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Abstract
Causal effect estimation from observational data is an important analytical ap-1

proach for data-driven policy-making. However, due to the inherent lack of ground2

truth in causal inference accepting such recommendations requires transparency3

and explainability. To date, attempts at transparent causal effect estimation con-4

sist of applying post hoc explanation methods to black-box models, which are5

not interpretable. In this manuscript, we present BICauseTree: an interpretable6

balancing method that identifies clusters where natural experiments occur locally.7

Our approach builds on decision trees to reduce treatment allocation bias. As a8

result, we can define subpopulations presenting positivity violations and exclude9

them while providing a covariate-based definition of the target population we can10

infer from. We characterize the method’s performance using synthetic and realistic11

datasets, explore its bias-interpretability tradeoff, and show that it is comparable12

with existing approaches.13

1 Introduction14

The primary task of causal inference is estimating the effect of a treatment or intervention. Evaluating15

the strength of a causal relationship is essential for decision-making, designing interventions, as well16

as evaluating the effect of a policy. As such, causal inference has high applicability across multiple17

fields including medicine, social sciences and policy-making.18

However, the estimation of a causal effect requires the computation of “potential outcomes” i.e.19

the outcome an individual would experience if they had received some potential treatment, which20

may differ to the observed one (1). When treatment is binary, the quantity of interest is often the21

difference between the average potential outcomes in an all-treated scenario vs an all-untreated22

scenario. Estimating and evaluating causal effect from observational data is thus challenging as we23

only observe a single potential outcome–the one under the observed treatment–and can never observe24

the counterfactual outcome, lacking ground-truth labels. Furthermore, when treatment assignment is25

not randomized, groups that do or do not receive treatment may not be comparable in their attributes,26

and such attributes can influence the outcome too (i.e. confounding bias).27

In addition to these fundamental challenges, in practical settings where causality is used, decision-28

making can often be safety-sensitive (e.g. healthcare, education). This, in turn, incentivizes “in-29

terpretable” modeling to either comply with ethics requirements or be properly communicated to30

interested parties. Here, interpretability means that each decision in the algorithm is inherently31

explicit and traceable, contrasting with explainability where decisions are justified post-hoc using an32

external model (2). Moreover, due to the lack of ground truth, interpretability is of greater importance33

in causal inference where understanding a model may be the only way to question it.34

In this paper, we introduce BICauseTree: Bias-balancing Interpretable Causal Tree, an interpretable35

balancing method for observational data with binary treatment that can handle high-dimensional36

datasets. We use a binary decision tree to stratify on imblanced covariates and identify subpopulations37

with similar propensities to be treated, when they exist in the data. The resulting clusters act as local38
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naturally randomized experiments. This newly formed partition can be used for effect estimation,39

as well as propensity score or outcome estimation. Our method can further identify positivity40

violating regions of the data space, i.e., subsets of the population where treatment allocation is41

highly unbalanced. By doing so, we generate a transparent, covariate-based definition of the target42

population or “inferentiable” population i.e. the population with sufficient overlap for inferring causal43

effect.44

Our contributions are as follows:45

1. Our BICauseTree method can identify “natural experiments” i.e. subgroups with lower treatment46

imbalance, when they exist.47

2. BICauseTree compares with existing methods for causal effect estimation in terms of bias48

while maintaining interpretability. Estimation error and consistency of the clusters show good49

robustness to subsampling in both our synthetic and realistic benchmark datasets.50

3. Our method provides users with built-in prediction abstention mechanism for covariate spaces51

lacking common support. We show the value of defining the inferentiable population using a52

clinical example with matched twins data.53

4. The resulting tree can further be used for propensity or outcome estimation.54

5. We release open-source code with detailed documentation for implementation of our method,55

and reproducibility of our results.56

2 Related work57

2.1 Effect estimation methods58

Causal inference provides a wide range of methods for effect estimation from data with unbalanced59

treatment allocation. There are two modelling strategies: modelling the treatment using the covariates60

to balance the groups, and modelling the outcome directly using the covariates and treatment61

assignment.62

In balancing methods such as matching or weighting methods, the data is pre-processed to create63

subgroups with lower treatment imbalance or “natural experiments”. Matching methods consist of64

clustering similar units, based on some distance metric, from the treatment and control groups to65

reduce imbalance. Euclidean and Mahalanobis distances are commonly used, together with nearest66

neighbour search. However, as the notion of distance becomes problematic in high dimensional spaces,67

covariate-based matching tends to become ineffective in such settings (3). Weighting methods aim at68

balancing the covariate distribution across treatment groups, with Inverse Probability Weighting (IPW)69

(4) being the most popular approach. Samples weights are the inverse of the estimated propensity70

scores, i.e. the probability of a unit to be assigned to its observed group. However, extreme IPW71

weights can also increase the estimation variance.72

Contrastingly, in adjustment methods the causal effect is estimated from regression outcome models73

where both treatment and covariates act as predictors of the outcome. These regressions can be fitted74

through various methods like linear regression (5), neural networks (6; 7), or tree-based models (8; 9).75

Under this taxonomy, BICauseTree is a balancing method, i.e., a data-driven mechanism for achieving76

conditional exchangeability. Nonetheless, BICauseTree can be combined with other methods to77

achieve superior results. Either as propensity models in established doubly robust methods (10), or78

by incorporating arbitrary causal models at leaf nodes (similar to regression trees with linear models79

at leaf nodes (11)).80

2.2 Positivity violations81

Causal inference is only possible under the positivity assumption, which requires covariate dis-82

tributions to overlap between treatment arms. Thus, positivity violations (also referred to as no83

overlap) occur when certain subgroups in a sample do not receive one of the treatments of interest84

or receive it too rarely (12). Overlap is essential as it guarantees data-driven outcome extrapolation85

across treatment groups. Having no common support means there are subjects in one group with86

no counterparts from the other group, and, therefore, no reliable way to pool information on their87

outcome had they been in the other group. Non-violating samples are thus the only ones for which88

we can guarantee some validity of the inferred causal effect.89

There are three common ways to characterize positivity. The most common one consists in estimating90

propensity scores and excluding the samples associated with extreme values (also known as “trim-91

ming”) (13). The threshold for propensity scores can be set arbitrarily or dynamically (14). However,92

since samples are excluded on the basis of their propensity scores and not their covariate values, these93

methods lack interpretabilty about the excluded subjects and how it may affect the target population94

2



on which we can generalize the inference. Consequently, other methods have been developed to95

overcome this challenge by characterizing the propensity-based exclusion (15; 16; 17). Lastly, the96

third way tries to characterize the overlap from covariates and treatment assignment directly, without97

going through the intermediate propensity score e.g. PositiviTree (12). In PositiviTree, a decision98

tree classifier is fitted to predict treatment allocation. In contrast to their approach, BICause Tree99

implements a tailor-made optimization function where splits are chosen to maximize balancing100

in the resulting sub-population, whereas PositiviTree uses off-the-shelf decision trees maximizing101

separation. Ultimately, the above mentioned methods for positivity identification and characterization102

are model agnostic. In our model, BICauseTree, positivity identification and characterization are103

inherently integrated in the model, and effect estimation comes with a built-in interpretable abstention104

prediction mechanism.105

2.3 Interpretability and causal inference106

A predominant issue in existing effect estimation methods is their lack of interpretability. A model is107

considered as interpretable if its decisions are inherently transparent (2). Examples of interpretable108

models include decision trees where the decision can be recovered as a simple logical conjunction.109

Contrastingly, a model is said to be explainable when its predictions can be justified a-posteriori by110

examining the black-box using an additional “explanation model”. Popular post-hoc explanation111

models include Shapley values (18) or LIME (19). However, previous works have shown that existing112

explainability techniques lack robustness and stability (20). Further, the explanations provided by113

explanation models inevitably depend on the black-box model’s specification and fitness. Given that114

explanation models only provide unreliable justifications for black-box model decisions, a growing115

number of practitioners have been advocating for intrinsically interpretable predictive models (2).116

We further claim that causal inference, and in particular effect estimation, should be interpretable as117

it assists high-stake decisions affecting laypeople.118

Causal Trees (8) are another tree-based model for causal inference that (i) leverages the inherent119

interpretability of decision trees, and (ii) has a custom objective function for recursively splitting120

the data. Although both utilize decision trees, BICauseTree and Causal Tree (CT) serve distinct121

purposes. BICauseTree splits are optimized for balancing treatment allocation while CT splits are122

optimized for balancing treatment effect, under assumed exchangeability. In other words, CT assumes123

exchangeability while BICauseTree “finds” exchangeability. As such, our approach is more suited124

for ATE estimation while CT is better suited for Conditional Average Treatment Effect estimation (8).125

Furthermore, in practice, causal effects are often averaged over multiple trees into a so-called Causal126

Forest (21; 22) that is no longer interpretable, and users are encouraged to use post-hoc explanation127

methods (23).128

In addition to effect estimation, positivity violations characterization should also be interpretable for129

downstream users, such as policy makers. Discarding samples can hurt the external validity of any130

result, as there can be structural biases leading to entire subpopulation being excluded. Therefore,131

interpretable characterization of the overlap in a study can help policy makers better assess on132

whom they expect the study results to apply (15; 12). In our model, BICauseTree, we generate a133

covariate-based definition of the violating subpopulation. In other words, we can claim which target134

population our estimate of the Average Treatment Effect applies to.135

3 BICauseTree136

3.1 Problem setting137

We consider a dataset of size n where we note each individual sample (Xi, Ti, Yi) with Xi ∈ Rd is138

a covariate vector for sample i measured prior to treatment allocation, and Ti is a binary variable139

denoting treatment allocation. In the potential outcomes framework (24), Yi(1) is the outcome140

under Ti = 1, and Yi(0) is the analogous outcome under Ti = 0. Then, assuming the consistency141

assumption, the observed outcome is defined as Yi = TiYi(1) + (1− Ti)Yi(0). In this paper, we142

focus on estimating the average treatment effect (ATE), defined as: ATE = E[Y (1)− Y (0)].143

3.2 Motivation144

We introduce a method for balancing observational datasets with the goal of estimating causal effect145

in a subpopulation with sufficient overlap. Our goals are: (i) unbiased estimation of causal effect, (ii)146

interpretability of both the balancing and positivity violation identification procedures, (iii) ability to147

handle high-dimensional datasets. Our approach utilizes the Absolute Standardized Mean Difference148

(ASMD) (25) frequently used for assessing potential confounding bias in observational data. Note149
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that our balancing procedure is entirely interpretable, although it can be used in combination with150

arbitrary black-box outcome models or propensity score models. Finally, our method generates a151

covariate-based definition of the target population on which we make inference. As such, it is tailored152

to sensitive domains where inference should be restricted to subpopulations with reasonable overlap.153

3.3 Algorithm154

The intuition for our algorithm is that, by partitioning the population to maximize treatment allocation155

heterogeneity, we may be able to find subpopulations that are natural experiments. We recursively156

partition the data according to the most imbalanced covariate between treatment groups. Using157

decision trees makes our approach transparent and non-parametric.158

Splitting criterion The first step of our algorithm is to split the data until some stopping criterion is159

met. The tree recursively splits on the covariate that maximize treatment allocation heterogeneity. To160

do so, we compute the Absolute Standardized Mean Difference (ASMD) for all covariates and select161

the covariate with the highest absolute value. The ASMD for a variable Xj is defined as:162

ASMDj =
|E[Xj |T=1]−E[Xj |T=0]|√

V ar([Xj |T=1])+V ar([Xj |T=0])
163

The reason for choosing the feature with the highest ASMD is that it is most likely to be a confounder.164

Once that next splitting covariate jmax is chosen, we want to find a split that is most associated165

with treatment assignment, so that we may control for the effect of counfounding. The tree finds the166

optimal splitting value by iterating over covariate values xjmax
and taking the value associated with167

the lowest p-value according to a Fisher’s exact test or a χ2 test, depending on the sample size.168

Stopping criterion The tree building phase stops when either: (i) the maximum ASMD is below169

some threshold, (ii) the minimum treatment group size falls below some threshold (iii) the total170

population fall below the minimum population size threshold, or (iv) a maximum tree depth is reached.171

All of the thresholds are user-defined hyperparameters.172

Pruning procedure Once the stopping criterion is met in all leaf nodes, the tree is pruned. A multiple173

hypothesis test correction is first applied on the p-values of all splits. Following this, the splits with174

significant p-values or with at least one split with significant p-value amongst their descendants are175

kept. Ultimately, given that ASMD reduction may not be monotonic, pruning an initially deeper tree176

allows us to check if partitioning more renders unbiased subpopulations. The implementation of the177

tree allows for user-defined multiple hypothesis test correction, with current experiments using Holm178

correction (26). The choice of the pruning and stopping criterion hyperparameters will guide the179

bias/variance trade-off of the tree. Deeper trees may have more power to detect treatment effect while180

shallower trees will be more likely to have biased effect estimation.181

Positivity violation filtering The final step evaluates the overlap in the resulting set of leaf nodes182

to identify those where inference is possible. The tree checks for treatment balance based on some183

user-defined overlap estimation method, with the default method being the Crump procedure (14).184

The positivity violating leaf nodes are tagged and then used for inference abstention mechanism, i.e.185

inference will be restricted to non-violating leaves.186

Estimation Once a tree is contracted, it can be used to estimate both counterfactual outcomes187

and propensity scores. For each leaf, using the units propagated to that leaf, we can model the188

counterfactual outcome by taking the average outcome of those units in both treatment groups.189

Alternatively, we can fit any arbitrary causal model (e.g., IPW or an outcome regression) to obtain the190

average counterfactual outcomes in that leaf. The ATE is then obtained by averaging the estimation191

across leaves. Similarly, we can estimate the propensity score in each leaf by taking the treatment192

prevalence or using any other statistical estimator (e.g., logistic regression).193

Code and implementation details Code for BICauseTree is released open-source, including de-194

tailed documentation under: https://anonymous.4open.science/r/BICause-Trees-F259.195

Our flexible implementation allows the user to extend the default stopping criterion as well as the196

multiple hypothesis correction method. BICauseTree adheres to causallib’s API, and can accept197

various outcome and propensity models.198
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Algorithm 1 BICauseTree
Inputs: root node N0, X , T , Y
Call Build subtree(N0, X , T , Y )
Do multiple hypothesis test correction on all split p-values
Pruning procedure: keep splits with either (i) a significant p-value or (ii) at least one descendant
with a significant p-value
Mark leaf nodes that violate positivity violation criterion

Algorithm 2 Build subtree
Inputs: current node N , X , T , Y
if Stopping criteria not met then

Find and record in N the covariate with maximum ASMD: maxASMD := maxi(ASMDi)
Find and record in N the split value with the lowest p-value according to a Fisher test/χ2 test
Record the p-value for this split in N
Split the data X,T, Y into Xleft, Tleft, Yleft and Xright, Tright, Yright according to N ’s

splitting covariate and value
Add two child nodes to N : Nleft and Nright

Call Build subtree(Nleft, Xleft, Tleft, Yleft)
Call Build subtree(Nright, Xright, Tright, Yright)

end if

4 Experiment and results199

4.1 Experimental settings200

In all experiments–unless stated otherwise–the data was split into a training and testing set with a201

50/50 ratio. The training set was used for the construction of the tree and for fitting the outcome202

models in leaf nodes, if relevant. Causal effects are estimated by taking a weighted average of the203

local treatment effects in each subpopulation. At the testing phase, the data is propagated through204

the tree, and potential outcomes are evaluated using the previously fitted leaf outcome model. We205

performed 50 random train-test splits, which we will refer to as subsamples to avoid confusion with206

the tree partitions. For each subsample, effects are only computed on the non-violating samples207

of the population. In order to maintain a fair comparison, these samples are also excluded from208

effect estimation with other models and with ground truth. All results are shown after filtering209

positivity-violating samples.210

Baseline comparisons We compare our method to doubleMahalanobis Matching, Inverse Probability211

Weighting (IPW), and Causal Tree (CT). In Mahalanobis Matching (27; 28), the nearest neighbor212

search operates on the Mahalanobis distance: d (Xi, Xj) = (Xi −Xj)
T

Σ−1 (Xi −Xj), where213

Σ is alternatively the estimated covariance matrix of the control and treatment group dataset. In214

Inverse Probability Weighting (4), a propensity score model estimates the individual probability215

of treatment conditional on the covariates. The data is then weighted by the inverse propensities216

P (T = ti | X = xi)
−1 to generate a balanced pseudo-population. In Causal Tree (8), the splitting217

criterion optimizes for treatment effect heterogeneity (see section 3.1 for further details). We use a218

Causal Tree and not a Causal Forest to compare to an estimator which is equally interpretable as219

our estimator. We also compare our results to an unadjusted marginal outcome estimator, which220

will act as our “dummy” baseline model. As using a single Causal Tree for our interpretability goal221

gives rise to high estimation bias, Causal Tree was excluded from the main manuscript for scaling222

purposes. We refer the reader to sections A.5, A.6 and A.7 for a comparison with CT. For synthetic223

experiments, we use the simplest version of our tree which we term BICauseTree(Marginal) where224

the effect is estimated from taking average outcomes in leaf nodes. For real-world experiments,225

we compare BICauseTree(Marginal) with BICauseTree(IPW), an augmented version in which an226

IPW model is fitted in each leaf node. To compare estimation methods, we compute the difference227

between the estimated ATE and the true ATE for each subsample (or train-test partition) and display228

the resulting distribution of estimation biases in a box plot. Further experimental details, including229

hyperparameters, can be found in the Appendix under section A.9.230
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4.2 Synthetic datasets231

We first evaluate the performance of our approach on two synthetic datasets. We first demonstrate232

BICauseTree’s ability to identify subgroups with lower treatment imbalance on a dataset which we233

will refer to as the “natural experiment dataset” in the following. We further exemplify BICauseTree’s234

identification of positivity violating samples on a dataset we refer to as the “positivity violations235

dataset”. Due to the interaction-based nature of the data generation procedure, we additionally236

compare our approach to an IPW estimator with a Gradient Boosting classifier propensity model,237

referred to as IPW (GBT) in both synthetic experiments. This choice ensures a fair comparison across238

estimators.239

Identifying natural experiments For the natural experiment dataset, we considered a Death out-240

come D, a binary treatment of interest T and two covariates: Sex S and Age A. We defined four241

sub-populations, where each constituted a natural experiment with a truncated normal propensity242

distribution centered around a pre-defined constant value and variance (see details in Section A.4.1).243

Then, individual treatment propensities were sampled from the corresponding distribution and ob-244

served treatment values were sampled from a Bernoulli distribution parameterized with the individual245

propensities. No positivity violation was modeled in this experiment. Ultimately, X = (S,A) is246

the vector of covariate values in R2 with the sample size chosen as n = 20, 000. The marginal247

distribution of covariates follows: S ∼ Ber(0.5) and A ∼ N
(
µ, σ2

)
where µ = 50 and σ = 20.248

Figure A1 in A.5.1 shows the partition obtained from training BICauseTree on the entire dataset. Our249

tree successfully identifies the subpopulations in which a natural experiment was simulated. Figure250

1a shows the estimation bias across subsamples. In addition to being transparent, BICauseTree has251

lower bias in causal effect estimation compared to all other methods, excluding IPW(GBT) which has252

comparable performance. Despite its higher estimation variance, Matching has low bias, probably253

due to covariate space being well-posed and low-dimensional. Contrastingly, the logistic regression254

in IPW(LR) is not able to model treatment allocation as the true propensities are generated from a255

noisy piecewise constant function of the covariates resulting in a threshold effect that explains its poor256

performance. The non-parametric, local nature of both Matching and BICauseTree thus contrasts257

with the parametric estimation by IPW(LR). Further results on the BICauseTree’s calibration and258

covariate partition can be found in the Appendix, under section A.5.1.259

0.00 0.02 0.04 0.06 0.08
|ATE ATE|

BICause Tree
Marginal

IPW (LR)

IPW (GBT)

Marginal

Matching

Split
Test
Train

(a) Estimation bias for the natural experiment
dataset (see subsection 4.2) across 50 subsamples,
with N = 20, 000

0.0 0.2 0.4 0.6
|ATE ATE|

BICause Tree
Marginal

IPW (LR)

IPW (GBT)

Marginal

Matching

0.00 0.02 0.04 0.06

Split
Test
Train

(b) Estimation bias for the positivity violations
dataset (see subsection 4.2) across 50 subsamples,
after excluding positivity violating leaf nodes with
N = 20, 000.

Figure 1: Results on the synthetic datasets

Identifying positivity violations For the positivity violations dataset, we consider a synthetic dataset260

with a Death outcome D, a binary treatment of interest T , and three Bernoulli covariates –Sex S,261

cancer C and arrhythmia A– such that X = (S,C,A) (see Section A.4.2 for further details). As262

for the natural experiment dataset, we modeled treatment allocation with stochasticity by sampling263

propensities from a truncated gaussian distribution first. Treatment allocation was simulated to ensure264

that overlap is very limited in two subpopulations: females with no cancer and no arrhythmia are265

rarely treated, while males with cancer and arrhythmia are almost always treated. Figure A2 in266

A.5.2 shows the partition obtained from training BICauseTree on the entire dataset, confirming that267
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BICauseTree excludes the subgroups where positivity violations were modeled. On average, 67.1%268

of the cohort remained after positivity filtering with very little variability across subsamples. Thanks269

to the interpretable nature of our method, we are able to identify these subgroups as a region of270

the covariate space. As seen in Figure 1b, after filtering violating samples the effect estimation by271

BICauseTree remains unbiased and with low variance. Our estimator compares with IPW(GBT)272

while being interpretable. The IPW(LR) estimator is more biased than BICauseTree. This may be273

due to the extreme weights in the initial overall cohort. In spite of filtering samples from regions274

with lack of overlap–as defined by BICauseTree–the remaining propensity weights may be biased,275

which would ultimately induce a biased effect estimation. Estimation variance is comparable across276

methods, except for Matching which is both more biased and has higher variance than all other277

estimators. Further results on the BICauseTree’s calibration and covariate partition can be found in278

the Appendix, under section A.5.2.279

4.3 Realistic datasets280

Causal benchmark datasets We use two causal benchmark datasets to show the value of our281

approach. The twins dataset illustrates the high applicability of our procedure to clinical settings. It282

is based on real-world records of N = 11, 984 pairs of same-sex twin births, and has 75 covariates.283

It tests the effect of being born the heavier twin (i.e. the treatment) on death within one year (i.e.284

the outcome), with the outcomes of the twins serving as the two potential outcomes. We use the285

dataset generated by Neal et. al (29), that simulates an observational study from the initial data by286

selectively hiding one of the twins with a generative approach. We also ran our analysis on the 2016287

Atlantic Causal Inference Conference (ACIC) semisynthetic dataset with simulated outcomes (30).288

For ACIC, given that trees are data greedy, and due to the smaller sample size (N = 4, 802) relative289

to the number of covariates (d = 79), the models were trained on 70% of the dataset.290

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
|ATE ATE|

BICauseTree
(IPW)

BICauseTree
(Marginal)

IPW

Marginal

Matching

Test
Train

Figure 2: Estimation bias for the twins dataset
(N = 11, 984) across 50 subsamples, exclud-
ing positivity violating leaf nodes.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
|ATE ATE|

BICauseTree
(IPW)

BICauseTree
(Marginal)

IPW

Marginal

Matching

Test
Train

Figure 3: Estimation bias for the ACIC
dataset (N = 4, 802) across 50 subsamples,
excluding positivity violating leaf nodes.

Effect estimation Figure 2 shows the distribution of the estimation biases across subsamples on291

the twins dataset, comparing to the baseline models. Here, our BICauseTree(Marginal) estimator292

is less biased than the marginal estimator. Augmenting our tree with an IPW outcome model –293

BICauseTree(IPW) – further decreases estimation bias, making it comparable with IPW, both w.r.t294

bias and estimation variance. Figure 3 compares the estimation biases across estimators on the ACIC295

dataset. Here, both BICauseTree models compare with IPW in terms of bias and estimation variance.296

Bias-interpretability tradeoff We expect a bias-interpretability tradeoff, where deeper trees are297

less biased but more complex to understand, while shallower trees are less accurate but easier298

to comprehend. Figure 4 shows how estimation bias in leaf nodes decreases as we increase the299

maximum depth hyperparameter of our BICauseTree(Marginal) in the twins dataset. Here, each300

circle in the plot represents a leaf node, and the dotted line shows the average bias with an IPW301

estimator. The shaded area represents the 95% confidence interval (CI) for IPW. As seen in the302

plot, there is some overlap between the 95% CI for IPW and the estimation bias of deeper trees.303

The remaining gap thus represents the need for a more complex outcome model in the leaves, or in304

other words the estimation bias that was traded against interpretability here. Similarly, in figures 2305

and 3 we notice how augmenting our partition with an IPW leaf outcome models has decreased the306
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estimation bias at the cost of transparency. Ultimately, figure 4 shows that bias reduction is consistent307

beyond a maximum depth parameter of 5. The robustness of our estimator w.r.t the maximum depth308

hyperparameter is likely due to our statistical pruning procedure. A similar figure is shown in Section309

A.7 for the ACIC dataset.310
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Figure 4: Estimation bias when comparing
BICauseTree(Marginal) with varying maximum
depth parameters with the average bias of IPW
(dotted), on the twins training set (N = 5, 992).

Interpretable positivity violations filtering311

As previously discussed, BICauseTree provides312

a built-in method for identifying positivity vi-313

olations in the covariate space directly. After314

positivity filtering, effect was computed on an315

average of 99.5% (σ = 0.006) of the population316

on the twins dataset, and an average of 85.9%317

(σ = 0.093) of the ACIC dataset.318

Figure A4 in the Appendix shows the tree parti-319

tion for the twins dataset. One leaf node was de-320

tected as having positivity violations (N = 106).321

The twins example illustrates the real-world im-322

pact of having a covariate-based definition of the323

non-violating subpopulation. Here, we are able324

to claim that our estimate of the effect of being325

born heavier might not be valid for newborns326

that fit the criteria for this specific violating node.327

This capability of BICauseTree is highly valu-328

able in any safety-sensitive setting. Consider a329

scenario where the “at-risk” twin benefits from330

a follow-up visit after birth, and that the true effect of the intervention is higher in the positivity331

violating subpopulation. Extrapolating the estimated effect of the exposure to the entire cohort may332

be dangerous to the infants in this subgroup. It is thus essential for practitioners to know which333

population the inferred effect applies to, which would not have been possible using alternative334

non-interpretable methods for identifying positivity violations e.g. IPW with weight trimming, as they335

provide an opaque exclusion criterion. Additionally, note that the positivity violation identification336

remains transparent regardless of the chosen propensity or outcome model at the leaves.337

Propensity score estimation Alternative use-cases for BICauseTree include using the partition as a338

propensity model. Given the importance of calibrated propensity scores (31), Figure 5 compares the339

calibration of the propensity score estimation of BICauseTree with the one from logistic regression340

(IPW) on the testing set of the twins dataset. As expected, logsitic regression, which has better data341

efficiency, has better, less-noisy calibration. However, BICauseTree still shows satisfying calibration342

on average. Section A.6 in the Appendix shows the calibration plots for the estimation of potential343

outcomes on the twins dataset. Section A.7 shows calibration plots for the ACIC dataset.344
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Figure 5: Calibration of the propensity score esti-
mation for the twins dataset

Tree consistency To evaluate the consistency345

of our clustering across subsamples, we train346

our tree on 70% of the dataset and compute the347

adjusted Rand index (32) (see further details in348

section A.2). We chose not to train on 50% of349

the data here as most of the inconsistency would350

then be due to the variance between subsamples.351

For the twins dataset, the Rand index across352

50 subsamples of sample sizes N = 8, 388,353

is equal to 0.633 (σ = 0.208). For the ACIC354

dataset, the Rand index across 50 subsamples355

of sample sizes N = 3, 361, is equal to 0.314356

(σ = 0.210) which shows that our tree is not357

consistent across subsamples if sample size is358

not substantial. However, we exemplify consistent identification of the positivity population, with359

the variance of the percentage of positive samples equal to σ = 0.006 and σ = 0.093 (see paragraph360

4.3) in the twins and ACIC dataset respectively. Ultimately, throughout our experiments, we noticed361

how consistency starts to decrease if the maximum depth hyperparameter increases past a certain362

threshold. As a heuristic, we would recommend users to test tree consistency across subsamples363

when tuning this hyperparameter.364

8



5 Discussion365

Strengths and limitations of our approach Following our discussion on the bias-interpretability366

tradeoff, we acknowledge that in complex data settings where finding sub-populations that enclose367

natural experiments is difficult, the resulting BICauseTree partition may have remaining bias in368

some leaf nodes, and ultimately render some estimation bias. This bias is, however, traded-off with369

enhanced interpretability, as previously discussed. Nonetheless, as exemplified in this work, the370

performances of BICauseTree remains comparable, with estimation bias being only slightly larger371

than common models such as IPW. We further emphasize the fact that its strength resides in the372

combination of (i) the performance of the estimator with (ii) the interpretability of the balancing and373

positivity identification procedures, and (iii) the ability to handle high-dimensional datasets.374

Another advantage of BICauseTree is its ability to identify complex interaction features that are375

significantly correlated to treatment allocation. Indeed, in leaf nodes that come directly from376

a significant split, the root-to-leaf path is an interaction significantly associated with treatment377

allocation after multiple hypothesis test correction. Common alternatives to identify such interactions378

include exhaustive enumeration of all pairs of feature interactions, or complex feature engineering379

(33). However these approaches either lack transparency or become problematic in high-dimensional380

datasets. Furthermore, the tree nature of our approach is a major strength. BICauseTree is a non-381

parametric estimator that inherit the desirable empirical properties of regression forests—such as382

stability, ease of use, and flexible adaptation to different functional forms. Finally, the computational383

expense induced from fitting a BICauseTree is manageable: it is roughly comparable to IPW and384

CausalForest, and substantially lower than for Matching (see detailed compute times in Section A.9)385

Our work has the following limitations: (i) due to its tree structure, BICauseTree has lower data386

efficiency than most other estimators, including IPW. However the data efficiency of BICauseTree387

was superior to that of CT in our experiments. (ii) our tree design has some lunging dependence388

on sample size. While our estimation of ASMD is independent of sample size, the variance of our389

estimator, ÂSMD, is dependent on n. Furthermore, having chosen the splitting covariate, the choice390

of a split point is biased towards equal split subgroups. (iii) our individual splitting decisions do not391

consider interactions and instead only consider the marginal association of covariates with treatment.392

Applicability of BICauseTree We claim that BICauseTree is highly relevant when causality is393

examined in a context with substantial safety and ethical concerns. We consider the transparency394

of our built-in approach to positivity violation identification particularly relevant to fields such as395

epidemiology, econometrics, medicine, and policy-making. The social impact of our work, and its396

relevance to the upcoming policies for Artificial Intelligence is further discussed in section A.10.397

In addition, we claim that our ability to identify violating regions of the covariate space is key for398

experimental design. Fitting a BICauseTree to an existing dataset will advise practitioners on which399

individuals we currently lack data to infer an effect on, which will in turn inform them on the specific400

subpopulations they need to recruit from, in a potential next study.401

Conclusion and future work Here, we introduced a model able to detect positivity violations402

directly in the covariate space, perform effect estimation comparable to existing methods, while403

allowing for interpretability. We demonstrated our model’s performance on both synthetic and404

realistic data, and showcased its usefulness in the principle challenges of causal inference.405

Future work may include extension to a non-binary tree, where we allow splitting to more than406

two nodes. This could be done for instance by fitting a piece-wise constant function that predicts407

treatment and finds the potentially multiple thresholds for optimized hetereogenous subgroups. In408

addition, to refine our pruning procedure, we can account for the intrisic ordering of the p-values409

of the splits using sequential multiple hypothesis testing (34; 35; 36). Furthermore, following the410

work of (8) on the “honest effect” in Causal Forests, we may use a subset of the data for fitting the411

partition of the tree and another distinct subset for fitting the outcome or propensity models in each412

leaf node. This procedure however requires having many samples. Another alternative to current413

model fitting, which is done independently in each leaf, is to partially pool estimates across the414

clusters and fit a multilevel outcome model with varying intercepts or varying slopes for treatment415

coefficients (37). In terms of estimation, one may investigate the performance of bagging multiple416

BICauseTrees into a BICauseForest, similarly to Causal Forest. Aggregating trees would however417

defeat the interpretability purpose. Finally, similarly to positivity-violating nodes, future work may418

explore the possibility of excluding leaf nodes with high maximum ASMD, under the premises that419

these subgroups do not enclose natural experiments.420
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