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ABSTRACT

Graph neural networks (GNNs) have gained significant attention in recent years
for their ability to process data that may be represented as graphs. This has
prompted several studies to explore their representational capability based on
the graph isomorphism task. These works inherently assume a countable node
feature representation, potentially limiting their applicability. Interestingly, only
a few study GNNs with uncountable node feature representation. In the paper, a
novel perspective on the representational capability of GNNs is investigated across
all levels—node-level, neighborhood-level, and graph-level—when the space of
node feature representation is uncountable. More specifically, the strict injective
and metric requirements are softly relaxed by employing a pseudometric distance
on the space of input to create a soft-injective function such that distinct inputs
may produce similar outputs if and only if the pseudometric deems the inputs to
be sufficiently similar on some representation. As a consequence, a simple and
computationally efficient soft-isomorphic relational graph convolution network
(SIR-GCN) that emphasizes the contextualized transformation of neighborhood
feature representations via anisotropic and dynamic message functions is proposed.
A mathematical discussion on the relationship between SIR-GCN and widely used
GNNs is then laid out to put the contribution into context, establishing SIR-GCN
as a generalization of classical GNN methodologies. Experiments on synthetic
and benchmark datasets then demonstrate the relative superiority of SIR-GCN,
outperforming comparable models in node and graph property prediction tasks.

1 INTRODUCTION

Graph neural networks (GNNs) constitute a class of deep learning models designed to process
data that may be represented as graphs. These models are well-suited for node, edge, and graph
property prediction tasks across various domains including social networks, molecular graphs, and
biological networks, among others (Dwivedi et al., 2023; Hu et al., 2020). GNNs predominantly
follow the message-passing scheme wherein each node aggregates the feature representation of its
neighbors and combines them to create an updated node feature representation (Gilmer et al., 2017;
Xu et al., 2018a;b). This allows the model to encapsulate both the network structure and the broader
node contexts. Moreover, a graph readout function is employed to pool the individual node feature
representation and create a representation for the entire graph (Li et al., 2015; Murphy et al., 2019;
Xu et al., 2018a; Ying et al., 2018).

Among the most widely used GNNs in literature include the graph convolution network (GCN) (Kipf
& Welling, 2016), graph sample and aggregate (GraphSAGE) (Hamilton et al., 2017), graph attention
network (GAT) (Brody et al., 2021; Veličković et al., 2017), and graph isomorphism network (GIN)
(Xu et al., 2018a) which largely fall under the message-passing neural network (MPNN) (Gilmer
et al., 2017) framework. These models have gained popularity due to their simplicity and remarkable
performance across various applications (Dwivedi et al., 2023; Hsu et al., 2021; Hu et al., 2020; Jiang
et al., 2022; Kim & Ye, 2020; Liu et al., 2020). Improvements are also constantly being proposed to
achieve state-of-the-art performance (Bodnar et al., 2021; Bouritsas et al., 2022; Ishiguro et al., 2019;
Miao et al., 2022; Sun et al., 2020; Wang et al., 2019b; Ying et al., 2021).

Notably, these advances are mainly driven by heuristics and empirical results. Nonetheless, several
studies have also begun exploring the representational capability of GNNs (Azizian & Lelarge, 2020;
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Bodnar et al., 2021; Böker et al., 2024; Corso et al., 2020; Garg et al., 2020; Sato et al., 2021).
Most of these works analyzed GNNs in relation to the graph isomorphism task. Xu et al. (2018a)
was among the first to lay the foundations for creating a maximally expressive GNN based on the
Weisfeiler-Leman (WL) graph isomorphism test (Weisfeiler & Leman, 1968). Subsequent works
build upon their results by considering extensions to the original 1-WL test. However, these results
only hold with countable node feature representation which potentially limits their applicability.
Meanwhile, Corso et al. (2020) proposed using multiple aggregators to create powerful GNNs when
the space of node feature representation is uncountable. Interestingly, there has been no significant
theoretical progress since this work.

This paper presents a novel perspective on the representational capability of GNNs when the space
of node feature representation is uncountable. The key idea is to define a pseudometric distance on
the space of input to create a soft-injective function such that distinct inputs may produce similar
outputs if and only if the distance between the inputs is sufficiently small on some representation.
This idea is investigated across all levels—node-level, neighborhood-level, and graph-level. From the
theoretical results, a simple and computationally efficient soft-isomorphic relational graph convolution
network (SIR-GCN) which emphasizes the contextualized transformation of neighborhood feature
representations using anisotropic and dynamic message functions is proposed. The mathematical
relationship between SIR-GCN and popular GNNs in literature is also presented to underscore the
novelty and advantages of the proposed model. Experiments on synthetic and benchmark datasets in
node and graph property prediction tasks then highlight the expressivity of SIR-GCN, positioning the
proposed model as the best-performing MPNN instance.

2 GRAPH NEURAL NETWORKS

Let G = (VG , EG) be a graph and NG(u) ⊆ VG the set of nodes adjacent to node u ∈ VG . The
subscript G will be omitted whenever the context is clear. Suppose H is the space of node feature
representation, henceforth feature, and hu ∈ H is the feature of node u. A GNN following the
message-passing scheme can be expressed mathematically as

Hu = {{hv : v ∈ NG(u)}}
au = AGG (Hu) (1)
h∗
u = COMB (hu,au) ,

where AGG and COMB are some aggregation and combination strategies, respectively, Hu is the
multiset (Xu et al., 2018a) of neighborhood features for node u, au is the aggregated neighborhood
features for node u, and h∗

u is the updated feature for node u. Since AGG takes arbitrary-sized
multisets of neighborhood features as input and transforms them into a single feature, it may be
considered a hash function. Hence, aggregation and hash functions shall be used interchangeably
throughout the paper.

Related works When H is countable, Xu et al. (2018a) showed that there exists a function
f : H → S such that the aggregation or hash function

F (H) =
∑
h∈H

f (h) (2)

is injective or unique for each multiset of neighborhood features H of bounded size in the embedded
feature space S. This result forms the theoretical basis of GIN.

Meanwhile, the result above no longer holds when H is uncountable. In this setting, Corso et al.
(2020) proved that if

⊕
comprises multiple aggregators (e.g., mean, standard deviation, max, and

min), the hash function
M (H) =

⊕
h∈H

m (h) (3)

produces a unique output for every H of bounded size. This finding provides the foundation for the
principal neighborhood aggregation (PNA) (Corso et al., 2020). Notably, for this result to hold, the
number of aggregators in

⊕
must also scale with the size of the multiset of neighborhood features

H , which may be infeasible for large and dense graphs.
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3 SOFT-INJECTIVE FUNCTIONS

While injective functions and metrics are necessary for tasks requiring strict isomorphism, many
practical applications of GNNs often do not require such strict constraints. For instance, in node
classification tasks, the model must produce identical outputs for some distinct nodes. Thus, this
paper softly relaxes these constraints by employing pseudometrics and soft-injective functions.

Definition 1 (Pseudometric). Let H be a non-empty set. A function d : H × H → R≥0 is a
pseudometric onH if the following holds for all h(1),h(2),h(3) ∈ H:

• d
(
h(1),h(1)

)
= 0;

• d
(
h(1),h(2)

)
= d

(
h(2),h(1)

)
; and

• d
(
h(1),h(3)

)
≤ d

(
h(1),h(2)

)
+ d

(
h(2),h(3)

)
.

Note that unlike a metric, d
(
h(1),h(2)

)
= 0 ≠⇒ h(1) = h(2) for a pseudometric d. The following

assumption is then imposed on the psuedometric d, leveraging results from kernel theory.

Assumption 1. Let d : H ×H → R≥0 be a pseudometric on H such that −d2 is a conditionally
positive definite kernel onH.

The Euclidean distance is an example of a pseudometric satisfying Assumption 1. A class of
pseudometrics satisfying this assumption is provided below, see Berg et al. (1984) and Schölkopf
(2000) for more.

Remark 1. Consider the pseudometrics d1 and d2 on H satisfying Assumption 1. For a > 0 and
0 < p < 1, the pseudometrics a · d1,

√
d21 + d22, and dp1 also satisfy Assumption 1.

Assumption 1 thus offers considerable flexibility in the choice of pseudometric d. The following
theorem then softly relaxes the injective and metric requirements in previous works.

Theorem 1. LetH be a non-empty set with a pseudometric d : H×H → R≥0 satisfying Assumption
1. There exists a feature map g : H → S such that for every h(1),h(2) ∈ H and ε1 > ε2 > 0,

ε2 <
∥∥∥g (h(1)

)
− g

(
h(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < d
(
h(1),h(2)

)
< ε1. (4)

du

(
h
(1)
u ,h

(2)
u

)
< ε < du

(
h
(1)
u ,h

(3)
u

)
(a) Input feature space H.

ε

gu

(
h
(1)
u

)
gu

(
h
(2)
u

)gu

(
h
(3)
u

)

(b) Embedded feature space S.

Figure 1: Pseudometric du and the corresponding feature map gu.

Theorem 1 shows that, for each node u ∈ V , given a pseudometric distance du that represents a
dissimilarity function on H, possibly encoded with prior knowledge, there exists a corresponding
feature map gu that maps distinct inputs h(1)

u ,h
(2)
u ∈ H close in the embedded feature space S if and

only if du determines h(1)
u ,h

(2)
u to be sufficiently similar on some representation. The lower bound

ε2 asserts the ability of gu to separate elements of H in the embedded feature space S while the
upper bound ε1 ensures gu maintains the relationship between elements ofH with respect to du. The
feature map gu may then be described as soft-injective.1 Corollary 1 extends this result for multisets.

1The pseudometric d induces the equivalence class [h]d := {h′ ∈ H : d (h,h′) = 0} with the quotient
space Hd := H \ d =

{
[h]d : h ∈ H

}
such that d becomes metric and the corresponding feature map g

becomes injective on Hd (Schoenberg, 1938). Hence, g may be described as soft-injective.
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3.1 SOFT-ISOMORPHIC RELATIONAL GRAPH CONVOLUTION NETWORK

Corollary 1. LetH be a non-empty set with a pseudometric D on bounded, equinumerous multisets
ofH defined as

D2
(
H(1),H(2)

)
=

∑
h∈H(1)

h′∈H(2)

d2(h,h′)− 1

2

∑
h∈H(1)

h′∈H(1)

d2(h,h′)− 1

2

∑
h∈H(2)

h′∈H(2)

d2(h,h′) (5)

for some pseudometric d : H × H → R≥0 satisfying Assumption 1 and bounded, equinumerous
multisets H(1),H(2). There exists a feature map g : H → S such that for every H(1),H(2) and
ε1 > ε2 > 0,

ε2 <
∥∥∥G(

H(1)
)
−G

(
H(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < D
(
H(1),H(2)

)
< ε1, (6)

where
G(H) =

∑
h∈H

g(h). (7)

Similarly, Corollary 1 shows that, for each node u ∈ V , given a pseudometric distance Du on
multisets ofH defined in Eqn. 5 with a corresponding pseudometric distance du onH, there exists a
corresponding feature map gu and soft-injective hash function Gu defined in Eqn. 7 that produces
similar outputs for distinct multisets of neighborhood features H(1)

u ,H
(2)
u if and only if Du deems

H
(1)
u ,H

(2)
u to be sufficiently similar on some representation. Likewise, the lower and upper bounds

guarantee the ability of Gu to separate equinumerous multisets ofH in the embedded feature space
S while maintaining the relationship with respect to Du. In this setting, the feature map gu may be
interpreted as the message function (Gilmer et al., 2017) of the aggregation strategy that transforms
the individual neighborhood features. Meanwhile, the psuedometric Du corresponds to the kernel
distance (Joshi et al., 2011) which intuitively represents the difference between the cross-distance
and self-distance between two multisets. The two necessary properties of the soft-injective message
function—dynamic and anisotropic—are then motivated below.

Dynamic transformation To illustrate the role of pseudometrics, consider node u with two neigh-
bors v1 and v2 and the task of anomaly detection on the scalar node features hv1 and hv2 representing
zero-mean scores. If du simply corresponds to the Euclidean distance, then the corresponding hash
function Gu becomes linear as presented in Fig. 2a. The contour plot highlights collisions—instances
where distinct inputs produce identical outputs (i.e., the equivalence class [H]D)—between dissimilar
multisets of neighborhood features, resulting in aggregated neighborhood features that are less useful
for the task.

hv1

h
v
2

(a) gu(h) = h.

hv1

h
v
2

(b) gu(h) = −h2.

hv1

h
v
2

(c) gu(h) = MLP(h).

hv1

h
v
2

(d) gu(h) = MLP(h+ 1).

Figure 2: Hash functions Gu under different message functions gu.

Nevertheless, other choices of pseudometrics, possibly incorporating prior knowledge, would cor-
respond to more complex message functions gu. This leads to non-trivial hash functions Gu and
contour plots where only the regions determined by Du to be similar may produce similar aggregated
neighborhood features, making collisions more informative and controlled. This also highlights the
significance of dynamic (Brody et al., 2021) or non-linear message functions gu in MPNNs.

As further illustration, if du instead corresponds to the Euclidean distance of the squared score, then
the corresponding hash function Gu has the contour plot in Fig. 2b. The resulting hash collisions and
equivalence classes then become more useful and meaningful for detecting anomalous scores.
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Anisotropic messages It is also worth noting that Corollary 1 holds for each node u ∈ V inde-
pendently. Hence, different nodes may correspond to different Du, du, gu, and Gu. For simplicity,
especially in inductive learning contexts, consider a single pseudometric instead, defined as

D2
(
H(1)

u ,H(2)
u ;hu

)
=

∑
h∈H(1)

u

h′∈H(2)
u

d2(h,h′;hu)−
1

2

∑
h∈H(1)

u

h′∈H(1)
u

d2(h,h′;hu)−
1

2

∑
h∈H(2)

u

h′∈H(2)
u

d2(h,h′;hu),

(8)
with a single hash function, defined as

G (Hu;hu) =
∑

h∈Hu

g (h;hu) , (9)

for every node u ∈ V . This approach makes D, d, g, and G anisotropic (Dwivedi et al., 2023)
(i.e., a function of both the features of the query (center) node hu and key (neighboring) nodes
h ∈Hu). Moreover, contextualized on the features of the query node, D may still be interpreted as
a pseudometric controlling hash collisions with a corresponding soft-injective hash function G.

Furthermore, the integration of hu also allows for the interpretation of g as a relational message
function, guiding how features of the key nodes are to be embedded and transformed based on the
features of the query node. Figs. 2c and 2d provide intuition for this idea where the introduction of a
bias term, assuming a function of the features of the query node, shifts the contour plot to produce
distinct aggregated neighborhood features au ̸= au′ for nodes u and u′ with identical neighborhood
features Hu = Hu′ but distinct features hu ̸= hu′ . Nevertheless, one may also inject stochasticity
into the node features to distinguish between nodes u and u′ with identical features hu = hu′ and
neighborhood features Hu = Hu′ with high probability (Sato et al., 2021) and to imitate having
distinct Du, du, gu, and Gu for each node u ∈ V .

Proposed model For a graph representation learning problem, one may directly model the
anisotropic and dynamic relational message function g as a two-layer multi-layer perceptron (MLP),
with implicitly learned pseudometrics, following the universal approximation theorem (Hornik et al.,
1989) to obtain the soft-isomorphic relational graph convolution network (SIR-GCN)

h∗
u =

∑
v∈N (u)

WR σ (WQhu +WKhv) , (10)

where σ is a non-linear activation function, WQ,WK ∈ Rdhidden×din , and WR ∈ Rdout×dhidden . Lever-
aging linearity, the model has a computational complexity of

O (|V| × dhidden × din + |E| × dhidden + |V| × dout × dhidden) (11)
with computational efficiency achieved by the application of only an activation function along edges,
making it comparable to conventional GNNs. Nevertheless, σ may also be replaced with a deep MLP
in practice if modeling g as a shallow two-layer MLP becomes infeasible.

In essence, the proposed SIR-GCN is a simple, interpretable, and computationally efficient instance
of the MPNN framework. Moreover, in contrast to other MPNN instances in literature, the proposed
model emphasizes the anisotropic and dynamic transformation of neighborhood features to obtain
contextualized messages.

3.2 SOFT-ISOMORPHIC GRAPH READOUT FUNCTION

Corollary 1 also shows that, for each graph G, given a pseudometric distance dG onH with a corre-
sponding pseudometric distance DG on multisets ofH defined in Eqn. 5, there exists a corresponding
feature map rG and soft-injective graph readout function RG defined in Eqn. 7. While this result
holds for each graph G independently, one may simply consider a single D, d, r, and R for every
graph {Gd}d∈D under task D. Nevertheless, the graph context and structure may also be integrated
into D, d, r, and R, through a virtual super node (Gilmer et al., 2017) for instance, to imitate having
distinct DG , dG , rG , and RG for each graph G and to further enhance its representational capability.

Similarly, for a graph representation learning problem, r may also be directly modeled as an MLP,
with implicitly learned pseudometrics, to obtain the soft-isomorphic graph readout function

hG =
∑
v∈VG

MLPR (hv) , (12)

5
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where MLPR corresponds to r and hG is the graph-level feature of graph G.

4 MATHEMATICAL DISCUSSION

The mathematical relationship of SIR-GCN with GCN, GraphSAGE, GAT, GIN, and PNA are
presented in this section to highlight the novelty and contribution. While activation functions and
MLPs applied after each GNN layer play a significant role in the overall performance, the discussions
only focus on the message-passing operation that defines GNNs. The relationship between SIR-GCN
and the 1-WL test is also presented to contextualize the representational capability of the former.

4.1 GCN AND GRAPHSAGE

It may be shown that Corollary 1 holds up to a constant scale. Hence, the mean aggregation and
symmetric mean aggregation, by extension, may be used in place of the sum aggregation. If one sets
σ as identity or PRELU(α = 1), WQ = 0, WRWK = W , and Ñ (u) = N (u) ∪ {u}, one obtains

h∗
u =

∑
v∈N (u)

1√
|N (u)|

√
|N (v)|

Whv (13)

and

h∗
u =

1∣∣∣Ñ (u)
∣∣∣

∑
v∈Ñ (u)

Whv (14)

which recovers GCN and GraphSAGE with mean aggregation, respectively. Moreover, the sum
aggregation may also be replaced with the max aggregation, albeit without theoretical justification, to
recover GraphSAGE with max pooling. Thus, GCN and GraphSAGE may be viewed as instances
of SIR-GCN.2 The difference lies in the isotropic (Dwivedi et al., 2023) nature (i.e., a function of
only the features of the key nodes) of GCN and GraphSAGE and the use of non-linearities only in the
combination strategy.

4.2 GAT

Moreover, in Brody et al. (2021), the attention mechanism of GATv2 is modeled as an MLP given by

eu,v = a⊤
GAT LEAKYRELU (WQ,GAT hu +WK,GAT hv) , (15)

with the message from node v to node u proportional to exp (eu,v) ·WK,GAT hv . While the attention
mechanism of GATv2 is anisotropic and dynamic, messages are nevertheless only linearly transformed
with node u only determining the degree of contribution through the scalar eu,v. Meanwhile,
SIR-GCN applies the concept of anisotropic and dynamic functions in Eqn. 15 to the message
function, allowing the features of the query node to dynamically transform messages. Specifically, if
WQ = WQ,GAT, WK = WK,GAT, σ = LEAKYRELU and WR = a⊤

GAT, one obtains

h∗
u =

∑
v∈N (u)

a⊤
GAT LEAKYRELU (WQ,GAT hu +WK,GAT hv) (16)

which shows Eqn. 15 becoming a contextualized message in the SIR-GCN model. Nevertheless, GAT
and GATv2 may be recovered, up to a normalizing constant, with the appropriate parameters.

4.3 GIN

Likewise, within the proposed SIR-GCN model, one may explicitly add a residual connection in the
combination strategy to obtain

h∗
u = MLPRes(hu) +

∑
v∈N (u)

WR σ (WQhu +WKhv) , (17)

2GraphSAGE with LSTM aggregation is not included in this discussion.

6
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where MLPRes is a learnable residual network. If MLPRes(h) = (1 + ϵ) · h, σ = PRELU(α = 1),
WQ = 0, and WRWK = I , then

h∗
u = (1 + ϵ) · hu +

∑
v∈N (u)

hv (18)

is equivalent to GIN. Hence, SIR-GCN with residual connection encompasses GIN.

4.4 PNA

Furthermore, while SIR-GCN and PNA approach the problem of uncountable node features differently,
both models highlight the significance of anisotropic message functions considering both the features
of the query and key nodes. The key difference lies with PNA using a static (Brody et al., 2021) or
linear message function m which translates to

m (hv,hu) = WKhv +WQhu = WKhv + bu. (19)

As a result, the influence of the query node on the aggregated neighborhood features is limited. For
instance, when using mean, max, or min aggregators, the influence of the query node u is restricted
to the bias term bu. Moreover, with normalized moment aggregators, the bias term is effectively
canceled out during the normalization process, further reducing the influence of the query node.
Hence, PNA does not fully leverage its anisotropic nature, attributed to its heuristic application of
multiple aggregators and scalers in a linear MPNN, thereby limiting its expressivity. In contrast, the
dynamic nature of SIR-GCN allows for the non-linear embedding of the features of the query node
hu within the aggregated neighborhood features, thereby fully leveraging its anisotropic nature.

4.5 1-WL TEST

Additionally, in terms of graph isomorphism representational capability, SIR-GCN is comparable to a
modified 1-WL test. Suppose w

(l)
u is the WL node label of node u at the lth WL-test iteration. The

modified update equation is given by

w(l)
u ← hash

({{[
w(l−1)

v , w(l−1)
u

]
: v ∈ N (u)

}})
, (20)

where the modification lies in concatenating the label of the center node with every element of
the multiset before hashing. This modification, while negligible when H is countable, becomes
significant when H is uncountable as noted in the previous section. Thus, SIR-GCN inherits the
theoretical capabilities (and limitations) of the 1-WL test.

4.6 SIR-GCN

Overall, SIR-GCN offers flexibility in two key
dimensions of GNNs: aggregation strategy and
message transformation. Consequently, it gener-
alizes four prominent GNNs in literature—GCN,
GraphSAGE, GAT, and GIN—ensuring that it is at
least as expressive as these models. Notably, SIR-
GCN sets itself apart from other GNNs as the first
MPNN instance to incorporate both anisotropic
and dynamic (i.e., contextualized) messages within
the MPNN framework, making it well-suited for
heterophilous tasks (Bronstein et al., 2021) while
remaining adaptable to homophilous tasks.

SumMean

Anisotropic

Isotropic

GAT

GINGraphSAGE
GCN

SIR-GCN

Figure 3: SIR-GCN encompasses GCN,
GraphSAGE, GAT, and GIN.

In addition, SIR-GCN distinguishes itself from PNA by employing only a single aggregator that theo-
retically holds for graphs of arbitrary sizes, thus reducing computational complexity. Nevertheless, its
expressivity is maintained through contextualized messages, allowing it to inherit the representational
capability of the 1-WL test.
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5 EXPERIMENTS

Experiments on synthetic and benchmark datasets in node and graph property prediction tasks are
conducted to highlight the expressivity of SIR-GCN. To ensure fair evaluation, models not employing
complex architectural design or manually crafted features using domain knowledge are used as
primary comparisons.

5.1 SYNTHETIC DATASETS

DictionaryLookup DictionaryLookup (Brody et al., 2021) consists of bipartite graphs with 2n
nodes—n key nodes each with an attribute and value and n query nodes each with an attribute. The
task is to predict the value of query nodes by matching their attribute with the key nodes as in Fig. 4.

A, 1 B, 2 C, 3 D, 4

A, ∗ B, ∗ C, ∗ D, ∗

Figure 4: DictionaryLookup.

A B

AB

Figure 5: GraphHeterophily.

Table 1: Test accuracy on DictionaryLookup.

Model n = 10 n = 20 n = 30 n = 40 n = 50

GCN 0.10 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00
GraphSAGE 0.10 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
GATv2 0.99 ± 0.03 0.88 ± 0.18 0.74 ± 0.28 0.56 ± 0.37 0.60 ± 0.40
GIN 0.78 ± 0.07 0.29 ± 0.03 0.12 ± 0.03 0.03 ± 0.00 0.02 ± 0.01
PNA 1.00 ± 0.00 0.97 ± 0.02 0.86 ± 0.09 0.66 ± 0.09 0.50 ± 0.05

SIR-GCN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 1 presents the mean and standard deviation of the test accuracy for SIR-GCN, GCN, Graph-
SAGE, GATv2, GIN, and PNA across different values of n. SIR-GCN and GATv2 achieve perfect
accuracy attributed to their anisotropic and dynamic nature. However, it is observed that GATv2
suffers from performance degradation in some trials. Meanwhile, the other models fail to predict
the value of query nodes even for the training graphs due to their isotropic and/or static nature.
The results underscore the utility of a dynamic attentional or relational mechanism in capturing the
relationship between the query and key nodes.

GraphHeterophily GraphHeterophily is an original synthetic dataset. It consists of random directed
graphs with each node labeled one of c classes. The task is then to count the total number of directed
edges in each graph connecting nodes with distinct class labels as seen in Fig. 5.

Table 2: Test mean squared error on GraphHeterophily.

Model c = 2 c = 4 c = 6 c = 8 c = 10

GCN 22749 ± 1242 50807 ± 2828 62633 ± 3491 68965 ± 3784 72986 ± 4025
GraphSAGE 22962 ± 1215 36854 ± 2330 30552 ± 1574 21886 ± 1896 16529 ± 1589
GATv2 22329 ± 1307 44972 ± 2834 49940 ± 2942 50063 ± 3407 49661 ± 3488
GIN 39.620 ± 2.060 37.193 ± 1.382 34.649 ± 1.502 32.424 ± 1.841 30.091 ± 1.429
PNA 172.15 ± 97.82 224.83 ± 85.80 249.99 ± 108.56 251.49 ± 98.84 195.72 ± 36.65

SIR-GCN 0.001 ± 0.000 0.004 ± 0.005 1.495 ± 4.428 0.038 ± 0.068 0.089 ± 0.134

Table 2 presents the mean and standard deviation of the test mean squared error (MSE) for SIR-GCN,
GCN, GraphSAGE, GATv2, GIN, and PNA across different values of c. SIR-GCN achieves near-zero
MSE loss due to its anisotropic and dynamic nature and sum aggregation. In fact, if WQ = I ,
WK = −I , σ = RELU, and WR = 1⊤, SIR-GCN produces correct outputs for any graph. In
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contrast, GCN, GraphSAGE, and GATv2 obtained large MSE losses due to their mean or max
aggregation which fails to preserve the graph structure as noted by Xu et al. (2018a). Meanwhile,
GIN and PNA successfully retain the graph structure but fail to learn the relationship between the
labels of the query node and key nodes due to their static nature. The results illustrate the utility of
anisotropic and dynamic models using sum aggregation even with countable node features.

5.2 BENCHMARK DATASETS

Benchmarking GNNs Benchmarking GNNs (Dwivedi et al., 2023) is a collection of benchmark
datasets consisting of diverse mathematical and real-world graphs across various GNN tasks. In
particular, the WikiCS, PATTERN, and CLUSTER datasets fall under node property prediction
tasks while the MNIST, CIFAR10, and ZINC datasets fall under graph property prediction tasks.
Furthermore, the WikiCS, MNIST, and CIFAR10 datasets have uncountable node features while the
remaining datasets have countable node features. The performance metric for ZINC is the mean
absolute error (MAE) while the performance metric of the remaining datasets is accuracy. Dwivedi
et al. (2023) provides more information regarding the individual datasets.

Table 3: Test performance on Benchmarking GNNs.

Model WikiCS (↑) PATTERN (↑) CLUSTER (↑) MNIST (↑) CIFAR10 (↑) ZINC (↓)
MLP 59.45 ± 2.33 50.52 ± 0.00 20.97 ± 0.00 95.34 ± 0.14 56.34 ± 0.18 0.706 ± 0.006
GCN 77.47 ± 0.85 85.50 ± 0.05 47.83 ± 1.51 90.12 ± 0.15 54.14 ± 0.39 0.416 ± 0.006
GraphSAGE 74.77 ± 0.95 50.52 ± 0.00 50.45 ± 0.15 97.31 ± 0.10 65.77 ± 0.31 0.468 ± 0.003
GAT 76.91 ± 0.82 75.82 ± 1.82 57.73 ± 0.32 95.54 ± 0.21 64.22 ± 0.46 0.475 ± 0.007
GIN 75.86 ± 0.58 85.59 ± 0.01 58.38 ± 0.24 96.49 ± 0.25 55.26 ± 1.53 0.387 ± 0.015
GatedGCN - 84.48 ± 0.12 60.40 ± 0.42 97.34 ± 0.14 67.31 ± 0.31 0.435 ± 0.011
PNA - - - 97.19 ± 0.08 70.21 ± 0.15 0.320 ± 0.032
EGC-M - - - - 71.03 ± 0.42 0.281 ± 0.007

SIR-GCN 78.06 ± 0.66 85.75 ± 0.03 63.35 ± 0.19 97.90 ± 0.08 71.98 ± 0.40 0.278 ± 0.024
Note: Missing values indicate that no results were published.

Table 3 presents the mean and standard deviation of the test performance for SIR-GCN and comparable
GNN models across the six benchmarks where the experimental set-up follows that of Dwivedi et al.
(2023) to ensure fair evaluation. The results show that SIR-GCN consistently outperforms popular
GNNs in literature. Notably, SIR-GCN also outperforms both PNA (Corso et al., 2020) and efficient
graph convolution (EGC-M) (Tailor et al., 2021) which use multiple aggregators. This highlights the
significance of contextualized messages in enhancing the expressivity of GNNs, complementing the
discussion in the previous section.

ogbn-arxiv ogbn-arxiv (Hu et al., 2020) is a benchmark dataset representing the citation network
between all Computer Science (CS) arXiv papers indexed by Microsoft academic graph (Wang et al.,
2020). Each node represents an arXiv paper and a directed edge represents a citation. The task is to
classify each paper, based on its title and abstract, into the 40 subject areas of arXiv CS papers.

Table 4: Test accuracy on ogbn-arxiv.

Model GIANT-XRT
(Chien et al., 2021)

BoT
(Wang et al., 2021)

C&S
(Huang et al., 2020) Others Accuracy Parameters

GATv2 ✓ 0.7415 ± 0.0005 207,520
GraphSAGE ✓ 0.7435 ± 0.0014 546,344

SIR-GCN ✓ 0.7525 ± 0.0009 667,176
✓ ✓ ✓ 0.7574 ± 0.0020 697,896

LGGNN ✓ ✓ ✓ 0.7570 ± 0.0018 1,161,640
RevGAT ✓ KD, DCN 0.7636 ± 0.0013 1,304,912
AGDN ✓ ✓ self-KD 0.7637 ± 0.0011 1,309,760

Table 4 presents the mean and standard deviation of the test accuracy for SIR-GCN and other models
in literature. The tricks used and the number of parameters are also presented for completeness.
The results show that SIR-GCN, utilizing only a single GNN layer, outperforms comparable models
in predicting the subject area of the papers. As expected, however, SIR-GCN fails to compete
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with complex frameworks utilizing more tricks such as the reversible GAT (RevGAT) (Li et al.,
2021) and the adaptive graph diffusion network (AGDN) (Sun et al., 2020), both of which build
upon GAT by employing grouped reversible residual connections and adaptive graph diffusion,
respectively. Nevertheless, SIR-GCN achieves performance close to that of the complex GNN
frameworks mentioned, showcasing an effective balance between complexity and expressivity.

ogbg-molhiv ogbg-molhiv (Hu et al., 2020) is another benchmark dataset where each graph
represents a molecule with nodes representing atoms and edges representing chemical bonds. Node
features contain information regarding the atom while edge features contain information regarding
the chemical bond. The task is to predict whether or not the molecules inhibit HIV replication.

Table 5: Test ROC-AUC on ogbg-molhiv.

Model GraphNorm
(Cai et al., 2021)

VirtualNode
(Gilmer et al., 2017) Others ROC-AUC Parameters

GIN ✓ FLAG 0.7748 ± 0.0096 3,336,306
GIN ✓ 0.7773 ± 0.0129 1,518,901
EGC-M 0.7818 ± 0.0153 317,265
GCN ✓ 0.7883 ± 0.0100 526,201
PNA 0.7905 ± 0.0132 326,081

SIR-GCN 0.7721 ± 0.0110 327,901
✓ 0.7981 ± 0.0062 328,201

GSN 0.7799 ± 0.0100 3,338,701
GSAT 0.8067 ± 0.0950 249,602
CIN 0.8094 ± 0.0057 239,745

Table 5 presents the mean and standard deviation of the test area under the receiver operating
characteristic curve (ROC-AUC) for SIR-GCN and other models in literature. The tricks used and
the number of parameters are also presented for completeness. The results show that with only a
single GNN layer, SIR-GCN outperforms comparable models in predicting molecules inhibiting HIV
replication, highlighting its expressivity. Given the simplicity of SIR-GCN, it is expected to exhibit
lower performance compared to complex models such as the graph stochastic attention (GSAT) (Miao
et al., 2022), which builds upon PNA by leveraging the information bottleneck principle, and the
cell isomorphism network (CIN) (Bodnar et al., 2021), which is a hierarchical message-passing
framework utilizing the topological features of graphs. Despite its simple design, the expressivity of
SIR-GCN is evident in its close performance to that of complex GNN frameworks.

6 CONCLUSION

In summary, the paper provides a novel perspective for creating a powerful GNN across all levels
when the space of node features is uncountable. The central idea is to use pseudometric distances to
create soft-injective functions such that distinct inputs may produce similar outputs if and only if
the distance between inputs is sufficiently small on some representation. From the results, the SIR-
GCN is proposed as the first MPNN instance to emphasize contextualized message transformation,
setting it apart from other GNNs. This design also enables it to learn the complex relationships
between neighboring nodes and allows it to better handle uncountable node features. Furthermore,
the model is shown to generalize classical GNN methodologies. Despite its simple design, empirical
results underscore SIR-GCN as the best-performing MPNN instance that effectively balances model
complexity and expressivity. The paper thus contributes to GNN literature by theoretically and
empirically demonstrating the necessity of both anisotropic and dynamic messages to enhance GNN
expressivity. Future works may consider incorporating SIR-GCN into complex frameworks, such as
grouped reversible residual connections (Li et al., 2021), adaptive graph diffusion (Sun et al., 2020),
graph stochastic attention (Miao et al., 2022), and hierarchical message-passing (Bodnar et al., 2021),
to address the limitations inherent in the MPNN framework and to develop more expressive GNNs.
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Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. arXiv preprint arXiv:1910.10593, 2019.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft Academic Graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 02 2020. ISSN 2641-3337.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019a.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, pp. 2022–2032, 2019b.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for
node classification with graph neural networks. arXiv preprint arXiv:2103.13355, 2021.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in Neural Information
Processing Systems, 31, 2018.

A PROOFS

Definition 2 (Conditionally positive definite kernel (Schölkopf, 2000)). LetH be a non-empty set. A
symmetric function k̃ : H×H → R is a conditionally positive definite kernel onH if for all N ∈ N
and h(1),h(2), . . . ,h(N) ∈ H,

N∑
i=1

N∑
j=1

cicj k̃
(
h(i),h(j)

)
≥ 0, (21)

with c1, c2, . . . , cN ∈ R and
∑N

i=1 ci = 0.

Theorem 2 (Hilbert space representation of conditionally positive definite kernels (Berg et al., 1984;
Schoenberg, 1938; Schölkopf, 2000)). LetH be a non-empty set and k̃ : H×H → R a conditionally
positive definite kernel onH satisfying k̃ (h,h) = 0 for all h ∈ H. There exists a Hilbert space S of
real-valued functions onH and a feature map g : H → S such that for every h(1),h(1) ∈ H,∥∥∥g (h(1)

)
− g

(
h(2)

)∥∥∥2 = −k̃
(
h(1),h(2)

)
. (22)

Proof. See Schölkopf (2000).

Theorem 1. LetH be a non-empty set with a pseudometric d : H×H → R≥0 satisfying Assumption
1. There exists a feature map g : H → S such that for every h(1),h(2) ∈ H and ε1 > ε2 > 0,

ε2 <
∥∥∥g (h(1)

)
− g

(
h(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < d
(
h(1),h(2)

)
< ε1. (4)
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Proof. Let d : H×H → R≥0 be a pseudometric. From Assumption 1 and Theorem 2, there exists a
feature map g : H → S such that for every h(1),h(2) ∈ H,∥∥∥g (h(1)

)
− g

(
h(2)

)∥∥∥ = d
(
h(1),h(2)

)
. (23)

Hence, for every ε1 > ε2 > 0,

ε2 <
∥∥∥g (h(1)

)
− g

(
h(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < d
(
h(1),h(2)

)
< ε1. (24)

Theorem 3. Suppose h(0),h(1),h(2) ∈ H and k̃ : H×H → R is a symmetric function. Then

k
(
h(1),h(2)

)
=

1

2

[
k̃
(
h(1),h(2)

)
− k̃

(
h(1),h(0)

)
− k̃

(
h(0),h(2)

)
+ k̃

(
h(0),h(0)

)]
(25)

is positive definite if and only if k̃ is conditionally positive definite.

Proof. See Schölkopf (2000).

Corollary 1. LetH be a non-empty set with a pseudometric D on bounded, equinumerous multisets
ofH defined as

D2
(
H(1),H(2)

)
=

∑
h∈H(1)

h′∈H(2)

d2(h,h′)− 1

2

∑
h∈H(1)

h′∈H(1)

d2(h,h′)− 1

2

∑
h∈H(2)

h′∈H(2)

d2(h,h′) (5)

for some pseudometric d : H × H → R≥0 satisfying Assumption 1 and bounded, equinumerous
multisets H(1),H(2). There exists a feature map g : H → S such that for every H(1),H(2) and
ε1 > ε2 > 0,

ε2 <
∥∥∥G(

H(1)
)
−G

(
H(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < D
(
H(1),H(2)

)
< ε1, (6)

where
G(H) =

∑
h∈H

g(h). (7)

Proof. Let D be a pseudometric on bounded, equinumerous multisets ofH defined as

D2
(
H(1),H(2)

)
=

∑
h∈H(1)

h′∈H(2)

d2(h,h′)− 1

2

∑
h∈H(1)

h′∈H(1)

d2(h,h′)− 1

2

∑
h∈H(2)

h′∈H(2)

d2(h,h′) (26)

for some pseudometric d : H × H → R≥0 and bounded, equinumerous multisets H(1),H(2).
From Assumption 1 and Theorem 3, the pseudometric d has a corresponding positive definite
kernel k : H ×H → R. A simple algebraic manipulation and using the fact that H(1),H(2) are
equinumerous results in

D2
(
H(1),H(2)

)
=

∑
h∈H(1)

h′∈H(1)

k(h,h′) +
∑

h∈H(2)

h′∈H(2)

k(h,h′)− 2
∑

h∈H(1)

h′∈H(2)

k(h,h′). (27)

Note that D is indeed a pseudometric since k is positive definite as noted by Joshi et al. (2011).3 By
the reproducing property of k and the linearity of the inner product, it may be shown that∥∥∥G(

H(1)
)
−G

(
H(2)

)∥∥∥ = D
(
H(1),H(2)

)
, (28)

where
G(H) =

∑
h∈H

g(h) (29)

and g is the corresponding feature map of the kernel k. Hence, for every ε1 > ε2 > 0,

ε2 <
∥∥∥G(

H(1)
)
−G

(
H(2)

)∥∥∥ < ε1 ⇐⇒ ε2 < D
(
H(1),H(2)

)
< ε1. (30)

3If k is also integrally strictly positive definite (Sriperumbudur et al., 2010), then the hash function G becomes
injective and D becomes a metric.
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B EXPERIMENTAL SET-UP

All experiments are conducted on a single NVIDIA® Quadro RTX 6000 (24GB) card using the Deep
Graph Library (DGL) (Wang et al., 2019a) with PyTorch (Paszke et al., 2019) backend. For synthetic
datasets, the reported results are obtained from the models at the final epoch across 10 trials with
varying seed values. For benchmark datasets, the reported results are obtained from the models with
the best validation loss across the 10 trials. The hyperparameters are chosen based on previous results
and heuristics without extensive tuning.

B.1 SYNTHETIC DATASETS

DictionaryLookup Adopting Brody et al. (2021), the training dataset consists of 4,000 bipartite
graphs, each containing 2n nodes with randomly assigned attributes and values, while the test dataset
comprises 1,000 bipartite graphs with the same configuration. All models utilize a single GNN layer
with 4n hidden units. A two-layer MLP is also used for GIN and σ of SIR-GCN while PNA uses the
sum, max, and std aggregators. Model training is performed with the AdamW (Loshchilov & Hutter,
2017) optimizer for over 500 epochs with a batch size of 256 and a learning rate of 0.001 that decays
by a factor of 0.5 with patience of 10 epochs based on the training loss.

GraphHeterophily The training dataset consists of 4,000 directed graphs, each containing a
maximum of 50 nodes with uniformly selected edges using the rand graph function of DGL
and uniformly assigned node labels from one of c classes using the randint function of PyTorch.
These measures ensure that the graphs are sufficiently diverse with respect to graph structure and
heterophily. Meanwhile, the test dataset comprises 1,000 directed graphs with the same configuration.
All models utilize a single GNN layer with 10c hidden units and sum pooling as the graph readout
function. A feed-forward neural network is also used for GIN while PNA uses the sum, max, and std
aggregators. Model training is performed with the AdamW (Loshchilov & Hutter, 2017) optimizer
for over 500 epochs with a batch size of 256 and a learning rate of 0.001 that decays by a factor of
0.5 with patience of 10 epochs based on the training loss.

B.2 BENCHMARK DATASETS

Benchmarking GNNs The datasets are obtained from dgl with data splits (training, validation,
test) following Dwivedi et al. (2023). In line with Dwivedi et al. (2023), all models utilize 4 GNN
layers with batch normalization and residual connections while constrained with a parameter budget
of 100,000. Regularization with weights in

{
1× 10−7, 1× 10−6, 1× 10−5

}
and dropouts with

rates in {0.1, 0.2, 0.3} are also used to prevent overfitting. The mean, symmetric mean, and max
aggregators are used since the sum aggregator is observed to not generalize well to unseen graphs as
noted by Veličković et al. (2019). Additionally, sum pooling is used as the graph readout function for
ZINC while mean pooling is used for MNIST and CIFAR10. Model training is performed with the
AdamW (Loshchilov & Hutter, 2017) optimizer for over a maximum of 500 epochs with a batch size
of 128, whenever applicable, and a learning rate of 0.001 that decays by a factor of 0.5 with patience
of 10 epochs based on the training loss. The reported results for other models in Table 3 are obtained
from Dwivedi et al. (2023), Corso et al. (2020), and Tailor et al. (2021).

ogbn-arxiv The dataset is obtained from ogb with data splits (training, validation, test) following
Hu et al. (2020). Furthermore, the GIANT-XRT (Chien et al., 2021) node features are also used,
resulting in 768-dimensional input node features. The models utilize a single GNN layer with 256
hidden units, batch normalization, and residual connections. Regularization with weight 1× 10−6

and dropouts with rates in increments of 0.1 are also used to prevent overfitting. The symmetric
mean aggregator is used along with existing tricks in literature. Model training is performed with
the AdamW (Loshchilov & Hutter, 2017) optimizer for over 500 epochs and a learning rate of
0.01 that decays by a factor of 0.5 with patience of 50 epochs based on the training loss. The
reported results for other models in Table 4 are obtained from the OGB leaderboard accessible at
https://ogb.stanford.edu.

ogbg-molhiv The dataset is obtained from ogb with data splits (training, validation, test) following
Hu et al. (2020) and 174-dimensional input node feature embeddings. The models utilize a single
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GNN layer, modified to leverage edge features as described in Appendix E, with 300 hidden units,
batch/graph normalization, and residual connections. Regularization with weight 1 × 10−7 and
dropouts with rates in {0.1, 0.4} are also used to prevent overfitting. The sum aggregator is used for
SIR-GCN aggregation while mean pooling is used as the graph readout function. Model training is
performed with the AdamW (Loshchilov & Hutter, 2017) optimizer for over 200 epochs with a batch
size of 128 and a learning rate of 0.001 that decays by a factor of 0.5 with patience of 20 epochs
based on the training loss. The reported results for other models in Table 5 are obtained from the
OGB leaderboard accessible at https://ogb.stanford.edu.

C RUNTIME ANALYSIS

As an additional evaluation, the validation runtime for each model in the synthetic datasets is presented
in Tables 6 and 7. The results, when considered alongside Tables 1 and 2, illustrate that SIR-GCN
achieves a balance between computational complexity and model expressivity, specifically with
regards to PNA which is also designed for uncountable node features but requires significantly longer
runtime. Table 8 complements these results and further highlights how SIR-GCN has a computational
runtime complexity comparable to GCN, GraphSAGE, GAT, GATv2, and GIN while outperforming
these models across all benchmarks. Notably, SIR-GCN also demonstrates a lower complexity
than PNA, yet delivers superior performance across all datasets. These additional analyses further
underscore the practical utility of the proposed model.

Table 6: DictionaryLookup validation runtime.

Model n = 10 n = 20 n = 30 n = 40 n = 50

GCN 0.3526s ± 0.0778s 0.4734s ± 0.0468s 0.4777s ± 0.0854s 0.5619s ± 0.0518s 0.5520s ± 0.0679s
GraphSAGE 0.4565s ± 0.0873s 0.5264s ± 0.0317s 0.5716s ± 0.1132s 0.7742s ± 0.0597s 0.9193s ± 0.0473s
GATv2 0.3950s ± 0.1017s 0.5276s ± 0.0556s 0.6191s ± 0.0879s 0.7472s ± 0.0346s 1.0065s ± 0.0280s
GIN 0.3696s ± 0.0899s 0.4610s ± 0.0459s 0.4670s ± 0.0781s 0.5947s ± 0.0548s 0.5194s ± 0.0993s
PNA 0.8854s ± 0.0412s 1.1913s ± 0.1024s 1.4526s ± 0.0684s 1.8793s ± 0.0528s 2.8387s ± 0.0603s

SIR-GCN 0.4687s ± 0.0777s 0.6066s ± 0.0398s 0.8053s ± 0.0485s 1.1496s ± 0.0427s 1.7031s ± 0.0458s

Table 7: GraphHeterophily validation runtime.

Model c = 2 c = 4 c = 6 c = 8 c = 10

GCN 0.4243s ± 0.0520s 0.3852s ± 0.0517s 0.3868s ± 0.0743s 0.4166s ± 0.0551s 0.4177s ± 0.0494s
GraphSAGE 0.4691s ± 0.0400s 0.4790s ± 0.0440s 0.4399s ± 0.0629s 0.4501s ± 0.0603s 0.4964s ± 0.0601s
GATv2 0.4710s ± 0.0978s 0.4941s ± 0.0567s 0.4718s ± 0.0361s 0.5514s ± 0.0608s 0.5437s ± 0.0724s
GIN 0.4085s ± 0.0741s 0.3875s ± 0.0627s 0.3855s ± 0.0645s 0.4298s ± 0.0566s 0.4329s ± 0.0534s
PNA 2.2963s ± 0.0413s 2.4238s ± 0.0611s 2.4577s ± 0.0533s 2.4741s ± 0.0665s 2.5623s ± 0.0425s

SIR-GCN 0.5338s ± 0.0353s 0.5264s ± 0.0737s 0.5635s ± 0.0695s 0.5764s ± 0.0401s 0.6230s ± 0.0388s

Table 8: Asymptotic runtime complexity.

Model Complexity

GCN O (|V| × dout × din + |E| × dout)
GraphSAGE O (|V| × dout × din + |E| × dout)
GAT / GATv2 O (|V| × dout × din + |E| × dout)
GIN O (|E| × din + |V| × MLP)
PNA O

(
|E| × d2in + |E| × din × k + |V| × dout × din × k

)
SIR-GCN O (|V| × dhidden × din + |E| × dhidden + |V| × dout × dhidden)

Note: k represents the number of aggregators and scalers in PNA.

D ADDITIONAL EXPERIMENTS

Additional experiments are conducted to further highlight the utility and novelty of SIR-GCN as
the first MPNN instance to theoretically and empirically justify the use of anisotropic and dynamic
message functions. Specifically, consider SIR-GCN (static), which uses linear messages by setting
σ as identity and WR = I , and SIR-GCN (isotropic), which removes the dependency of messages
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on the query node features hu by setting WQ = 0. Table 9 presents the results for the SIR-GCN
variants on the Benchmarking GNNs datasets. Although SIR-GCN achieves lower accuracy on
WikiCS compared to the two simpler SIR-GCNs (static and isotropic), this result is consistent with
the characteristics of the dataset. As noted by Dwivedi et al. (2023), WikiCS is a single-graph dataset
with denser node neighborhoods and shorter average path lengths, which can make more expressive
models like SIR-GCN prone to overfitting and oversmoothing. Thus, the simpler SIR-GCNs are
naturally less expressive and achieve higher accuracies for this small dataset. In contrast, on larger
and more complex datasets such as PATTERN, CLUSTER, MNIST, CIFAR10, and ZINC, SIR-GCN
consistently outperforms both the simpler SIR-GCNs and conventional GNNs. This underscores the
strong utility of both anisotropic and dynamic message functions in improving GNN representational
capability. Overall, these additional results highlight the novelty of SIR-GCN and further confirm the
theoretical and practical contributions of the paper in advancing GNN research.

Table 9: Additional experiments on Benchmarking GNNs.

Model WikiCS (↑) PATTERN (↑) CLUSTER (↑) MNIST (↑) CIFAR10 (↑) ZINC (↓)
SIR-GCN (static) 78.52 ± 0.57 85.72 ± 0.02 61.90 ± 0.25 95.65 ± 0.84 50.09 ± 3.20 0.334 ± 0.014
SIR-GCN (isotropic) 78.73 ± 0.63 85.74 ± 0.03 62.60 ± 0.38 97.44 ± 0.11 68.88 ± 0.27 0.281 ± 0.024

SIR-GCN 78.06 ± 0.66 85.75 ± 0.03 63.35 ± 0.19 97.90 ± 0.08 71.98 ± 0.40 0.278 ± 0.024

E SIR-GCN EXTENSIONS

Denote hu,v as the feature of the edge connecting node v to node u. Following the intuition presented
in Eqns. 8 and 9, SIR-GCN with residual connection may be modified to leverage edge features to
obtain

h∗
u = MLPRes(hu) +

∑
v∈N (u)

WR σ (WQhu +WEhu,v +WKhv) , (31)

where WE ∈ Rdhidden×din . Consequently, this also increases the computational complexity of the
model to

O (|E| × dhidden × din + |V| × dout × dhidden + |V| × MLPRes) , (32)
with MLPRes denoting the computational complexity of MLPRes, which is comparable to PNA.
Similarly, this extension may be viewed as a generalization of GIN with edge features (Hu et al.,
2019).

Furthermore, one may inject inductive bias into the pseudometrics which may correspond to specify-
ing the architecture type for the corresponding message function g. For instance, if node features are
known to have a sequential relationship (e.g., stock (Hsu et al., 2021) and fMRI (Kim & Ye, 2020)
data), g may then be aptly modeled using recurrent or convolutional networks.
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