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Abstract
Large Language Models (LLMs) have become
pivotal in advancing the field of artificial intelli-
gence, yet their immense sizes pose significant
challenges for both fine-tuning and deployment.
Current post-training pruning methods, while re-
ducing the sizes of LLMs, often fail to main-
tain their original performance. To address these
challenges, this paper introduces SPP, a Sparsity-
Preserved Parameter-efficient fine-tuning method.
Different from existing post-training pruning ap-
proaches that struggle with performance reten-
tion, SPP proposes to employ lightweight learn-
able column and row matrices to optimize sparse
LLM weights, keeping the structure and sparsity
of pruned pre-trained models intact. By element-
wise multiplication and residual addition, SPP
ensures the consistency of model sparsity pattern
and ratio during both training and weight-merging
processes. We demonstrate the effectiveness of
SPP by applying it to the LLaMA and LLaMA-
2 model families with recent post-training prun-
ing methods. Our results show that SPP sig-
nificantly enhances the performance of models
with different sparsity patterns (i.e. unstructured
and N:M sparsity), especially for those with high
sparsity ratios (e.g. 75%), making it a promis-
ing solution for the efficient fine-tuning of sparse
LLMs. Code will be made available at https:
//github.com/Lucky-Lance/SPP.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Ope-
nAI, 2023; Anil et al., 2023) have recently shown impres-
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Figure 1. We use LLaMA 7B/30B models at 75% sparsity and
test zero-shot accuracies on 7 benchmarks of LM-eval (Gao et al.,
2021) to compare different pruning methods. The results of Wanda,
Wanda+DS⊘T, Wanda+LoRA*, and Wanda+SPP are visualized.
The first two approaches are post-training pruning schemes, LoRA*
denotes applying the original Wanda pruning masks to sparse the
dense model after LoRA training. Our method achieves overall
best results. More experiment details are illustrated in Sec. 4.

sive success in various complex tasks (Wei et al., 2022;
Zhou et al., 2024). However, these models are usually
characterized by an extensive number of learnable param-
eters, ranging from several billions to around a hundred
billions (Touvron et al., 2023a;b), as exemplified by GPT-4.
This enormity makes LLMs cumbersome to be fine-tuned
for different scenarios and challenging to deploy on various
edge devices.

To reduce the parameters of pre-trained large language mod-
els without the demanding retraining phase, different post-
training pruning (Frantar & Alistarh, 2023) approaches have
been presented. SparseGPT, as outlined in (Frantar & Al-
istarh, 2023), focuses on minimizing the squared errors be-
tween pruned and original dense models in a layer-by-layer
manner. Wanda (Sun et al., 2023) incorporates both weight
magnitude and input activation as metrics for identifying
unimportant parameters. Despite their success in language
model pruning, these methods often fail to maintain the per-
formance of pre-trained models at even moderate sparsity
levels (e.g., 50%) (Jaiswal et al., 2023).

In contrast, pruning methods for smaller-scale deep mod-
els – those with fewer than 200 million parameters, such as
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ResNet50 (He et al., 2016) and BERT-based models (De-
vlin et al., 2018) – have realized high sparsity ratios (e.g.,
>80%) only with negligible performance drop (Evci et al.,
2020; Lin et al., 2020; Zhou et al., 2021). The success of
these models is largely attributed to the role of retraining
during their pruning process (Liu et al., 2018). However,
compared with training dense neural networks, it will take
much longer to train the sparse models to achieve the same
performance. For example, 5× more training time is needed
in RigL (Evci et al., 2020). These methods heavily rely
on back-propagation with full parameters, which is pro-
hibitively expensive for LLMs. This observation raises a
crucial question: Can we introduce an efficient retraining
stage for the pruned LLMs?

In response to these challenges, we propose a novel, plug-
and-play method, SPP, a Sparsity-Preserved Paramater-
efficient fine-tuning method designed to effectively retrain
or fine-tune sparse LLMs after post-training pruning (e.g.
SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al.,
2023), etc), thereby enhancing their performances. Inspired
by the Low-Rank Adaptation (LoRA) method for dense
large language models (Hu et al., 2021), SPP consists of
two phases, training and weight-merging. More specifically,
we introduce two sets of lightweight learnable parameters
to the sparse matrices of each linear layer. During train-
ing and weight-merging phases, these learnable parameters
are multiplied with the original frozen post-training pruned
weights, achieving the effect of exactly maintaining the
sparse pattern and ratio throughout all the processes.

SPP is easy to implement and can be applied to a wide
range of post-training pruning methods and LLMs with
various sparsity ratios and patterns (unstructured and N:M
sparsity). We evaluate SPP on the LLaMA (Touvron et al.,
2023a) and LLaMA-2 (Touvron et al., 2023b) model fam-
ilies with two recent LLM post-training pruning methods,
i.e., SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023). To illustrate the effectiveness of SPP, zero-
shot evaluation results of LLaMA 7B/30B models with 75%
sparsity ratio are shown in Fig. 1.

The main contributions of this paper are summarized in
three key aspects:

(1) We investigate model pruning methods in the era of
LLMs and present a novel parameter-efficient fine-tuning
algorithm, SPP, which can maintain model structure and
sparsity during both training and weight-merging phases.

(2) Extensive experiments on different post-training pruned
LLMs with various sparsity patterns and ratios show the ef-
fectiveness of SPP for the efficient training of sparse LLMs.

(3) To the best of our knowledge, this study is the first to
systematically explore integrating efficient retraining with
advanced post-training pruning methods for LLMs.

2. Related Work
Traditional Model Pruning: Pruning of Deep Neural Net-
works (DNNs) is a promising direction to compress and ac-
celerate deep learning models (Hoefler et al., 2021). There
are mainly two types of techniques to obtain a sparse neural
network, iterative pruning-retraining framework, and dy-
namic sparse training ones. The iterative pruning-retraining
framework first finds the unimportant connections (masks),
thereby removing the corresponding weights, and then re-
trains the fixed sparse network to recover its performance.
Typical methods include iterative pruning (Han et al., 2015).
Later, the lottery ticket hypothesis (Frantar & Alistarh,
2023) shows that the sparse sub-networks (winning tickets)
can be trained from scratch with the same dense initializa-
tion while the winning tickets are discovered by dense train-
ing. Dynamic sparse training methods (Mocanu et al., 2018)
start from a randomly sparsified network, then subsequently
prune and grow connections during training. These methods
can be applied end-to-end within the network training stage
and have achieved promising results. Recently proposed
state-of-the-art method STR (Kusupati et al., 2020) intro-
duces learnable pruning thresholds to obtain a non-uniform
sparse network. RigL (Evci et al., 2020) uses the magnitude-
based method to prune and the periodic dense gradients to
regrow connections. However, it is imperative to note that
these methods heavily rely on back-propagation with full
parameters, which is prohibitively expensive for LLMs.

LLM Pruning: In the era of LLMs, methods have been
proposed to overcome the challenges mentioned above (Li
et al., 2023). Recent research endeavors have evolved to-
wards post-training pruning methods, which start from the
pre-trained network and remove redundant parameters with-
out end-to-end fine-tuning or retraining. SparseGPT uses
second-order information to address a layer-wise reconstruc-
tion problem and prunes large models with unstructured and
N:M structured sparsity (Zhou et al., 2021) respectively.
Wanda (Sun et al., 2023) proposes a new pruning metric that
takes both weight magnitude and their corresponding input
activations into consideration, achieving comparable per-
plexity with SparseGPT (Frantar & Alistarh, 2023). How-
ever, (Jaiswal et al., 2023) points out that perplexity is
not necessarily an accurate metric for evaluating the ef-
fectiveness of model compression, with both SparseGPT
and Wanda fail to achieve satisfactory performance even
with low-level sparsity (25-30%). Based on this issue, we
speculate that the lack of retraining after removing the unim-
portant weights will lead to an undesirable decline in perfor-
mance, and put forward a novel training method with high
training efficiency.

Parameter-efficient Fine-tuning: In different language
and vision tasks, the pre-training and fine-tuning paradigms
have been proven to be highly effective. Compared with
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Figure 2. Comparison between different methods for sparsification of neural networks. (a) A dense linear layer with matrix Wi and
activation Xi. (b) Post-training pruning methods leverage weight magnitude and calibration data for weight pruning. (c) Model fine-tuning
with dynamic weight masks, typically referred to as full fine-tuning methods in the literature, adaptively changes the weight masks during
the fine-tuning process. (d) Model fine-tuning with fixed weight masks. Our proposed SPP distinguishes itself as a parameter-efficient
fine-tuning algorithm that can consistently maintain model sparsity during both the training and weight-merging phases.

full parameter fine-tuning, Parameter-Efficient Fine-Tuning
(PEFT) (Mangrulkar et al., 2022; Xu et al., 2023) meth-
ods freeze most parameters of dense pre-trained models
and aim to exhibit comparable capabilities on downstream
tasks. LoRA (Hu et al., 2021) introduces trainable low-
rank decomposition matrices into dense network weights.
Adapters (Houlsby et al., 2019) insert lightweight adaption
modules into each block of the language models. Different
from previous efforts for dense pre-trained language models,
we propose the SPP method with few learnable parameters,
which is specially designed for sparse LLMs.

3. Method
The objective of neural network pruning is to preserve the
performance of the original network as closely as possible
by creating a sparse network through the selective removal
of certain neural network parameters (Hassibi et al., 1993;
Han et al., 2015). In this section, we first introduce the
notation used in our paper and categorize some existing
algorithms for neural network pruning (especially for LLMs)
in Sec. 3.1, and then elaborate on our proposed SPP in
Sec. 3.2, which is a parameter-efficient fine-tuning method
specifically designed for training sparse LLMs.

3.1. A Revisit of Model Pruning Methods

Post-Training Pruning: Starting from a dense pre-trained
model (LLMs in our setting), post-training pruning (Frantar
& Alistarh, 2023; Zhang et al., 2023a) algorithms remove re-
dundant parameters in a neural network by calculating a set
of weight masks M = {M0,M1, . . . ,MN−1} leveraging
weight magnitude W = {W0,W1, . . . ,WN−1} together
with a set of calibration data. As shown in Fig. 2 (a), given
original dense matrix Wi (0 ≤ i ≤ N − 1), post-training
pruning algorithms compute binary weight masks Mi, and

the new set of sparse matrices W̃ can be calculated as:

W̃ = {W0 ⊙M0,W1 ⊙M1, ...,WN−1 ⊙MN−1}, (1)

where N denotes the number of linear layers, and ⊙
indicates element-wise multiplication (Hadamard prod-
uct (Horn, 1990)) between matrices. One example based on
2:4 structured sparsity and using weight magnitude as the
pruning metric is illustrated in Fig. 2 (b). Post-training prun-
ing algorithms are known for their relatively low consump-
tion of computational resources. However, as demonstrated
in SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023), even the pruning of LLMs to a moderate level
of sparsity, specifically to 50%, inevitably leads to a sub-
stantial degradation in performance (Han et al., 2015). This
indicates that after post-training pruning, it is essential to re-
train the sparse model to reclaim its knowledge capabilities.

Full Fine-tuning with Dynamic Sparse Masks: Another
pruning scheme that starts from a dense model is to full-
finetune the original dense model with dynamically updated
sparse masks, as depicted in Fig. 2 (c). Typically, to improve
the performance of sparse models, researchers introduce
various training methods to optimize the sparse weights W̃
and the corresponding binary masks M simultaneously (Lin
et al., 2020; Bengio et al., 2013):

Wi
t+1 = Wi

t − γtg(W
i
t ⊙Mi

t) = Wi
t − γtg(W̃

i
t), (2)

where γt denotes the learning rate at time step t and func-
tion g(·) calculates the gradients1. For small-scale sparse
models, such as those based on ResNet and BERT, full
fine-tuning methods like STE-based algorithms (Lin et al.,
2020; Evci et al., 2020; Zhou et al., 2021) can maintain
high performance at even ≥ 75% sparsity. However, these
methods usually require substantial computational power

1We only show the equation of gradient descent for simplicity.
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Figure 3. Learnable parameter insertion of our proposed SPP for a m× n (m = 4, n = 8) weight matrix. (a) We acquire the mask Mi of
the sparse matrix of a linear layer by pruning with post-training algorithms (e.g. SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al.,
2023)), and obtain sparse linear weights W̃i = Wi ⊙Mi. (b) SPP adds two sets of parameters to the sparse matrix, one (Wi

β ∈ Rm×1)
initialized to 0 and multiplied on each row of the matrix, and one (Wi

α ∈ Rr×n, r = 2 in this example) randomly initialized and
multiplied on the columns of the matrix. We then scale Wi

α and Wi
β to the size of (m× n) and element-wise multiply then with W̃i.

and memory resources. This poses a significant challenge
in the era of training LLMs. For instance, fully fine-tuning
a LLaMA-65B model requires at least 780G of GPU mem-
ory (Dettmers et al., 2023), not yet including the additional
memory needed to update the sparse masks.

Fine-tuning with Fixed Masks: As can be learned from
the respective drawbacks of the two approaches described
above, there is a need to balance model performance restora-
tion and the training overhead. Actually, Eq. (2) can be
decoupled into the iterative optimization of binary masks
M and sparse weights W̃. When training with limited com-
putation resources, optimizing sparse weights with fixed
masks is considered effective for knowledge restoration (Liu
et al., 2018). Generally, if we fix Mi

t = Mi
0 and apply

W̃i
t = Wi

t ⊙Mi
0 at the t-th iteration, Eq. (2) will be equiv-

alent to the retraining of sparse models with fixed masks:

W̃i
t+1 = W̃i

t − γtg(W̃
i
t)⊙Mi

0, (3)

but it is still cumbersome to calculate gradients for W̃i
t

associated with fixed mask Mi
0. To this end, we provide the

SPP method for efficient fine-tuning post-training pruned
LLMs with fixed masks (as illustrated in Fig. 2 (d)).

3.2. Proposed Method

In this subsection, we propose SPP to balance model per-
formance restoration and computational overhead. Cur-
rent PEFT methods carry out weight updates of huge linear
blocks by introducing trainable low-rank decomposition ma-
trices (Hu et al., 2021) and adding them with original frozen
linear weights after training. This approach finally results
in dense matrices and destroys model sparsity. Reflecting
on this issue, we suggest that the direct addition of new pa-
rameters to sparse matrices leads to the inevitable change in
model sparsity, whereas weight multiplication can avoid the
problem. To this end, we add two sets of lightweight orthog-
onal learnable parameters Wα = {W0

α,W
1
α, . . . ,W

N−1
α }

and Wβ = {W0
β ,W

1
β , . . . ,W

N−1
β }, multiply them sepa-

rately with column and row weights of each linear matrix
in the pruned LLM, and perform efficient fine-tuning for
sparse matrices with the original pruned weights fixed.

Learnable Parameter Insertion: The core of SPP is how
to introduce learnable parameters such that they do not
lead to changes in sparsity during the training and weight-
merging process. As shown in Fig. 3, given a sparse linear
matrix W̃i ∈ Rm×n (0 ≤ i ≤ N − 1) after pruning, we
insert two sets of learnable parameters: Wi

α ∈ Rr×n and
Wi

β ∈ Rm×1. Wi
α adds learnability to the weights of each

column, while Wi
β further expands it to each row2. This

leads to (m + rn) additional parameters for one sparse
matrix. We then scale Wi

α and Wi
β to the same size of W̃i

and multiply them with W̃i in an element-wise manner:

W̃i′ = W̃i ⊙ Repeat0(W
i
α,

⌊m
r

⌋
)⊙ Repeat1(W

i
β , n), (4)

where Repeatd(W, k) is a function denoting the repe-
tition of each element of W by k times along the d-
th dimension, which can be easily implemented by the
torch.repeat_interleave() function in Python.
Besides, there is no need to perform an explicit “repeat” op-
eration on Wi

β , as PyTorch automatically aligns the matrix
dimensions when conducting Hadamard product between a
matrix and a vector. The floor function ⌊·⌋ indicates integer
division. In our implementation, r is set to the numbers
that can be divided by n (e.g., choosing r = 4, 8, 16, etc.).
Benefited from element-wise multiplication, the values of
0 in the original sparse matrix will remain unchanged, so
W̃i′ shares the same sparsity pattern and sparsity ratio with
W̃i, one example with a 4× 8 matrix and r = 2 is shown
in Fig. 3. In this way, we can train the linear matrices with
fixed masks, following the training pattern in Fig. 2 (d). It
is worth noting that if we set r = m, our method performs a
full-parameter gradient update on the original sparse matrix.

2We set r > 1 to increase capacity. We discuss setting Wi
α ∈

Rr×n instead of Wi
β ∈ Rm×r in Sec. A.1 in the Appendix.
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Figure 4. Our proposed SPP framework for sparse weight models.
We multiply two sets of learnable parameters to the frozen linear
weights with Wα randomly initialized and Wβ zero-initialized
(detailed in Fig. 3). Linear operation is conducted on both the
original and modified weights, and then the results are added in a
residual manner. This framework corresponds to Eq. (5).

Framework of SPP: After explaining how to insert param-
eters, we introduce our proposed SPP framework, as shown
in Fig. 4. During the training process, in the i-th linear layer
of the neural network, the output can be calculated by:

Yi = F(Xi,W̃i) + s · F(Dropout(Xi),W̃i′), (5)

where s is a hyper-parameter for scaling, and Xi ∈ Rb×n

denotes the input activation at the i-th linear layer. We
follow Eq. (4) for the training of W̃i′ , set initial Wi

β to
all zeros, and randomly initialize Wi

α. In this way, the
initial structure and weights of the network are consistent
with the post-training pruned model. More specifically,
Yi = F(Xi,W̃i) for neural network initialization. This
strategy results in more stable training. After training, the

linear layer parameters can be merged as: W̃i + s · W̃i′ ,
sharing the same sparsity pattern and ratio with the original
pruned model. The structure of SPP is similar to LoRA, but
it does not destroy the sparse structure of the model during
both the training and weight-merging process. For a more
straightforward comparison, recall that the formulation of
LoRA with frozen weight W̃i is:

Yi = F(Xi,W̃i) + s · Dropout(Xi)(Ai)T (Bi)T , (6)

where Ai ∈ Rr×n and Bi ∈ Rm×r. During the training
and weight-merging process of LoRA, the weights of the
linear layer matrix are equivalent to (W̃i+s ·BiAi), which
is actually a dense matrix.

Memory Usage Optimization: We find that for each lin-
ear layer with input activation Xi, the insertion of Wi

α

and Wi
β greatly reduces the number of trainable param-

eters, but we still need to store the intermediate matrix
Repeat0(W

i
α,

⌊
m
r

⌋
) when calculating the linear function

Yi′ = Xi(W̃i′)T (this is actually the second addition term
in Eq. (5)), which usually takes a huge amount of mem-
ory. To overcome this problem, we redesign the procedure
of matrix multiplication in SPP following the column par-
allel linear layer in Megatron-LM (Shoeybi et al., 2019).
Specifically, in each linear layer F(X,W) with weight
Wm×n and activation Xb×n, the output of the linear layer
is Y = XWT ∈ Rb×m (w.l.o.g., we discard the batch of in-
put X and assume b = 1 for simplicity). We split the column
of W into r blocks, denoted as

[
WT

0 ,W
T
1 , . . . ,W

T
r−1

]T
,

where each Wj ∈ R⌊
m
r ⌋×n. In our setting, we can derive:

Yi′ = Xi(W̃i ⊙ Repeat0(W
i
α,

⌊m
r

⌋
)⊙ Repeat1(W

i
β , n))

T

=
[
· · · (Xi ⊙Wi

αj)(W̃
i
j)

T · · ·
]
⊙ (Wi

β)
T , (7)

where Wi
αj denotes the j-th row of Wi

α, and W̃i
j denots

the j-th block of W̃i (0 ≤ j ≤ r − 1). This will eliminate
the need for saving the matrix Repeat0(W

i
α,

⌊
m
r

⌋
), and a

more detailed proof of the above Eq. (7) can be found in
Sec. A.2 in the Appendix.

Remarks on SPP:

1) Why the residual scheme is needed? Actually, it is simpler
to directly initialize Wα and Wβ to 1 and then multiply
them to the corresponding positions respectively. But we
find that such a training scheme converges more slowly.

2) Why is it important to keep the sparse pattern of the
model during training? Previous PEFT schemes tend to turn
a sparse model into a dense one after training, and we need
to prune the trained model again to obtain the final sparse
model. This strategy leads to an unpredictable change in
model performance again. In contrast, by keeping the model
sparsity during the training process, the performance of the
final model is a direct reflection of the effectiveness of the
training process (Liu et al., 2018).

4. Experiments
In this section, we report a series of experiments to demon-
strate the effectiveness of SPP for the efficient training of
sparse pruned models.

Experiment Setup: We choose LLaMA and LLaMA-2
model families: LLaMA 7B/13B/30B/65B (Touvron et al.,
2023a) and LLaMA-2 7B/13B/70B (Touvron et al., 2023b)
for experiments. For these LLMs, we first prune them using
post-training pruning algorithms SparseGPT (Frantar & Al-
istarh, 2023) and Wanda (Sun et al., 2023), then carry out
instruction fine-tuning for the recovery of knowledge. All
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LLaMA LLaMA-2

7B 13B 30B 65B 7B 13B 70B

Trainable Parameters 2.0×107 3.1×107 6.0×107 9.8×107 2.0×107 3.1×107 1.1×108
All Parameters 6.8×109 1.3×1010 3.3×1010 6.5×1010 6.8×109 1.3×1010 6.9×1010
Per mille (‰) 2.90 2.35 1.83 1.50 2.90 2.35 1.54

Table 1. Number of trainable parameters, total number of parameters, and per mille of trainable parameters of SPP with r = 16. We only
need to fine-tune a small fraction of parameters compared with full fine-tuning.

LLaMA Method Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average

7B

None Dense 75.11 66.43 56.96 69.85 75.25 41.89 34.40 59.98

SparseGPT Unstructured 50% 73.36 57.76 51.44 68.03 70.45 36.35 28.40 55.11
SparseGPT+SPP Unstructured 50% 72.84 65.70 56.40 67.88 72.35 41.04 32.80 58.43
SparseGPT 2:4 70.09 57.76 43.37 63.46 61.62 29.27 22.60 49.74
SparseGPT+SPP 2:4 72.39 59.57 53.33 64.17 68.39 37.54 26.80 54.60

Wanda Unstructured 50% 71.01 55.23 51.90 66.22 69.36 36.95 28.60 54.18
Wanda+SPP Unstructured 50% 70.86 66.06 55.92 67.64 72.81 41.64 32.00 58.13
Wanda 2:4 69.27 51.26 42.07 62.67 60.52 27.99 24.60 48.34
Wanda+SPP 2:4 71.19 63.90 52.77 64.88 68.18 37.03 30.00 55.42

13B

None Dense 77.98 70.40 59.92 72.61 77.36 46.50 33.20 62.57

SparseGPT Unstructured 50% 76.54 62.09 54.94 71.59 72.35 41.64 32.20 58.76
SparseGPT+SPP Unstructured 50% 79.20 64.62 59.27 70.32 74.83 46.59 34.60 61.35
SparseGPT 2:4 70.80 56.68 48.09 69.22 66.88 36.26 26.20 53.45
SparseGPT+SPP 2:4 77.65 63.54 56.55 69.69 71.21 40.96 32.60 58.89

Wanda Unstructured 50% 76.27 62.82 55.78 71.98 73.32 43.77 31.80 59.39
Wanda+SPP Unstructured 50% 78.29 66.43 58.88 70.32 75.59 46.93 34.40 61.55
Wanda 2:4 70.21 53.79 46.78 68.82 65.74 33.70 26.20 52.18
Wanda+SPP 2:4 75.99 58.12 56.07 68.90 70.37 40.53 32.40 57.48

30B

None Dense 82.63 66.79 63.36 75.85 80.39 52.82 36.00 65.41

SparseGPT Unstructured 50% 82.63 58.84 59.20 73.48 78.79 49.15 33.20 62.18
SparseGPT+SPP Unstructured 50% 84.43 68.23 63.18 73.56 81.57 52.56 37.00 65.79
SparseGPT 2:4 76.57 61.01 53.52 72.30 74.66 42.06 31.60 58.82
SparseGPT+SPP 2:4 81.65 66.43 60.46 72.45 78.75 50.17 36.20 63.73

Wanda Unstructured 50% 81.93 64.98 60.95 73.64 79.38 50.17 34.80 63.69
Wanda+SPP Unstructured 50% 84.19 66.79 62.52 71.59 77.10 51.79 34.80 64.11
Wanda 2:4 75.14 63.54 54.53 72.45 74.24 41.89 31.80 59.08
Wanda+SPP 2:4 81.38 69.68 59.99 71.59 76.73 48.63 34.60 63.23

65B

None Dense 84.55 69.68 65.40 77.35 52.82 81.00 38.00 66.97

SparseGPT Unstructured 50% 84.90 70.04 63.95 77.27 79.65 50.17 37.40 66.20
SparseGPT+SPP Unstructured 50% 84.95 70.04 64.25 77.19 79.85 50.94 37.80 66.43
SparseGPT 2:4 84.55 69.31 57.95 76.95 78.00 45.39 31.20 63.34
SparseGPT+SPP 2:4 84.25 68.23 58.40 76.87 78.10 45.99 31.40 63.32

Wanda Unstructured 50% 85.05 71.84 64.60 77.35 79.65 50.26 38.40 66.74
Wanda+SPP Unstructured 50% 85.25 71.84 65.30 77.19 79.95 51.11 38.60 67.03
Wanda 2:4 83.40 61.01 58.55 75.22 76.60 45.56 33.20 61.93
Wanda+SPP 2:4 83.30 61.37 61.85 76.16 78.60 47.70 36.20 63.60

Table 2. Zero-shot evaluation results of 7 tasks from EleutherAI LM Harness (Gao et al., 2021) after training LLaMA on Alpaca (Taori
et al., 2023) dataset by SPP. SPP improves the performance of sparse models from SparseGPT and Wanda. In 2 cases, the performance of
sparsely trained models even exceeds their dense counterparts.

the training and testing processes are conducted on a server
with 8 NVIDIA A100-80GB GPUs3.

3This is the largest computing resource we have access to. Fine-
tuning schemes outlined in Eq. (2) and (3) result in Out-of-Memory
errors when applied to models with more than 30B parameters.

Training and Evaluation Details: We use high quality
instruction fine-tuning dataset Stanford-Alpaca (Taori et al.,
2023) to train the pruned models.We do not use pre-training
datasets (e.g. C4 (Raffel et al., 2020), SlimPajama (Sobol-
eva et al., 2023), etc.) as they are quite large but of low
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LLaMA Method Sparsity LM-eval PPL (↓)
Wanda Unstructured 75% 32.14 1285.24
Wanda+DS⊘T Unstructured 75% 32.23 646.40
Wanda+SPP Unstructured 75% 41.71 21.80
Wanda 2:8 32.53 3284.43
Wanda+DS⊘T 2:8 31.57 2742.98

7B

Wanda+SPP 2:8 38.61 42.07
Wanda Unstructured 75% 39.21 149.63
Wanda+DS⊘T Unstructured 75% 37.77 184.51
Wanda+SPP Unstructured 75% 50.33 10.89
Wanda 2:8 35.12 1057.58
Wanda+DS⊘T 2:8 32.81 903.17

30B

Wanda+SPP 2:8 43.09 19.83

Table 3. Comparison for pruning LLaMA model family at 75%
sparsity. We provide average accuracies of 7 zero-shot tasks to-
gether with WikiText perplexity (Merity et al., 2016). SPP achieves
far better results than the other two post-training pruning methods.

quality. Unlike previous related works on training sparse
models (e.g. Sheared llama (Xia et al., 2023)), our approach
requires only several hours of training on a smaller dataset.
We add learnable parameters on “q proj, k proj, v proj,
o proj, gate proj, up proj, down proj, score” linear layers,
and r is set to 16 (unless specifically noted). For training
convenience, we fine-tune 7B/13B/30B models by 3 epochs,
and 65B/70B models by 1 epoch. In terms of evaluation, we
mainly report zero-shot performance on seven tasks from
EleutherAI LM Harness (Gao et al., 2021) following (Sun
et al., 2023). We also test few-shot performances on the
MMLU (Hendrycks et al., 2021a;b) benchmark.

Model Sparsity and Baselines: For most experiments,
we use the 50% sparsity ratio, including unstructured 50%
sparsity and 2:4 sparsity (Mishra et al., 2021; Zhou et al.,
2021). We compare the models trained by SPP with post-
training pruned models (SparseGPT (Frantar & Alistarh,
2023), Wanda (Sun et al., 2023)) and the original dense
models. To extend the experiments to higher sparsity, we
test some of the 75% sparsity cases, including unstructured
75% sparsity and 2:8 sparsity, and compare our SPP with
LoRA* and recently proposed DS⊘T (Zhang et al., 2023b).

4.1. Number of Trainable Parameters

An important metric for estimating a PEFT method is the
number of learnable parameters during training. Tab. 1 sum-
marizes the number and per mille (‰) of trainable parame-
ters in our experiments with r = 16. As can be seen, SPP
requires training only a very small fraction of parameters.

4.2. Zero-shot Evaluation Results

In Tab. 2 and Tab. 7 (Tab. 7 is in Sec. A.3 in the Appendix
due to space limitation), we show the zero-shot accuracies
of post-training pruned models and their retrained counter-
parts by SPP on both LLaMA and LLaMA-2 (task-wise and
average results). We follow the evaluation tasks and exper-
iment settings of Wanda (Sun et al., 2023). As seen from

Method Sparsity Zero-init Wβ r LM-eval

Wanda+SPP

2:4

✓ ✓ 4 54.04
✓ ✓ 8 54.87
✓ 16 54.52

✓ 16 53.52
✓ ✓ 16 55.42

Unstructured 50%

✓ ✓ 4 57.86
✓ ✓ 8 56.39
✓ 16 57.81

✓ 16 57.59
✓ ✓ 16 58.13

SparseGPT+SPP

2:4

✓ ✓ 4 54.82
✓ ✓ 8 54.24
✓ 16 54.62

✓ 16 54.01
✓ ✓ 16 54.60

Unstructured 50%

✓ ✓ 4 57.58
✓ ✓ 8 57.32
✓ 16 57.66

✓ 16 57.12
✓ ✓ 16 58.43

Table 4. Ablation studies on LLaMA-7B. We investigate the utility
of zero-initialization of weights, evaluate the influence of param-
eter Wβ , as well as test the performance of SPP-trained models
for different values of r. Training with zero-init weights, Wβ , and
using r = 16 get the overall best results in our experiments.

the tables, after SPP training, the average performances of
the vast majority of models are improved. Especially for the
models with 2:4 sparsity, we observe around 8% average
performance improvement, larger than that for the unstruc-
tured 50% sparsity models. By utilizing the cuSPARSELt
library, the N:M technique can be efficiently implemented
on NVIDIA Ampere Graphics processors, resulting in prac-
tical speedups. The enhancement of 2:4 sparsity models is
thus of particular importance.

4.3. Extend to Higher Sparsity

To further validate the effectiveness of our SPP method,
we extend the existing post-training pruning method
Wanda (Sun et al., 2023) to 75% sparsity ratio with un-
structured 75% and 2:8 sparsity. The results are shown in
Tab. 3. “LM-eval” stands for zero-shot evaluation results of
7 different tasks from EleutherAI LM Harness (Gao et al.,
2021), “PPL” stands for Wikitext perplexity (Merity et al.,
2016). We find that Wanda (Sun et al., 2023) with unstruc-
tured 75% and 2:8 sparsity has a significant performance
drop, while the dynamic mask without retraining method
DS⊘T (Zhang et al., 2023b) has limited performance im-
provement. We then apply the SPP method to the pruned
models by Wanda and obtain far better results. This further
highlights the effectiveness of parameter retraining – just as
SPP does – in boosting the performance of sparse LLMs.

4.4. Ablation Study

In this subsection, we carry out an ablation study on the
LLaMA-7B model. We train the sparse models obtained
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LLaMA Method Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average

7B

Wanda+LoRA* Unstructured 75% 62.39 53.07 31.81 52.64 38.22 21.08 14.60 39.11
Wanda+SPP Unstructured 75% 60.67 56.32 35.06 52.64 47.05 22.44 17.80 41.71

Wanda+LoRA* 2:8 61.47 53.07 29.18 53.12 34.68 20.22 14.60 38.05
Wanda+SPP 2:8 54.50 59.21 31.29 52.09 37.46 19.11 16.60 38.61

30B

Wanda+LoRA* Unstructured 75% 65.08 55.60 44.35 62.27 60.69 29.18 23.00 48.60
Wanda+SPP Unstructured 75% 67.95 54.15 47.28 62.51 63.68 30.72 26.00 50.33

Wanda+LoRA* 2:8 62.17 52.71 35.96 54.30 48.48 23.21 16.20 41.86
Wanda+SPP 2:8 62.05 54.87 38.17 55.09 49.62 23.63 18.20 43.09

Table 5. Zero-shot evaluation of 7 different tasks from EleutherAI LM Harness (Gao et al., 2021) with 75% sparsity. We compare SPP
with sparse models after LoRA training by applying the dense trained model with the original Wanda pruning masks. SPP achieves overall
higher zero-shot performances than LoRA. (*) denotes sparse models obtained from applying Wanda pruning masks after LoRA training.

LLaMA LLaMA-2

Method Sparsity 7B 13B 30B 65B 7B 13B 70B

None Dense 35.64 47.63 58.58 63.78 46.56 55.30 69.56

SparseGPT Unstructured 50% 32.19 40.44 52.62 59.37 36.41 47.47 65.57
SparseGPT+SPP Unstructured 50% 30.77 43.91 54.73 59.38 39.78 48.31 65.60

SparseGPT 2:4 28.24 32.31 43.79 49.79 29.16 38.41 57.66
SparseGPT+SPP 2:4 27.81 37.55 49.01 49.50 33.28 45.63 57.85

Wanda Unstructured 50% 31.50 39.43 52.84 58.75 34.20 47.78 64.45
Wanda+SPP Unstructured 50% 31.74 43.34 53.89 59.02 38.08 48.97 64.39

Wanda 2:4 27.14 31.26 41.36 45.68 28.33 35.16 56.86
Wanda+SPP 2:4 28.56 35.73 46.19 47.67 30.47 42.79 57.98

Table 6. 5-shot evaluation of MMLU (Hendrycks et al., 2021a;b), with LLaMA and LLaMA-2 model families trained on Alpaca (Taori
et al., 2023) dataset. The performances of sparse models are improved after instruction fine-tuning.

from Wanda (Sun et al., 2023) and SparseGPT (Frantar
& Alistarh, 2023) at unstructured 50% and 2:4 sparsity,
respectively. We test the performance of the models with
and without the Wβ parameter, as well as the average zero-
shot accuracies of the models for different values of r. We
also evaluate the effectiveness of the zero-initialization of
added weights. The results are shown in Tab. 4. Although
different parameter settings may lead to different results,
training with Wβ and using r = 16 can obtain the overall
best results in our experiments. In the real application of
SPP, appropriate parameters can be selected according to
the tasks and available computational resources.

4.5. More Analyses

In this part, more experiments and analyses are provided.

Comparison with LoRA*: We also compare SPP with
LoRA*. We adopt r = 8 in LoRA and add adapters to the
same places as SPP, leading to similar numbers of learnable
parameters (around 0.28% for 7B models and 0.18% for 30B
models). Since LoRA yields a dense model after training,
to maintain the model sparsity, we apply the original Wanda
pruning masks to sparse it (the LoRA training-then-pruning

method is denoted as LoRA*) and test at 75% sparsity. As
shown in Tab. 5, compared to the model pruned after LoRA
training, SPP has performance leads in most cases. This
highlights the significance of maintaining weight sparsity
during the training and weight-merging processes.

Few-shot Results: 5-shot average results of different mod-
els on the MMLU (Hendrycks et al., 2021a;b) benchmark
are shown in Tab. 6. Compared to the tasks in Sec. 4.2,
MMLU is a more difficult benchmark and contains some
more difficult questions (e.g., math questions). As can be
seen from the table, for the post-training pruned models,
SPP also brings large performance gains in the vast major-
ity of cases. However, the sparse models trained by SPP
still have considerable gaps in performance compared to the
original dense models. It should be noted that we obtain
performance improvements by instruction fine-tuning on a
small-scale dataset. These models would further improve
their performance if we extend the scale of the training
dataset (Soboleva et al., 2023), but it is currently outside the
scope of our considerations in this paper.

Inference Speedup: The inference speedup for sparse mod-
els is only dependent on the sparsity pattern of the pruned
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model. Since SPP does not change the sparsity pattern and
ratio of the pruned model during training and merging of
parameters, it will lead to the same inference speedup as the
original pruned model. We refer the readers to Section 4.3
of Wanda (Sun et al., 2023) paper for results on the relevant
inference speedups, where around 1.6× speed up is noted
for linear layers in LLMs and 1.24× end-to-end latency
speedup is observed for LLaMA-7B (from 312ms to 251ms)
with the structured 2:4 sparsity.

Hyper Parameters: For training 7B/13B/30B/65B/70B
models, we use learning rates of 4e-3/2e-3/4e-3/5e-4/5e-
4 with per-device batch size set to 8/4/16/8/8. Follow-
ing (Dettmers et al., 2023), we set a 0.03 warm-up ratio,
but decay the learning rate after reaching the targeted peak
value. We use the AdamW optimizer with default setting in
the Transformers package4 and add a 0.001 weight decay.

After fixing all the hyper-parameters, we train post-training
pruned LLMs obtained by SparseGPT (Frantar & Alistarh,
2023) and Wanda (Sun et al., 2023) with different sparsity
patterns and ratios. We do not carry out hyper-parameter
tuning for specific sparsity patterns or ratios. Experiment
results shown in the paper demonstrate that our SPP can
bring about stable performance improvements.

5. Conclusion and Discussion
In this paper, we introduce the novel Sparsity-Preserved
Parameter-efficient fine-tuning (SPP) method, which is a no-
tably efficient approach for retraining or fine-tuning sparse
models to tackle the challenge of restoring the performance
of LLMs after pruning.

Before the advent of LLMs, the field of model pruning pri-
marily explored methods to identify optimal binary sparse
masks while training the remaining parameters, either
through gradient-based techniques or heuristic approaches.
Our research incorporates the SPP method into existing
post-training pruning strategies that utilize fixed masks, and
focuses solely on retraining the preserved parameters after
pruning. Looking ahead, we aim to further develop our SPP
method, and integrate it with iterative mask updating tech-
niques to enhance the performance of sparsity-preserved
retraining. We hope this strategy can further boost the de-
velopment in this field of study.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, especially the field of large language
models (LLMs). Our work can contribute to reducing the
computational resources and energy consumption required
for operating these huge models, thereby addressing environ-

4https://github.com/huggingface/transformers

mental concerns associated with large-scale deep network
operations. Additionally, the improved efficiency of LLMs
can facilitate more widespread and accessible applications
of AI technologies, potentially democratizing the benefits
of AI across various sectors. However, as with any ad-
vancement in machine learning, there is a need for ongoing
consideration of ethical implications, particularly in terms
of data privacy, security, and the potential for unintended
biases in model outputs. These are questions that all of us
in the Machine Learning community need to consider when
moving forward.
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A. Appendix
A.1. More explanations

Discussion of setting Wi
α ∈ Rr×n instead of Wi

β ∈ Rm×r.

X W Y
𝑏×𝑛

𝑛×𝑚

𝑏×𝑚

@ ⇒

X W1 Y
𝑏×𝑛

𝑛×⌊
𝑚
𝑟 ⌋

𝑏×𝑚

@ ⇒W2 ⇒ Y1

𝑏×⌊
𝑚
𝑟 ⌋

Y2

X1
W1

Y1

𝑏×⌊
𝑛
𝑟⌋

⌊
𝑛
𝑟⌋×𝑚

𝑏×𝑚

@ ⇒X2
W2

Y2
𝑏×𝑚

+ Y
𝑏×𝑚

⇒

(a) Vanilla Linear

(b) Colum Parallel Linear

(c) Row Parallel Linear

Figure 5. The vanilla linear function and the two parallel methods in Megatron-LM (Shoeybi et al., 2019).

In our paper, we set Wi
α ∈ Rr×n, thus we can utilize the memory optimization technique mentioned in Sec. 3.2 to eliminate

the storage of intermediate matrix Repeat0(W
i
α,

⌊
m
r

⌋
). The optimization approach follows the column parallel linear in

Megatron-LM (Shoeybi et al., 2019), corresponding to Fig. 5 (b). As can be seen, if we split the matrices from the dimension
of m, we can separately calculate the linear operations Y1 = F(X,W1),Y2 = F(X,W2), . . . ,Yr = F(X,Wr) and
concat them. Each Yi (1 ≤ i ≤ r) is a matrix of Rb×⌊m

r ⌋. This does not lead to other additional intermediate weights.

If we use Wi
β ∈ Rm×r, the optimization method will correspond to row parallel linear as in Fig. 5 (c). This leads to two

disadvantages: (1) We need to split both X and W (more steps to implement). (2) After applying Y1 = F(X1,W1),Y2 =
F(X2,W2), . . . ,Yr = F(Xr,Wr), we get intermediate matrices with size b×m (we have to store at least two) and need
to add them together (less efficient).
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A.2. Detailed Proof of Eq. 7

Let us consider a more general case with b ≥ 1.

Given input activation X ∈ Rb×n, W ∈ Rm×n, Wα ∈ Rr×n and Wβ ∈ Rm×1,

X(W ⊙ Repeat0(Wα,
⌊m
r

⌋
)⊙ Repeat1(Wβ , n))

T

=


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xb1 xb2 · · · xbn





w11α11β1 w12α12β1 · · · w1nα1nβ1

w21α11β2 w22α12β2 · · · w2nα1nβ2

...
...

...
w⌊m

r ⌋1α11β⌊m
r ⌋ w⌊m

r ⌋2α12β⌊m
r ⌋ · · · w⌊m

r ⌋nα1nβ⌊m
r ⌋

...
...

...
wm1αr1βm wm2αr2βm · · · wmnαrnβm



T

=


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xb1 xb2 · · · xbn



w11α11β1 w21α11β2 · · · w⌊m

r ⌋1α11β⌊m
r ⌋ · · · wm1αr1βm

w12α12β1 w22α12β2 · · · w⌊m
r ⌋2α12β⌊m

r ⌋ · · · wm2αr2βm

...
...

...
...

w1nα1nβ1 w2nα1nβ2 · · · w⌊m
r ⌋nα1nβ⌊m

r ⌋ · · · wmnαrnβm

 (8)

The matrix on the right can be split horizontally into r blocks, each ∈ Rn×⌊m
r ⌋. Let’s take the first block for simplicity. Some

notations should be added for clarity. Wαi denotes the i-th row of Wα, Wi denotes the i-th block of W corresponding
to the horizontal split, and Wi ∈ R⌊

m
r ⌋×n, Wβi denotes the i-th block of Wβ corresponding to the horizontal split, and

Wβi ∈ R⌊
m
r ⌋×1.


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xb1 xb2 · · · xbn



w11α11β1 w21α11β2 · · · w⌊m

r ⌋1α11β⌊m
r ⌋

w12α12β1 w22α12β2 · · · w⌊m
r ⌋2α12β⌊m

r ⌋
...

...
...

w1nα1nβ1 w2nα1nβ2 · · · w⌊m
r ⌋nα1nβ⌊m

r ⌋



=


x11α11 x12α12 · · · x1nα1n

x21α11 x22α12 · · · x2nα1n

...
...

...
xb1α11 xb2α12 · · · xbnα1n



w11β1 w21β2 · · · w⌊m

r ⌋1β⌊m
r ⌋

w12β1 w22β2 · · · w⌊m
r ⌋2β⌊m

r ⌋
...

...
...

w1nβ1 w2nβ2 · · · w⌊m
r ⌋nβ⌊m

r ⌋



=


x11α11 x12α12 · · · x1nα1n

x21α11 x22α12 · · · x2nα1n

...
...

...
xb1α11 xb2α12 · · · xbnα1n



w11 w21 · · · w⌊m

r ⌋1
w12 w22 · · · w⌊m

r ⌋2
...

...
...

w1n w2n · · · w⌊m
r ⌋n

⊙


β1 β2 · · · β⌊m

r ⌋
β1 β2 · · · β⌊m

r ⌋
...

...
...

β1 β2 · · · β⌊m
r ⌋



=


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xb1 xb2 · · · xbn

⊙


α11 α12 · · · α1n

α11 α12 · · · α1n

...
...

...
α11 α12 · · · α1n



w11 w21 · · · w⌊m

r ⌋1
w12 w22 · · · w⌊m

r ⌋2
...

...
...

w1n w2n · · · w⌊m
r ⌋n

⊙


β1 β2 · · · β⌊m

r ⌋
β1 β2 · · · β⌊m

r ⌋
...

...
...

β1 β2 · · · β⌊m
r ⌋


=X⊙ Repeat0(Wα0, b)W

T
1 ⊙ Repeat1(Wβ0, b)

T ∈ Rb×⌊m
r ⌋

(9)
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Similarly, the result of the i-th block is:

X⊙ Repeat0(Wαi, b)W
T
i ⊙ Repeat1(Wβi, b)

T (10)

Concatenating the result of all the r blocks, we will get the final result:

X(W ⊙ Repeat0(Wα,
⌊m
r

⌋
)⊙ Repeat1(Wβ , n))

T

=[X⊙ Repeat0(Wα0, b)W
T
0 ⊙ Repeat1(Wβ0, b)

T · · ·X⊙ Repeat0(Wα(r−1), b)W
T
r−1 ⊙ Repeat1(Wβ(r−1), b)

T ]

=[X⊙ Repeat0(Wα0, b)W
T
0 · · ·X⊙ Repeat0(Wα(r−1), b)W

T
r−1]⊙ [Repeat1(Wβ0, b)

T · · ·Repeat1(Wβ(r−1), b)
T ]

=[X⊙ Repeat0(Wα0, b)W
T
0 · · ·X⊙ Repeat0(Wα(r−1), b)W

T
r−1]⊙ Repeat1(Wβ , b)

T

=[· · ·X⊙ Repeat0(Wαi, b)W
T
i · · · ]⊙ Repeat1(Wβ , b)

T

(11)

If b = 1, we get the same result with Eq. 7, as Repeatd(W, 1) = W. Notice that Wαi and Wβ are all vectors, and PyTorch
automatically aligns the matrix dimensions when doing Hadamard product between a matrix and a vector. Besides, Wi is
part of the frozen weights W. During the training step, we do not need to save other redundant matrices.
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A.3. Zero-shot results for LLaMA-2

LLaMA - 2 Method Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average

7B

None Dense 77.74 62.82 57.17 68.98 76.30 43.43 31.40 59.69

SparseGPT Unstructured 50% 76.24 55.96 52.87 68.98 71.55 37.80 28.60 56.00
SparseGPT+SPP Unstructured 50% 75.75 56.32 55.32 69.14 74.20 42.49 30.80 57.72
SparseGPT 2:4 66.91 57.76 43.55 66.14 64.10 31.40 24.20 50.58
SparseGPT+SPP 2:4 70.89 54.15 51.33 67.40 70.96 38.99 29.00 54.67

Wanda Unstructured 50% 76.73 53.43 52.50 68.43 72.35 39.16 30.80 56.20
Wanda+SPP Unstructured 50% 77.31 54.15 55.19 67.96 74.96 42.24 33.00 57.83
Wanda 2:4 68.47 53.07 41.33 62.67 62.88 30.55 23.60 48.94
Wanda+SPP 2:4 72.91 54.51 50.61 64.48 70.71 37.88 28.60 54.24

13B

None Dense 80.55 65.34 60.04 72.14 79.42 48.46 35.20 63.02

SparseGPT Unstructured 50% 81.93 62.45 55.83 70.88 75.13 42.49 32.40 60.16
SparseGPT+SPP Unstructured 50% 80.67 65.70 58.47 70.88 77.02 46.59 34.20 61.93
SparseGPT 2:4 78.62 56.68 48.32 68.51 68.52 36.01 27.40 54.87
SparseGPT+SPP 2:4 78.10 67.15 55.29 70.24 72.73 43.00 30.80 59.62

Wanda Unstructured 50% 81.13 58.84 57.07 70.72 75.67 42.83 32.20 59.78
Wanda+SPP Unstructured 50% 80.92 69.31 58.45 71.82 78.49 46.84 34.20 62.86
Wanda 2:4 76.09 55.96 46.19 67.56 68.64 34.13 24.20 53.25
Wanda+SPP 2:4 76.70 66.43 55.02 68.11 72.60 42.24 31.00 58.87

70B

None Dense 83.45 67.87 66.05 77.98 82.55 54.44 37.20 67.08

SparseGPT Unstructured 50% 84.75 71.84 64.10 78.22 81.55 52.73 37.20 67.20
SparseGPT+SPP Unstructured 50% 84.75 72.20 64.05 78.06 81.65 52.73 37.20 67.23
SparseGPT 2:4 81.30 69.31 58.60 76.24 79.50 48.21 32.60 63.68
SparseGPT+SPP 2:4 81.30 68.59 58.80 76.24 79.40 48.29 32.60 63.60

Wanda Unstructured 50% 82.50 72.56 63.90 78.06 81.60 52.47 37.80 66.98
Wanda+SPP Unstructured 50% 82.25 72.92 64.40 77.90 81.70 53.24 37.60 67.14
Wanda 2:4 79.55 67.87 59.05 76.24 79.40 47.70 35.40 63.60
Wanda+SPP 2:4 80.25 69.31 60.65 76.01 80.10 48.81 35.20 64.33

Table 7. Zero-shot evaluation of 7 different tasks from EleutherAI LM Harness (Gao et al., 2021) after training LLaMA-2 on Stanford-
Alpaca (Taori et al., 2023) by SPP. As can be seen from the table, SPP can improve the performance of sparse models.

Here we provide in Tab. 7 the zero-shot performance on seven tasks from EleutherAI LM Harness (Gao et al., 2021) after
training the LLaMA-2 model family on the Alpaca dataset. We find that after instruction fine-tuning, 11 out of 12 models
show performance improvement.
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A.4. More Ablations

More ablations concerning zero-initialization of added weight are provided. We carry out experiments with 4 different
settings on the LLaMA-7B model (none zero-init, Wα zero-init, Wβ zero-init, and both zero-init). We observe that
zero-initializing both Wα and Wβ will lead to gradient vanishment, and the added parameters will remain 0 all the time, so
it will not bring any performance enhancement. Average zero-shot accuracies of the other three initialization choices on 7
tasks of LM-eval (Gao et al., 2021) are shown in Tab. 8.

Method Sparsity Zero-init Wα Zero-init Wβ LM-eval

53.52
✓ 56.162:4

✓ 55.42

57.59
✓ 57.09

Wanda+SPP

Unstructured 50%
✓ 58.13

54.01
✓ 53.952:4

✓ 54.60

57.12
✓ 57.59

SparseGPT+SPP

Unstructured 50%
✓ 58.43

Table 8. More ablation studies concerning zero-initialization of added weights. Zero-initializing Wβ will get the overall best results in
our experiments.

As shown in the table, we find initializing Wβ with 0 and randomly initializing Wα lead to overall better results in our
experiment setting.
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