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ABSTRACT

Recently, Large Vision-Language Models (LVLMs) have made significant progress,
seamlessly integrating the visual comprehension capabilities of vision encoders
with the language generation strengths of language models (LMs). Despite the suc-
cess of LVLMs, the training or aligning data of LVLMs suffers from the Long-Tail
(LT) problems, which is a special type of data with highly imbalanced distributions,
and a large number of tail (minority) instances. A significant amount of research
has focused on mitigating LT through data adjustment or network structure reorga-
nization, however, efforts targeting generative LVLMs remain limited. In this paper,
we present an in-depth analysis of the LT issues persisting in LVLMs’ training data
and build a distribution of four perspectives, addressing both visual and language
aspects. To mitigate the aforementioned challenges, we propose an Adaptive Data
Refinement Framework (ADR), which consists of two stages: Data Rebalancing
(DR) and Data Synthesis (DS). In the DR stage, we adaptively rebalance the redun-
dant data based on entity distributions, while in the DS stage, we leverage the latent
representations of scarce images to adaptively supplement the underrepresented
portions. To validate the effectiveness of our approach, we conduct experiments
on a series of comprehensive benchmarks, including the GPT-assisted evaluations
to assess the overall performance variations introduced by our method. Through
comprehensive evaluations, ADR effectively mitigates the long-tail problem in
the training data, improving the average performance of LLaVA 1.5 relatively by
2.62% across 10 benchmarks, without increasing the training data volume. Our
code and data will be publicly released.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have become pivotal at the intersection of computer vision
and natural language processing, enabling breakthroughs in bridging the gap between language and
vision. These models facilitate a wide range of applications by generating contextually relevant
textual descriptions from visual inputs. Recent advancements in LVLMs (Bai et al., 2023; Chen
et al., 2023a; Dai et al., 2024; Zhang et al., 2023a; Dong et al., 2024; Chen et al., 2023c; Liu et al.,
2023a; 2024a; Zhu et al., 2023; Ye et al., 2023b; Abdin et al., 2024) have significantly advanced
general-purpose foundation models, elevating them to unprecedented levels. This flourishing progress
within the research community marks a significant step towards Artificial General Intelligence (AGI).

However, the training data of LVLMs are suffering from the problem of Long-Tail (LT) (Parashar
et al., 2024). The “Long Tail” term in computer vision refers to the fact that the training datasets
nowadays are often of large scale and present highly imbalanced distributions, and they have a large
number of tail (minority) classes. Although LT is common in real-world distribution and cannot be
seen as a problem, recent research (Zhang et al., 2024; 2023b; Fu et al., 2022; Yang et al., 2022) have
found that balancing the LT data could bring positive effects. Several works (Shao et al., 2023; Wang
et al., 2022; Zhu et al., 2024; Liu et al., 2024b; Lee et al., 2024) have been made to mitigate LT by
either balancing the redundant data or re-designing the network structure.

Despite the efforts, these approaches are not yet fully satisfying in terms of eliminating the LT
problem within the training data of LVLMs. Some existing methods focus on traditional models
(e.g., CLIP (Radford et al., 2021)) or tasks (e.g., image classification), while others prioritize data
efficiency, aiming to achieve comparable performance with fewer data. However, none of these
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Figure 1: Performance on comprehensive benchmarks of LLaVA 1.5 before and after addressing
the long-tail problem. Our method surpasses the baseline over 16/16 benchmarks and improves the
performance of tail 30% concepts.

approaches have significantly enhanced the overall performance of generative LVLMs by addressing
LT or optimizing the training data.

To address the above issues, we delve into the distribution of the training data, analyzing it from four
perspectives based on both language and visual features, and introduce An Adaptive Data Refinement
Framework (ADR), a novel data calibration strategy designed to effectively counter LT and can be
easily integrated into any open-source LVLMs’ training data such as LLaVA (Liu et al., 2023a),
ShareGPT-4V (Chen et al., 2023b) ALLaVA (Chen et al., 2024b) or Mini-GPT4V (Zhu et al., 2023).
ADR addresses the long-tail (LT) problem by both filtering redundant data and supplementing scarce
data through two key stages: Data Rebalancing Stage (DR) and Data Synthesis Stage (DS). The DR
stage rebalances the overrepresented head portion of the data by filtering out low-quality or redundant
instances based on entity distributions, thereby mitigating overfitting to redundant head data. In
contrast, the DS stage leverages the latent representations of scarce images to adaptively synthesize
the underrepresented tail data, significantly improving the model’s performance on tail-end concepts.

We design comprehensive experiments to validate the effectiveness of ADR in mitigating the LT issue
using diverse benchmarks, hallucination metrics, and evaluations with GPT-4. The results demonstrate
that ADR significantly improves performance over baseline data and methods, highlighting its strong
generalization capabilities. Across all 10 benchmarks, ADR consistently achieves the best results,
improving the average performance of LLaVA 1.5 relatively by 2.62%, without increasing the training
data volume or introducing additional training. In a nutshell, our contributions are threefold:

• We conduct an in-depth analysis of the long-tail problem in the training data of LVLMs from four
key aspects and analyze why mitigating this issue can lead to positive outcomes.

• Our ADR alleviates the LVLM’s LT issue and significantly enhances the overall performance of
LVLMs without increasing the data scale or introducing any additional training. ADR is also
model-agnostic and data-agnostic, which can be easily transferred to any open-source data.

• Comprehensive evaluation including GPT assessments proves the superior performance gain
brought by ADR, which serves as a powerful and universal multimodal data modulator.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Recently, Large Vision-Language Models (LVLMs) have attracted significant attention. Besides
the powerful business models such as GPT-4V, GPT-4o, Gemini, and Claude (OpenAI, 2023; 2024;
Team et al., 2023; Anthropic, 2024), many open-source LVLMs exist. Although LVLMs with an
integrated overall structure (Wu et al., 2023; Zhan et al., 2024; Team, 2024) have been emerging and
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becoming a new trend gradually, traditional aligning-based LVLMs (Liu et al., 2023a; Bai et al., 2023;
Zhu et al., 2023; Dai et al., 2024) still make up the majority. With the aid of strong large language
models such as LLaMA (Touvron et al., 2023) or Vicuna (Chiang et al., 2023), and a powerful vision
encoder such as CLIP (Radford et al., 2021), they managed to align visual comprehension with
remarkable language generation capabilities, formulating powerful vision understanding models.
However, all of the aforementioned LVLMs still face significant LT issues regardless of their structure
or training phases. Therefore, this paper focuses on addressing the LT problems to facilitate the
practical application of LVLMs.

2.2 DATA DEVELOPMENT OF LVLMS

The instruction-tuning data for VLMs typically includes carefully crafted instructions designed to
enhance the general instruction-following capabilities or improve downstream task performance of
LVLMs. These instructions are often generated by large language models (LLMs) like GPT-4 (Liu
et al., 2024a) or LVLMs such as GPT-4V (Chen et al., 2024b; Yan et al., 2024; Tang et al., 2024).
Notably, ShareGPT4V (Chen et al., 2023b) was initially developed from 100K high-quality captions
collected from GPT-4V, which were later expanded to 1.2M using a captioning model. Additionally,
various data augmentation techniques are employed during LVLM development, such as random
cropping and flipping for vision encoders (Ye et al., 2024) and projectors (Li et al., 2023c; Ye et al.,
2023a), as well as word- and sentence-level augmentation for instruction tuning (Chen et al., 2024a).
However, these augmentation methods often overlook the inherent distribution of the training data,
leading to an inability to balance the data distribution effectively.

In addition to data acquisition and augmentation, there is also significant research on data filtering.
Several papers have addressed the data diet problem for instruction-tuning in Vision-Language
Models (VLMs) (Wei et al., 2023; Liu et al., 2024b; Chen et al., 2024d; Lee et al., 2024). For instance,
Paul et al. (2021) introduces two popular importance scores for effective data pruning. Self-Filter
(Chen et al., 2024d) adapts gradient as an importance score to train a scoring network, which then
filters out important instances. TIVE (Liu et al., 2024b) leverages gradient-based importance scores
to design a data filtering pipeline, achieving comparable performance to the original LVLM version
while using less data. COINCIDE (Lee et al., 2024) examines the distributional differences between
training sets and benchmark data, using a smaller model as a reference to select visual instruction
tuning data for more efficient fine-tuning of the target LVLM. However, while existing data filtering
and data balancing methods have shown potential in achieving performance on par with the baseline
and improving data efficiency, the overall improvements remain modest.

2.3 LONG TAIL ANALYSIS OF VLMS

Quantities of work have been done to analyze the long tail problem of traditional VLMs. Some
recent studies (Shao et al., 2023; Wang et al., 2022; Zhu et al., 2024) seek to mitigate imbalanced
predictions of VLMs by training on additional data from downstream tasks. MetaCLIP (Xu et al.,
2023) analyzes the long tail problem of CLIP pre-training data and uses sub-string matching and
inverted indexing to balance the pre-training dataset. REAL (Parashar et al., 2024) analyzes the long
tail problem of popular image recognition datasets and designs a tail concept replacement method
during the inference stage, significantly improving the recognition accuracy of VLMs. However, the
LT problem within generative LVLMs is still under-explored.

3 ANALYSIS

3.1 PRELIMINARY

In the process of LVLM training, the training data typically consists of text-image pairs. However,
most of the current visual instruction tuning methods (Liu et al., 2023a; 2024a; Chen et al., 2023b)
contain more than one stage, and the format of the training data varies among different stages. Popular
methods often consist of 2 stages, i.e. pre-training (alignment) and instruction-tuning (fine-tuning).
In the instruction-tuning process of LVLMs, the training data is typically represented as D = (I, C),
where I denotes the image input and C represents the corresponding conversation. This paper focuses
primarily on the instruction-tuning process of LVLMs, and thus, the data instances referenced
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Figure 2: An overview of our ADR approach. In the Analyzing Stage, we first extract entities—such
as tokens, objects, co-occurrences, and interrogations—from the training instances, then construct
a quantity distribution using a reverse-indexed entity-to-instance mapping. In the DR Stage, we
adaptively rebalance the redundant data based on the entity distribution identified in the Analyzing
stage. Finally, in the DS Stage, we utilize DDPM and the latent representations of scarce image
instances to synthesize the underrepresented data.

throughout correspond to (I, C). Each data instance contains entities that capture fine-grained
semantic information. We extract these entities from different perspectives for further analysis. The
complete pipeline of our analysis and approach is illustrated in Figure 2.

3.2 ENTITY DISTRIBUTION CONSTRUCTION

To conduct a detailed analysis of the LT problems within LVLMs, we refine our analysis perspective
into four aspects, namely Token, Object, Co-occurrence, and Interrogation. Specifically, we conduct
the whole analysis procedure by constructing the frequency distribution of entities Qe from these 4
different perspectives among the whole training set.

Token entities are a set of meaningful nouns that are extracted from the text within data instances.
et = {n|n is a meaningful noun and appears in C for (I, C) in D}. Technically, we employ a POS
parser, stanza (Qi et al., 2020) to extract all nouns from each data instance within the training
set, identifying them as token entities. Subsequently, we compute the frequency distribution of all
extracted token entities across the entire training set.

Object entities represent the objects that truly exist in the image within data instances. eo =
{o|o exists in I for (I, C) in D}. We initially employ language models (LM), i.e., Llama3 (Touvron
et al., 2023) to extract all potential objects from the textual records of each data instance within
the training set. The full prompts used to extract object information are detailed in the Appendix
C.1. Subsequently, we input the image along with all token entities and LM-extracted objects into a
visual grounding model, i.e., GroundingDINO (Liu et al., 2023b) to identify visual objects for each
data instance, termed as object entities. Finally, we compute the frequency distribution of all object
entities across the entire training set.

Co-occurrence entities represent two objects that appear in the same image of one data instance. ec =
{(o1, o2)|o1, o2 both exist in I for (I, C) in D}. We utilize the extracted object entities to construct a
co-occurrence graph G(V,E). The vertex set V comprises {o|o represents one object entity}, and the
edge set E = {(o1, o2, n)|o1 and o2 appear together in the same image for n times}. Subsequently,
we employ the edge set E as co-occurrence entities to compile the frequency distribution of all
co-occurrence entities across the entire training set.

Interrogation entities are the questioning methods used in the text within data instances. ew = {q|q
is the questioning method in C for (I, C) in D}. We employ language models (LM) to extract all
methods of posing questions from the data instances, defining them as interrogation entities. We
then calculate the frequency distribution of all interrogation entities across the entire training set. We
extract all four kinds of entities from LLaVA (Liu et al., 2023a)’s instruction-tuning dataset and the
Top-20 frequently shown entities can be found in the Appendix B.1.
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Figure 3: Long-tail distribution in instruction-tuning and benchmark datasets: (a) Token-level word
distribution in MME (Fu et al., 2023). (b) Token-level word distribution in InstructMix665K (Liu
et al., 2024a). (c) Object-level word distribution in MME Fu et al. (2023). (d) Object-level word
distribution in InstructMix665K (Liu et al., 2024a).

3.3 REVERSE INDEXING
Table 1: Relative data volume of tail data after
reverse indexing. “Tok,” “Obj,” “Co,” and “Int”
represent Token, Object, Co-occurrence, and Inter-
rogation, respectively. %E denotes the percentage
of tail entities, while %DI indicates the percentage
of tail data instances.

Data Level thres % E % DI

LLaVA

Tok 120 98.7 10.0
Obj 304 98.0 10.0
Co 24 92.7 25.0
Int 4895 99.6 10.0

Avg. - 97.25 13.75

To observe the severity of long-tail issues within
the training data and build a connection between
entities and data instances, we build a reverse
indexing dictionary mapping from the entities in
four different perspectives backward to the data
instances. Subsequently, we use the number of
data instances corresponding to each entity as
frequency to build the reversed distribution Qr

of four perspectives.

Taking LLaVA 1.5 (Liu et al., 2023a)’s instruc-
tion tuning data as an example, we count the
number of data instance matches for each entity
and build a reversed distribution based on the
mapping data. The tail data’s thresholds and relative data volume are shown in Table 1. Surprisingly,
among 4 perspectives, an average of 97.25% entries account for only 13.75% data instances on
average, which can partially illustrate the scarcity of tail data and severity of the long-tail problem
existing in LVLMs’ training data.

3.4 WHY MITIGATING THE LT PROBLEM CAN BOOST THE PERFORMANCE OF LVLMS?

• Unbalanced training data. We begin by illustrating the long-tail (LT) problem in training data
through a detailed analysis. Using LLaVA 1.5’s instruction-tuning data as an example (Liu et al.,
2023a), the distribution curve shown in Figure 3 reveals a pronounced imbalance in the distribution
of entities. The head (high-frequency) entities appear significantly more often than those in the
tail (low-frequency). Although real-world data distributions are typically long-tailed, balanced
data is more effective in facilitating the learning of tail concepts (Parashar et al., 2024). The
unbalanced entity distribution in training data limits models’ ability to adequately learn these tail
concepts. Furthermore, several studies (Liu et al., 2024b; 2023a) have shown that current LVLM
instruction-tuning datasets contain substantial redundancy, indicating that reducing part of the
training data has minimal impact on performance and helps mitigate overfitting. Our experimental
results further support this finding.

• Tail data accounts for more failed cases. Moreover, we found that tail data accounts for more
failed cases, indicating that it is also necessary to supplement the scarce tail data. We evaluate the
model’s performance on two popular benchmarks, POPE and MME, and analyze the failed cases,
as incorrect responses generated by LVLMs often reveal the model’s weaknesses. Consequently,
we rank the failed cases based on the entity distribution of LLaVA’s instruction-tuning data and
extract the bottom (tail) 50% of these cases. Next, we measure the number of entities and data
instances corresponding to these errors. The results, presented in Table 2, reveal that the tail
50% of failed cases cover over 99% of entities and account for an average of 68.65% of training
instances. Additionally, we plot a cumulative error curve with entity distribution on the horizontal
axis, ordered from most to least frequent. The cumulative curve is shown in Figure 4. Further, we
analyze the distribution locations of incorrect and correct answers generated by LLaVA 1.5 (Liu
et al., 2023a) in POPE (Li et al., 2023d) and MME (Fu et al., 2023). The results are shown in the
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Figure 4: Error accumulate curve of popular benchmarks based on the training data distribution. (a)
Token-level word distribution in MME (Fu et al., 2023) and POPE (Li et al., 2023d). (b) Object-level
word distribution in MME and POPE. (c) Co-occurrence-level word distribution in MME and POPE.

Appendix B.3. Interestingly, despite the influence of the averaging effect, the average locations of
wrong answers tend to be positioned further towards the tail of the distribution compared to correct
answers, indicating the promoting space of tail instances.

• Distribution varies between train and test data. Besides, the distribution of train and test data is
also different. In statistics-based deep learning, it is assumed that the training data maintains the
same distribution as the evaluation data. Based on the intuition that a larger bias between distribu-
tions can result in performance loss, we examine the differences between the entity distributions
of the training and evaluation data. We select LLaVA 1.5’s training data (Liu et al., 2023a), as
well as the evaluation data from POPE (Li et al., 2023d) and MME (Fu et al., 2023), and plot the
distribution curves for both the training and evaluation data on the same scale in a single graph.
The resulting co-distribution is presented in Figure 3. Notably, a clear difference between the
distributions of the evaluation and training data can be observed.

4 APPROACH

4.1 DATA REBALANCING STAGE

Table 2: Relative training data volume for
the tail 50% of failed cases. “Tok,” “Obj,”
and “Co” refer to Token, Object, and Co-
occurrence, respectively. %E denotes the
percentage of tail entities, while %DI rep-
resents the percentage of tail data instances.

Data Level thres % E % DI

MME
Tok 156 99.98 75.23
Obj 153 99.83 51.33
Co 7448 99.02 69.62

POPE
Tok 120 99.98 80.50
Obj 90 99.71 59.76
Co 3496 99.54 75.45

Avg. - - 99.68 68.65

As shown in Figure 3. Entities among the four per-
spectives suffer from LT problems, where the head
part of the distribution turns out to be exponential. To
mitigate the LT problem, our ADR starts by alleviat-
ing the redundancy problem existing in training data.
Concretely, we do this by flattening the exponential
distribution and decimating the duplicated entities.

4.1.1 PROBABILITY
DICTIONARY CONSTRUCTION

We conduct the DR stage by initially settling down
the resampling ratios of redundant data instances.
First, we use the entity distribution construction
method mentioned in Section 3.2 to construct the
distribution dictionary Qe for each entity within all
selected perspectives C. Subsequently, we construct
the reverse indexing dictionary and use the data in-
stance numbers mapped by entities Ne as frequency to build a reversed distribution Qr, which is
used to distinguish between head and tail data and calculate the sampling ratio ps. A threshold τ
distinguishes the head and tail data. τ is an entity’s position in Qr while entities before τ count for a
small ratio of all entities but are mapped to massive data instances. We set τ as indicated in Table
1, consistent with the values used in the analysis stage. For an entity e of perspective x, we set the
probability of sampling by Pex = τx/Nex .

After constructing the probability dictionary of each entity e, we start from Qe to sample the selected
data. Since each data instance contains several entities in Qe, we sample each entity among one
instance. So we introduce a new hyperparameter np, which means the data instance with the total
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Algorithm 1 Pseudo Code for Data Resampling

1 D_bal=[] # D_bal is the rebalanced data, a.k.a. D*
2 for pers in C: # build prob dict
3 entity_dist = entity_distribution_construction(D,pers)
4 prob_dict[pers] = {ent:tau[pers]/entry_dist[ent] for ent in

entry_dict.keys()} # tau is threshold for different entities
5 for instance in D: # do distribution balancing
6 pass_cnt = 0
7 for pers in C: # C is selected perspectives
8 for entity in instance[’entities’][pers]:
9 if random.random() < prob_dict[pers][entity]:

10 pass_cnt += 1
11 break
12 if pass_cnt > n_p and random.random() < alpha:
13 D_bal.append(instance) # n_p, alpha: hyperparameters

number of sampled entities over np is selected. We conduct this procedure over the full dataset, and
the final selected core set is denoted as D∗. The detailed method is demonstrated in Algorithm 1.

4.2 DATA SYNTHESIS STAGE

Despite the presence of redundancy in the head entities, the issue of scarcity in the tail entities still
persists. To alleviate the issue of scarcity, we design the data synthesis methods from the perspective
of vision and language. Figure 2 displays the full data adjusting framework.

4.2.1 LANGUAGE DATA SYNTHESIS

We introduce a method for synthesizing the tail data at the language level. The core idea is to replace
head concepts with tail ones. First, we use WordNet (Fellbaum, 1998) to extract all synonyms of
token entities and construct a mapping system. For each head instance, we extract its linguistic
entities, search for their synonyms in the mapper, and filter out the head ones. Next, we feed the
original head conversation into a language model (LM) and prompt the LM to rewrite the conversation
using the selected tail synonyms. Full prompts to instruct LMs can be found in Appendix C.2. It’s
important to note that certain stop words, such as “image” should not be replaced.

4.2.2 DIFFUSION BASED VISUAL DATA SYNTHESIS

In addition to the language synthesis method, we propose a more comprehensive approach that allows
tail data synthesis from multiple perspectives. The scarcity of objects and co-occurring objects can
be addressed by editing tail images into different styles without altering the key entities. Meanwhile,
a rewriting process can resolve the scarcity of tokens and interrogation methods. In our analysis of
the long-tail problem, we determine whether a data instance is selected using Pe and np.

However, in certain cases, the probability Pe may exceed 1. The absolute value of Pe also provides
some insight into the scarcity of a data instance. This value can be used to decide how many instances
to synthesize. Notably, 76% of the synthetic data has a Pe value of less than 5, so we utilize this
method to determine the synthetic quantity for each data instance. The synthetic quantity for each
data instance d = (I, C) can be calculated as:

P ∗
d = max

e,x
Pex ;Nd,aug =


0 if P ∗

d < 1,⌊√
P ∗
d

⌋
if 1 ≤ P ∗

d < 5,

2 if 5 ≤ P ∗
d ,

(1)

After setting down the synthesis quantity of each tail instance, we utilize diffusion models (Croitoru
et al., 2023; Ho et al., 2020; Rombach et al., 2022) to do visual generation for tail instances.
Given a tail instance dt = (It, Ct), our objective is to generate an image similar to I and produce
corresponding instruction data, specifically in the form of conversations. To achieve this, we utilize
Stable-Diffusion-V2 as our DDPM model, which can generate a new image G(g(t), n) based on
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Table 3: Comparison with models trained with different methods on different benchmarks. IT
represents the number of training instances used during instruction tuning. +DR denotes the results
after the data rebalancing stage, while +DS represents the results following the data synthesis stage.
Benchmark names are abbreviated due to space limits. *: ShareGPT4V’s instruction tuning stage
refers to the 2nd stage (3 in total). The best results are indicated in bold.

Method IT* VQAv2 SQAI MMMU MMEP MMS VQAT GQA QB2 VQAOK MMB

LLaVA 1.5 665.0K 76.6 69.3 35.3 1510.7 33.5 46.0 61.9 47.3 53.2 64.3
+DR 581.0K 76.9 69.5 34.8 1470.6 33.8 46.0 62.8 46.8 55.3 65.5
+DR +DS 665.0K 76.9 70.2 36.3 1511.3 35.5 46.5 62.9 49.6 55.1 65.0

ShareGPT4V 1246.0K 78.6 68.9 35.1 1560.4 34.7 50.2 63.3 44.2 54.0 68.0
+DR 1168.0K 78.7 68.6 35.7 1542.3 35.0 50.9 63.9 44.9 56.7 67.9
+DR +DS 1246.0K 78.7 69.4 36.1 1564.9 35.5 50.9 63.7 45.7 57.9 68.8

natural language descriptions t, where n ∼ N(0, 1) represents the sampling noise. However, since
it’s required to generate another style for It without interference from text inputs in DDPM models,
similarly to Feng et al. (2023), we adopt CLIP embeddings et = fCLIP (It) to replace g(t). Thus,
the synthetic image can be generated as:

It,syn = G(fCLIP (It), n) (2)

After generating the synthesis image It,syn, the next step is to obtain a descriptive conversation
paired with the image to serve as the instruction tuning data instance. For this purpose, we utilize
an off-the-shelf vision captioner to generate captions Capt,syn for It,syn. Subsequently, we extend
the captions into conversations, as required by visual instruction tuning. During this stage, we use a
language model (LM) to expand the captions into full conversations, with the prompts for expansion
provided in Appendix C.2. This process enables us to effectively synthesize scarce data instances,
helping to alleviate the LT problem from all four perspectives.

5 EXPERIMENTS

5.1 BASELINE MODELS

In this paper, we select LLaVA1.5 and ShareGPT4V as our baseline method. We conduct our LT
mitigating method (ADR) on these two models to verify the effectiveness.

LLaVA 1.5 (Liu et al., 2024a; 2023a) represents a novel end-to-end trained large multimodal model
that combines a vision encoder and Vicuna for general-purpose visual and language understanding,
achieving impressive chat capabilities.

ShareGPT4V (Chen et al., 2023b) uses the adjusted training data obtained by GPT-4 and post-
trained ShareCapioner and improves the performance of existing VLMs. Though they focus on data
adjustment either, the long-tail problem remains, that is, our method is orthogonal to ShareGPT4V.

5.2 BENCHMARKS

To evaluate changes in the model’s overall capabilities and performance, we utilized a comprehensive
set of widely recognized benchmarks, spanning a broad range of academic Visual Question-answering
(VQA) tasks and recent benchmarks designed to test the extensive abilities of LVLMs. The VQA
series benchmarks (Goyal et al., 2017; Marino et al., 2019; Singh et al., 2019) represent traditional,
comprehensive VQA tasks. GQA (Hudson & Manning, 2019) evaluates multiple reasoning skills and
spatial understanding, which presents a greater challenge. The MME Benchmark (Fu et al., 2023)
assesses the comprehensive capabilities of LVLMs through a series of carefully crafted questions
spanning 14 distinct sub-tasks. MMBench and MMBench-CN (Liu et al., 2023c) are designed to
assess the model’s vision-based reasoning and perceptual abilities in both English and Chinese.
MMSTAR (Chen et al., 2024c) and SEED (Li et al., 2023b) evaluate the model’s comprehensive
ability from different aspects. ScienceQA (Lu et al., 2022) evaluates LVLMs on multimodal, multiple-
choice science questions, while MMMU (Yue et al., 2023) tests LVLMs across multiple disciplines,
requiring college-level subject knowledge and sophisticated reasoning. Finally, Q-Bench (Wu et al.,
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Table 5: Performance comparison across existing data balancing methods. The best results are
indicated in bold, and the second-best results are underlined.

Method IT VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB MMBCN MMS QB2

LLaVA 1.5 665.0K 76.6 62.0 50.0 66.8 46.0 85.9 1510.7 64.3 55.3 33.5 47.3
Random 581.0K 76.9 62.3 55.6 68.8 46.4 87.2 1472.4 65.5 55.7 34.9 47.3
perplexity 581.0K 76.7 62.3 55.3 68.8 45.8 86.8 1484.4 63.7 54.7 33.7 47.1
COINCIDE 133K 76.5 59.8 46.8 69.2 - 86.1 1495.6 63.1 54.5 - -

Our-Balance 581.0K 76.9 62.8 53.8 69.5 46.0 87.2 1470.6 65.5 55.7 33.8 46.8
Ours 665.0K 76.9 62.9 56.8 70.2 46.5 86.9 1511.3 65.0 56.0 35.5 49.6

2024) focuses on assessing low-level perception. All benchmarks we used and their abbreviations
can be found in Appendix A.1.

5.3 RESULTS FOR COMPREHENSIVE EVALUATION

Table 4: Tail concept prediction accuracy (%)
on ScienceQA-IMG (Lu et al., 2022) dataset.
Tail@k% (simplified as @k), head@k% (simpli-
fied as H@k), and overall accuracy are reported.
+DR denotes the results after data rebalancing,
while +DS represents the results following the data
synthesis stage. Bold numbers represent the best
results across all methods.

Methods FT
ScienceQA

@5 @10 @15 @20 H@80 Overall

LLaVA 1.5 665.0K 67.9 70.0 67.9 68.5 74.6 69.3
+DR 581.0K 69.2 69.7 67.8 68.5 76.2 69.5
+DR +DS 665.0K 70.1 70.5 68.3 69.0 78.6 70.2

The results on the 10 selected benchmarks are
shown in Table 3. By balancing the training
data while retaining 87% of its original scale,
our method outperforms the baseline on most
benchmarks. After the DS stage, with the same
data scale as LLaVA 1.5, our method achieves
an average relative improvement of 2.26%. No-
tably, it outperforms the baseline by an average
of 5.42% relatively on challenging benchmarks
like MMStar and Qbench-2.

Also, we displayed the comparison between
our method and popular data-balancing meth-
ods such as random, perplexity (Marion et al.,
2023), and COINCIDE (Lee et al., 2024) in ta-
ble 5. However, COINCIDE hasn’t made their code yet, so we obtained the result from their papers.
Our method consistently outperforms the baselines across the majority of benchmarks, which cover
a wide range of comprehensive tasks. Additionally, our approach focuses on mitigating LT issues
and is orthogonal to most existing data balancing and augmentation methods. This means it can be
applied alongside those techniques to achieve even better performance across various benchmarks.

5.4 PERFORMANCE ON TAIL INSTANCES

In addition to the main results on comprehensive benchmarks, we assess the model’s performance
on tail concepts to validate the effectiveness of improving tail concept performance. We selected
ScienceQA (Lu et al., 2022) and VQAV2 (Goyal et al., 2017) to evaluate performance on tail data.
First, we applied the same method described in Section 3.2 to extract entities from the selected
benchmark data and build their reverse indexed distribution. Subsequently, for each data instance,
we calculated the average distribution position across each perspective and determined whether the
data instance falls into the tail category by 1(average(Li) > τR). Here, 1 represents an indicator
function. We set different thresholds to make sure to get different ratios of tail data. We then
extract the tail data instances of different rations and evaluate the performance accordingly. The
complete results for tail performance are presented in Table 4 and Figure 1(b). As shown in the
table, our method effectively improves tail performance without compromising the head or overall
performance, demonstrating the efficacy of our approach.

6 ABLATION STUDY

6.1 ABLATION OF DIFFERENT COMBINATIONS OF PERSPECTIVES

To determine the most effective rebalancing and synthesis method, we train the model using data
processed with different combinations of perspectives and subsequently evaluate the target model.
The results are presented in Figure 5 (a). We assess these combinations based on average perfor-
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Figure 5: Ablation study on data rebalancing combinations (a) and synthesis methods (b). T, O, C,
and W refer to Token, Object, Co-occurrence, and Interrogation respectively. The values displayed in
the graph represent average scores across a variety of comprehensive benchmarks. The blue dashed
line indicates the baseline performance of LLaVA 1.5.

mance across different benchmarks, the number of top-ranked results, and performance stability.
While several combinations achieved the highest average performance, the full combination of all
perspectives proved to be the most stable, as it ranked first in both the number of top performances
and stability. Detailed results can be found in the Appendix A.2.

6.2 ABLATION OF SYNTHESIS METHODS

In addition to the perspective combination selection during the Data Rebalancing stage, we present
our ablation study on different synthesis methods. Synthesis is performed on the same rebalanced
data checkpoint across all perspectives to determine which method is the most effective.

We select six synthesis or augmenting methods, divided into language synthesis methods (Sec.4.2.1)
and vision synthesis methods (Sec.4.2.2). The following methods are tested: All: Tail instances
are selected from all four perspectives, with full visual data synthesis (Sec.4.2.2) applied. Image
Only (IO): Tail instances are selected from all four perspectives, applying visual data synthesis
(Sec.4.2.2), but the conversation text remains unchanged. Token Rewrite (TR): Full language data
synthesis (Sec.4.2.1) methods are applied. TW Rewrite (TWR): Tail instances are selected based on
Token and Interrogation perspectives, and the conversations are rewritten using a language model
(LM). PlainAug SimpAdd (PA SA): Tail data are selected from all four perspectives, and simple
resampling is applied. PainAug NewCap (PA NC): Tail data are selected from all four perspectives,
followed by re-captioning, with the new captions incorporated into conversations using the same
method with Sec.4.2.2.

We use these synthesis methods to restore the data to 665K and test which checkpoint yielded the
best performance using the same volume of training data. We assess these methods based on average
performance across different comprehensive benchmarks. The results are displayed in Figure 5(b),
while detailed results can be found in the Appendix A.2.

7 CONCLUSION

In this paper, we analyze the relation between the LT problem existing in LVLM instruction tuning
data from multiple perspectives and make the first attempt to mitigate it. Our analysis reveals that
unbalanced data can result in a performance gap between the head data and the tail data and therefore
harm the model’s performance. Based on them, we develop an Adaptive Data Refinement Framework
(ADR), which first balances the redundant head data from different perspectives and then adjusts
the unbalanced tail data volume with a specific focus on tail distribution. Experimental results
demonstrate that our method improves the tail performance and overall performance without harming
the head part performance, resulting in a more robust LVLM instruction-tuning pipeline.
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A DETAILES OF EVALUATION METHODS

A.1 BENCHMARKS

All benchmarks we used and their abbreviations are introduced as follows.

VQAv2: VQA-V2 (Goyal et al., 2017); VQAT: TextVQA (Singh et al., 2019); VQAOK: OK-
VQA (Marino et al., 2019); REF: Ref-COCO (Kazemzadeh et al., 2014); REF+: Ref-COCO+
(Kazemzadeh et al., 2014); GQA (Hudson & Manning, 2019); SQAI: ScienceQA-IMG (Lu et al.,
2022); FLIK: flickr30k (Young et al., 2014); POPE (Li et al., 2023d); SEED: SEED Bench (Li et al.,
2023b); SEEDv2: SEED Bench v2 (Li et al., 2023a); MMMU (Yue et al., 2023); MMEP (Fu et al.,
2023); MMBCN: MM-Bench Chinese (Liu et al., 2023c); MMB: MM-Bench English (Liu et al.,
2023c); MMS (Chen et al., 2024c); QB2: Q-Bench 2 (Wu et al., 2024).

A.2 SUPPLYMENTARY RESULTS OF ABLATION STUDY

We conducted an ablation study on different balancing combinations and synthesis methods. In
the ablation study of different rebalancing combinations, we conduct the DR stage using different
combinations of four perspectives, i.e., one or more from (Token, Object, Co-occurrence, and
Interrogation) to validate the effectiveness of different perspectives. The detailed results of the
balancing ablation experiment are presented in Table 6. We found that combining all perspectives
yields the best performance in terms of both the number of top results and performance stability.

Additionally, we conducted an ablation study on different synthesis methods. The results of the
augmentation and synthesis experiments are presented in Table 7. It is clear that synthesizing from
ALL perspectives (as outlined in Section 4.2.2) yields the best performance.

B DETAILS OF ANALYZING STAGE

B.1 EXAMPLES OF ENTITIES

Entities are extracted from four perspectives: Token, Object, Co-occurrence, and Interrogations. The
top 20 entities from LLaVA 1.5’s instruction-tuning data are displayed in Figure 6.

B.2 ENTITY DISTRIBUTION CONSTRUCTION

In this work, we construct the entity distribution using both the pre-training and instruction-tuning
data from LLaVA 1.5, specifically LCS558K and Instructmix665K. To further compare the differences
between the training and test data, we also incorporate part of the distribution from POPE and MME
in the same figure. The complete results are shown in Figure 7.

B.3 ANALYSIS OF FAILED CASES

We experiment to observe the distribution location of failed cases. We first extract all entities within
the failed cases and calculate the max, min, and average location of these entities in the pertaining
distribution. Also, we calculate the distribution locations of the correct cases as well to compare. The
results are shown in Table 8. As shown in the table, it is easy to discover that the failed cases are
positioned further behind the correct ones in the distribution.

C PROMPTS

C.1 OBJECT INFORMATION EXTRACTION

In this section, we release all of our prompts for guiding language models (LM) to do specific tasks.
Firstly during the analyzing stage, we utilize the LM to extract object information from the text within
data instances at the very first step during object entity extraction. This part of the prompt we used to
guide LM is illustrated in Figure 8.
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Table 6: Full results of ablation study on different combinations of perspectives. T, O, C, and W refer
to Token, Object, Co-occurrence, and Interrogation respectively. The best results are indicated in
bold, and the second-best results are underlined.

T O C W IT VQAv2 VQAT VQAOK GQA SQA SQAI REF REF+ FLIK POPE SEED Avg.

baseline 665.0K 76.6 46.0 53.2 61.9 70.4 69.3 29.4 28.5 74.9 86.9 60.6 59.8
✓ 488.1K 76.5 46.6 55.3 62.3 70.8 69.2 28.5 28.1 73.8 86.7 60.2 59.8

✓ 197.9K 74.6 44.0 50.4 61.3 69.9 67.9 30.8 29.7 74.1 86.3 59.3 59.0
✓ 242.4K 75.2 43.3 47.3 61.3 70.0 68.5 31.4 29.8 76.2 86.8 59.0 59.0

✓ 176.3K 73.9 43.0 46.3 60.7 69.5 66.7 32.3 31.7 71.9 85.6 57.4 58.1
✓ ✓ 534.2K 76.7 47.1 55.6 62.8 71.4 68.1 30.3 29.1 75.4 86.9 60.9 60.4
✓ ✓ 553.4K 75.7 44.5 52.8 62.0 70.8 68.4 30.4 29.2 75.1 86.4 59.9 59.6
✓ ✓ 521.5K 75.7 44.5 52.8 62.0 70.8 68.4 30.4 29.2 75.1 86.4 59.9 59.6

✓ ✓ 276.9K 75.4 44.6 46.8 61.7 69.0 66.4 30.6 29.4 74.2 87.1 59.3 58.6
✓ ✓ 318.3K 75.7 44.6 50.9 61.8 71.5 69.0 29.9 29.0 74.9 86.8 59.6 59.4

✓ ✓ 349.9K 76.8 46.8 54.4 62.5 71.5 68.8 29.9 29.2 75.7 86.8 61.5 60.4
✓ ✓ ✓ 375.9K 76.2 45.3 54.4 62.8 70.7 67.6 29.7 28.8 74.3 86.8 60.1 59.7

✓ ✓ ✓ 575.5K 76.8 46.7 56.7 62.4 71.2 68.8 30.1 29.1 75.9 87.2 61.2 60.6
✓ ✓ ✓ 559.3K 76.7 46.9 52.5 62.3 71.6 69.2 30.8 30.0 76.6 87.4 61.0 60.5
✓ ✓ ✓ 561.5K 76.8 47.2 50.0 62.3 71.7 69.9 28.8 28.1 75.6 86.6 60.6 59.8
✓ ✓ ✓ ✓ 581.7K 76.9 46.0 55.3 62.8 71.4 69.5 30.2 29.7 76.2 87.2 61.0 60.6

Table 7: Full results of ablation study on different augmentation methods. Methods are introduced in
Sec.6.2. The best results are indicated in bold, and the second-best results are underlined.

Method IT VQAv2 VQAT VQAOK GQA SQA SQAI REF REF+ FLIK POPE SEED Avg.

ALL 665.0K 76.9 46.5 55.1 62.9 72.0 70.2 30.5 29.9 76.2 86.9 61.3 60.8
Image Only 665.0K 76.9 46.5 57.2 62.5 68.8 68.4 30.6 30.2 75.9 87.3 53.8 59.8

Token Rewrite 665.0K 76.9 46.1 49.2 62.4 70.6 68.6 32.3 31.3 0.6 87.4 54.1 52.7
TW Rewrite 665.0K 76.9 46.9 54.9 62.5 68.9 68.7 31.0 30.3 77.5 87.5 53.7 59.9

PlainAug SimpAdd 665.3K 76.8 46.2 56.0 63.0 71.7 69.3 29.3 28.5 74.1 86.6 61.7 60.3
PlainAug NewCap 665.3K 76.8 46.7 54.6 62.1 68.5 69.4 31.1 30.7 77.3 87.7 54.1 59.9
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Figure 6: Top 20 entities of LLaVA 1.5’s instruction-tuning data.
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Figure 7: Long-tail distribution in instruction-tuning and benchmark datasets: (a) Token-level word
distribution in MME (Fu et al., 2023). (b) Token-level word distribution in LCS558K (Liu et al.,
2024a). (c) Token-level word distribution in InstructMix665K (Liu et al., 2024a). (d) Object-level
word distribution in MME Fu et al. (2023). (e) Object-level word distribution in LCS558K (Liu et al.,
2024a). (f) Object-level word distribution in InstructMix665K.(Liu et al., 2024a). (g) Co-occurrence
distribution in InstructMix665K (Liu et al., 2024a). (h) Interrogation distribution in InstructMix665K
(Liu et al., 2024a).

Table 8: Distribution locations of entities in correct and incorrect answers for POPE and MME,
generated by LLaVA 1.5. “Tok,” “Obj,” and “Co” refer to Token, Object, and Co-occurrence,
respectively, while “W” and “C” represent wrong and correct answers, respectively. The gray rows
( ) indicate the relative displacement of incorrect concepts in the distribution compared to correct
concepts.

Methods
MME POPE

Tok-C Tok-W Obj-C Obj-W Co-C Co-W Tok-C Tok-W Obj-C Obj-W Co-C Co-W
Max 9738 10377 2708 3222 247315 257107 2242 2772 1085 1100 130043 141722

+639 +514 +9792 +30 +15 +11679
Min 1 1 60 131 12732 20741 1 1 17 21 926 1033

+0 +71 +8009 +0 +4 +107
Mean 1035 1068 842 1035 71123 79104 313 340 319 336 27457 30989

+33 +193 +7981 +27 +17 +3532
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Instruction:
You are an AI visual assistant, and you are provided with a single image accompanied by a piece of 
conversation describing the same image. Your task is to identify and return the objects present in the image 
based on the conversation. Please follow these guidelines:

1.The output must contain only the base form of the words describing the objects (e.g., return "dog" instead of 
"dogs" or "doggy").
2.The objects should be listed as comma-separated values (e.g., a,b,c,…).
3.Ensure that the answer consists solely of the object list, with no additional words.
4.The objects can be nouns or noun phrases.

Fewshots:
Input 1:
Human: Write a terse but informative summary of the picture.
GPT: A grey watch with an army-style strap.
Expected Answer 1: "watch"
Input 2:
Human: Give a brief description of the image.
GPT: The divine queen in her elaborate masks canvas print featuring the face and hands of a woman with red 
hair.
Expected Answer 2: "divine queen, mask"
Input 3:
Human: Where is the cat positioned in the image?
GPT: The cat is positioned on top of the back of the couch in the living room.
Human: What is the cat doing in the image?
GPT: The cat is coming out from some curtains onto the couch and is sitting or standing on top of it.
Human: What is the color of the curtains near the cat?
GPT: The color of the curtains near the cat is red.
Human: Besides the cat, what else can be seen on the couch?
GPT: There are lots of pillows on the couch besides the cat.
Human: What kind of room does the couch appear to be in?
GPT: The couch appears to be in a living room setting.
Expected Answer 3: "cat, couch, pillow, curtain, living room"

Figure 8: Complete prompts used to guide the language model in extracting object information.
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C.2 CONVERSATION REWRITE

We leverage language models (LMs), LLaMA3 (Touvron et al., 2023) to rewrite our conversations.
During the Data Synthesis (DS) Stage, synthetic data and captions are generated using diffusion
models and captioning models. Once the image and its corresponding caption are obtained, we
employ the LM to transform the caption into a conversation. The prompt used to guide the LM
is shown in Figure 9. The captioning models we used are LLaVA 1.5 13B (Liu et al., 2023a) and
ShareCaptioner (Chen et al., 2023b).

Moreover, during the language data synthesis process in the DS stage, we also utilize language models
(LM) to rewrite conversations using the provided tail tokens. The corresponding prompts are shown
in Figure 10. Additionally, we rewrite conversations containing tail tokens or interrogation entities
(TWR in the ablation study or Section 6.2). As this task closely resembles standard rephrasing tasks
with similar prompts, we will not elaborate on it further here.
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Instruction:
You are an AI visual assistant, and you are seeing a single image. What you see are provided with a few of sentences, 
describing the same image you are looking at. Answer all questions as you are seeing the image.
Design a conversation between you and a person asking about this photo. The answers should be in a tone that a visual AI 
assistant is seeing the image and answering the question.
Ask diverse questions and give corresponding answers.

Include questions asking about the visual content of the image, including the object types, counting the objects, object actions, 
object locations, relative positions between objects, etc. Only include questions that have definite answers:
(1) one can see the content in the image that the question asks about and can answer confidently;
(2) one can determine confidently from the image that it is not in the image.
Do not ask any question that cannot be answered confidently.

Also include complex questions that are relevant to the content in the image, for example, asking about background 
knowledge of the objects in the image, asking to discuss about events happening in the image, etc. Again, do not ask about 
uncertain details.
Provide detailed answers when answering complex questions. For example, give detailed examples or reasoning steps to 
make the content more convincing and well-organized.  You can include multiple paragraphs if necessary.

Fewshots:
Caption:
There is a movie theater that displays the show times above the doors.
A red fire hydrant is deep in the snow.
The fire hydrant is in the snow near a recently plowed sidewalk.
This city has had a very hard winter with snow.
A hotel for dogs in the snow in winter.
Conversation:
Question: What color is the fire hydrant in the image?
Answer:The fire hydrant in the image is red.
Question:Is the fire hydrant fully covered by snow or partially visible?
Answer:The fire hydrant is partially visible, with a significant portion of it covered by the deep snow.
Question:What is the condition of the sidewalk near the fire hydrant?
Answer:The sidewalk near the fire hydrant has been recently plowed, so it is relatively clear of snow compared to the 
surrounding area.
Question:What does the image suggest about the winter season in the city?
Answer:The image suggests that the winter season in the city has been quite harsh and challenging. The significant snow 
accumulation seen in the image indicates that the city has experienced heavy snowfall, which can lead to various difficulties 
and disruptions for its residents. 

For instance, the deep snow covering the fire hydrant could potentially hinder its accessibility in case of emergencies, which 
poses safety concerns. The recently plowed sidewalk implies that the city's maintenance crews have been actively working to 
keep the walkways clear and safe for pedestrians, but the sheer amount of snowfall might make it difficult to keep up with the 
continuous snow removal efforts. 

Furthermore, such extreme winter conditions can impact transportation, leading to traffic issues, delays in public transit, and 
increased risks of accidents due to slippery roads. It can also cause problems for businesses and schools, as people might 
face challenges commuting to work or attending classes. Additionally, the heavy snow can put extra strain on infrastructure, 
such as roofs and power lines, increasing the likelihood of structural damage or power outages. 

In conclusion, the image of the red fire hydrant deep in the snow and the recently plowed sidewalk suggest that the city has 
faced a particularly severe winter season, with substantial snowfall that has likely caused various challenges and disruptions 
for its residents and infrastructure.

Figure 9: Complete prompts used to guide the language model in converting captions into conversation
instructions.
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Instruction:
You are an AI language assistant involved in interpreting a conversation between a person and an AI visual assistant. The 
conversation revolves around an image. The task is to rephrase the conversation using a set of candidate words while 
maintaining the original meaning. The rephrased conversation must follow these criteria:
1. The conversation must remain coherent and grammatically correct.
2. One or more words from the 'Candidate words' list can be used to replace the original terms.
3. Words from the list can be used in any form (noun, verb, adjective, etc.), and each word may be used once or multiple 
times.
4. Not all words from the 'Candidate words' list need to be included; they are to be used based on context.
5. The conversation may be extended or shortened, but its meaning must remain unchanged.

Fewshots:
Conversation 1:
Question: What color is the traffic light shown in the image?
Answer: The traffic light in the image is green.
Question: How does the traffic appear to be moving at the intersection?
Answer: Traffic appears to be moving smoothly through the intersection, with cars continuing on their way after the green light.
Question: Is this image taken during the day or at night?
Answer: The image is taken at night.
Question: How are the traffic lights positioned in relation to the road?
Answer: The traffic lights are suspended above the road, hanging from a pole.
Question: How do the cars look in the image due to their motion?
Answer: Due to their motion, the cars appear as streaks passing by the traffic signals in the image. This effect indicates they 
are moving at moderate to high speeds while the image was captured.
===
Candidate words:
[overwinter, wintertime, set_phrase, give_voice, musical_phrase, phrasal_idiom, idiomatic_expression, articulate, formulate, 
idiom, get_behind, chase_after, drop_behind, hang_back, give_chase, go_after, drop_back, shack, twelvemonth, yr, 
railroad_car, elevator_car, cable_car, railway_car, motorcar, railcar, gondola, promiscuous, unaccented, light_up, abstemious, 
Light_Within, light_source, low-cal, Inner_Light, get_down, luminosity, wakeful, sluttish, luminousness, lightheaded, light-
colored, fire_up, unclouded, visible_radiation, scant, visible_light, lightly, unhorse, light-headed, get_off, calorie-free, 
lightsome, swooning, illume, illumine, brightness_level, Christ_Within, ignitor, alight, wanton, weak, luminance, igniter, lighter, 
tripping, ignite, loose, faint, dismount, idle, illuminate, sparkle, twinkle, lightness, lite, easy, look-alike, figure_of_speech, 
simulacrum, range_of_a_function, mental_image, visualise, ikon, visualize, envision, effigy, trope, epitome, fancy, paradigm, 
see, word_of_honor, Holy_Writ, give_voice, countersign, Holy_Scripture, Good_Book, watchword, tidings, Christian_Bible, 
Word_of_God, give-and-take, articulate, Logos, formulate, parole, Son, Scripture, oppugn, interrogative_sentence, interrogate, 
dubiousness, doubtfulness, call_into_question, interrogative, interrogation, enquiry, fourth_dimension, prison_term, clock_time, 
metre]

Rephrased Conversation:
Question: What hue is the traffic signal displayed in the visual?
Answer: The traffic signal shown is illuminated in green.
Question: In what manner is the vehicular movement at the crossing?
Answer: Vehicular movement at the crossing is unobstructed, with motorcars proceeding post the green illumination.
Question: Was this visual captured during daylight or after dusk?
Answer: This visual was captured after dusk.
Question: In what relation are the traffic signals positioned to the roadway?
Answer: The traffic signals are suspended over the roadway, hanging from a pole.
Question: What appearance do the automobiles present in the visual due to their motion?
Answer: Owing to their motion, the automobiles are depicted as blurs traversing past the traffic signals, indicating their brisk 
pace at the time of capture.

Figure 10: Complete prompts used to guide the language model in rewrite conversation instructions
using given tokens.

21


	Introduction
	Related Work
	Large Vision-Language Models
	Data Development of LVLMs
	Long Tail Analysis of VLMs

	Analysis
	Preliminary
	Entity Distribution Construction
	Reverse Indexing
	Why Mitigating the LT Problem Can Boost the Performance of LVLMs?

	Approach
	Data Rebalancing Stage
	Probability Dictionary Construction

	Data Synthesis Stage
	Language Data Synthesis
	Diffusion Based Visual Data Synthesis


	Experiments
	Baseline Models
	Benchmarks
	Results For Comprehensive Evaluation
	Performance on Tail Instances

	Ablation Study
	Ablation of Different Combinations of Perspectives
	Ablation of Synthesis Methods

	Conclusion
	Detailes of Evaluation Methods
	Benchmarks
	Supplymentary Results of Ablation Study

	Details of Analyzing Stage
	Examples of Entities
	Entity Distribution Construction
	Analysis of Failed Cases

	Prompts
	Object Information Extraction
	Conversation Rewrite


