sets of hyperparameters for each273

budget constraint. Additionally, CBP cannot give a274

budget constraint and optimize under that. Because275

the hyperparameters of CBP only indirectly control276

the number of evaluations it needs to finish, a user277

has no direct control over the desired speed-up.278

4 Adaptive Minimum Bayes Risk279

(AMBR) Decoding280

We propose Adaptive Minimum Bayes-Risk281

(AMBR) decoding, a variant of MBR that can effi-282

ciently compute the MBR objective under a budget283

on the maximum number of evaluations that a user284

can specify. The advantages of AMBR over CBP285

are twofold. First, AMBR has no hyperparame-286

ter. The schedules of the number of references287

and the candidates are automatically determined288

by the algorithm. Second, a user can enforce the289

upper bound of the computation budget to AMBR.290

AMBR enforces the budget constraint and the al-291

gorithm automatically schedules how to use the292

limited resource accordingly.293

AMBR is derived from the observation that 294

MBR decoding is the medoid identification prob- 295

lem (Kaufman and Rousseeuw, 1990): the problem 296

of computing hMC (Eq 4) is tantamount to deter- 297

mining the medoid of H. The medoid, denoted 298

as y∗, is defined as the point in a dataset Y that 299

minimizes the sum of distances to all other points:1 300

x = argmin
x∈X

∑
y∈Y

d(x,y). (7) 301

Let d = −u, X = H, and Y = R. Then, the 302

problem can be translated into the following: 303

y∗ = argmax
y∈H

∑
y′∈R

u(y,y′). (8) 304

This is exactly the objective defined in Eq. (4). 305

Our approach is to use the best algorithm pro- 306

posed so far for solving the medoid identification 307

problem and repurpose it for MBR decoding. The 308

algorithm with the best performance guarantee to 309

date for solving the medoid identification is the 310

Correlated Sequential Halving (CSH) algorithm 311

(Baharav and Tse, 2019). We describe the proce- 312

dure of AMBR in Algorithm 1. AMBR keeps a 313

current candidate setHi which starts withH and a 314

current reference set Ri which starts as an empty 315

set. First, it picks ti hypotheses from R and adds 316

them to the current reference setRi+1 where ti is 317

automatically determined by the number of candi- 318

dates and the budget. Then it computes u(h,y) for 319

all h in the current candidate setHi and for all y in 320

the current reference setRi+1. The average utility 321

of h ∈ Hi over the current reference set is stored in 322

Û(h). Then, it runs the halving operation, pruning 323

the lower half of the candidates according to the 324

current estimate Û . Ties are broken arbitrarily. It 325

repeats this process for up to ⌈logN⌉ − 1 times 326

and returns the candidate with the best estimate in 327

Hi at that point. 328

The procedure of Algorithm 1 is identical to 329

the procedure of CSH with modification to the no- 330

tations to place it in the context of the decoding 331

problem. Our contribution is the reinvention of 332

CSH which is proposed as a solution to the medoid 333

identification problem as a tool to compute the 334

MBR objective adaptively by converting the sum 335

of distances to the expected utility. 336

1The formulation of Eq. (7) represents the same class of
problem as the standard formulation of medoid identification
problem where it assumes X = Y . See Appendix B for the
details.
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4.1 Analytical Result337

CSH has a theoretical guarantee of the probability338

of choosing the hypothesis with the highest utility339

in its original form (Baharav and Tse, 2019). The340

original form of CSH is recovered by replacing341

Line 7 of Algorithm 1 with the following equation:342

Ri+1 = Ji. (9)343

In this way, AMBR inherits the theoretical guaran-344

tee of CSH:345

Lemma 1. Assuming T ≥ N logN , AMBR replac-346

ing Line 7 with Eq. (9) correctly identifies hMC347

with probability at least 1− logN exp(− T
logNC)348

where C is an instance dependent variable deter-349

mined by u andH.350

See Theorem 2.1. of Baharav and Tse (2019)351

for proof and a detailed description of the instance-352

dependent variable C.353

AMBR reuses the reference set from the previ-354

ous iteration so that all the available references are355

used to estimate the expected utility. Therefore, it356

is expected to perform better in practice than the357

CSH of its original form, as noted in Remark 1 in358

Baharav and Tse (2019).359

5 Experiments360

We evaluate the performance of the efficient MBR361

decoding algorithms on machine translation, text362

summarization, and image captioning tasks. We363

evaluate the performance of the MBR decoding al-364

gorithms under a budget constraint on the number365

of evaluations. We evaluate with a budget size of366

1/32, 1/16, 1/8, 1/4, 1/2 of N(N − 1), the num-367

ber of evaluations of the standard MBR with N368

samples.2 We use epsilon sampling with ϵ = 0.02369

as a sampling algorithm (Hewitt et al., 2022; Fre-370

itag et al., 2023). Temperature is fixed to 1.0. We371

use the same set of samples for all the algorithms.372

We compare the performance of (Standard)373

MBR, N-by-S (NbyS), Coarse-to-fine (C2F),374

confidence-based pruning (CBP), and AMBR. Stan-375

dard MBR refers to the implementation of MBR376

which uses the same set of samples for the candi-377

date and reference set. We run standard MBR with378

the number of samples N ′ ∈ {1...N}. The number379

of evaluations for standard MBR is N ′(N ′ − 1).380

We implement N-by-S in a way that uses all the381

samples H as the candidate set and reduces the382

size of references according to the budget. That383

2We assume u(h,h) is a constant for all h ∈ H.

is, it randomly subsamples S′ hypotheses fromH 384

to be the reference set so that S′ is the smallest 385

integer such that (N − 1)S′ ≥ T . For C2F, we 386

set S′ = N and N ′ to be the smallest integer 387

such that N ′(N − 1) ≥ T . We run a hyperpa- 388

rameter sweep for CBP to find the best hyperpa- 389

rameters. We search over r0 ∈ {1, 2, 4, 8} and 390

α ∈ {0.8, 0.9, 0.99}. Following Cheng and Vla- 391

chos (2023), we set the schedule of the size of the 392

references ri to double each step: ri = 2ir0. The 393

number of bootstrap reference sets is 500. We en- 394

force the budget constraint to CBP by terminating 395

the iteration once the number of evaluations reaches 396

T . We run CBP with each set of hyperparameters 397

on the test set to find the best hyperparameters. The 398

result of the hyperparameter search is described in 399

Appendix C. We observe that the best set of hyper- 400

parameters of CBP is dependent on the size of the 401

budget. As such, we report the Oracle score, the 402

best score over all combinations of hyperparame- 403

ters for each budget. AMBR is implemented as in 404

Algorithm 1 without using Eq. (9). Thus, Lemma 1 405

does not apply to the algorithm we evaluate in this 406

section. We run NbyS, CBP, and AMBR five times 407

for each budget size and report the average, mini- 408

mum, and maximum scores over the runs. 409

We use Huggingface’s Transformers library for 410

running all the experiments (Wolf et al., 2020). 411

All the experiments are conducted using publicly 412

available pretrained models and datasets for repro- 413

ducibility. Due to limitations in computational re- 414

sources, we evaluate the first 1000 entries of each 415

dataset. 416

5.1 Machine Translation 417

We evaluate the performance on machine trans- 418

lation tasks using WMT’21 test dataset. We use 419

German-English (De-En) and Russian-English (Ru- 420

En) language pairs. We use the WMT 21 X-En 421

model and M2M100 418M model to sample se- 422

quences for both language pairs (Tran et al., 2021; 423

Fan et al., 2021). We load the WMT 21 X-En 424

model in 4-bit precision to reduce the GPU mem- 425

ory consumption. We use COMET-20 as the utility 426

function and the evaluation metric (Rei et al., 2020). 427

We use the BLEU score as a coarse utility function 428

of C2F. 429

AMBR is on par with Oracle CBP Figure 1 430

shows the results with varying evaluation budgets 431

with a fixed number of samples (N = 64, 128) us- 432

ing the WMT 21 X-En model. We observe that 433
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Figure 1: COMET-20 score on WMT’21 De-En and Ru-En using the WMT 21 X-En model. The shaded regions
show the minimum and the maximum values over five runs. The horizontal axis shows the reduction in the number
of evaluations compared to the standard MBR with all samples.

AMBR achieves the best COMET score and the434

error rate compared to the others. The error rate435

is the ratio of selecting a hypothesis different from436

the standard MBR using all 128 (64) samples. It437

achieves almost the same score as the standard438

MBR with all samples within 1/4−1/8 number of439

evaluations, resulting in 4− 8 times speed up com-440

pared to standard MBR. We observe qualitatively441

the same result on the M2M100 model (see Ap-442

pendix D.3). Additional evaluations on WMT’21443

En-De and En-Ru are described in Appendix D.2.444

AMBR scales with the number of samples given445

enough budget To evaluate the scalability of446

AMBR on the number of samples, we evaluate the447

COMET scores with varying numbers of samples448

with a fixed amount of evaluation budgets using449

the M2M100 418M model. Figure 2 shows the450

COMET scores with varying numbers of samples451

with a fixed amount of evaluation budgets on De-452

En. The COMET score of AMBR scales with the453

number of samples if and only if the number of454

evaluations is large enough. This is to be expected455

as Lemma 1 only holds when the budget is large456

enough. The same trend is observed on Ru-En457

(Appendix D.4).458

5.2 Text Summarization 459

We evaluate the performance of AMBR on text 460

summarization tasks using SAMSum (Gliwa et al., 461

2019) and XSum dataset (Narayan et al., 2018). 462

We use BART models fine-tuned on each dataset 463

(Lewis et al., 2020). We use InfoLM (Colombo 464

et al., 2022) with the Fisher-Rao distance (Rao, 465

1987) as a utility function as it is shown to have 466

a high correlation with human judgment on text 467

summarization tasks. We generate N = 64 sam- 468

ples as a candidate set for each input. Following 469

Eikema and Aziz (2022), we use the F1 score of 470

the unigram as a coarse utility function of C2F. 471

The results are summarized in Figure 3. Despite 472

AMBR reduces the error rate significantly (Figure 473

3c and 3f), it only slightly improves upon standard 474

MBR with respect to InfoLM and ROUGE-L score 475

(Figure 3a, 3b, 3d, and 3e). We speculate that 476

this is because many of the top-scoring samples 477

are similar in quality measured by InfoLM and 478

ROUGE-L. 479

C2F can surpass the score of standard MBR 480

under conditions Interestingly, we observe that 481

C2F surpasses the performance of standard MBR 482
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Figure 2: Evaluation of AMBR with a varying number of samples with a fixed evaluation budget on WMT’21
De-En with COMET-20 score using the M2M100 418M model. The shaded regions show the minimum and the
maximum values over five runs.

with all samples on ROUGE-L for XSum dataset.483

We speculate that C2F may improve upon MBR484

because it effectively ensembles two utility func-485

tions. Because the F1 score of the unigram may be486

more aligned to ROUGE-L score than InfoLM is,487

it can pick sentences favored by ROUGE-L metric.488

As such, C2F can not only speed up the compu-489

tation of the MBR objective but also improve the490

alignment to the target metric.491

5.3 Image Captioning492

We evaluate the performance of AMBR on im-493

age captioning task using MS COCO dataset (Lin494

et al., 2014). We use BLIP-2 (Li et al., 2023a)495

with Flan T5-xl (Chung et al., 2022) fine-tuned for496

MS COCO loaded in 4-bit precision. We use a497

cosine similarity of the textual CLIP embeddings498

as the utility function (Radford et al., 2021; Hessel499

et al., 2021). We use RefCLIPScore and BLEU as500

an evaluation metric (Hessel et al., 2021; Papineni501

et al., 2002). We generate N = 64 samples for502

each image. We use the F1 score of the unigram as503

a coarse utility function of C2F.504

The empirical result is shown in Figure 3.505

AMBR achieves roughly 4 to 8 times speed-up506

compared to MBR with a marginal drop in Ref-507

CLIPScore and BLEU score (Figure 3g and 3h).508

We observe C2F to improve upon standard MBR509

with respect to BLEU score (Figure 3h). As in text 510

summarization (Section 5.2), We speculate that this 511

is because the F1 score has a better alignment with 512

the BLEU score than the CLIP embeddings so that 513

the coarse utility function is effectively serving as 514

another utility function. 515

6 Related Work 516

MBR has been investigated in many NLP tasks in- 517

cluding parsing (Goodman, 1996), speech recogni- 518

tion (Goel and Byrne, 2000), bilingual word align- 519

ment (Kumar and Byrne, 2002), and machine trans- 520

lation (Kumar and Byrne, 2004). MBR has recently 521

gained attention in machine translation as a deci- 522

sion rule as a method to overcome some of the 523

biases of MAP decoding in NMT (Eikema and 524

Aziz, 2020; Müller and Sennrich, 2021; Eikema 525

and Aziz, 2022). 526

Freitag et al. (2022) and Fernandes et al. (2022) 527

show that using neural-based utility functions such 528

as BLEURT (Sellam et al., 2020; Pu et al., 2021) 529

and COMET (Rei et al., 2020, 2022) rather than lex- 530

ical overlap metrics (e.g. BLEU) further improves 531

MBR. 532

CSH (Baharav and Tse, 2019) is not the only 533

algorithm proposed to solve the medoid identifica- 534

tion problem. There are several other algorithms 535

to solve the medoid identification (Eppstein and 536
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Figure 3: (a) InfoLM score, (b) ROUGE-L score, and (c) error rate on SAMSum dataset. (d) InfoLM score, (e)
ROUGE-L score, and (f) error rate on XSum dataset. (g) RefCLIPScore, (h) BLEU score, and (i) error rate on MS
COCO dataset. The shaded regions show the minimum and the maximum values over five runs. The error rate is
defined as the ratio of selecting a hypothesis different from the one selected by standard MBR using all the samples
(N = 64).

Wang, 2006; Okamoto et al., 2008; Bagaria et al.,537

2018). We pick to use CSH as it has the best theo-538

retical performance.539

Algorithms to solve the problem of identifying540

the best option out of the candidates with a bud-541

get constraint (fixed-budget best-arm identification542

problems) are known to be highly sensitive to the543

choice of the hyperparameters if they have ones544

(Carpentier and Locatelli, 2016; Kaufmann et al.,545

2016). In fact, we observe that the effectiveness of546

CBP hinges on the appropriate selection of hyper-547

parameters, given each budget constraint.548

7 Conclusions549

We propose Adaptive Minimum Bayes-Risk550

(AMBR) decoding, a hyperparameter-free algo-551

rithm for efficient MBR decoding. AMBR consid-552

ers the problem of computing the MBR objective553

as the medoid identification problem and uses the 554

known best algorithm to solve it. The strength of 555

the AMBR is that it doesn’t need a development 556

set to tune the set of hyperparameters. AMBR au- 557

tomatically computes the strategy on the fly given 558

the budget specified by the user. 559

Experimental result shows that the performance 560

of AMBR is on par with CBP with hyperparameters 561

picked by an Oracle on machine translation tasks. 562

AMBR outperforms CBP on text summarization 563

and image captioning tasks, using the same set of 564

hyperparameters as in machine translation tasks for 565

CBP. We speculate that CBP requires a different 566

set of hyperparameters for each task to perform on 567

par with AMBR. 568

We believe that AMBR will be a practical choice 569

for future MBR decoding because of its applicabil- 570

ity and significant performance improvements. 571
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8 Limitations572

Even with the improvement, AMBR is still many573

times more costly to run than beam search.574

Using Eq. (9), the computational complexity of575

the evaluation of the utility function of AMBR is576

O(N logN · U) to achieve the theoretical guar-577

antee. This is still larger than the complexity of578

generation which is O(N ·G). Therefore, the eval-579

uation procedure is still the bottleneck of MBR to580

scale with the number of samples.581

Although our focus is on reducing the computa-582

tion of the utility function of MBR decoding, it is583

not the only way to speed up the text generation.584

Finkelstein and Freitag (2023) shows that by self-585

training a machine translation model by its own586

MBR-decoded output, it can improve the perfor-587

mance of more efficient decoding methods such as588

beam search. Yang et al. (2023) proposes the use589

of Direct Preference Optimization (Rafailov et al.,590

2023) to train the model to learn the ranking of the591

sequences according to the MBR objective. Foks592

(2023) shows that by training a model to predict593

the Monte Carlo estimate of the Bayes risk, we can594

directly estimate the Bayes risk using the trained595

model without running Monte Carlo estimation,596

resulting in O(N · G + N · U ′) where U ′ is the597

inference time of the trained model.598

We measure the number of evaluations of the599

utility function as a metric of efficiency. Practi-600

cally, the computation of the utility function is not601

linear to the number of calls. One can optimize602

the implementation by batching and caching the603

computation effectively. For example, the sentence604

embeddings of embedding-based utility functions605

such as COMET can be cached to significantly606

speed up the computation of the utility (Amrhein607

and Sennrich, 2022; Cheng and Vlachos, 2023).608

The paper focuses on how to effectively use the609

given budget and lacks a discussion on what to set610

the budget to. Baharav and Tse (2019) suggests611

the doubling trick (Besson and Kaufmann, 2018)612

to find the appropriate budget size. That is, we run613

the algorithm with a certain budget T , and then614

double the budget to 2T and rerun the algorithm.615

If the two answers are the same, then we output it.616

Because the probability of selecting the same incor-617

rect answer twice in a row is very low, it is likely to618

be the best hypothesis. Empirical evaluation of the619

strategies to decide the budget size is future work.620

The other question is on what to set the number621

of samples to. Figure 2 shows that having too many622

samples is not necessarily beneficial when the eval- 623

uation budget is too small. Finding the optimal 624

number of samples given a budget on computation 625

is an open question. 626

We consider the Monte Carlo estimate hMC as 627

the target objective function to compute. Evalua- 628

tion of AMBR using other objective functions such 629

as model-based estimate (Jinnai et al., 2023) is fu- 630

ture work. 631

Although AMBR is based on the best algorithm 632

known to solve the medoid identification problem, 633

it does not use any task-dependent knowledge to 634

speed up the algorithm. One may exploit the do- 635

main knowledge of the task to further improve upon 636

it (e.g. reference aggregation; Vamvas and Sen- 637

nrich, 2024). 638
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A Minimum Bayes Risk Decoding with 1074

Reward Model for Alignment 1075

Reference aggregation is not applicable using an 1076

utility function that is not aggregatable. In the 1077

following experiment, we show an instance of an 1078

utility function that is practically useful but not 1079

aggregatable. 1080

We evaluate the performance of MBR and its 1081

variants on Alpaca Eval dataset (Li et al., 2023b). 1082

The task is to generate a response to a human query 1083

that follows the human preference. One of the pop- 1084

ular decoding strategy for LLMs is best-of-n strat- 1085

egy (Stiennon et al., 2020; Nakano et al., 2022). 1086

Best-of-n generates multiple outputs and simply 1087

picks the output with the highest reward value ac- 1088

cording to a reward function R that is trained to 1089

predict the human preference: 1090

hbon = argmax
h∈H

R(y). (10) 1091

MBR decoding is also shown to be an efficient strat- 1092

egy on text generation tasks using large language 1093

models (LLMs) (Li et al., 2024).3 We compare the 1094

performance of epsilon sampling, best-of-n, MBR 1095

without using a reward function (Li et al., 2024), 1096

MBR with reference aggregation without using a 1097

reward function (RA-MBR) (Vamvas and Sennrich, 1098

2024), MBR using a reward function, and AMBR 1099

using a reward function. We implement MBR using 1100

a reward function as follows: 1101

hreward = argmax
h∈H

1

|R|
∑
y∈R

u(h,y)·R(y). (11) 1102

Note that hreward is not immediately aggregatable 1103

as most of the state-of-the-art reward functions are 1104

based on transformer architecture where the input 1105

is a sequence of token embeddings instead of a sen- 1106

tence embedding. Thus, RA-MBR is not directly 1107

applicable when combined with a reward function. 1108

We use Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) 1109

as the text generation model. We generate 128 sam- 1110

ples with epsilon sampling with ϵ = 0.01 for best- 1111

of-n and MBRs. We use sentence BERT (Reimers 1112

3MBR decoding is called Sampling-and-voting (Algorithm
1) in (Li et al., 2024).
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Figure 4: Average reward according to OASST (gold
reference reward) on Alpaca Eval dataset.

and Gurevych, 2019) as the utility function u. We1113

compute the embedding of each output using the1114

sentence BERT and compute the cosine similarity1115

of each pair of outputs. We use ALL-MPNET-BASE-1116

V2 model as it has shown to be one of the most1117

effective in sentence embedding tasks.4 We use1118

SteamSHP-Large as a reward function (Ethayarajh1119

et al., 2022). The budget of AMBR is set to 10000.1120

The output is evaluated using an OASST reward1121

model as the gold reference (Köpf et al., 2023).51122

We use OASST as it is shown to be one of the most1123

accurate reward model in prior work (Touvron et al.,1124

2023; Cui et al., 2023).1125

Figure 4 is the summary of the reward scores.1126

While MBR and RA-MBR without using a reward1127

model has lower score than best-of-n, MBR with1128

a reward function has higher score than best-of-1129

n. RA-MBR achieves mostly the same score as1130

MBR as the utility function is a cosine similarity1131

of the sentence embedding itself. Thus, linear ag-1132

gregation of the references results in exactly the1133

mean of the references in the embedding space.1134

Still, because it does not use the reward function,1135

its score is lower than best-of-n and MBRs with1136

reward functions.1137

The analysis shows that in this setting, non-1138

aggregatable utility function has a potential to1139

achieve higher performance than aggregatable one,1140

and thus reference aggregation is not applicable but1141

AMBR is.1142

B Formulation of Medoid Identification1143

Problem1144

We show that the Eq. (7) represents the same class1145

of problem as the standard formulation of the1146

medoid identification problem where X = Y is1147

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5OpenAssistant/reward-model-deberta-v3-large-v2

assumed. Let (d,X, Y ) be an instance of general- 1148

ized medoid identification problem (Eq. 7): 1149

x∗ = argmin
x∈X

∑
y∈Y

d(x,y). 1150

Let X ′ = X ∪ Y and d′ as follows: 1151

d′(x,y) =


∞ if x /∈ X

0 if x ∈ X ∧ y /∈ Y

d(x,y) otherwise.

(12) 1152

Then, (d′, X ′, X ′) returns the same solution as 1153

(d,X, Y ). Thus, Eq. (7) represents the same class 1154

of problem as the standard formulation of the 1155

medoid identification problem where X = Y is 1156

assumed. 1157

C Hyperparameters for 1158

Confidence-Based Pruning 1159

The performance of CBP with varying hyperparam- 1160

eters is present in Table 1 (machine translation), 1161

Table 2 (text summarization), and Table 3 (image 1162

captioning). The average score over five runs is 1163

reported. Smaller r0 and α tend to achieve higher 1164

COMET scores when the budget is small and larger 1165

r0 and α achieve higher scores when the budget is 1166

large enough. 1167

D Additional Evaluations 1168

We describe additional experiments to evaluate the 1169

performance of the MBR decoding algorithms. 1170

D.1 Error Rate on WMT’21 De-En and 1171

Ru-En 1172

Figure 5 shows the error ratio for WMT’21 De- 1173

En and Ru-En. Interestingly, although AMBR 1174

achieves a higher or equivalent COMET score to 1175

CBP (Oracle), the error ratio is higher than CBP 1176

(Oracle). This suggests that when AMBR fails to 1177

find the best hypothesis, it tends to find a hypothe- 1178

sis close to the best hypothesis in quality. 1179

D.2 Evaluation on WMT’21 En-De and 1180

En-Ru 1181

To evaluate the performance of AMBR in gener- 1182

ating non-English languages, we run experiments 1183

on WMT’21 En-De and En-Ru datasets. We use 1184

the WMT 21 En-X model for generating the sam- 1185

ples (Tran et al., 2021). For CBP, we search over 1186

r0 ∈ {1, 2, 4} and α ∈ {0.8, 0.9, 0.99}. Other ex- 1187

perimental details are the same as in Section 5.1. 1188
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#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank

WMT’21 De-En (N = 128)

1 0.80 64.00 2 62.14 2 64.21 2 64.56 1 64.56 2 64.55 9
1 0.90 63.76 4 61.43 4 63.80 5 64.50 5 64.53 11 64.55 8
1 0.99 63.33 8 60.36 7 63.02 10 64.22 10 64.47 13 64.58 1
2 0.80 63.85 3 61.60 3 64.08 3 64.50 3 64.54 6 64.55 13
2 0.90 63.72 5 61.23 5 63.78 6 64.43 7 64.59 1 64.57 3
2 0.99 63.37 6 60.50 6 63.18 8 64.11 12 64.52 12 64.56 5
4 0.80 63.35 7 59.33 10 63.83 4 64.48 6 64.55 5 64.55 11
4 0.90 63.31 9 59.19 13 63.75 7 64.50 4 64.54 7 64.56 4
4 0.99 63.17 10 59.47 8 63.07 9 64.20 11 64.54 8 64.55 10
8 0.80 63.12 11 59.33 9 62.67 13 64.50 2 64.56 3 64.55 12
8 0.90 63.10 12 59.27 11 62.80 12 64.32 9 64.55 4 64.56 6
8 0.99 63.06 13 59.22 12 62.89 11 64.08 13 64.54 9 64.58 2

AMBR 64.31 1 63.81 1 64.23 1 64.42 8 64.53 10 64.55 7

WMT’21 Ru-En (N = 128)

1 0.80 63.33 2 61.73 2 63.39 3 63.82 3 63.86 5 63.87 10
1 0.90 63.20 4 61.20 4 63.20 5 63.84 2 63.88 3 63.88 4
1 0.99 62.83 6 60.17 7 62.79 8 63.45 13 63.85 6 63.90 1
2 0.80 63.23 3 61.20 3 63.42 2 63.84 1 63.83 8 63.87 11
2 0.90 63.14 5 60.93 5 63.27 4 63.80 5 63.83 9 63.87 8
2 0.99 62.80 7 60.27 6 62.66 10 63.45 12 63.72 13 63.87 9
4 0.80 62.74 9 58.98 12 63.17 6 63.77 6 63.92 1 63.87 7
4 0.90 62.75 8 59.25 10 63.02 7 63.70 9 63.88 2 63.89 3
4 0.99 62.65 10 59.27 9 62.68 9 63.58 10 63.81 10 63.90 2
8 0.80 62.54 13 58.95 13 62.31 12 63.75 8 63.81 11 63.87 12
8 0.90 62.57 12 59.04 11 62.30 13 63.76 7 63.85 7 63.88 6
8 0.99 62.63 11 59.39 8 62.46 11 63.57 11 63.86 4 63.88 5

AMBR 63.61 1 63.12 1 63.51 1 63.80 4 63.80 12 63.80 13

WMT’21 De-En (N = 64)

1 0.80 61.06 2 52.54 2 61.35 2 63.34 3 64.01 2 64.04 11
1 0.90 60.68 3 51.76 3 60.52 5 63.17 5 63.90 8 64.07 2
1 0.99 59.57 9 47.93 12 59.48 6 62.67 9 63.70 12 64.07 3
2 0.80 60.18 4 48.26 7 61.05 3 63.55 2 63.97 3 64.07 4
2 0.90 59.97 5 48.00 11 60.53 4 63.28 4 63.94 6 64.08 1
2 0.99 59.59 8 48.26 8 59.13 7 62.79 8 63.72 11 64.04 10
4 0.80 59.67 7 48.43 5 58.79 9 63.16 6 63.94 5 64.05 7
4 0.90 59.69 6 48.65 4 58.64 13 63.13 7 63.96 4 64.06 5
4 0.99 59.40 11 48.11 9 58.65 11 62.43 10 63.77 10 64.03 12
8 0.80 59.43 10 48.28 6 58.69 10 62.26 11 63.90 9 64.04 9
8 0.90 59.35 12 48.02 10 58.64 12 62.10 13 63.90 7 64.06 6
8 0.99 59.25 13 47.24 13 59.06 8 62.24 12 63.65 13 64.05 8

AMBR 63.29 1 61.49 1 63.10 1 63.80 1 64.02 1 64.03 13

WMT’21 Ru-En (N = 64)

1 0.80 60.63 2 53.30 2 60.65 3 62.79 3 63.18 4 63.23 5
1 0.90 60.44 3 52.63 3 60.50 4 62.70 5 63.13 7 63.24 2
1 0.99 59.13 10 48.31 11 58.99 7 62.12 9 62.99 13 63.21 11
2 0.80 59.68 4 48.00 13 60.93 2 63.02 1 63.19 3 63.24 3
2 0.90 59.58 5 48.58 7 60.18 5 62.68 6 63.23 1 63.22 9
2 0.99 59.20 8 48.40 9 59.31 6 62.07 10 63.01 12 63.22 10
4 0.80 59.26 7 48.32 10 58.82 9 62.72 4 63.20 2 63.23 4
4 0.90 59.27 6 48.70 4 58.87 8 62.45 7 63.09 10 63.23 6
4 0.99 59.17 9 48.65 5 58.71 11 62.15 8 63.10 9 63.22 8
8 0.80 59.03 13 48.19 12 58.65 13 61.92 11 63.14 6 63.25 1
8 0.90 59.11 11 48.61 6 58.78 10 61.82 13 63.11 8 63.21 12
8 0.99 59.06 12 48.52 8 58.70 12 61.87 12 63.02 11 63.20 13

AMBR 62.53 1 60.85 1 62.46 1 62.96 2 63.17 5 63.22 7

Table 1: Evaluation of confidence-based pruning (CBP) with varying hyperparameters. r0 is the number of
references at the first iteration. α is the threshold of the win rate on pruning. The average COMET-20 score over
five runs is reported. Rank denotes the rank of the average COMET-20 score over a set of runs of CBP and AMBR.
Mean column reports the average COMET score over 1/32, 1/16, 1/8, 1/4, 1/2.
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#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank InfoLM Rank

SAMSum (N = 64)

1 0.80 1.864 4 1.982 13 1.896 2 1.850 4 1.802 2 1.792 3
1 0.90 1.868 8 1.976 12 1.902 4 1.856 7 1.812 7 1.794 8
1 0.99 1.870 10 1.960 8 1.909 5 1.863 11 1.821 11 1.798 11
2 0.80 1.860 2 1.955 2 1.902 3 1.845 2 1.803 3 1.793 6
2 0.90 1.866 6 1.958 5 1.909 6 1.856 6 1.813 8 1.793 5
2 0.99 1.871 12 1.960 9 1.916 11 1.858 8 1.821 12 1.797 10
4 0.80 1.864 3 1.961 10 1.915 10 1.847 3 1.806 4 1.793 4
4 0.90 1.865 5 1.956 3 1.912 7 1.854 5 1.811 6 1.793 7
4 0.99 1.872 13 1.957 4 1.922 13 1.860 10 1.822 13 1.801 13
8 0.80 1.867 7 1.961 11 1.916 12 1.859 9 1.809 5 1.792 1
8 0.90 1.869 9 1.958 6 1.913 9 1.864 13 1.816 9 1.795 9
8 0.99 1.870 11 1.959 7 1.912 8 1.864 12 1.818 10 1.799 12

AMBR 1.823 1 1.902 1 1.820 1 1.802 1 1.796 1 1.792 2

XSum (N = 64)

1 0.80 1.954 3 2.069 13 1.997 3 1.935 2 1.889 2 1.880 4
1 0.90 1.961 8 2.066 12 1.998 4 1.952 7 1.904 7 1.882 8
1 0.99 1.964 12 2.057 10 2.006 9 1.961 13 1.910 9 1.888 13
2 0.80 1.952 2 2.056 9 1.993 2 1.943 3 1.891 3 1.878 1
2 0.90 1.959 6 2.052 3 2.003 5 1.950 5 1.909 8 1.881 6
2 0.99 1.963 11 2.053 8 2.008 12 1.955 10 1.912 10 1.886 11
4 0.80 1.956 4 2.057 11 2.005 8 1.943 4 1.893 4 1.880 3
4 0.90 1.960 7 2.053 7 2.008 11 1.954 8 1.903 6 1.882 7
4 0.99 1.963 10 2.052 5 2.006 10 1.951 6 1.920 13 1.885 10
8 0.80 1.957 5 2.052 2 2.004 6 1.954 9 1.896 5 1.879 2
8 0.90 1.962 9 2.052 4 2.004 7 1.956 11 1.914 11 1.883 9
8 0.99 1.965 13 2.053 6 2.012 13 1.960 12 1.915 12 1.886 12

AMBR 1.913 1 1.990 1 1.913 1 1.892 1 1.886 1 1.881 5

Table 2: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on SAMSum and XSum. r0
is the number of references at the first iteration. α is the threshold of the win rate on pruning. The average InfoLM
over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP and AMBR. Mean
column reports the average InfoLM score over 1/32, 1/16, 1/8, 1/4, 1/2.

#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank RCLIP Rank

MS COCO (N = 64)

1 0.80 39.27 3 38.09 13 39.10 2 39.60 2 39.76 2 39.81 4
1 0.90 39.22 7 38.10 12 38.99 5 39.49 7 39.72 8 39.81 2
1 0.99 39.21 10 38.28 5 38.86 10 39.44 11 39.69 11 39.78 12
2 0.80 39.29 2 38.23 8 39.08 3 39.58 3 39.75 4 39.81 3
2 0.90 39.26 4 38.23 10 39.01 4 39.56 5 39.73 7 39.80 6
2 0.99 39.22 8 38.33 2 38.89 6 39.42 13 39.67 12 39.78 11
4 0.80 39.26 5 38.29 3 38.88 7 39.56 4 39.75 3 39.81 1
4 0.90 39.24 6 38.28 4 38.88 8 39.52 6 39.74 6 39.80 7
4 0.99 39.19 12 38.23 9 38.81 13 39.46 8 39.69 10 39.76 13
8 0.80 39.21 9 38.21 11 38.86 9 39.45 9 39.75 5 39.80 9
8 0.90 39.20 11 38.24 7 38.84 11 39.44 10 39.69 9 39.81 5
8 0.99 39.19 13 38.25 6 38.82 12 39.42 12 39.65 13 39.79 10

AMBR 39.65 1 39.33 1 39.61 1 39.74 1 39.78 1 39.80 8

Table 3: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on MS COCO. r0 is the
number of references at the first iteration. α is the threshold of the win rate on pruning. The average RefCLIPScore
(RCLIP) over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP and AMBR.
Mean column reports the average RCLIP score over 1/32, 1/16, 1/8, 1/4, 1/2.
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Figure 5: The error rate on WMT’21 De-En and Ru-En using the WMT 21 X-En model. The shaded regions show
the minimum and the maximum values over five runs. The error rate is the ratio of selecting a hypothesis different
from the standard MBR using all samples. The horizontal axis shows the reduction in the number of evaluations
compared to the standard MBR with all samples.

Figure 6 reports the COMET scores. AMBR and1189

CBP significantly reduce the number of evaluations1190

compared to standard MBR with a marginal drop in1191

the COMET score. NbyS and C2F are less efficient1192

than AMBR and CBP. The performance of AMBR1193

is roughly on par with CBP. The result of the hy-1194

perparameter search for CBP is described in Table1195

4. The best set of hyperparameters is dependent to1196

the size of the budget.1197

D.3 Evaluation on M2M100 418M Model1198

To compare the performance of the methods on a1199

smaller translation model, we evaluate using the1200

M2M100 418M model. Figure 7 shows the results.1201

Overall, we observe qualitatively the same results1202

as using the WMT 21 En-X model (4.7B). AMBR1203

and CBP significantly reduce the number of evalu-1204

ations compared to standard MBR with a marginal1205

drop in the COMET score. NbyS and C2F are less1206

efficient than AMBR and CBP in WMT’21 tasks.1207

The performance of AMBR is on par with CBP1208

with hyperparameters set by Oracle.1209

D.4 Scaling with the Number of Samples on 1210

Ru-En 1211

Figure 8 shows the result on WMT’21 Ru-En with 1212

varying sample sizes with a fixed evaluation bud- 1213

get on the M2M100 418M model. We observe 1214

the same trends as in WMT’21 De-En (Figure 2). 1215

AMBR scales with the number of samples if there 1216

is enough evaluation budget. 1217

E Pretrained Models used in the 1218

Experiments 1219

We list the pretrained models we used in the exper- 1220

iments in Table 5. 1221
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Figure 6: COMET-20 score and error rate on WMT’21 En-De and En-Ru using WMT 21 En-X model (4.7B). The
shaded regions show the minimum and the maximum values over five runs. The error rate is the ratio of selecting a
hypothesis different from the standard MBR using all 128 samples. The horizontal axis shows the reduction in the
number of evaluations compared to the standard MBR with all 128 samples.

#Evaluations Mean 1/32 1/16 1/8 1/4 1/2
r0 α COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank COMET Rank

WMT’21 En-De (N = 128)

1 0.80 49.12 2 47.33 2 49.45 1 49.57 6 49.59 7 49.65 8
1 0.90 48.88 4 46.44 4 49.09 5 49.58 4 49.65 3 49.65 7
1 0.99 48.41 6 45.17 6 48.45 8 49.22 9 49.55 10 49.65 1
2 0.80 49.01 3 46.88 3 49.26 2 49.58 5 49.66 1 49.65 6
2 0.90 48.83 5 46.29 5 48.98 6 49.61 3 49.62 5 49.65 2
2 0.99 48.36 7 44.90 7 48.27 10 49.38 8 49.58 8 49.65 9
4 0.80 48.23 8 42.98 10 49.23 3 49.63 1 49.65 2 49.65 6
4 0.90 48.16 9 43.06 9 48.91 7 49.52 7 49.64 4 49.65 4
4 0.99 48.04 10 43.32 8 48.42 9 49.22 10 49.60 6 49.65 3

AMBR 49.32 1 48.56 1 49.23 4 49.61 2 49.56 9 49.63 10

WMT’21 En-Ru (N = 128)

1 0.80 63.26 2 61.80 2 63.48 4 63.69 9 63.66 9 63.71 5
1 0.90 63.07 5 60.84 5 63.41 6 63.73 3 63.66 8 63.70 7
1 0.99 62.65 6 59.35 6 62.70 10 63.75 1 63.76 1 63.70 9
2 0.80 63.18 3 61.25 3 63.50 3 63.72 5 63.72 2 63.71 3
2 0.90 63.10 4 60.86 4 63.54 1 63.70 7 63.70 4 63.72 2
2 0.99 62.63 7 59.33 7 62.74 8 63.74 2 63.61 10 63.71 4
4 0.80 62.47 8 57.76 8 63.51 2 63.71 6 63.68 6 63.71 6
4 0.90 62.35 9 57.42 10 63.23 7 63.73 4 63.66 7 63.70 8
4 0.99 62.27 10 57.66 9 62.71 9 63.58 10 63.72 3 63.69 10

AMBR 63.54 1 63.11 1 63.46 5 63.70 8 63.69 5 63.74 1

Table 4: Evaluation of confidence-based pruning (CBP) with varying hyperparameters on WMT’21 En-De and
En-Ru. r0 is the number of references at the first iteration. α is the threshold of the win rate on pruning. The average
COMET-20 score over five runs is reported. Rank denotes the rank of the average score over a set of runs of CBP
and AMBR. Mean column reports the average COMET score over 1/32, 1/16, 1/8, 1/4, 1/2.

WMT’21 (Section 5.1) Tran et al. (2021) https://huggingface.co/facebook/wmt21-dense-24-wide-x-en
WMT’21 (Section 5.1) Fan et al. (2021) https://huggingface.co/facebook/m2m100_418M
WMT’21 (Section D.2) Tran et al. (2021) https://huggingface.co/facebook/wmt21-dense-24-wide-en-x
SAMSum (Section 5.2) https://huggingface.co/philschmid/bart-large-cnn-samsum

XSum (Section 5.2) Lewis et al. (2020) https://huggingface.co/facebook/bart-large-xsum
MS COCO (Section 5.3) Li et al. (2023a) https://huggingface.co/Salesforce/blip2-flan-t5-xl-coco
MS COCO (Section 5.3) Hessel et al. (2021) (CLIPScore) https://huggingface.co/openai/clip-vit-large-patch1

Table 5: List of pretrained models we used in the experiments.
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Figure 7: COMET-20 score and error rate on WMT’21 De-En and Ru-En using the M2M100 418M model. The
shaded regions show the minimum and the maximum values over five runs. The error rate is the ratio of selecting a
hypothesis different from the standard MBR using all 128 samples. The horizontal axis shows the reduction in the
number of evaluations compared to the standard MBR with all 128 samples.
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Figure 8: COMET-20 score on WMT’21 Ru-En with varying number of samples using M2M100 418M model. The
shaded regions show the minimum and the maximum values over five runs.
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