
Published at the GEM workshop, ICLR 2024

EVOLUTION GUIDED GENERATIVE FLOW NETWORKS

Zarif Ikram
Department of CSE, BUET
Bangladesh
zzzarif.ikram@gmail.com

Ling Pan
The Hong Kong University of Science and Technology
Hong Kong

Dianbo Liu
National University of Singapore
Singapore

ABSTRACT

Generative Flow Networks (GFlowNets) are a family of probabilistic generative
models that learn to sample compositional objects proportional to their rewards.
One big challenge of GFlowNets is training them effectively when dealing with
long time horizons and sparse rewards. To address this, we propose Evolution
guided generative flow networks (EGFN), a simple but powerful augmentation
to the GFlowNets training using Evolutionary algorithms (EA). Our method can
work on top of any GFlowNets training objective, by training a set of agent param-
eters using EA, storing the resulting trajectories in the prioritized replay buffer,
and training the GFlowNets agent using the stored trajectories. We present a
thorough investigation over a wide range of toy and real-world benchmark tasks
showing the effectiveness of our method in handling long trajectories and sparse
rewards.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) are a family of probabilis-
tic amortized samplers that learns to sample from a space proportionally to some reward function
R(x), effectively sampling compositional objects over some probability distribution. As a genera-
tive process, it composes objects by some sequence of actions, terminating by reaching a termination
state.

GFlowNets have shown great potential for diverse challenging applications, such as molecule dis-
covery Jain et al. (2023a), biological sequence design (Jain et al., 2022), combinatorial optimization
(Zhang et al., 2023a), latent variable sampling Liu et al. (2023) and road generation (Ikram et al.,
2023). The key advantage of GFlowNets over other methods such as reinforcement learning (RL)
is that GFlowNets’s key objective is not reward maximization, allowing them to sample diverse
samples from different peaks of high rewards. Although entropy-regularized RL also encourages
randomness when taking actions, it is not general in when the underlying graph is not a tree (i.e., a
state can have multiple parent states) (Zhao et al., 2019).

Despite the recent advancements, the real-world adaptation of GFlowNets is still limited by a ma-
jor problem: temporal credit assignment for long trajectories and sparse rewards. For example,
real-world problems such as protein design are often long-horizon problems, necessitating long tra-
jectories for sampling. Since reward is given only when the agent reaches the terminal states, associ-
ating intermediate actions with rewards over a lengthy trajectory becomes challenging. Additionally,
reward space is sparse in real-world tasks, making temporal credit assignment more difficult. Tra-
jectory balance (TB) objective (Malkin et al., 2022) attempts to tackle the problem by matching the
flow across the entire trajectory, but in practice, it induces larger variance and is highly sensitive to
sparse rewards (Madan et al., 2023), making the training unstable.

Evolutionary algorithms (EA) (Bäck & Schwefel, 1993), a class of optimization algorithms inspired
by natural selection and evolution, can be a promising candidate for tackling the said challenges.
Indeed, the shortcomings of GFlowNets are the advantages of EA, which makes it promising to
consider incorporating EA into the learning paradigm of GFlowNets to leverage the best from both
worlds. First, the selection operation in EA is achieved by fitness evaluation throughout the entire

1



Published at the GEM workshop, ICLR 2024

Figure 1: The proposed EGFN architecture. Step one provides high-quality trajectories to the replay
buffer. Step two gathers training trajectories from both online and offline trajectories. Step three
trains the star agent using the training trajectories.

trajectory, which makes them robust to long trajectories and sparse rewards as they naturally bias
towards regions with high expected returns. Secondly, mutation makes EA naturally exploratory,
which is crucial for GFlowNets training and mode-finding as they rely on diverse samples for better
training (Pan et al., 2022b). Third, EA’s natural selection biases towards parameters that generate
high reward samples, which, coupled with a replay buffer, can provide sample redundancy, resulting
in a better gradient signal for stable GFlowNets training.

In this work, we introduce Evolution guided generative flow networks (EGFN), a novel training
method for GFlowNets combining gradient-based and gradient-free approaches and benefit from
the best of both worlds. Our proposed approach is a three-step training process. First, using a fit-
ness metric across sampled trajectories taken over a population of GFlowNets agents, we perform
selection, crossover, and mutation on neural network parameters of GFlowNets agents to generate
a new population. To reuse the population’s experience, we store the evaluated trajectories in the
prioritized replay buffer (PRB). For the second step, we sample the stored trajectories from a priori-
tized replay buffer (PRB) and combine them with online samples from a different GFlowNets agent.
Finally, using the gathered samples, we train a GFlowNets agent using gradient descent over some
objectives such as Flow matching (FM), TB, and Detailed balance (DB). The reward-maximizing
capability of EA enhances gradient signal through high reward training samples, ensuring stable
GFlowNets training even in conditions with sparse rewards and long trajectories. Through extensive
evaluation in experimental and a wide range of real-world settings, our method proves effective in
addressing weaknesses related to temporal credit assignment in sparse rewards and long trajectories,
surpassing GFlowNets baselines in terms of both the number of re-discovered modes and top-K
rewards.

2 EVOLUTION GUIDED GENERATIVE FLOW NETWORKS (EGFN)

EGFN is an augmentation of existing training methods of GFlowNets. The evolutionary part
in EGFN (Step one) samples discrete objects, e.g., a molecular structure, using a population of
GFlowNets agents, evaluates the fitness of the agents based on the samples, and generates better
samples by manipulating the weights of the agent population. We store the samples obtained from
the population in a PRB that the GFlowNets sampler uses to, alongside on-policy samples, train
its weights (Step two & three). To differentiate the GFlowNets agent trained by gradient descent
in step two and three from the agent population trained by EA in step one, we refer to the agent
trained by gradient descent as the star agent and GFlowNets agents trained by EA as EA GFlowNets
agents. The training loop can be summarized in the following three steps:

Step One Generate a population of EA GFlowNets agents. Evaluate the fitness of the agents’
weights by evaluating the samples gathered from the agents. Apply the necessary selec-
tion, mutation, and crossover to the weights to generate the next population. Store the
generated trajectories {(τ1, . . . , τE)1, τ1, . . . , τE)2, . . . , (τ1, . . . , τE)k} to the PRB.

Step Two Gather online trajectories from star agent P ∗
F and offline samples from PRB.

Step Three Train P ∗
F using {τ1, τ2, . . . , τT } using gradient descent on any GFlowNets loss function

such as equations 3, 4, or 5.

2



Published at the GEM workshop, ICLR 2024

2.1 STEP ONE: EVOLVE

This step involves optimizing EA GFlowNets agent weights to produce trajectories that accelerate
P ∗
F training using the PRB. To this end, before the train begins, we initialize pop, a population of k

EA GFlowNets agents with random weights. We optimize the population weights in a standard EA
process that contains selection, crossover, and mutation. Algorithm 2 in the appendix E details the
evaluation process.

Selection The selection process begins with an evaluation of the population by calculating each
agent’s fitness scores. We define the fitness score of an agent by the mean reward of E trajectories
{τ1, τ2, . . . , τE} sampled from the agent. Next, based on fitness scores, we transfer the top ϵ% elite
agents’ weights to the next population, unmodified. Notably, we store the kE trajectories sampled
from this step to the PRB in this step.

Crossover The crossover step ensures weight mixing between agents’, ensuring stochasticity. Here,
we perform the crossover in two steps. First, we perform a selection tournament process among
the agents to get pop - elite agents, sampling proportionally to their fitness value and performing
crossover among them. Next, we perform a crossover between the unselected agents and elite. We
combine the two sets of agents and pass them on to the mutation process.

Figure 2: The crossover operation in EGFN. Here, we fill a proportion of population through the
crossover between agents selected proportionally to their fitness. We fill the rest with the crossover
between the unselected agents and the elite agents.

Mutation The mutation process ensures natural exploration among agents. We apply mutation by
adding a gaussian perturbation N (0, γ) to the agent weights. In this work, we only apply mutation
to the non-elite agents.

2.2 STEP TWO: SAMPLE

In this step, we gather trajectory samples {τ1, τ2, . . . , τT } to train the star agent. We use both
online trajectories sampled by the star agent and offline trajectories stored in the PRB. For online
trajectories, we construct a trajectory τ by applying P ∗

F to get s0 → s1 → · · · → x, x ∈ X , where
X is the set of all terminal states. It is noteworthy that there are many works (Rector-Brooks et al.,
2023; Kim et al., 2023; Pan et al., 2023a; 2022a) that augment or perturb the online trajectories by
applying stochastic exploration, temperature scaling, etc. In this work, we choose a simple on-policy
sampling from P ∗

F to get the online trajectories. For offline samples, we simply use PRB to sample
trajectories collected from step one proportionally to the terminal reward. For this work, we take
a simple approach for PRB, uniformly sampling 50% trajectories from the 20 percentile and 50%
trajectories from the rest.

2.3 STEP THREE: TRAIN

We train the star agent by calculating loss L using equation 3, 4, or 5 and minimizing the loss by
applying stochastic gradient descent to the parameter θ.

3



Published at the GEM workshop, ICLR 2024

Figure 3: From left to right. (Example binder produced in the Soluable Epoxy Hydrolase (sEH)
binder generation task. Here the structure corresponds to the molecule with SMILES representation
O=P([O-])(O)c1ccc2ccccc2c1. sEH binder generation experiment over 2.5 × 104 training
steps. GFlowNets implementation uses FM objective. The number of modes with a reward threshold
of 7.5 and 8.0. The average reward across the top-100 and 1000 molecules. The proposed augmen-
tation with EGFN achieves better results both in terms of mode discovery and average reward.

3 EXPERIMENTS

In this section, we validate EGFN by presenting three real-world molecule generation experiments
in 3.1, 3.2, and 3.3. Finally, we present an experiment summary. For all the following experiments,
we use k = 10, E = 4, ϵ = 0.2, and γ = 1. Besides, appendix F presents a detailed investiga-
tion of EGFN’s performance in long trajectory and sparse rewards, generalizability across multiple
GFlowNets objectives, and an ablation study on different components. For fair comparison, we
equip all baselines with a replay buffer of comparable settings to the EGFN. All result figures report
the mean and variance over three random seeds.

3.1 SOLUABLE EPOXY HYDROLASE (SEH) BINDER GENERATION TASK
(
|X | ≈ 1016

)
Setup In this experiment, we are interested in generating molecules with desired chemical properties
that are not too similar to one another. Here, we represent molecules states as graph structures and
actions as a vocabulary of blocks specified by junction tree modeling (Bickerton et al., 2012; Shi
et al., 2020). In the pharmaceutical industry, drug-likeliness (Bickerton et al., 2012), synthesizability
(Shi et al., 2020), and toxicity are crucial properties. Hence, we are interested in finding diverse
candidate molecules for a given criteria to increase chances for post-selection. Here, the criteria is
the molecule’s binding energy to the 4JNC inhibitor of the soluble epoxide hydrolase (sEH) protein.
To this end, we train a proxy reward function for predicting the negative binding energy that serves
as the reward function. We perform the experiment following the experimental details and reward
function specifications from Bengio et al. (2021); Zhang et al. (2023b). Since we are interested in
both the diversity and efficacy of drugs, we define a mode as a molecule with a reward greater than
7.5 and a Tanimoto similarity among previous modes less than 0.7. We use FM as the GFlowNets
baseline and implement EGFN for the same objective.

Results Since the state space is large, we show the result of the number of modes with reward
threshold of 7.5 and 8.0, the top-100, and the top-1000 over the first 2.5× 104 states visited. Figure
3 confirms that EGFN outperforms GFlowNets baseline for mode discovery. Remarkably, EGFN
discovers rare molecules with very high reward (R > 8) that GFlowNets fails to discover. Besides,
EGFN has a better top-100 and top-1000 reward performance than GFlowNets baseline, soliciting
its mode diversity, which is essential in a molecular discovery setting.

3.2 TRANSCRIPTION FACTOR BINDER GENERATION TASK (|X | ≈ 70000)

Setup In this experiment, we generate a nucleotide sequence as a string of length 8. Although the
string could be generated autoregressively, in this experiment setting, we use a Prepend-Append
Markov decision process (PA-MDP), used in similar settings by Shen et al. (2023); Ikram et al.
(2023). Using this MDP, GFlowNets agent actions prepend or append to the nucleotide string. The
reward is a DNA binding affinity to a human transcription factor provided by Trabucco et al. (2022).
We attempt three GFlowNets objectives, finally deciding to use TB as the best GFlowNets baseline
and implement EGFN with the same using a reward exponent β = 3.

4



Published at the GEM workshop, ICLR 2024

Figure 4: Experiment results for transcription factor binder generation task (left) and mall molecule
generation task on the QM9 data over 2000 training steps. Top: the number of discovered modes
across the training process. Bottom: the relative mean error. The proposed augmentation with EGFN
achieves better results. GFlowNets implementation uses TB objective.

Results Figure 4 (left) shows the result over 2000 training steps, showing that GFlowNets outper-
forms GFlowNets baseline both in terms of the number of modes discovered and the mean relative
error.

3.3 SMALL MOLECULE GENERATION TASK (|X | ≈ 60000)

Setup In this experiment, we generate a small molecule graph based on the QM9 data (Ramakrish-
nan et al., 2014) that maximizes the energy gap between its HOMO and LUMO orbitals, thereby
increasing its stability. The resulting molecule is a 5-block molecule, having a choice among 12
blocks for its two stems. For the reward function, we use a pre-trained MXMNet proxy by Zhang
et al. (2020) with a reward exponent β = 1. Similar to 3.2, we use TB for this experiment.

Results In figure 4 (right), we report the mode discovery and L1 error results over 2000 training
steps. Similar to previous experiments, EGFN maintains a steady improvement over the GFlowNets
baseline for mode discovery while decreasing the L1 error quicker.

3.4 RESULT SUMMARY

In both the synthetic and real-world experiments, EGFN performs well for mode discovery using
fewer training steps than GFlowNets baseline. The performance gap increases with increasing tra-
jectory length and reward sparsity. We also discover that the mutation operator is the most important
factor for performance improvement.

4 CONCLUSION

In this work, we presented EGFN, a simple but effective augmentation EA strategy for training
GFlowNets, especially for credit assignment in long trajectories and sparse rewards. This strat-
egy mixes the best of both worlds: EA’s population-based approach biases towards regions with
long-term returns, and GFlowNet’s gradient-based objectives handle the matching of the reward dis-
tribution with the sample distribution by leveraging better gradient signals. Besides, EA promotes
natural diversity of the explored region, removing the need to use any other exploration strategies
for GFlowNets training. Furthermore, by incorporating PRB for offline samples, EA promotes re-
dundancy of high region samples, stabilizing the GFlowNet training with better gradient signals. We
validate our method on a wide range of challenging toy and real-world benchmarks with exponen-
tially large combinatorial search spaces, showing that our method outperforms the best GFlowNet
baselines on long time horizon and sparse rewards.

In this work, we implement a standard evolutionary algorithm for EGFN. Incorporating more com-
plex sub-modules of EA for GFlowNets training such as Covariance Matrix Adaptation and Evolu-
tion Strategy (CMA-ES) such as the work in Pourchot & Sigaud (2019) can be an exciting future
work. Another future direction could be integrating the gradient signal from the GFlowNets objec-
tives into the EA strategy, creating a feedback loop. Besides, while we use a reward-maximization

5



Published at the GEM workshop, ICLR 2024

formulation for the EA in this work, there are works such as Parker-Holder et al. (2020) that directly
improves diversity by formulation. We leave that for the future work.

REFERENCES

Thomas Bäck. Evolutionary computation: Toward a new philosophy of machine intelli-
gence (ieee press series on computational intelligence). 2006. URL https://api.
semanticscholar.org/CorpusID:27611267. 12

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993. 1

Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht,
Elizabeth J Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey
of variation in human transcription factors reveals prevalent dna binding changes. Science, 351
(6280):1450–1454, 2016. 17

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021. 1, 4, 11, 12, 13, 16, 17

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023. 1, 11

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012. 4

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019. 14

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. In International conference on machine
learning, pp. 1039–1048. PMLR, 2018. 12

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017. 12

Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1:47–62, 2008. URL https://api.semanticscholar.org/
CorpusID:2942634. 12

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.
12

Tanmay Gangwani and Jian Peng. Policy optimization by genetic distillation. In International
Conference on Learning Representations, 2018. 12

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017. 16

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018. 14

Perttu Hämäläinen, Amin Babadi, Xiaoxiao Ma, and Jaakko Lehtinen. Ppo-cma: Proximal policy
optimization with covariance matrix adaptation. In 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, 2020. 12

Zhimin Hou, Kuangen Zhang, Yi Wan, Dongyu Li, Chenglong Fu, and Haoyong Yu. Off-policy
maximum entropy reinforcement learning: Soft actor-critic with advantage weighted mixture pol-
icy (sac-awmp). arXiv preprint arXiv:2002.02829, 2020. 12

6

https://api.semanticscholar.org/CorpusID:27611267
https://api.semanticscholar.org/CorpusID:27611267
https://api.semanticscholar.org/CorpusID:2942634
https://api.semanticscholar.org/CorpusID:2942634


Published at the GEM workshop, ICLR 2024

Zarif Ikram, Ling Pan, and Dianbo Liu. Probabilistic generative modeling for procedural round-
about generation for developing countries. In NeurIPS 2023 Workshop on Adaptive Experimental
Design and Active Learning in the Real World, 2023. URL https://openreview.net/
forum?id=WWqJWiyQ2D. 1, 4

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pp. 9786–9801. PMLR, 2022. 1

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023a. 1

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua Ben-
gio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International Confer-
ence on Machine Learning, pp. 14631–14653. PMLR, 2023b. 17

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
In Neural Information Processing Systems, 2018. URL https://api.semanticscholar.
org/CorpusID:53096951. 12

Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woo Chang Kim, Jinkyoo
Park, and Yoshua Bengio. Learning to scale logits for temperature-conditional gflownets. In
NeurIPS 2023 AI for Science Workshop, 2023. 3, 12

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269–
18300. PMLR, 2023. 12

Kyunghyun Lee, Byeong-Uk Lee, Ukcheol Shin, and In So Kweon. An efficient asynchronous
method for integrating evolutionary and gradient-based policy search. Advances in Neural Infor-
mation Processing Systems, 33:10124–10135, 2020. 12

Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal,
Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, et al. Gflowout:
Dropout with generative flow networks. In International Conference on Machine Learning, pp.
21715–21729. PMLR, 2023. 1, 12

Benno Lüders, Mikkel Schläger, Aleksandra Korach, and Sebastian Risi. Continual and one-shot
learning through neural networks with dynamic external memory. In EvoApplications, 2017. URL
https://api.semanticscholar.org/CorpusID:37413014. 12

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023. 1, 12

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022. 1, 12

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. In The Eleventh International Conference on Learning Representations,
2022a. 3, 16

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. In The Eleventh International Conference on Learning Representations,
2022b. 2, 12

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. arXiv preprint arXiv:2302.01687, 2023a. 3

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. arXiv preprint arXiv:2302.09465, 2023b. 12

7

https://openreview.net/forum?id=WWqJWiyQ2D
https://openreview.net/forum?id=WWqJWiyQ2D
https://api.semanticscholar.org/CorpusID:53096951
https://api.semanticscholar.org/CorpusID:53096951
https://api.semanticscholar.org/CorpusID:37413014


Published at the GEM workshop, ICLR 2024

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=ylhiMfpqkm. 12

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020. 6

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.
10

Aloı̈s Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods
for policy search. In 7th International Conference on Learning Representations, ICLR 2019,
2019. 5, 12

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014. 5, 17

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration
in gflownets. In ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative
Modeling, 2023. 3

Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open chal-
lenges. IEEE Transactions on Computational Intelligence and AI in Games, 9:25–41, 2014. URL
https://api.semanticscholar.org/CorpusID:11245845. 12

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 14

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. arXiv preprint
arXiv:2305.07170, 2023. 4, 17

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International conference on machine learning, pp. 8818–8827.
PMLR, 2020. 4

William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis. An
overview of evolutionary computation. In European Conference on Machine Learning, 1993.
URL https://api.semanticscholar.org/CorpusID:175549. 12

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002a. 12

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10:99–127, 2002b. URL https://api.
semanticscholar.org/CorpusID:498161. 12

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015. 16

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 21658–21676. PMLR, 2022. 4

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992. 12

Shimon Whiteson. Evolutionary function approximation for reinforcement learning. Journal of
Machine Learning Research, 7, 2006. 12

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars:
Markov molecular sampling for multi-objective drug discovery. In International Conference on
Learning Representations, 2020. 14

8

https://openreview.net/forum?id=ylhiMfpqkm
https://api.semanticscholar.org/CorpusID:11245845
https://api.semanticscholar.org/CorpusID:175549
https://api.semanticscholar.org/CorpusID:498161
https://api.semanticscholar.org/CorpusID:498161


Published at the GEM workshop, ICLR 2024

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial problems with gflownets. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023a. 1

Dinghuai Zhang, Ling Pan, Ricky TQ Chen, Aaron Courville, and Yoshua Bengio. Distributional
gflownets with quantile flows. arXiv preprint arXiv:2302.05793, 2023b. 4, 16

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multi-
plex graph for molecular structures. arXiv preprint arXiv:2011.07457, 2020. 5, 17

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement
learning. In International Conference on Machine Learning, pp. 7553–7562. PMLR, 2019. 1

9



Published at the GEM workshop, ICLR 2024

Supplementary material for
Evolution Guided Generative Flow Networks

Anonymous authors

ACRONYMS

DB Detailed balance. 2, 11, 14, 16, 18, 19

EA Evolutionary algorithms. 1–3, 5, 12

EGFN Evolution guided generative flow networks. 1–5, 13–20

FM Flow matching. 2, 4, 11, 12, 14, 16, 18, 19

GFlowNets Generative Flow Networks. 1–5, 11, 12, 14–17, 19, 20

HOMO highest occupied molecular orbital. 5

LUMO lowest unoccupied molecular orbital. 5

MARS Markov molecular sampling. 14

MCMC Markov chain Monte Carlo. 14, 15, 17

MDP Markov decision process. 4

MPNN message passing neural network. 16

PA-MDP Prepend-Append Markov decision process. 4, 17, 18

PPO Proximal Policy Optimization. 12, 14

PRB prioritized replay buffer. 2, 3, 5, 14, 16, 19, 20

RL reinforcement learning. 1, 12, 14, 15, 17

SAC Soft-Actor Critic. 12, 14

sEH Soluable Epoxy Hydrolase. 4, 16

TB Trajectory balance. 1, 2, 4, 5, 11, 12, 14, 16, 18, 19

A REPRODUCIBILITY

Our code is available at https://anonymous.4open.science/r/E-GFN/. The hyper-
grid and sEH binder task is based on the code from https://github.com/zdhNarsil/
Distributional-GFlowNets. The QM9 and TFBind8 task is based on the code from
https://github.com/maxwshen/gflownet. All our implementation code uses the Py-
Torch library (Paszke et al., 2019). We used MolView https://molview.org/ to visualize
the molecule diagrams for our paper.

B SUMMARY OF NOTATIONS

We summarize the notations used in our paper in the table 1 below.

10

https://anonymous.4open.science/r/E-GFN/
https://github.com/zdhNarsil/Distributional-GFlowNets
https://github.com/zdhNarsil/Distributional-GFlowNets
https://github.com/maxwshen/gflownet
https://molview.org/


Published at the GEM workshop, ICLR 2024

Table 1: Notations summary

Symbol Description

S state space
X terminal state space
A action space (s→ s′)
T trajectory space
s0 initial state in S
s state in S
x terminal state in X
τ trajectory in T
PF forward flow
PB backward flow
k population size
D replay buffer
ϵ elite population ratio
γ mutation strength

C PRELIMINARIES

C.1 GENERATIVE FLOW NETWORKS (GFLOWNETS)

Generative Flow Networks (GFlowNets) are a family of generative models that samples composi-
tional objects through a sequence of actions. Given a terminal state space X , they aim to learn a
stochastic policy π that can sample terminal states x ∈ X proportionally to a non-negative reward
function R(x), i.e., π(x) ∝ R(x). GFlowNets construct objects x ∈ X by sampling constructive,
irreversible actions a ∈ A that transition st to st+1. We denote the Markovian composition trajec-
tory (s0 → s1 −→ · · · → x) as τ ∈ T , where T is the set of all trajectories. Thus, the problem is
formulated as a directed acyclic graph (DAG), (S, E), where each node in S denotes a state with an
initial state s0, and each edge in E denotes a transition st → st+1 with a special terminal action in-
dicating s = x ∈ X . There exist different paths leading to the same state in the DAG. An important
advantage of GFlowNets is that GFN can sample proportionally to different peaks of reward and we
can train it in both online and offline settings, allowing us to train from replay buffers.

The key objective of GFlowNets training is to train PF such that π(x) ∝ R(x), where,

π(x) =
∑

τ∈T :x∈τ

|τ−2|∏
t=0

PF (st+1|st; θ) (1)

where, PF is a parametric model reprenting the forward transition probability of st to st+1 with
parameter θ. There are several widely used loss functions to optimize GFlowNets including FM,
DB and TB.

Flow matching Following Bengio et al. (2021), we define the state flow and edge flow functions
F (s) =

∑
s∈τ F (τ) and F (s → s′) =

∑
τ=(...s→s′...) F (τ), respectively. Then, the FM criterion

matches the in-flow and the out-flow for all states s ∈ S, formally –∑
s:(s→s′)∈A

F (s→ s′) =
∑

s′′:(s′→s′′)∈A

F (s′ → s′′) (2)

where F (s′ → s′′) = R(s) if s ∈ X . Using PF (s
′|s, θ) = F (s′ → s′′), we turn equation 2 to a loss

function –

LFM(s′, θ) =

[
log

∑
(s→s′)∈A PF (s

′|s, θ)∑
(s′→s′′)∈A PF (s′|s′′, θ)

]2

(3)

Detailed balance Following Bengio et al. (2023), we parameterize F (s), F (s→ s′), and F (s′ → s)
with Fθ(s), PF (s

′|s, θ), and PB(s|s′, θ), respectively. Then, the DB loss for a sampled trajectory
τ ∈ T is –

LDB(s, s
′, θ) =

[
log

Fθ(s)PF (s
′|s, θ)

Fθ(s′)PB(s|s′, θ)

]2
(4)

11



Published at the GEM workshop, ICLR 2024

for all (s→ s′) ∈ τ .

Trajectory balance Malkin et al. (2022) extends the detail balance objective to the trajectory level,
via a telescoping operation of Eq. (4). Specifically, Zθ is a learnable parameter that represents the
total flow:

∑
x∈X R(x) =

∑
s:s0→s∈τ∀τ∈T PF (s|s0; θ), and the TB loss is defined as:

LTB(τ, θ) =

[
log

Zθ

∏|τ |−1
t=0 PF (st+1|st, θ)

R(x)
∏|τ |−1

t=0 PB(st|st+1, θ)

]2

. (5)

This can incur larger variance as demonstrated in Madan et al. (2023).

We train the GFlowNets parameter θ by minimizing the loss L by performing stochastic gradient
descent.

C.2 EVOLUTIONARY ALGORITHMS (EA)

Evolutionary algorithms (EA) (Bäck, 2006; Spears et al., 1993) are a class of combinatorial opti-
mization algorithms that generally rely on three key techniques: mutation, crossover, and selection
as in biological evolution. The crossover operation is responsible for generating new samples based
on exchange of segments among a population of samples. The mutation operation alters the gener-
ated samples, usually with some probability pmutation. Finally, the selection operation evaluates the
fitness score of the population and is responsible for generating the next population. In this work, we
apply EA in the context of the weights of the neural networks, often referred to as neuroevolution
(Stanley & Miikkulainen, 2002b; Risi & Togelius, 2014; Floreano et al., 2008; Lüders et al., 2017).

D RELATED WORK

D.1 EVOLUTION IN LEARNING

There has been many attempts to augment learning, especially RL, with EA. Early works such
Whiteson (2006) combine NEAT (Stanley & Miikkulainen, 2002a) and Q Learning (Watkins &
Dayan, 1992) by using evolutionary strategies to better tune the function approximators. In a similar
manner, Colas et al. (2018) uses EA for exploration in policy gradient, generating diverse samples
using mutation. Fernando et al. (2017) use EA for allowing parameter reuse without catastrophic
forgetting. Recently, many methods use EA to enhance deep RL architectures such as Proximal Pol-
icy Optimization (PPO) (Hämäläinen et al., 2020), Soft-Actor Critic (SAC) (Hou et al., 2020), and
Policy Gradient (Khadka & Tumer, 2018). The key idea from these approaches is to use EA to over-
come the temporal credit assignment and improve exploration by getting diverse samples (Lee et al.,
2020), with some exceptions such as Gangwani & Peng (2018); Fujimoto et al. (2018); Pourchot &
Sigaud (2019) where they utilize EA to tune the parameter of the actor itself.

D.2 GFLOWNETS

GFlowNets have recently been applied to various problems (Liu et al., 2023; Bengio et al., 2021).
There have also been recent efforts in extending GFlowNets to continuous (Lahlou et al., 2023) and
stochastic worlds (Pan et al., 2023b), and also leveraging the power of pre-trained models (Pan et al.,
2024). In GFlowNets training, exploration is an important concept for training convergence, which
many works attempt in different ways. For example, Bengio et al. (2021) use ϵ-greedy exploration
strategy, Kim et al. (2023) learn the logits conditioned on different annealed temperatures, Pan et al.
(2022b) introduces augmented flows into the flow network represented by intrinsic rewards, etc.
The temporal credit assignment for long trajectories and sparse reward is a more recently studied
topic for GFlowNets. Recent works such as Malkin et al. (2022) attempt to tackle this problem by
minimizing the loss over an entire trajectory as opposed to state-wise FM proposed by Bengio et al.
(2021), however, it may incur large variance as demonstrated in Madan et al. (2023).

12



Published at the GEM workshop, ICLR 2024

E ALGORITHMS

Algorithm 1 Evolution Guided GFlowNet Training
Input:
P ∗
F : Forward flow of the star agent with weights θ∗

popF : Population of k agents with randomly initiated weights
D : Prioritized replay buffer
E : Number of episodes in an evaluation
ϵ: percent of greedily selected elites
δ: online-to-offline sample ratio
γ: mutation strength
for each episodes do

for each PF ∈ popF do
fitness, D = EVALUATE(PF , E , noise = None, D); // store experience in replay
buffer

Sort popF based on fitness in a descending order
Select the first ϵk PF from popF as elite
Select (1 - ϵ) PF from popF stochastically based on fitness as S
while |S| < k do

crossover between PF ∈ elite and PF ∈ S and append to S

for each PF ∈ S do
Apply mutation ∼ N (0, γ) to θPF

with probability pmutation

fitness, D = EVALUATE(P ∗
F , E , D)

Sample a minibatch of (1− δ)T offline trajectories T from D
Sample a minibatch of δT online trajectories T from P ∗

F
Compute loss L using trajectory balance loss from T
Update parameters θ∗ using stochastic descent on loss L

Algorithm 2 Evaluation of Forward Flows
Data: Forward flow PF

Result: Updated replay buffer with trajectories and fitness of PF

Procedure EVALUATE(PF , E ,D)
fitness← 0

for iter = 1 to E do
Initialize start state s ; // Can also be parallelized
Initialize trajectory T to an empty list

while s not a terminal state do
Sample action a based on PF (s|θPF

)
s′ ← transition(s, a)
Append (s′, a) to the T
s← s′

ComputeR(s) using reward function using the last state in T
Append T to D

Return fitness
E , D

F EMPIRICAL EXPERIMENTS ON THE HYPERGRID

Here, we study the effectiveness of EGFN investigating the well-studied hypergrid task introduced
by Bengio et al. (2021). The hypergrid is a D-dimensional environment of H horizons, with a HD

state-space, D + 1 action-space, and 2D modes. The ith action in the action space corresponds to
moving 1 step in the ith dimension, with the Dth action being a termination action with which the
agent completes the trajectory and gets a reward specified by equation 6.

13



Published at the GEM workshop, ICLR 2024

In this empirical experiment, two questions interest us.

• Does EGFN augmentation provide improvement against the best GFlowNets baseline for
longer trajectories and sparse rewards?

• Is this method generally applicable to other baselines?

Setup We run all hypergrid experiments for D ∈ {3, 4, 5}, H = 20, and R0 ∈ {10−3, 10−4, 10−5}.
To determine the best GFlowNets baseline, we run three objectives ∈ {FM,TB,DB} (please see
figure 7 below) and decide to use DB with a PRB of size 1000. For a fair comparison, we use DB
for implementing EGFN. We use R0 = 10−5 for the long trajectory experiment and D = 5 for the
reward sparsity experiment, keeping other variables fixed. Finally, we present an ablation study on
different components used in our experiments for H = 16, D = 5, and R0 = 10−5.

For a complete picture, we compare our method with RL baselines such as PPO (Schulman et al.,
2017) and SAC (Haarnoja et al., 2018; Christodoulou, 2019) and MCMC baseline such as MARS
(Xie et al., 2020).

Figure 5: Left: An example hypergrid environment for dimension D = 2, horizon H = 16. Here,
the 22 = 4 yellow tiles refer to the high reward modes. Right: Experimental results comparison
for the hypergrid task between EGFN, GFlowNets, RL, and MCMC baseline across increasing di-
mensions for 2500 training steps. Right tTop: the ℓ1 error between the learned distribution density
and the true target density. Right bBottom: the number of discovered modes across the training
process. As the dimension of the grid increases, the trajectory length also increases. The proposed
EGFN method achieves better performance than all baselines, with broader performance gap be-
tween EGFN and GFlowNets with increasing trajectory length.

Long time horizon result In this experiment, as D increases, |τ | increases, showing the perfor-
mance over increasing |τ |. Figure 5 demonstrates that EGFN outperforms GFlowNets baseline both
in terms of mode finding efficiency and L1 error. Notably, as |τ | increases, the performance gap
increases, confirming its efficacy in challenging environments. Unexpectedly, MARS prove to be
very slow for these challenging environments. Besides, while RL baseline such PPO competes with
GFlowNets and EGFN in the beginning, it fails to discover all modes due to its mode maximization
objective.

Reward sparsity result Next, to understand the effect of sparse rewards, we compare our method
against GFlowNets. With a decreasing R0, reward sparsity increases. Figure 6 shows that EGFN
outperforms traditional GFlowNets. Similar to the previous experiment, we see an increasing per-
formance gap as the reward sparsity increases. Similar to previous experiment, both RL and MCMC
baselines are no match for such difficult environments.

Different training objectives To see how well EGFN works with different GFlowNets objectives,
we show the result of augmentation of our method over all three GFlowNets objectives in figure 7.
We see that EGFN offers a steady improvement across all three GFlowNets objectives.

Ablation study result To understand the individual effect of each component of our method, we run
the hypergrid experiment by comparing our method against the same without PRB and mutation.
Figure 8 details the results of the experiment, underscoring the importance of the mutation operator
in EGFN. It shows that PRB individually is not effective for improved results, but when it is coupled
with mutation, our method delivers better results.

14



Published at the GEM workshop, ICLR 2024

Figure 6: Experimental results comparison for the hypergrid task between EGFN, GFlowNets, RL,
and MCMC baseline across increasing dimensions for 2500 training steps. Top: the ℓ1 error between
the learned distribution density and the true target density. Bottom: the number of discovered modes
across the training process. Here, H = 20, D = 5. As the R0 value decreases, the reward sparsity
increases. The proposed EGFN method achieves better performance than all baselines, with broader
performance gap between EGFN and GFlowNets with increasing sparsity.

Figure 7: Experimental results for the hypergrid task between EGFN and GFN across different
GFlowNets objectives. Top: the ℓ1 error between the learned distribution density and the true target
density. Bottom: the number of discovered modes across the training process. The proposed aug-
mentation with EGFN achieves better results for all three objectives.

G ADDITIONAL IMPLEMENTATION DETAILS

G.1 HYPERGRID TASK

The hypergrid reward function is defined by -

R(x) = R0 +R1

D∏
d=1

I
[∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

]
+R2

D∏
d=1

I
[∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

]
(6)

where I is the indicator function and R0, R1, and R2 are reward control parameters. In our ex-
periments, R1 and R2 stay at a fixed value of 0.5 and 2. In our experiments, R0 varies within
{10−3, 10−4, 10−5}. A mode is the terminal state x for which R(x) = Rmax. From the equation 6,
it is evident that there are 2D distinct modes. Besides, H refers to the horizon of the environment,
meaning each dimension of x can be equal to i ∈ {0, 1, 2, . . . ,H − 1}. For example, figure 6 uses
D = 5 and H = 20. Clearly, while increasing both D and H increases the complexity of the task,
effecting the trajectory length |τ | and the number of states |X |, only increasing D increases the
number of modes. To calculate the empirical probability density, we collect the past visited 200000
states and calculate the probability density.

15



Published at the GEM workshop, ICLR 2024

Figure 8: Experimental results for the hypergrid task on different components of EGFN. Top: the
ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. Here, H = 20, D = 5, and we use DB objective.
We observe that PRB itself does not improve the results, but when it is coupled with mutation, the
results improve.

Architecture We model the forward layer with a 3-layer MLP with 256 hidden dimensions, followed
by a leaky ReLU. The forward layer takes the one-hot encoding of the states as inputs and outputs
action logits. For FM, we simply use the forward layer to model the edge flow. For TB and DB,
we double the action space and train the MLP as both the forward and backward flow. We use a
learning rate of 10−4 for FM and 10−3 for both TB and DB, including a learning rate of 0.1 for Zθ.
The replay buffer uses a maximum size of 1000, and we use a worst-reward first policy for replay
replacement.

G.2 SEH BINDER GENERATION TASK

Figure 9: Illustration of GFlowNets policy for sEH binder generation task. Figure adopted from Pan
et al. (2022a)

For this task, the number of actions is within 100 to 2000, depending on the state, making |X | ≈
1016. We allow the agent to choose from a library of 72 blocks. Similar to Bengio et al. (2021),
we include the different symmetry groups of a given block, making the action count 105 per stem.
We also allow the agent to select up to 8 blocks, choosing them as suggested by Sterling & Irwin
(2015) from the ZINC dataset (Sterling & Irwin, 2015). Following Zhang et al. (2023b), we use
Tanimoto similarity, defined by the ratio between the intersection and the union of two molecules
based on their SMILES representation. To maintain diversity, we define a mode to be a terminal
state for which the normalized negative binding energy to the 4JNC inhibitor of the soluble epoxide
hydrolase (sEH) protein is more than 7.5 and the tanimoto similarity of other discovered modes is
less than 0.7. Note that this objective is more limiting than simply counting the number of different
Bemis-Murcko scaffolds that reach the reward threshold like Bengio et al. (2021). Since we are
focusing on both molecule separation and optimization, our approach is more applicable for de novo
molecule design, while the scaffold-based metric is suitable for lead optimization.

Architecture Following Bengio et al. (2021), we use a message passing neural network (MPNN)
(Gilmer et al., 2017) that receives the atom graph to calculate the proxy reward of the molecules.
Similarly, we use another MPNN that receives the block graph for flow estimation. The block graph
is a tree of learned node embeddings that represent the blocks and edge embeddings that represent
the bonds. To represent the flow, we pass the stems through a 10-layer graph convolution followed

16



Published at the GEM workshop, ICLR 2024

by GRU to calculate their embedding and pass the embedding through a 3-layer MLP to get a 105-
dimension logit. Similarly, to represent the stop action, we pass the global mean pooling to the
3-layer MLP. The MLPs use 256 hidden dimensions, followed by a leakyReLU. We use a learning
rate of 0.0005 and a minibatch size of 4. For EGFN, we use an offline sample probability of 0.2.
Besides, we use a reward exponent β = 10 and a normalizing constant of 8. For RL and MCMC
baselines, we use the implementation provided by Bengio et al. (2021).

Figure 10: Molecule blocks for the sEH protein task. Figure adapted from Bengio et al. (2021)

G.3 TFBIND8 TASK

For this task, the goal is to generate an 8-length DNA sequence that maximizes the binding activity
score with a particular transcription factor SIX6REFR1 (Barrera et al., 2016). We use a precalculated
oracle for the proxy reward calculation. Using a PA-MDP, we prepend or append a neucleotide in
each step. Note that this formulation reduces the trajectory length significantly despite our effort to
showcase better performance in long trajectories, but we use it following previous works.

Architecture Following Shen et al. (2023), the GFlowNets architecture uses a 2-layer MLP with
128-dimension hidden layer parameterizing SSR (S,S ′ → R+). For each training step, we train
on both online and offline trajectories for three steps, using a minibatch of 32. Besides, we use a
learning rate of 10−4 for policy and 0.01 for Zθ. Finally, we use a reward exponent β = 3 and an
exploration probability of 0.01 (we do not use any exploration for EGFN).

G.4 QM9 TASK

The goal here is to generate diverse molecules based on the QM9 data (Ramakrishnan et al., 2014)
that maximize the HOMO-LUMO. To that end, we use the reward proxy that Jain et al. (2023b) pro-
vides based on Zhang et al. (2020). Similar to the sEH task, we generate molecules with atoms and
bonds. The blocks used here are the following: C, 0, N, C-F, C=0, C#C, c1ccccc1,
C1CCCCC1, C1CCNC1, CCC.

Architecture Using a PA-MDP, we use a 2-layer MLP with 1024 hidden dimensions for flow esti-
mation. The reward proxy is a MXMNet proxy trained on the QM9 data. We use a reward exponent
β = 1. The learning rate and training style follow the ones used for the TFBind8 task, with the
exception of exploration probability (0.1 here) and hidden dimension (1024 here).

We detail the summary of the training hyperparameters in table 2.

H ADDITIONAL ABLATION EXPERIMENTS

H.1 NUMBER OF POPULATION

To investigate the effect of population size, we vary the k ∈ {5, 10, 15}, while keeping ϵ = 0.2, D =
5, H = 20, R0 = 10−5. We plot the results of the experiment in figure 11. It shows that increasing

17



Published at the GEM workshop, ICLR 2024

Table 2: Summary of the hyperparameters for all experiments

Hypergrid sEH Small Molecules TFBind8 QM9

Learning Rate 10−4 (FM), 10−3 5× 10−4 10−4 10−4

Zθ Learning Rate 0.1 N/A 0.01 0.01
β 1 10 3 1

MDP Enumerate Sequence Insert PA-MDP PA-MDP
Exploration ϵ (none for EGFN) 0 0 0.01 0.1

Replay Buffer Training 50% 0 (20% for egfn) 50% 50%
MLP layers 3 3 2 2

MLP hidden dimensions 256 256 128 1024

k beyond 10 leads to diminishing returns, motivating our choice of k = 10 for all the experiments.
For DB, however, increasing k leads to considerable improvement. Indeed, this is useful because
increased population size leads to more evaluation round required. While these evaluation round can
be parallelized with threads as we do in our work, massive population size requirement is difficult
to satisfy.

Figure 11: Experimental results for the hypergrid task for EGFN among different values of k across
the three training objectives. Top: the ℓ1 error between the learned distribution density and the
true target density. Bottom: the number of discovered modes across the training process. Here,
H = 20, D = 5. The results show that increasing population size leads to diminishing returns.

H.2 ELITE POPULATION

Following ablation on k, we next perform ablation on the elite population ratio, ϵ ∈ {0.2, 0.4, 0.6}.
For this experiment, we use the same hypergrid settings for k = 10. We plot the results of the
experiment in figure 12. It shows that low ϵ improves mode discovery, especially for FM and TB
objectives. This result is reasonable: we apply mutation and crossover only to the non-elite popula-
tion, so having a low number of elite population means we have a better chance at exploring using
the non-elite population’s mutation and crossover.

Figure 12: Experimental results for the hypergrid task for EGFN among different values of ϵ across
the three training objectives. Top: the ℓ1 error between the learned distribution density and the
true target density. Bottom: the number of discovered modes across the training process. Here,
H = 20, D = 5. We observe that lower ϵ leads to better results for FM and TB.

18



Published at the GEM workshop, ICLR 2024

H.3 REPLAY BUFFER SIZE

To understand the effect of replay buffer size, we run GFlowNets baseline with PRB and EGFN on
a 20x20x20x20x20 environment with R0 = 10−5 for replay buffer size ∈ {1000, 5000, 10000}. We
present the findings in figure 13. From the figure, we see that increasing buffer size generally has
little effect for GFlowNets, but it improves EGFN’s robustness a little.

Figure 13: Experimental results for the hypergrid task between GFlowNets and EGFN across dif-
ferent values of |D|. Top: the ℓ1 error between the learned distribution density and the true target
density. Bottom: the number of discovered modes across the training process. Here, we use DB for
H = 20, D = 5. The results show that while increasing replay buffer size improves the robustness
of the result, it has little effect otherwise.

H.4 MUTATION STRENGTH

We now turn our attention to the mutation. To observe the effect of the mutation strength γ, we
run the hypergrid experiment for the three training objectives using EGFN for γ ∈ 1, 5, 10. The
hypergrid configurations follow the the same configurations as before. We plot the mode discovery
and ℓ1 error between the learned distribution density and the true target density over 2500 training
steps in figure 14. While the results indicate that having a higher γ leads to better result for DB,
the improvement is not extraordinary. Besides, in our work, we experience training instability for
higher γ. Thus, we restrict γ to be 1 throughout in our work.

Figure 14: Experimental results for the hypergrid task for EGFN among different values of γ across
the three training objectives. Top: the ℓ1 error between the learned distribution density and the
true target density. Bottom: the number of discovered modes across the training process. Here,
H = 20, D = 5. We observe that lower γ leads to better results for FM and TB, while higher γ
leads to better results for DB.

I DISCUSSION

Why does EGFN work? To explore this, we compare the trajectories stored in the training step
for GFlowNets and EGFN across training steps ∈ {500, 1000, 1500, 2000, 2500} in the hypergrid
task in figure 15 for different levels of sparsity (R0 ∈ {10−2, 10−5}). We see that when reward

19



Published at the GEM workshop, ICLR 2024

sparsity is low (left), training trajectory length distribution of both methods is similar. However,
when the reward sparsity increases (right), GFlowNets training trajectories center around a lower
trajectory length than that of EGFN. However, for a reward-symmetrical environment like hypergrid,
the trajectory length’s distribution must tend towards the mean to truly capture the data distribution.
EGFN can achieve this by its reward-maximizing evolutionary process which supplies diverse modes
to the PRB, ensuring a better training for the star agent.

Figure 15: Experimental results for the trajectory lengths of the trajectories stored in the training
samples across different training steps for R0 = 10−2 (left) and 10−4 (right). Top: GFlowNets
Bottom: EGFN

20


	Introduction
	egfn
	Step one: Evolve
	Step two: Sample
	Step three: Train

	Experiments
	seh binder generation task (|X| 1016)
	Transcription factor binder generation task (|X| 70000)
	Small molecule generation Task (|X| 60000)
	Result summary

	Conclusion
	Reproducibility
	Summary of notations
	Preliminaries
	Generative Flow Networks (GFlowNets)
	ea

	Related work
	Evolution in learning
	gfn

	Algorithms
	Empirical experiments on the hypergrid
	Additional implementation details
	Hypergrid task
	seh binder generation Task
	TFBind8 task
	QM9 task

	Additional ablation experiments
	Number of population
	Elite population
	Replay buffer size
	Mutation strength

	Discussion

