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ABSTRACT

Model collapse occurs when generative models degrade after repeatedly training
on their own synthetic outputs. We study this effect in overparameterized linear
regression in a setting where each iteration mixes fresh real labels with synthetic
labels drawn from the model fitted in the previous iteration. We derive precise
generalization error formulae for minimum-ℓ2-norm interpolation and ridge re-
gression under this iterative scheme. Our analysis reveals intriguing properties of
the optimal mixing weight that minimizes long-term prediction error and prov-
ably prevents model collapse. For instance, in the case of min-ℓ2-norm inter-
polation, we establish that the optimal real-data proportion converges to the re-
ciprocal of the golden ratio for fairly general classes of covariate distributions.
Previously, this property was known only for ordinary least squares, and addi-
tionally in low dimensions. For ridge regression, we further analyze two popu-
lar model classes – the random-effects model and the spiked covariance model
–demonstrating how spectral geometry governs optimal weighting. In both cases,
as well as for isotropic features, we uncover that the optimal mixing ratio should
be at least one-half, reflecting the necessity of favoring real-data over synthetic.
We validate our theoretical results with extensive simulations.

1 INTRODUCTION

Modern AI models are increasingly trained on their own synthetic outputs. However, this prac-
tice can lead to model collapse, where prediction performance degrades progressively with iterative
re-training on AI generated synthetic data Shumailov et al. (2024; 2023). The phenomenon has
been empirically observed across a wide array of settings Alemohammad et al. (2024); Bertrand
et al. (2024); Bohacek & Farid (2023); Briesch et al. (2023); Hataya et al. (2023); Martı́nez et al.
(2023a;b). Motivated by these observations, recent work has rigorously studied model collapse and
developed methods to mitigate it in some cases Shumailov et al. (2024); Dohmatob et al. (2024a;b;
2025); Feng et al. (2025); Dey & Donoho (2024); Gerstgrasser et al. (2024); Kazdan et al. (2024).
However previous work remains limited to low-dimensional settings or Gaussian features, creating
a significant gap in our understanding. This paper breaks this barrier by addressing two funda-
mental questions: Can mixing fresh real data with synthetic outputs mitigate model collapse in
overparametrized problems? What is the optimal mixing ratio that minimizes prediction error in the
long run? We provide rigorous answers for overparametrized linear regression, demonstrating how
model collapse can be prevented under overparametrization.

Prior work has rigorously studied model collapse across several problem settings, though with im-
portant limitations. For low-dimensional Gaussian distribution estimation, Shumailov et al. (2024)
shows how repeated use of synthetic data causes the estimated covariance matrix to collapse to zero
almost surely, while the sample mean diverges. Similar results hold for linear regression, as estab-
lished by Dohmatob et al. (2024a), for Gaussian features. Recent work Dohmatob et al. (2024b;
2025); Feng et al. (2025) attributes collapse to a change in scaling laws, with applications to text
generation and Gaussian mixture problems. To mitigate model collapse, Gerstgrasser et al. (2024);
Dey & Donoho (2024); Kazdan et al. (2024); He et al. (2025) develop a mixing framework, where
models are trained on a mixture of real and synthetic data at each iteration. This approach prevents
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collapse by ensuring that the test error remains bounded even as the number of iterations increase.
Crucially, these papers focus exclusively on low-dimensional problems.

We study two broad classes of estimators—minimum-ℓ2-norm interpolators (Section 3.1) and ridge
regression (Section 3.2 and Section 3.3). Modern machine learning (ML) algorithms frequently
exhibit implicit regularization Zhang & Yu (2005); Soudry et al. (2018); Gunasekar et al. (2018a)—
with appropriate initialization and step sizes, algorithms converge to predictors that achieve remark-
able generalization in overparameterized regimes. Implicit regularization has become a cornerstone
for understanding why overparameterized models generalize well Bartlett et al. (2020). Within this
framework, min-norm interpolators have emerged as a fundamental class of predictors that com-
monly arise as implicitly regularized limits of gradient-based algorithms Bartlett et al. (2020); Deng
et al. (2022); Gunasekar et al. (2018a;b); Liang & Sur (2022); Montanari et al. (2019); Muthukumar
et al. (2020); Soudry et al. (2018); Zhang & Yu (2005); Wang et al. (2022); Zhou et al. (2022).
At the same time, ridge regression represents a fundamental learning paradigm that has historically
provided valuable insights into complex algorithms, often illuminating phenomena observed in deep
networks Hastie et al. (2022); Patil et al. (2024). We study these popular classes of predictors for
understanding model collapse under overparametrization.

Specifically, we adopt the fresh data augmentation framework from He et al. (2025): given covari-
ates X, at iteration t, we generate a new batch of real responses yt alongside synthetic responses ỹt

produced using the estimator from iteration (t − 1). The estimator at iteration t is formed using a
weighted mixture of these real and synthetic responses. Concretely, for the min-ℓ2-norm interpolator
and ridge regression with regularization λ > 0, we define

β̂ββt = (X⊤X)†X⊤(w yt + (1− w) ỹt

)
.

β̂ββt,λ = (X⊤X+ nλI)−1X⊤(w yt + (1− w) ỹt,λ

)
. (1.1)

Above, † denotes the pseudoinverse. It is well-known that β̂ββt = limλ→0+ β̂ββt,λ. In the aforemen-
tioned setting, our main contributions are as follows:

(i) Quantifying the generalization error. In an overparametrized regime (stated precisely in Sec-
tion 2), we characterize the generalization error as t→∞ for both the min-ℓ2-norm interpolator β̂ββt

(Theorem 3.1)and the ridge estimator β̂ββt,λ (Theorem 3.4). Our results capture the precise depen-
dence of the limiting risk on key problem parameters: the signal strength, feature covariance matrix,
regularization level λ, and mixing proportion w. Our work substantially advances the growing liter-
ature on interpolation learning and high-dimensional ridge regression Montanari et al. (2019); Deng
et al. (2022); Liang & Sur (2022); Wang et al. (2022); Zhou et al. (2022); Bach (2024); Patil et al.
(2024); Mallinar et al. (2024); Song et al. (2024), which has previously not examined the impact of
synthetic data on these learning problems.

(ii) Characterizing the optimal mixing ratio. We characterize the optimal weight on real labels
that minimizes the long-term prediction error across different settings. For min-ℓ2-norm interpola-
tion, we establish that the asymptotic risk is uniquely minimized at w⋆ = 1/φ (the reciprocal of
the golden ratio) for any feature covariance matrix with bounded eigenvalues (see equation (2.4)).
This phenomenon was previously proved only for ordinary least squares in low-dimensional lin-
ear regression with Gaussian features He et al. (2025). For ridge regression, we prove that the
risk is log-convex and admits a unique minimum at w⋆ under several important scenarios: when
the covariance is isotropic (Theorem 3.3), or when the covariance follows a spiked model (Sec-
tion 3.4.2), or when the signal follows a random-effects model (Theorem 3.2). Across all settings,
we show w⋆ ≥ 1/2, highlighting the necessity of weighting real-data more heavily than synthetic
data. Such rigorous analysis of the mixing ratio provides concrete guidance for mitigating model
collapse in overparametrized problems, complementing recent theoretical studies that were limited
to low-dimensional regression Gerstgrasser et al. (2024); Dey & Donoho (2024).

Paper Structure The rest of the paper is structured as follows. Section 2 formalizes the problem
setup and data-augmentation framework. In Section 3, we state our theoretical results – subsec-
tion 3.1 considers min-ℓ2-norm interpolator and subsections 3.2 and 3.3 consider ridge regression
for isotropic and anisotropic covariates, respectively. Subsections 3.4.1 and 3.4.2 provide appli-
cations of our main results for random effects model and spike covariance models, respectively.
Section 4 provides extensive simulations to complement our theoretical findings. Section 5 presents
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a discussion and future research directions. The proofs of all theoretical results are in the supple-
mentary material.

2 PROBLEM SETUP

We consider the fresh data augmentation framework He et al. (2025), but in the context of over-
parametrized linear regression. Suppose we observe a dataset (y,X) from a linear model, i.e.,

y = Xβββ + ε, with y, ε ∈ Rn,βββ ∈ Rp,X ∈ Rn×p. (2.1)

We compute an initial ridge estimator β̂ββ0,λ using (y,X). For t ≥ 1 we iteratively generate synthetic
response vectors ỹt,λ using β̂ββt−1,λ, then augment these with fresh real responses yt. At each step,
the next ridge estimator is computed using a mixture of the real and synthetic responses, yt and ỹt,λ

respectively, with a mixing proportion w ∈ (0, 1). The procedure is outlined in Algorithm 1.

Algorithm 1 Iterative ridge with real/synthetic data augmentation
1: Input: Dataset (y,X); regularization parameter λ > 0; mixing proportion w ∈ (0, 1).
2: Initialize: β̂ββ0,λ ← (X⊤X+ nλI)−1X⊤y.
3: for t ≥ 1 do
4: Generate real responses: yt ← Xβββ + εt.
5: Generate synthetic responses: ỹt,λ ← Xβ̂ββt−1,λ + ε̃t.
6: Update estimator:

β̂ββt,λ ← (X⊤X+ nλI)−1X⊤(wyt + (1− w)ỹt,λ

)
.

7: end for

To capture an overparametrized regime, we assume that p > n with both diverging at a com-
parable rate, i.e. p/n → γ > 1. This means we work with a sequence of problem instances
{y(n),X(n),βββ(n), ε(n)}n≥1, with X(n) ∈ Rn×p(n),y(n), ε(n) ∈ Rn,βββ(n) ∈ Rp(n), satisfying
equation (2.1) and further assume that

lim
n→∞

∥βββ(n)∥2 = b⋆ ∈ (0,∞). (2.2)

Below we suppress the dependence on n for conciseness. This regime has seen incredible success
in modern ML theory in explaining phenomena observed for deep neural networks and other prac-
tical algorithms Hastie et al. (2022); Adlam & Pennington (2020); Montanari et al. (2019); Mei &
Montanari (2022); Liang & Sur (2022); Cui et al. (2023); Paquette et al. (2024); Emrullah Ildiz et al.
(2025); Lu et al. (2025). The regime has also seen enormous utility in high-dimensional statistics,
particularly for the development of new theory and methods in challenging contemporary inference
problems Bean et al. (2013); El Karoui (2018); Donoho et al. (2009); Bayati & Montanari (2011);
Wang et al. (2017); Sur & Candès (2019); Sur et al. (2019); Fan (2022); Li & Sur (2023); Celentano
et al. (2023); Jiang et al. (2025).

In the sequel, we operate under the following assumptions on the covariates and errors that are
commonly seen in random matrix theory Bai & Silverstein (2010).

Assumption 2.1. (i) The covariates satisfy X = ZΣ1/2, where Z ∈ Rn×p are random matrices
whose entries Zij are independent random variables with zero mean and unit variance. We further
assume that there exists a constant τ > 0 by which the υ-th moment of each entry is bounded for
some υ > 4:

E [|Zij |υ] ≤ τ−1. (2.3)
We will assume throughout that Σ has bounded eigenvalues s1, . . . , sp:

τ ≤ sp ≤ ... ≤ s1 ≤ τ−1. (2.4)

(ii) The noises εt, ε̃t (defined precisely in Algorithm 1) are assumed to have i.i.d. entries with mean
0, variance σ2, and bounded moments up to any order. That is, for any ϕ > 0, there exists a constant
Cϕ such that

E
[
|εt,1|ϕ

]
≤ Cϕ, E

[
|ε̃t,1|ϕ

]
≤ Cϕ. (2.5)
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Together with equation (2.2), Assumption 2.1(ii) implies that the signal-to-noise ratio (SNR) SNR :=
b⋆/σ

2 remains finite as n, p→∞ ensuring that we work under a non-trivial and interesting regime.

2.1 RISK

The out-of-sample prediction risk of an estimator β̂ββ (hereafter simply referred to as risk) at a new
data point (y0,x0) is defined as

R(β̂ββ;βββ) := E[(x⊤
0 β̂ββ − x⊤

0 βββ)
2|X] = E[∥β̂ββ − βββ∥2Σ|X], (2.6)

where for a vector v and matrix Σ, we define ∥v∥2Σ = v⊤Σv. Note that this risk has a σ2 dif-
ference from the mean-squared prediction error for the new data point, which does not affect the
relative performance and is therefore omitted. As defined, the risk involves expectation over both
the randomness in the new test point (y0,x0) and that in the noise variables. We define the risk con-
ditional on the feature matrix X, and our risk characterization results are high probability statements
over the randomness in the covariates. Despite this dependence on covariates, we use the notation
R(β̂ββ;βββ) since the context is clear. The risk admits a bias-variance decomposition:

R(β̂ββ;βββ) = ∥E(β̂ββ|X)− βββ∥2Σ︸ ︷︷ ︸
B(β̂ββ;βββ)

+Tr[Cov(β̂ββ|X)Σ]︸ ︷︷ ︸
V (β̂ββ;βββ)

. (2.7)

We next state our main results, which involve precise characterization of the risk of the estimator
β̂ββt,λ from Algorithm 1 and β̂ββt defined by equation (3.3).

3 MAIN RESULTS

We begin by introducing two measures that feature crucially in the risk of the estimators β̂ββt,λ and
β̂ββt. Let v1, . . . , vp denote the eigenvectors of Σ, i.e., Σ =

∑p
k=1 skvkv

⊤
k . Define the probability

measures:

Ĥp(x) =
1

p

p∑
k=1

1sk≤x, Ĝp(x) =
1

∥βββ∥22

p∑
k=1

⟨vk,βββ⟩21sk≤x. (3.1)

Throughout we assume Ĥp and Ĝp converge weakly to probability measures H and G respectively.

For any z ∈ C/R+, define m(z) to be the solution to

m(z)−1 + z = γ

∫
x

1 +m(z)x
dH. (3.2)

Remark 3.1. Existence and uniqueness of m(z) is well-known (c.f., (Knowles & Yin, 2017, Lemma
2.2)). Further, m(z) is the companion Stieltjes transform of the free convolution of H and MPγ ,
where MPγ is the Marchenko-Pastur distribution with parameter γ Marčenko & Pastur (1967).

3.1 MIN-ℓ2-NORM INTERPOLATOR

In this section, we will analyze the behavior of R(β̂ββt;βββ), where we use

β̂ββt = (X⊤X)†X⊤(wyt + (1− w)ỹt), ỹt = Xβ̂ββt−1 + ε̃t (3.3)

in place of β̂ββt,λ, ỹt,λ in Algorithm 1. This estimator is a convex combination of the min-ℓ2-norm
interpolator computed on (X,yt) and (X, ỹt). The generalization error of β̂ββt is characterized below.

Theorem 3.1 (Interpolator Risk). In the setting of Section 2, the risk of β̂ββt, defined by equation (3.3),
satisifes the following. For any w ∈ (0, 1), we have almost surely over the randomness in the
covariates,

lim
n→∞

lim
t→∞

R(β̂ββt;βββ) = σ2c(w)V + b⋆B (3.4)

4
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with c(w) = (w2 + (1− w)2)/w(2− w) and

V =
m′(0)

m(0)2
− 1, B =

m′(0)

m(0)2

(∫
x

(1 +m(0)x)2
dG

)
. (3.5)

Moreover, the limiting risk is minimized at w⋆ = φ−1, where φ = (1 +
√
5)/2 is the golden ratio.

Note Theorem 3.1 applies for any Σ obeying our assumptions. For the special case of isotropic
features, i.e., Σ = I , the limiting risk simplifies to

lim
n→∞

lim
t→∞

R(β̂ββt;βββ) = σ2c(w)
1

γ − 1
+ b⋆

(
1− 1

γ

)
.

Proof of Theorem 3.1 is available in Appendix A.

Effect of number of iteration t and mixing parameter w: In equation (3.4), the first term corre-
sponds to the variance while the second to the bias (recall definitions from equation (2.7)). Note that
the quantities σ2V and b⋆B coincides asymptotic variance and bias of min-ℓ2-norm interpolators
in overparametrized regression (Hastie et al., 2022, Theorem 2). In fact, the bias term B(β̂ββt,βββ) is
independent of both the iteration t and mixing proportion w. The impact of mixing on the gener-
alization error arises through only the variance, captured by the function c(w), which is minimized
at w⋆ = φ−1 ≈ 0.618. This golden-ratio weighting phenomenon was previously observed for
ordinary least squares in low-dimensional regression with Gaussian covariates He et al. (2025).

If w = 0, then the generalization error R(β̂ββt,βββ) → ∞ as t → ∞, even for a finite sample size n.
This implies that training solely on synthetic data results in model collapse, as seen also by Shu-
mailov et al. (2024); Dohmatob et al. (2024a) for low-dimensional learning problems. Moreover, if
the mixing proportion w > 1/3, then by equation (A.2), we have the variance V (β̂ββt;βββ) decreases
monotonically with t for any fixed n. Since w⋆ = φ−1 > 1/3, we observe that the generalization
error also decreases monotonically for optimal mixing, thereby preventing model collapse.

Dynamic mixing: One might wonder whether the limiting generalization error can be further re-
duced by selecting the mixing proportion wt adaptively at each generation to minimize R(β̂ββt;βββ) for
any finite sample size n. We show in Section C that the optimal choice w⋆

t in this sequential setup
satisfies the recursion

w⋆
t =

1 + w⋆
t−1

2 + w⋆
t−1

, w0 = 1.

It follows immediately thatw⋆
t is decreasing, so if one is free to adjust the mixing proportion at every

generation, the optimal strategy places progressively more weight on the synthetic data. Moreover,
usingw⋆

t → w⋆ (as defined in Theorem 3.1), in the long run, the asymptotic risk is the same whether
one uses a fixed w⋆ across all generations or adapts w⋆

t dynamically, as proven in Section C.

Next, we study ridge regression. Here, both the variance and bias terms will depend on λ, t, w. For
the sake of clarity, we present our results for isotropic covariates in Subsection 3.2. We discuss the
case of non-isotropic covariates later in Subsection 3.3.

3.2 RIDGE REGRESSION: ISOTROPIC COVARIANCE (Σ = αI )

In case of isotropic features, i.e., Σ = αI , the bias and variance of β̂ββt,λ simplifies since sk ≡ α.
Hence, by equation (3.1), G = H = δα, where δx denote the Dirac probability measure at x. This
implies m(z), from equation (3.2), simplifies to be the unique solution to

m(z)−1 + z = γ
α

1 + αm(z)
. (3.6)

We use the notations m1 := m(−λ/w), m2 := m(−λ/(2− w)).
Theorem 3.2 (Isotropic risk). Assume Σ = αI and the setting of Section 2. For 0 < w < 1, λ > 0,
we have almost surely over the randomness in the covariates

lim
n→∞

lim
t→∞

R(β̂ββt,λ;βββ) = σ2 c(w)Vλ + b⋆ Bλ,

5
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where c(w) = (w2 + (1− w)2)/w(2− w) and

Bλ =
α/(1 + αm1)

2

1− γ α2m2
1/(1 + αm1)2

, Vλ =
w(2− w)
2(1− w)

γ

λ

(
α

1 + αm1
− α

1 + αm2

)
. (3.7)

Moreover, the limiting risk is a log-convex function of w and has a unique minimizer.

Theorem 3.2 characterizes the precise asymptotic risk as a function of the regularization parameter λ
and the mixing proportion w. Furthermore, the proof of the result shows that the map w 7→ c(w)Vλ
is log-convex, and the map w 7→ Bλ is decreasing and log-convex. Hence, we obtain that the
limiting risk is log-convex in w, thereby admitting a unique minimizer. Further, it can be shown that
both Vλ and Bλ are continuous functions of λ and limλ→0+ Vλ = V and limλ→0+ Bλ = B, with
V,B defined as in equation (3.5). The proof of Theorem 3.2 shows that the bias at the t-th iterate
B(β̂ββt,λ,βββ) depends on both t and w, unlike the bias of the min-ℓ2-norm interpolator. The following
result characterizes the behavior of the optimal mixing parameter as a function of λ.
Theorem 3.3 (Isotropic Optimal Mixing). Under the assumptions of Theorem 3.2, let w⋆(λ) be the
unique global minimizer of the limiting risk as defined in Theorem 3.2. Then w⋆(λ) is a continuous
function of λ satisfying

(i) w⋆(λ) ∈ [0.5, 1],

(ii) w⋆(λ)→ ϕ−1 as λ ↓ 0,

(iii) w⋆(λ)→ 1 as λ ↑ ∞.

Furthermore, w⋆(λ) is an increasing function of SNR.

The optimal mixing parameter minimizing the asymptotic risk is always at least one-half, empha-
sizing the importance of favoring real-data over synthetic data. In Figure 2 (b), we show empirically
that w⋆ can be arbitrarily close to 0.5 for low SNR. Proofs of Theorem 3.2 and Theorem 3.3 are
available in Appendix A and Appendix B respectively.

3.3 RIDGE REGRESSION: CORRELATED FEATURES

We now state our most general result for anisotropic covariates, which calculates the limiting gener-
alization error of ridge regression for arbitrary measures Ĥp, Ĝp (recall equation (3.1)).
Theorem 3.4 (Ridge risk under correlated covariates). In the setting of Section 2, suppose w ∈
(0, 1), and λ > 0. Define m1 = m(−λ/w), m2 = m(−λ/(2 − w)), where m(·) is the unique
solution to equation (3.2). Then almost surely over the randomness in the covariates,

lim
n→∞

lim
t→∞

R(β̂ββt,λ;βββ) = σ2 c(w)Vλ + b⋆ Bλ, with (3.8)

Bλ =

(∫
x

(1 +m1x)2
dG

)(
1− γ

∫
m2

1x
2

(1 +m1x)2
dH

)−1

(3.9)

Vλ =
w(2− w)
2(1− w)

γ

λ

(∫
x

1 +m1x
dH −

∫
x

1 +m2x
dH

)
. (3.10)

Proof of Theorem 3.4 is available in Appendix A.

Theorem 3.4 is our most general result. It shows for any w ∈ (0, 1) and any λ > 0, R(β̂ββt,λ;βββ)
does not diverge even when t increases. The result highlights the necessity of mixing real-data with
synthetic outputs to mitigate model collapse. In its most general form the risk in equation (3.8)
is involved to analyze. In the following subsections, we study two popular models where the risk
simplifies and the optimal mixing ratio can be studied analytically.

3.4 EXAMPLES

In this section, we study two popular classes of examples: (i) the random effects model (Section
3.4.1) and (ii) the spiked covariance model (Section 3.4.2), where structural assumptions on the
signal or the population covariance matrix render the limiting risk more tractable.
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3.4.1 RANDOM EFFECTS MODEL

Modern applications, ranging from text classification to economics and genomics, are characterized
by dense but weak signals spread across many coordinates (Joachims, 1998; Boyle et al., 2017;
Yang et al., 2010; Shen & Xiu, 2025). This setting is well captured by a random-effects model,
where each feature contributes a small, independent effect, and it provides a simple yet sophisticated
framework for rigorously analyzing interesting high-dimensional predictors (Dobriban & Wager,
2018). Adopting a random-effects framework, we assume that each coordinate βi of the signal
is drawn i.i.d. with Eβi = 0 and Var(βi) = b⋆/p > 0. In this setting, the limiting risk can be
characterized as follows.

Proposition 3.1 (Ridge risk under Random-Effects Models). Suppose βi
i.i.d.∼ (0, b⋆/p). Assume the

framework of Section 2 and fix 0 < w < 1, λ > 0. Let m(·) be the solution to equation (3.2) and
define f(z) = m(−z)−1 − z. Then almost surely over the randomness in the covariates

lim
n→∞

lim
t→∞

R(β̂ββt,λ;βββ) = σ2 c(w)Vλ + b⋆ Bλ, where

Bλ =
1

γ

(
f(λ/w)− λ

w
f ′(λ/w)

)
, Vλ =

f
(
λ
w

)
− f

(
λ

2−w

)
λ
w −

λ
2−w

. (3.11)

Moreover, Bλ is decreasing and log-convex and c(w)Vλ is log-convex.

The representation of risk via the risk function f enables to rigorously study properties of the optimal
mixing ratio, as presented below.
Proposition 3.2. Under the setup of Theorem 3.1, (i) The generalization error has a unique min-
imizer w⋆, (ii) w⋆ ∈ [0.5, 1], with w⋆ → 1 as λ ↑ ∞ and w⋆ → ϕ−1 with λ ↓ 0 and (iii) w⋆

increases with SNR.

We provide some context for the random effects model. Our main Theorem 3.4 makes it clear
that in presence of general covariance matrices, the variance in the limiting risk (first term in RHS
of equation (3.8)) is determined by the spectrum of Σ, as captured through the limiting spectral
distribution H . If the signal were deterministic, without additional assumptions, the bias (second
term in the RHS of equation (3.8)) would depend on how βββ aligns with the eigenbasis of Σ. This is
captured through the measureG. But in a random-effects setting, βββ lies in a generic position relative
to Σ, which simplifies both the limiting bias and variance making equation (3.8) tractable to analyze
as a function of w. Proofs of Propositions 3.1 and 3.2 are available in Appendix B.

A recent work Dohmatob et al. (2025) studies model collapse in Gaussian random-effects models but
they consider a setting where the real and synthetic data are generated from different distributions,
subsequently pooling these datasets and studying when model collapse occurs. Crucially, Dohmatob
et al. (2025) do not utilize synthetic data generated from a fitted model, unlike in our setting. This
leads to fundamental differences in our framework compared to theirs. Additionally, we consider a
broad class of random-effects models, without requiring Gaussianity on the signals, and additionally
provide guarantees for the optimal mixing ratio.
Remark 3.2. While Propositions 3.1 and 3.2 are stated under the random effects assumption, the
conclusions continue to hold for a broader class of parameters (βββ,Σ). If the probability measures
Ĝp and Ĥp from equation (3.1) converge weakly to the same distribution, i.e., G = H , we have
the same conclusions. In fact, we prove in Lemma D.1 that the random-effects assumption can be
seen as a special case of G = H . Other natural examples where G = H include the isotropic
covariance case, Σ = αI , or where βββ is drawn uniformly at random from a p-dimensional sphere,
or Σ is drawn from an orthogonally invariant ensemble.

3.4.2 SPIKED COVARIANCE MODEL

For our second application, we consider a popular class of covariance matrices – the spiked co-
variance model Birnbaum et al. (2013); Johnstone (2001); Johnstone & Onatski (2020). In the past
two decades, this covariance class has seen exciting applications in population genetics Patterson
et al. (2006); Price et al. (2006), finance Knight et al. (2005); Ledoit & Wolf (2022), and signal
processing Johnstone & Lu (2009); Wang et al. (2024), among others.
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Formally, we assume Σ = I + svv⊤ for some v ∈ Rp, with ∥v∥2 = 1, and s > 0. The results
below extend naturally to spiked models with multiple but finitely many spikes, but for simplicity,
we study the problem for the case of a single spike. The limiting risk takes the following form.
Proposition 3.3. In the setting of Section 2, assume that Σ = I + svv⊤ and the signal takes the
form βββ = θv +

√
1− θ2v⊥, while satisfying equation (2.2), with v⊤v⊥ = 0 and ∥v⊥∥2 = 1. If

θ ≡ θ(n)→ θ⋆, then we have almost surely over the randomness of covariates that

lim
n→∞

lim
t→∞

R(β̂ββt,λ;βββ) = σ2 c(w)Vλ + b⋆ Bλ,

where Vλ is the same as in Theorem 3.2 and

Bλ =

(
θ2⋆

1 + s

(1 +m1(1 + s))2
+ (1− θ2⋆)

1

(1 +m1)2

)(
1− γ m2

1

(1 +m1)2

)−1

.

Further, the limiting risk is uniquely minimized at a w⋆ satisfying the conclusions of Theorem 3.3.

Note that, if θ⋆ ̸= 0, then G ̸= H . Hence, this spiked matrix case differs fundamentally from the
settings discussed in Remark 3.2 and the proof of Proposition 3.3 does not follow directly from the
proof of Proposition 3.2. Proof of Proposition 3.3 is available in Appendix B.

4 SIMULATIONS

In this section, we conduct numerical experiments to complement our theoretical findings. For all
empirical risk plots, we generate an n × p feature matrix X = ZΣ1/2, where Zij ∼ N (0, 1) and
vary Σ across different plots. We display both the theoretical risk predicted by our formulae (solid
lines) and corresponding empirical estimates (× markers). The empirical risks are calculated by
averaging over 100 runs.

Risk of min-ℓ2-norm Interpolator In Figure 1, we plot the asymptotic generalization error of the
min-ℓ2-norm interpolator as a function of mixing weight w for two different classes of covariance
matrices: i. Σ = I (Panel (a)) and ii. Σij = 2−|i−j| (Panel (b)), corresponding to the correlation
matrix of an AR(1) process. We vary γ = 1.5, 2, 3. The choice of the remaining parameters are
as follows: sample size n = 200, number of features p = γn, and number of iterations t = 5. To
generate βββ, we first simulate β̃ββ with β̃i

i.i.d.∼ Bern(0.1). Set βββ = β̃ββ/∥β̃ββ∥2 which yields b⋆ = 1.

We observe that the empirical risk matches with its theoretical counterpart even for moderate sample
size. Further, the generalization error is always minimized at w⋆ = φ−1 ≈ 0.618 (dashed vertical
line), consistent with Theorem 3.1. Panel (c) shows the risk of the min-ℓ2-norm interpolator as a
function of iteration t. We have computed the risk at optimal mixing weight w = φ−1 and Σ = I .
We observe that both theoretical and empirical risks stabilize after only a few iterations.

Optimal weights In Figure 2, we consider several properties of generalization error of ridge estima-
tor β̂ββt,λ. In Figure 2(a), (b), we plot optimal weight w⋆ as a function of λ. We set n = 200, p = γn,
and t = 5, and vary γ = 1.2, 2, 4. Figure 2 (a) considers isotropic covariance Σ = I with high
noise variance σ2 = 64. The plot demonstrates that for low SNR, w⋆ can be arbitrarily close to 0.5.
Further, w⋆(λ) is neither monotone, nor convex as a function of λ with w⋆(λ)→ φ−1 as λ→ 0+.

Figure 2 (b) corresponds to spiked covariance model Σ = I + 5e1e
⊤
1 , where e1, . . . , ep denote the

canonical basis of Rp. We set β1 = 0.5 and βββ2:p =
√
1− 0.52 × β̃ββ/∥β̃ββ∥ where β̃i

i.i.d.∼ Bern(0.25).
This implies that ∥βββ∥2 = 1 and θ⋆ = 0.5, where θ⋆ defined as in Proposition 3.3. The plot shows
that for large regularization parameter λ, we have w⋆ = 1, consistent with Proposition 3.3.

Figure 2 (c) plots the risk of β̂ββt,λ with σ2 = 1, w = φ−1. We set Σ to be equicorrelated, i.e.,

Σ =

(
1− ρ
√
p

)
I +

ρ
√
p
11⊤, with ρ = 1/2,

and βi
i.i.d.∼ N (0, p−1). The empirical risk is computed with σ2 = 1, t = 10, n = 400. Note that Σ

does not satisfy bounded eigenvalue condition in Assumption 2.1, as its largest eigenvalue ≥ C
√
p

for some C > 0. Nevertheless, the generalization error is accurately predicted by Proposition 3.1 as
long as βββ lies in a generic position relative to Σ. This demonstrates the robustness of our theoretical
findings.
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Figure 1: Generalization error of min-ℓ2-norm interpolator as a function of weight w (Panel (a) and
(b)) and iterations t (Panel (c)) for different values of γ. Panel (a) considers isotropic covariance
Σ = I and panel (b) considers anisotropic Σ with Σij = 2−|i−j|, which corresponds to covariance
matrix of AR(1) model. In panes (a) and (b), the risk is minimized at w⋆ = 1/φ, as proved by
Theorem 3.1. Panel (c) shows that both empirical and theoretical risks stabilize in a few iterations.
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Figure 2: In panels (a) and (b), we plot the optimal mixing weight w⋆ as a function of λ for different
values of γ and two classes of covariance matrices:. Panel (a) considers isotropic covariance Σ = I
with high noise σ2 = 64, demonstrating w⋆ can be close to 0.5 for low SNR. Panel (b) plots w⋆ for
the spiked covariance matrix showing w⋆ = 1 for large λ. Panel (c) plots the generalization error as
a function of λ for Σ equicorrelated matrix. Here, empirical risks align with theoretical predictions
given by Proposition 3.1, even though Σ violates Assumption 2.1, illustrating the robustness of our
results.

5 DISCUSSION

We provide a rigorous analysis of model collapse under overparametrization for linear models. As
an overarching theme, we demonstrate how mixing real-data with synthetic outputs mitigates model
collapse, and identify optimal mixing ratios that minimize prediction error in this context. As a
promising next direction, understanding how model collapse affects interpolators in other ℓp ge-
ometries would be crucial. Such interpolators arise as implicit regularized limits of popular algo-
rithms Gunasekar et al. (2018b) and typically require techniques beyond random matrix theory—a
critical tool employed in our analysis. Additionally, approaches that extend linear arguments to
non-linear high-dimensional problems (c.f., Sur & Candès (2019); Hu & Lu (2022)) should enable
our qualitative conclusions to generalize to structured non-linear models. This includes generalized
linear models, single-index models, and even non-parametric models through parametric-to-non-
parametric equivalence techniques introduced in Lahiry & Sur (2023). Finally, extending our results
to more complex architectures remains an important challenge. One promising approach involves
studying multi-index models and their sequential variants, which capture classes of neural networks
and transformer architectures Troiani et al. (2024; 2025); Cui (2025). Investigating model collapse
and mitigation strategies in these contexts presents an exciting avenue for future research.
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Supplementary Material

A PROOF OF THEOREM 3.1, THEOREM 3.2, AND THEOREM 3.4

A.1 NOTATIONS

Our objective is to derive the asymptotic generalization error of β̂ββt,λ given by Algorithm 1 and β̂ββt
defined by equation (3.3). We define the scaled sample covariance matrix and its resolvent as

M := X⊤X, Aλ = (M + nλI)−1.

Note thatAλ andM are simultaneously diagonalizable and thus commute with each other. If λ = 0,
we use the notation A0 = (X⊤X)†. The mixing proportion of the real-data is denoted by w and we
define w̃ := 1 − w. For two sequence of random variables un, vn, we use the notation un ∼ vn if
un/vn

P−→ 1 as n→∞.

A.2 VARIANCE

We use the notations of Subsection A.1 throughout the proof. First, we consider the case λ > 0.

Lemma A.1 (Ridge β̂ββt,λ Covariance). For λ > 0, the covariance matrix Cov[β̂ββt,λ|X] is given by

σ2

[
(w2 + w̃2)

t∑
k=1

w̃2(k−1)M2k−1A2k
λ + w̃2tM2t+1A2t+2

λ

]
(A.1)

Proof of Lemma A.1. We will prove equation (A.1) by induction. For the base case (t = 0), we have
β̂ββ0,λ = AλX

⊤y. Hence,

Cov[β̂ββ0,λ|X] = AλX
⊤Cov[y|X]XAλ

= AλX
⊤(σ2I)XAλ = σ2A2

λM

This proves the base case. Now let’s assume equation (A.1) holds for some t. Then, for iteration
(t+ 1), we have

Cov[β̂ββt+1,λ|X] = AλX
⊤Cov[wyt + w̃yt|X]XAλ

= AλX
⊤(w2σ2I + w̃2XCov[β̂ββt,λ|X]X⊤ + σ2w̃2I)XAλ

= w̃2AλMCov[β̂ββt,λ|X]MAλ + σ2(w2 + w̃2)MA2
λ

= w̃2AλM

(
σ2

[
(w2 + w̃2)

t∑
k=1

w̃2(k−1)M2k−1A2k
λ + w̃2tM2t+1A2t+2

λ

])
MAλ

+ σ2(w2 + w̃2)MA2
λ

= σ2

[
(w2 + w̃2)

t∑
k=1

w̃2kM2k+1A2k+2
λ + w̃2t+2M2t+3A2t+4

λ

]
+ σ2(w2 + w̃2)MA2

λ

= σ2

[
(w2 + w̃2)

t+1∑
k=1

w̃2(k−1)M2k−1A2k
λ + w̃2t+2M2t+3A2t+4

λ

]
This completes the proof of equation (A.1).

Corollary A.1. Using equation (2.7), V (β̂ββt,λ;βββ) is given by

V (βββt,λ;βββ) = σ2

[
(w2 + w̃2)

t∑
k=1

w̃2(k−1) Tr[Bk
λ] + w̃2t Tr[Bt+1

λ ]

]
(A.2)

where Bk
λ =M2k−1A2k

λ Σ
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Next, note that σmax(MAλ) < 1 and therefore Cov[β̂ββt,λ|X] converges in matrix norm to the fol-
lowing limit:

lim
t→∞

Cov[β̂ββt,λ|X] = σ2(w2 + (1− w)2)
∞∑
k=0

(1− w)2k(X⊤X)2k+1A2k+2
λ

= σ2(w2 + (1− w)2)X⊤XA2
λ(I − (1− w)2(X⊤X)2A2

λ)
−1

= σ2(w2 + w̃2)X⊤X(nλ+ wX⊤X)−1(nλ+ (2− w)X⊤X)−1

=
σ2(w2 + (1− w)2)

2(1− w)
[
(wX⊤X+ nλI)−1 − ((2− w)X⊤X+ nλI)−1

]
=⇒ lim

t→∞
V (β̂ββt,λ;βββ) =

σ2(w2 + (1− w)2)
2(1− w)

(
1

w
Tr[Aλ/wΣ]− 1

2− w
Tr[Aλ/(2−w)Σ]

)
where the second to last equality follows using the following equality

x

(nλ+ wx)(nλ+ (2− w)x)
=

1

2(1− w)

(
1

nλ+ wx
− 1

nλ+ (2− w)x

)
,

combined with diagonalization of X⊤X. Thus, to compute the limiting variance, it is enough to
calculate

lim
n→∞

Tr[A−zΣ] = lim
n→∞

1

n
Tr
[
(n−1X⊤X− zIp)−1Σ

]
,

for z ∈ C/R+. Using averaged local law Knowles & Yin (2017), we obtain

1

n
Tr
[
(n−1X⊤X− zIp)−1Σ

] a.s.−→ −1
z
γ

∫
x

mx+ 1
dH(x),

where m(z) is as defined in equation (3.2). Combining the above display with Corollary A.1, we
obtain that

lim
n→∞

lim
t→∞

V (β̂ββt;βββ) = σ2 γ

λ

(w2 + (1− w)2)
2(1− w)

[∫
x

1 +m1x
dH −

∫
x

1 +m2x
dH

]
, (A.3)

where m1 and m2 are as defined in equation (3.10). This completes the proof of the expression of
variance for λ > 0.

Next, we turn our attention to the case λ = 0. Here, we have the following expression of covariance.

Lemma A.2. For t ≥ 1, the covariance matrix Cov[β̂ββt|X] is given by

Cov[β̂ββt|X] = σ2(X⊤X)†

[
(w2 + (1− w)2)

t∑
k=1

(1− w)2(k−1) + (1− w)2t
]
, (A.4)

where β̂ββt is given by equation (3.3).

The proof follows the same steps as proof of Lemma A.1 once we note that
(X⊤X)2k−1((X⊤X)†)2k = (X⊤X)† for any k ≥ 1.

As a consequence, we have

lim
t→∞

V (β̂ββt;βββ) = σ2w
2 + (1− w)2

w(2− w)
Tr[(X⊤X)†Σ] (A.5)

The limit of the above quantity as n→∞ is given by (Hastie et al., 2022, Theorem 2) and is equal
to the variance given by equation (3.5).

A.3 BIAS

We use the notation of Subsection A.1 throughout this subsection.
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Lemma A.3 (Ridge β̂ββt,λ Expectation). For λ > 0, we have

E[β̂ββt,λ|X] = (w̃AλM)tAλMβββ + w

t−1∑
i=0

(w̃AλM)iAλMβββ (A.6)

Proof. We prove equation (A.6) by induction. Let’s start with the base case (t = 0).

E[β̂ββ0,λ|X] = (X⊤X+ nλ)−1X⊤E[y|X]

= AλMβββ

This proves the base case. Now assume equation (A.6) holds for t = k. Let’s prove it for t = k+1.

E[β̂ββk+1,λ|X] = AλM(wβββ + (1− w)E[β̂ββk,λ|X])

= wAλMβββ + w̃AλME[β̂ββk,λ|X])

= wAλMβββ + w̃AλM

[
(w̃AλM)kAλMβββ + w

k−1∑
i=0

(w̃AλM)iAλMβββ

]

= (w̃AλM)k+1AλMβββ + w

k∑
i=0

(w̃AλM)iAλMβββ

This completes the proof of Lemma A.3.

Corollary A.2. Bias for the Ridge Estimator is given by

B(β̂ββt,λ;βββ) =

(
nλ

w

)2

∥Aλ/w(I − (w̃AλM)t+1)βββ∥2Σ (A.7)

lim
t→∞

B(β̂ββt,λ;βββ) =

(
nλ

w

)2

∥Aλ/wβββ∥2Σ =

(
nλ

w

)2

Tr[ββββββ⊤Aλ/wΣAλ/w] (A.8)

Proof. From equation (A.6), we have

βββ − E[β̂ββt,λ|X] = βββ − (w̃AλM)tAλMβββ

− w(I − w̃AλM)−1(I − (w̃AλM)t)AλMβββ (A.9)

Diagonalizing AλM and and simplifying using the following identity

1− w̃txt+1 − w1− w̃txt

1− w̃x
x =

(1− x)(1− w̃1+tx1+t)

1− w̃x
,

tells us that

βββ − E[β̂ββt|X] = (I −AλM)(I − w̃AλM)−1(I − (w̃AλM)1+t)βββ

Next, we diagonalize M use the following identity on product of first two matrices.(
1− x

x+ nλ

)(
1− w̃x

x+ nλ

)−1

=
nλ

wx+ nλ
=
nλ

w

(
x+ n

λ

w

)−1

to conclude (I − AλM)(I − w̃AλM)−1 = nλ
w Aλ/w. This completes the proof of equation (A.7).

equation (A.8) follows since σmax(w̃AλM) < w̃ < 1.

Lemma A.4. Suppose Assumption 2.1 holds. For any deterministic sequence of symmetric matrices
C ∈ Rp×p with bounded operator norm and z ∈ C \ R+, we have

z2 Tr[CQn(z)ΣQn(z)] ∼ Tr[C(I +m(z)Σ)−2Σ]
1

1− 1
ndf2(1/m(z))

(A.10)

where df2(κ) = Tr[Σ2(κI +Σ)−2] and Qn(z) = (n−1M − zI)−1.
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Proof. By plugging in A = C and B = Σ in (Bach, 2024, Eq (3.9)) and noticing that (I +m(z)Σ)
and Σ are simultaneously diagonalizable (and therefore commute), we get

z2 Tr[CQn(z)ΣQn(z)] ∼ Tr[C(I +m(z)Σ)−2Σ]

+ Tr[C(I +m(z)Σ)−2Σ] ·
Tr[Σ2

(
m(z)−1Σ+ I

)−2
]

n− df2(m(z)−1)

∼ Tr[C(I +m(z)Σ)−2Σ] ·
(
1 +

df2(m(z)−1)

n− df2(m(z)−1)

)
∼ Tr[C(I +m(z)Σ)−2Σ] · 1

1− n−1df2(m(z)−1)

This completes the proof of equation (A.10).

We now show that Equation (3.9) holds. Start by noticing that nAz = Qn(−z). Then, equa-
tion (A.7) combined with Lemma A.4 tells us that

lim
t→∞

B(β̂ββt,λ;βββ) =

(
nλ

w

)2

Tr[ββββββ⊤Aλ/wΣAλ/w]

∼ Tr[ββββββ⊤(I +m1Σ)−2Σ] · 1

1− n−1df2(m
−1
1 )

where m1 = m(−λ/w). All that is left to get equation (3.9) is realizing that

lim
n→∞

Tr[ββββββ⊤(I +m1Σ)−2Σ] = b⋆

∫
x

(1 +m1x)2
dG

and lim
n→∞

n−1df2(m
−1
1 ) = γ

∫
m2

1x
2

(1 +m1x)2
dH (A.11)

This completes the proof of limiting value of bias.

PROOF OF THEOREM 3.4

The asymptotic variance of β̂ββt,λ is given by equation (A.3) for general Σ. The asymptotic bias is
given by equation (A.11). This completes the proof of Theorem 3.4.

PROOF OF THEOREM 3.2

PluggingH = G = δα in equation (3.10) and equation (3.9) yields the asymptotic variance and bias
for β̂ββt,λ when Σ = I . The proof of log-convexity of risk follows from the proof of Theorem 3.3

PROOF OF THEOREM 3.1

The asymptotic variance of β̂ββt is obtained by equation (A.5). To obtain the bias, recall that β̂ββt =

(X⊤X)†X⊤(wyt+(1−w)ỹt). Since β̂ββ0 = (X⊤X)†X⊤y, we have E(β̂ββ0|X) = (X⊤X)†X⊤Xβββ.
Now, we want to prove by induction that

E(β̂ββt|X) = (X⊤X)†X⊤Xβββ (A.12)

for all t. To this end note that,

E(β̂ββt|X) = (X⊤X)†X⊤
(
wE(yt|X) + (1− w)E(ỹt|X)

)
(A.13)

Since yt = Xβββ+εt, we have E(yt|X) = Xβββ. For the synthetic data, ỹt = Xβ̂ββt−1+ ε̂t. Therefore,

E(ỹt|X) = XE(β̂ββt−1|X) = X(X⊤X)†X⊤Xβββ

by induction hypothesis. Using equation (A.13) we have

E(β̂ββt|X) = (X⊤X)†X⊤
(
wXβββ + (1− w)X(X⊤X)†X⊤Xβββ

)
= (X⊤X)†X⊤Xβββ.
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This proves equation (A.12) by induction. This in turn implies using equation (2.7) that for any n, t,

B(β̂ββt;βββ) = βββ⊤PXΣPXβββ

where PX = I − (X⊤X)†(X⊤X). Using (Hastie et al., 2022, Theorem 2), we obtain the analytic
value of the bias.

Finally, note that the asymptotic risk depends on w only via c(w). Since c(w) is minimized at 1/φ,
this completes the proof of Theorem 3.1.

B PROOFS OF REMAINING RESULTS

In this Section, we will show that the expression of generalization error R(β̂ββt,λ) can be simplified
further if the probability measures Ĝp and Ĥp defined by equation (3.1) weakly converges to the
same probability distribution, i.e., G = H . In this special case, the generalization error has unique
minima w.r.to w.

Recall the definitions of Vλ and Bλ given by equation (3.10) and equation (3.9) respectively. We will
first rewriting Vλ and Bλ in a different form. To this end, differentiate both sides of equation (3.2)
w.r.to z to obtain

−m
′(z)

m2(z)
+ 1 = γ

∫
−x2m′(z)

(1 + xm(z))2
dH (B.1)

The above equality will be helpful in writing the integrals concisely. Also define f(z) = m(−z)−1−
z. We know that m(z) is a Stieltjes transform of a non-negative random variable by Remark 3.1.
We will need the following technical Lemma whose proof we defer.
Lemma B.1. There exists some measure µ on R+ with |f(1)| <∞ such that

f(z) = a+

∫
z

z + t
µ(dt). (B.2)

Invoking Lemma B.1, equation (3.10) tells us that

2(1− w)
w(2− w)

Vλ =
γ

λ

(∫
x

1 +m1x
dH −

∫
x

1 +m2x
dH

)
=

1

λ

(
1

m1
− λ

w
− 1

m2
+

λ

2− w

)
(By equation (3.2)) (B.3)

=
1

λ
(f(λ/w)− f(λ/2− w)) (B.4)

=
1

λ

(∫
λ

λ+ wt
µ(dt)−

∫
λ

λ+ (2− w)t
µ(dt)

)
=

∫
2(1− w)t

(λ+ wt)(λ+ (2− w)t)
µ(dt).

Thus, we obtain that for some measure µ on R+, we have

=⇒ Vλ =

∫
t

w(2− w)
(λ+ wt)(λ+ (2− w)t)

µ(dt) (B.5)

Similarly, we can also simplify the Bias. If H = G, we have from equation (3.9),

Bλ =

(∫
x

(1 +m1x)2
dH

)(
1− γ

∫
m2

1x
2

(1 +m1x)2
dH

)−1

We first multiply both sides of equation (B.1) by −m2
1/m

′(−λ/w) to obtain

γ

∫
m2

1x
2

(1 +m1x)2
dH = 1− m2

1

m′(−λ/w)
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Next, we decompose the first term of the bias as

x

(1 +m1x)2
=

x

1 +m1x
− m1x

2

(1 +m1x)2

=⇒ γ

∫
x

(1 +m1x)2
dH = γ

∫
x

1 +m1x
dH − γ

∫
m1x

2

(1 +m1x)2
dH

=
1

m1
− λ

w
−
(

1

m1
− m1

m′(λ/w)

)
=

m1

m′(λ/w)
− λ

w

Combing the two equalities above, we get

Bλ = γ−1

(
m1

m′(−λ/w)
− λ

w

)
m′(−λ/w)

m2
1

= γ−1

(
1

m(−λ
w )
− λ

w

m′(−λ
w )

m(−λ
w )2

)

= γ−1

(
f(λ/w)− λ

w
f ′(λ/w)

)
(B.6)

Let z = λ/w, we use equation (B.2) to get

γBλ = a+

∫
z

z + t
− zt

(z + t)2
µ(dt)

= a+

∫
z2

(z + t)2
µ(dt)

= a+

∫
λ2

(λ+ wt)2
µ(dt) (B.7)

Since the sum of log-convex functions are log-convex, this implies that Bλ is decreasing and log-
convex. Next we show that c(w)Vλ is log-convex. By equation (B.5), we have

c(w)Vλ =

∫
tγ

w2 + (1− w)2

(λ+ wt)(λ+ (2− w)t)
µ(dt)

The log-convexity of the above expression simply follows from the fact that w2 + (1 − w)2, (λ +
wt)−1 and (λ+ (2− w)t)−1 are all log-convex in w ∈ [0, 1] for all t, λ ≥ 0 and the fact that sums
and products of log-convex functions are log convex.

As long as µ ̸= δ0, we further have that c(w)Vλ is strictly log-convex, a fact crucial for uniqueness
of the minimizer of the risk. It can be readily verified from the definition of f(z) that µ = δ0 =⇒
m(z) = (a−z)−1, that ismmust be a Stieltjes transform of a degenerate random variable. However,
recall that by Remark 3.1, m is the Steiltjes transform of a free convolution between MPγ and H .
Since MPγ is non-degenerate, we must have that m(z) ̸= (a − z)−1 and hence the variance is
strictly convex.

As long as µ(R+) > 0, we further have that c(w)Vλ is strictly log-convex, a fact crucial for
uniqueness of the minimizer of the risk. It can be readily verified from the definition of f(z) that
µ ≡ 0 =⇒ m(z) = (a − z)−1, that is m must be a Stieltjes transform of a degenerate random
variable. However, recall that by Remark 3.1, m is the Steiltjes transform of a free convolution
between MPγ and H . Since MPγ is non-degenerate, we must have that m(z) ̸= (a − z)−1 and
hence the variance is strictly convex.

Next, we show that w⋆ is a continuous function of λ. Define the quantity

R(w, λ) = lim
n→∞

lim
t→∞

R(β̂ββt,λ, β̂ββ).

Note that, R(w, λ) is continuous in both w and λ. Define any convergent sequence λn → λ̃. Let
w⋆

k to be the unique minimizer of R(w, λk) (unique minimizer because R is strictly log-convex is
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all three results of this section). Since w⋆
n is a sequence in the compact set [0, 1], there exists a

convergent subsequence w⋆
nk

converging to some limit w̃⋆. For any ∀w ∈ [0, 1],

R(wnk
, λnk

) ≤ R(w, λnk
) =⇒ R(w̃, λ̃) ≤ R(w, λ̃).

That is, w̃⋆ is the minimizer of R(·, λ̃). Since the convergent subsequence nk we picked was arbi-
trary, we have shown that every convergent subsequence of wk converges to w̃⋆ and thus we must
have that w⋆

n → w̃⋆. This proves that w⋆ is a continuous function of λ.

Next, we propose to show that under G = H , the optimal mixing proportion w⋆ is in [1/2, 1], with
w⋆(λ)→ ϕ−1 as λ ↓ 0 and w⋆(λ)→ 1 as λ→∞. Recall that both c(w)Vλ and Bλ are continuous
and log-convex, and Bλ is also decreasing. This immediately tells us that the limiting generalization
error is log-convex and hence it has a unique minimizer.

lim
λ→0

c(w)Vλ =
w2 + (1− w)2

w(2− w)
γ

∫
1

t
µ(dt) and lim

λ→0
Bλ =

a

γ
(B.8)

The minimizer of the of the risk at λ is clearly only dependent on c(w), which is minimized at ϕ−1.
Next, as λ → ∞, we have c(w)Vλ → 0. However, since Bλ is a decreasing function of w and
lim inf
λ→∞

Bλ > 0, we must have that w⋆ → 1. Finally, we need to show that w⋆ ≥ 1/2. To this end,

write the variance as

c(w)Vλ = (w2 + (1− w)2)
∫

tγ

(λ+ wt)(λ+ (2− w)t)
µ(dt)

The expression outside of the integral is minimized at w = 1/2, while the factor inside the integral
is a decreasing function of w for w ∈ [0, 1]. This can be seen by calculating the derivative of the
integrand

d

dw

1

(λ+ wt)(λ+ (2− w)t)
=

−2t2(1− w)
(λ+ wt)2(λ+ (2− w)t)2

(B.9)

Since Bλ is also a decreasing function of w, we must have that risk at w < 1/2 must be larger than
the risk at 1/2. This completes the proof that w⋆ ≥ 1/2.

PROOF OF PROPOSITION 3.1

We obtain the asymptotic bias and variance for the random effects model from equation (B.6)
and equation (B.4) respectively. The log-convexity of variance follows from equation (B.5). Bλ
is log-convex and decreasing using equation (B.7). This completes the proof of theorem 3.1.

PROOF OF PROPOSITION 3.2

By Corollary D.1, we obtain that G = H . Further, under the assumption βi
i.i.d.∼ (0, b⋆/p), we obtain

∥βββ∥2 → b⋆ almost surely. Then, by the argument above, we have w⋆ ∈ [1/2, 1], with w⋆(λ)→ ϕ−1

as λ ↓ 0 and w⋆(λ) → 1 as λ → ∞. Finally, to see that w⋆ increases with SNR = b⋆/σ
2, recall

that the risk is R(w, b⋆) = σ2c(w)Vλ + b⋆Bλ. Note that dividing the risk by σ2 does not change
does not change w⋆. Thus, it is enough to show that w⋆ increases with b⋆. By the implicit function
theorem,

∂b⋆w
⋆ = −∂wb⋆R

∂wwR
= − ∂wBλ

∂wwR

Since Bias is a decreasing function of w and risk is a strictly convex function of w, must have that
∂b⋆w

⋆ ≥ 0, thus proving w⋆ is a non decreasing function of b⋆. 3.2.

PROOF OF THEOREM 3.3

If Σ = αI , we have G = H , and we obtain the desired conclusion by the argument above.
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PROOF OF PROPOSITION 3.3

For spike covariance matrix Σ, we obtain Ĥp = p−1δ1+s + (1 − p−1)δ1, where δx is the Dirac
measure at the point x. Therefore, Ĥp ⇒ H = δ1. To compute Ĝp, we write the signal βββ as
βββ = θv +

√
1− θ2v⊥, where v⊤v⊥ = 0 and ∥v⊥∥2 = 1. This implies ∥βββ∥2 = 1 and hence

Ĝp = θ2 δ1+s + (1 − θ2)δ1. If θ = θ(n) → 0 as n → ∞, we obtain Ĝp ⇒ H = δ1 and the
conclusion of Theorem 3.2 holds. Hence we will restrict ourselves to the case θ(n) → θ⋆ ̸= 0.
Here we have G = θ2⋆ δ1+s +

(
1− θ2⋆

)
δ1. Since H = δ1, the limiting expression of variance is still

σ2c(w)Vλ, where c(w) and Vλ are the same as Theorem 3.2.

Turning to the characterization of asymptotic bias, we again use the function m(z) satisfying
m(z)−1 + z = γ 1

1+m(z) . Defining m1 = m(−λ/w), we have

Bλ =

(
θ2⋆

1 + s

(1 +m1(1 + s))2
+ (1− θ2⋆)

1

(1 +m1)2

)(
1− γ m2

1

(1 +m1)2

)−1

We know from Theorem 3.2 that ϕ1(m1) =
1

(1+m1)2−γm2
1

is a decreasing and log-convex function
in w. From the above display, we obtain that

Bλ = θ2⋆(1 + s)
(1 +m1)

2

(1 +m1(1 + s))2︸ ︷︷ ︸
ϕ2(m1)

ϕ1(m1) + (1− θ2⋆)ϕ1(m1).

Since ϕ2(m1) is also decreasing and log-convex as function of w, this implies that
limt→∞ limn→∞B(β̂ββt,λ;βββ) is decreasing and log-convex in w. Therefore, asymptotic general-
ization error has a unique minima w⋆. To see the properties of w⋆, note that by equation (B.9), we
have w⋆ ≥ 1/2. Using equation (B.8), we obtain that w⋆ → 1/φ as λ→ 0+. Finally similar to the
proof of Theorem 3.2, we have Vλ → 0 as λ→∞ and lim inf

λ→∞
Bλ > 0. Since Bλ is decreasing, we

again have limλ→∞ w⋆(λ) = 1. This completes the proof of Proposition 3.3.

We conclude the section with with the proof of Lemma B.1.

PROOF OF LEMMA B.1

We need the following definition.

Definition B.1 (Stieltjes Function (SF)). A function f : R+ → R+ is called a Stieltjes function if
it can be written as

f(x) =
a

x
+ b+

∫
R+

1

x+ t
µ(dt),

where a, b ≥ 0 and µ is a positive measure on R+ with
∫
R+

1
1+t µ(dt) <∞.

Recall, the definition m(z) = E(A − z)−1 for some non-negative random variable A. Using the
definition above, the map z → m(−z) is a Stieltjes function. Further ψ(z) = 1/z is a Stieltjes
function by Definition B.1. Using (Schilling et al., 2009, Theorem 6.2(ii) and Corollary 7.9), we
obtain that 1/(zm(−z)) is a Stieltjes function. Note that 1/(zm(−z)) = (f(z)/z)− 1. Hence, by
Definition B.1, we have

f(z) + z = a+ bz +

∫
z

z + t
µ(dt)

with |f(1)| <∞. It remains to show that b = 1. This follows from

b = lim
z→∞

f(z)

z
= lim

z→∞
E[z(A+ z)−1]−1 = 1

where the last equality follows from dominated convergence theorem.
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C DYNAMIC MIXING

In this Section we prove the following claim for min-ℓ2-norm interpolator: Suppose we select the
mixing proportion wt adaptively at each generation to minimize R(β̂ββt;βββ) for any finite sample size
n. Then w⋆

t satisfies

w⋆
t =

1 + w⋆
t−1

2 + w⋆
t−1

, w⋆
0 = 1. (C.1)

Further, under this setup

lim
n→∞

lim
t→∞

R(β̂ββt;βββ) = σ2c(w⋆)V + b⋆B, (C.2)

where V,B as in equation (3.5) and w⋆ = 1/φ. To see the claim, note that the bias of β̂ββt is
independent of mixing proportion, hence it converges to B. Regarding the variance, we will prove
the following by induction

w⋆
t = argmin

w
V (βββt;βββ), Cov[βββt|X] = σ2w⋆

t (X
⊤X)†Σ. (C.3)

Suppose t = 1. For any 0 < w1 < 1 , we have

Cov[β̂ββt|X] = (X⊤X)†X⊤(w2
1σ

2I + 2(1− w1)
2σ2X(X⊤X)†X⊤)X(X⊤X)†

= σ2(w2
1 + 2(1− w1)

2)(X⊤X)†.

Hence the variance is minimized atw⋆
1 = 2/3 = (1+w⋆

0)/(2+w
⋆
0). Further, w⋆

1
2+(1−w⋆

1)
2 = w⋆

1
proving equation (C.3) for t = 1. Now, for any t > 1 and any mixing proportion wt, we have by
induction hypothesis

Cov[β̂ββt|X] = (X⊤X)†X⊤(w2
t σ

2I + (1− wt)
2Cov(ỹt−1|X))X(X⊤X)†

= w2
t σ

2(X⊤X)† + (1− wt)
2(X⊤X)†X⊤

[
XCov(β̂ββt−1|X)X⊤ + σ2I

]
X(X⊤X)†

= (w2
t + (1− wt)

2(1 + w⋆
t−1))σ

2(X⊤X)†,

which is minimized at w⋆
t =

1+w⋆
t−1

2+w⋆
t−1

. Further we have w⋆
t
2 + (1 − w⋆

t )
2(1 + w⋆

t−1) = w⋆
t , prov-

ing equation (C.3) by induction principle. Since by equation (C.1), we have w⋆
t → w⋆, we immedi-

ately have equation (C.2).

D RANDOM EFFECTS

Lemma D.1 (Equal weak limits). Let Σ =
∑p

k=1 skvkv
⊤
k with eigenvalues s1, . . . , sp and or-

thonormal eigenvectors v1, . . . , vp Define

Ĥp(x) =
1

p

p∑
k=1

1sk≤x, Ĝp(x) =
1

∥βββ∥22

p∑
k=1

⟨vk,βββ⟩2 1sk≤x.

Assume βββ = (β1, . . . , βp) has i.i.d. entries with Eβi = 0, Eβ2
i = τ2 ∈ (0,∞) and Eβ4

i < ∞,
independent of Σ.

Then, conditional on Σ, for every bounded Lipschitz test function ψ,∫
ψ dĜp −

∫
ψ dĤp

P−→ 0

as p→∞. Consequently, if Ĥp ⇒ H weakly, then also Ĝp ⇒ H weakly.

Proof. Fix any bounded Lipschitz continuous function ψ : R→ R such that ∥ψ∥∞ ≤M . Set ak :=
ψ(sk) (which is deterministic given Σ). Let ξk := ⟨vk,βββ⟩. Since βi’s are i.i.d. and independent of
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Σ, orthonormality gives that, conditional on Σ, the variables ξk identically distributed and mutually
uncorrelated with Eξk = 0, Eξ2k = τ2, Eξ4k <∞. Then∫

ψ dĜp =

∑p
k=1 ak ξ

2
k∑p

j=1 ξ
2
j

,

∫
ψ dĤp =

1

p

p∑
k=1

ak =: Ap.

Define centered averages

Bp :=
1

p

p∑
k=1

ak(ξ
2
k − τ2), Cp :=

1

p

p∑
j=1

(ξ2j − τ2).

Then ∑
k akξ

2
k∑

j ξ
2
j

=
p(τ2Ap +Bp)

p(τ2 + Cp)
= Ap +

Bp −ApCp

τ2 + Cp
.

Since ψ is bounded, |ak| ≤M . Using E(ξ21) = τ2 and E(ξ41) <∞,

Var(Bp) =
1

p2

p∑
k=1

a2kVar(ξ
2
k) ≤

M2

p
Var(ξ21) = O

(
1

p

)
, Var(Cp) =

1

p
Var(ξ21) = O

(
1

p

)
.

Hence Bp = OP(p
−1/2) and Cp = OP(p

−1/2) conditional on Σ. Also |Ap| ≤ M and τ2 + Cp
P→

τ2 > 0. Therefore ∣∣∣∣∫ ψ dĜp −
∫
ψ dĤp

∣∣∣∣ = ∣∣∣∣Bp −ApCp

τ2 + Cp

∣∣∣∣ = Op

(
1
√
p

)
P−→ 0,

again conditional on Σ. By characterizations of weak convergence, we have that Ĝp − Ĥp ⇒ 0 in
probability, and thus any weak limit of Ĥp is also a weak limit of Ĝp.

Corollary D.1. Let Ĥp, H, Ĝp, G and Σ be as defined in Lemma D.1. Assume βββ = ηpωωω where
ηp ̸= 0 is some arbitrary sequence of real numbers and ωωω = (ω1, . . . , ωp) has i.i.d. entries with
Eωi = 0, Eω2

i = τ2 ∈ (0,∞) and Eω4
i <∞, independent of Σ.

Then, conditional on Σ, for every bounded Lipschitz test function ψ,∫
ψ dĜp −

∫
ψ dĤp

P−→ 0

as p→∞. Consequently, if Ĥp ⇒ H weakly, then also Ĝp ⇒ H weakly.

Proof. Follows from the fact that

Ĝp(x) =
1

∥βββ∥22

p∑
k=1

⟨vk,βββ⟩2 1sk≤x =
1

∥ωωω∥22

p∑
k=1

⟨vk,ωωω⟩2 1sk≤x =: G̃p(x),

and applying Lemma D.1 on G̃p.
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