
Universal benchmark for actuation dynamics
adaptation in reinforcement learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Enabling reinforcement learning (RL) agents to adapt to changing environment1

dynamics is crucial for robustness. Consider the case where a robot’s motors and2

gears change their behavior due to wear and tear over time, or where an old used-3

up part gets replaced. Current literature primarily emphasizes resilience against4

observation noise, distractions in the environment or shifts in physical properties5

of the world. However, the problem of continual shifts or sudden changes in6

actuation dynamics is relatively unexplored. To facilitate systematic research7

in that regard, we contribute a Universal Benchmark for Actuation Dynamics8

Adaptation (UBADA)1. We present a universal set of wrappers compliant with9

the Gymnasium API standard, providing a multitude of challenges with continual10

(serial) and multi-task (parallel) learning scenarios of changing action dynamics.11

We showcase the problem on visual and low-dimensional proprioceptive inputs,12

with dense or sparse rewards, utilizing the state-of-the-art learning algorithms13

Soft-Actor-Critic (SAC) and Data-regularized Q (DrQ).14

1 Introduction15

In current research to systematically investigate transfer capabilities of a reinforcement learning (RL)16

agent, one typically asks questions like the following: "The agent can open a door, but can it open a17

window?" [62, 61, 50, 47, 58]. Benchmarks like Meta-World [62] or CompoSuite [37] contain 10, 5018

or up to 256 different tasks like those used in the example above. Another perspective on transfer19

learning involves exploring generalization and robustness to perturbations in the observation [18].20

For example, one could ask: "The agent can open a door, but can it also open the door if the floor is21

distracted with colorful dots?".22

With our contribution, we emphasize an often neglected angle on robustness and the ability to adapt23

to changes in the agent’s embodiment. For example, we would ask: "The agent can open a door, but24

could it also open a door if it were weaker?". To address such questions, we change the dynamics of25

the system by manipulating the agent’s action effect.26

To illustrate, assuming you are reading this work on a computer. Navigate to your system settings and27

invert the scrolling direction of your trackpad or mouse. With the switched scrolling direction, return28

to the document and resume reading. You will notice that adjusting to the new system behavior might29

require a few trials, but overall you can adapt relatively quickly, and you do not need to re-learn to30

operate the trackpad or mouse from scratch.31

A possible motor psychological explanation for how humans adapt to new dynamics involves a32

shift of attention to the relevant sensory modalities. Humans have efficient innate abilities to handle33

1https://github.com/xxx/xxx

Submitted to ICML 2024 Workshop: Automated Reinforcement Learning: Exploring Meta-Learning, AutoML,
and LLMs. Do not distribute.

https://github.com/xxx/xxx

conflicting sensory stimuli. When using the inverted trackpad or computer mouse, humans suppress34

the attention on haptic and proprioceptive senses and focus on the unfamiliar visual stimulus on35

the screen. The unfamiliar visual stimuli are sensory conflicts that emerge when novel experiences36

contradict expectations that have been formed through lifelong learning [32]. See Figure 1 for an37

illustration of the inverted computer mouse and Section A in the Appendix for more examples.38

Figure 1: Psychological experiments requiring sub-
jects to learn novel unexpected dynamics [13, 31,
32], e.g., moving the hand to the right causes the
mouse cursor to move left. Illustration adapted
from Liesner et al. [32].

The example with the inverted mouse is rather39

constructed, but it is a good proxy for many re-40

alistic cases in robotics. For example, wear and41

tear of motors can lead to fluctuations in their42

effectiveness over time. Replacing a motor or a43

joint yields different dynamics that have to be44

relearned. Even in the case of a malfunction-45

ing part, the robot should be able to adapt and46

compensate for the missing functionality.47

In order to address such problems or similar48

ones in reinforcement learning (RL), significant49

effort is being devoted to improving robustness,50

(zero-shot) adaptation and overall generalization51

[59, 18, 49, 24]. However, current RL bench-52

marks and methods primarily focus on address-53

ing noise, augmentation, perturbation, or distrac-54

tions at the observation level, often neglecting55

changes in actuation dynamics.56

To bring greater attention to this aspect, we propose our main contribution: a Universal Benchmark57

for Actuation Dynamics Adaptation (UBADA), designed to analyze the adaptation capabilities of RL58

agents when confronted with dynamic changes in the agent’s actuation. UBADA can be considered59

a set of universal wrappers for environments following the Gymnasium API standard [53]. It60

is universal, in the sense that it is not limited to specific hand-crafted environments, and it is61

independent of the type of sensory input. Therefore, it can convert a variety of publicly available62

standard environments into a challenging task for the continual learning, curriculum learning (serial63

transfer) or multi-task learning (parallel transfer) setup. In addition, it can be used to extend existing64

benchmarks by increasing the number of available tasks. The focus on adaptation and robustness65

and the universal nature of our benchmark facilitates research into AutoRL techniques aimed at66

optimizing agents for generality and applicability [4, 38]. The second contribution of this work67

involves evaluating the transfer capabilities of two state-of-the-art RL algorithms, namely SAC68

[16] and DrQ [60]. Therefore, we utilize environments from Gymnasium MuJoCo [53, 52] (goal-69

conditioned and non goal-conditioned) and DM Control [54].70

2 Related work71

Our contribution is a benchmark for changing action dynamics. Therefore, it is related to transfer72

learning, multi-task and meta learning, continual and curriculum learning. Another relevant field of73

research is RL in modified environments.74

2.1 Transfer, multi-task and continual learning benchmarks75

Henderson et al. [19] regard the Arcade Learning Environment (ALE) [3] as the primary benchmark76

for evaluating multi-task learning in domains with discrete actions. However, for continuous actions77

they observe a lack of a standardized evaluation environments for multi-task learning at that time.78

To fill this gap, they introduce a benchmark [19], aiming to facilitate a systematic comparison of79

multi-task, transfer, and lifelong learning in continuous domains.80

The creators of Meta-World [62] emphasize the possible occurrence of negative transfer between81

tasks in the ALE. Hence, they motivate their work by the idea that positive transfer between different82

tasks should be possible. They propose a set of related yet diverse robotics tasks that share the same83

robot, action space, and workspace. It became a very popular benchmark used to study multi-task84

and meta learning [61, 63, 47, 50].85

2

In robotics, more benchmarks comprising a multitude of environments exist [14, 22, 54, 58, 37]. For86

example, CompoSuite [37] introduces a series of tasks where a robotic arm manipulates individual87

objects to achieve objectives while navigating obstacles. This framework facilitates the evaluation of88

RL approaches in learning the compositional structure of tasks and their ability for compositional89

generalization to unseen tasks. Avalanche RL [35, 5] provides support for a continuous stream90

of diverse environments. Additionally, CORA [40] encompasses metrics and baselines designed91

to assess various aspects of continual RL. These aspects include catastrophic forgetting, plasticity,92

generalization, and sample-efficient learning. The benchmarks are based on diverse environments93

such as ALE [3, 25, 45, 43], ProcGen [8, 21], NetHack [28, 44], ALFRED [46] (built upon AI2-94

THOR [26]). While many efforts in continual learning tend to emphasize catastrophic forgetting,95

Continual World [58] advocates for the significance of forward transfer. Another notable contribution96

is BabyAI [7], which involves the creation of multiple grid-world environments of increasing difficulty.97

Here, the primary focus is on investigating grounded language learning.98

2.2 Environment modification benchmarks99

The perceived dynamics of an environment can be changed by directly modifying the agent’s100

observation. For tasks derived from pixel inputs, this could involve the incorporation of color and101

background distractions as valuable benchmarks [18, 49]. Another approach is a straightforward data102

augmentation technique, as proposed by Yarats et al. [60]. The authors utilize perturbations on the103

input observations commonly employed in computer vision tasks to regularize the value function.104

With DrQ they show, that this augmentation approach proves to be particularly effective in enhancing105

the performance of the SAC algorithm [16]. Not necessarily focused on RL from pixels, in their106

study, Khraishi and Okhrati [23] also delve into the application of data augmentation techniques in107

RL to enhance model performance and promote diversity in training data.108

Another way to modify the perceived dynamics of an environment is by using action noise. Action109

noise plays an important role for exploration behavior [20, 12], as in Deep Deterministic Policy110

Gradient (DDPG) [33] and Twin Delayed DDPG (TD3) [15]. It is commonly generated by utilizing111

the Ornstein–Uhlenbeck process [55] or drawing from uncorrelated Gaussian distributions. In the112

case of SAC [16], where the policy is stochastic, Gaussian noise is implicitly introduced through the113

sampling procedure. In our work, the modification of actuation dynamics serves a different purpose114

than exploration: We focus on analyzing the adaptability of agents to dynamic changes.115

Langlois and Everitt [29] have the human-in-a-loop aspect in mind and analyze how an agent behaves116

if its intended actions are overridden or manipulated by the environment or another agent. That is117

also related to the work on safety in RL by Leike et al. [30].118

van Seijen et al. [56] want to measure how quickly an agent that is trained on task A changes its119

policy after it is placed in task B. They specifically experiment with maintaining identical transition120

dynamics between tasks A and B, while introducing a local difference in the reward function. For121

that purpose they introduce the local change adaptation (LoCA) regret metric.122

Similar to our method, the CARL benchmark makes environments configurable and facilitates training123

agents to generalize across different instances (contexts) of the same environment. This supports124

research into AutoRL techniques aimed at optimizing agents for broad generality [4, 38].125

Furthermore, there is a trend in research to modify or perturb system parameters, such as body part126

size or gravity, in continuous control tasks [19, 11].127

The work that is most closely related to ours is the Real-World Reinforcement Learning (RWRL)128

Challenge Framework [11]. It provides a diverse suite of tasks to change the morphology of the129

agent or the physics of the world, like the friction of the ground. Related to the action effect it allows130

action offsets, action noise, repetitive actions, and action drops. However, it exclusively includes131

proprioceptive observations and does not allow for visual observations, and it is constrained by a132

limited, predefined set of environments. While the concepts from RWRL could in principle be applied133

to novel environments, doing so within the RWRL system may pose considerable challenges. In134

our approach, we address these drawbacks to provide a more general solution which is implemented135

as a set of universal wrappers that modify actions. Furthermore, our approach facilitates extensive136

configurability. For instance, action effects can be altered selectively for individual action dimensions,137

e.g., specific joints in a robot arm, rather than modifying the action as a whole.138

3

3 Background139

Reinforcement learning builds on Markov Decision Processes (MDP), defined as tuples140

(S,A, R, P, γ). The behavior of the world is determined by the transition probability P (s′|s, a),141

whereas the policy π(a|s) generates an action a ∈ A based on inputs s ∈ S , to maximize the cumula-142

tive return, the sum of discounted rewards
∑

t=0 γ
trt, with rt = R(st, at, st+1). The particularity of143

this work is that we introduce a modification of the action p(ā|a) which changes over time. Hence, in144

the transition dynamics P (s′|s, a) the action is manipulated by our wrappers to yield P (s′|s, ā). The145

outcome could be similar or totally diverge from the old one.146

An extended background section on transfer learning in RL, multi-task RL and continual RL is147

provided in the Appendix B.148

4 Manipulate the action effect149

UBADA is designed around the Gymnasium API standard [53]. It consists of a variety of wrappers150

that manipulate the action effect of the agent within its environment. They are universally applicable151

insofar as they are independent of the selected base environment and independent of whether pixels152

or state features are processed. Regardless of the action effect wrapper selected, the action space153

remains the same as in the original base environment. The wrappers provide versatility by allowing154

toggling on and off, seamless combination with each other, and the capability to alter the action effect155

of one or all action dimensions. Additionally, they are configurable. This design grants considerable156

freedom in tailoring the experimental setup according to specific preferences.157

Note that the possible modifications for discrete actions are limited due to their inherent limited158

flexibility, the focus is on continuous actions.159

The action effect wrappers are listed in the following. An overview including a brief description and160

motivation can be found in Table 1 in the Appendix. In general, all wrappers are configurable by the161

choice of the action dimension which is modified and if applicable by another specific parameter162

which is mentioned in the following.163

InvertAction Consider the concept of the backward bicycle, where attempting a left turn of the164

handlebar leads to movement in the opposite, or right, direction (cf. Appendix A). This wrapper165

inverts the continuous action, simply by switching the sign of one or all action dimensions.166

ScaleAction This wrapper scales the continuous action by multiplying either one or all action167

dimensions with a scalar value. A scenario where this might be relevant is to simulate decaying motor168

efficiencies over a robot’s lifetime. The scaling factor is configurable.169

OffsetAction Similarly, this wrapper adds a constant scalar value to one or all dimensions of the170

continuous action. This might simulate an inadequate calibration of a system, reflecting a systematic171

error. The offset is configurable.172

NoiseAction This wrapper adds a random value to either one or all dimensions of the continuous173

action. The random value is drawn from a Gaussian distribution with a mean µ = 0 and a user-defined174

standard deviation σ. While being applied at the environment level, it can be perceived as analogous175

to Gaussian action noise commonly utilized in algorithms like DDPG or TD3. In a robotics context,176

this could simulate the presence of random errors. The choice of σ is configurable.177

SineNoiseAction Expanding upon the NoiseAction wrapper, this implementation adds a sine178

offset to the Gaussian noise. A single parameter within the wrapper specifies both the standard179

deviation σ and the amplitude of the sinusoidal wave. This allows for analyzing the impact of both an180

unpredictable component (Gaussian noise) and a predictable element (sine offset) on the action. The181

choice of σ is configurable.182

ZeroAction It randomly sets one or all dimensions of the continuous action to zero for a defined183

number of steps. Again, in a robotics context, this wrapper might correspond to loose contacts or184

sporadic complete engine failures. The probability of a dimension (or the whole action) being zeroed185

and the duration of this zeroing effect are both configurable.186

RepeatAction Similar to ZeroAction, but instead of setting to zero this wrapper repeats one187

or all dimensions of the continuous or discrete action for a defined number of steps. Proposed by188

4

Machado et al. [36] this effect is also known as sticky actions, though it is usually not possible to189

repeat only one dimension of the action. The probability of a dimension (or the whole action) being190

repeated and the duration of this repetition are both configurable.191

SwapAction This wrapper swaps either one dimension of the continuous or discrete action with192

another randomly picked one or shuffles randomly all dimensions. The changed order of dimensions193

is kept for the whole period of time this wrapper is activated. Naively, one can imagine interchanged194

cables wrongly connecting the motors in a robot system.195

An additional DynamicsHintObservation wrapper can be applied optionally, it augments the196

observation space with a one-hot encoding which functions as a task identifier and informs the agent197

about the applied and active action effect wrapper.198

5 Action effect benchmark199

In the context of RL, the term task can sometimes be subject to varying interpretations. In our200

definition, each dynamic modification is considered a distinct task, or context, even though the201

underlying environment remains constant.202

In this section we provide experimental results using two environments: HalfCheetah-v4 based on203

work by Wawrzyński [57] and available through Towers et al. [53] and walker-walk-v0 from DM204

Control [54], utilized via Towers et al. [53] and Tai et al. [51] with proprioceptive inputs. Extended205

results for more kinds of environments (goal-conditioned, visual observation inputs) showcasing the206

versatility of the wrapper approach are provided in Appendix G (cf. Table 3 for an overview). We use207

the learning algorithms SAC [16] for proprioceptive and DrQ [60] for visual input observations. For208

goal-conditioned environments we combine SAC with Hindsight Experience Replay (HER) [1]. We209

use implementations provided by Kostrikov [27] (JAXRL2) and Raffin et al. [42] (Stable-Baselines210

3). Hyperparameters are kept default as provided in their implementations (cf. Section D in the211

Appendix). In general, results are obtained by averaging across five runs with different random212

initialization.213

On the one hand, our intent is to demonstrate transfer capabilities of general purpose agents while214

learning under changing conditions. Although very interesting, we do not investigate how state-215

of-the-art approaches specifically designed for multi-task RL [61, 47, 50] or continual RL [25, 43]216

behave under action dynamic changes. We also do not analyze the effect of different replay buffer217

sizes which possibly influences learning and transfer capabilities in the continual learning case.218

On the other hand, the purpose of the following experiments and those in Section G in the Appendix219

is to illustrate the universal applicability of action modifications across various environments. In some220

cases the wrappers yield fundamentally different modifications. Not all modifications are supposed to221

be transferable to real-world scenarios. Still, they can be useful to reveal the limits of the agent, in222

particular with regard to dimensions of robustness and transfer capabilities. An extended discussion223

on the classification of the different modifications is provided in Section E in the Appendix.224

5.1 Sequential training setup (continual learning)225

5.1.1 Experimental setting226

The use of wrappers on top of the actual environments functions like a modular system. Changes227

can be combined with each other as desired and triggered at any time step. For the sequential228

experiments, we first use the initial environment and then switch the dynamic of the environment by229

toggling the respective action effect wrapper after a defined number of steps. For the environments230

walker-walk-v0 and HalfCheetah-v4 we train each task Ti for TT = 500000 and TT = 1000000231

steps, respectively. The choice of TT is made to ensure that, at the very least, the unmodified232

environment can be trained to a reasonable degree. We only consider sequences where TT is233

constant across all tasks. For example, if we consider the initial dynamic and nine modifications234

of the walker-walk-v0 environment, the sequence has N = 10 tasks and in total we train for235

T = N · TT = 5000000 steps. The i-th task is trained during the interval t ∈ [(i− 1) · TT , i · TT].236

Unlike Powers et al. [40] we do not cycle through the sequence of tasks multiple times. (Powers et al.237

[40] also only cycle multiple times in the general case, however, to compute forward transfer and238

forgetting they use one cycle.)239

5

While it is possible to have multiple wrappers activated simultaneously, for a clearer understanding240

of the impact of the individual wrappers, we focus on a scenario where, at each time step, only one241

wrapper is active. Moreover, within our experiments we do not combine multiple types of wrappers,242

e.g., ScaleAction and OffsetAction. Possibilities are extensive.243

5.1.2 Metrics244

The metrics considered and their implementation were mainly based on the work of Lopez-Paz and245

Ranzato [34], Díaz-Rodríguez et al. [10], Wołczyk et al. [58] and Powers et al. [40].246

Let Rt(π, Ti) be the episodic return, the undiscounted sum of rewards received over an episode,247

under the policy π on task Ti at time step t. To enhance the understanding of results and to account248

for different attainable returns in different environments we define a performance measure ρi(t) by249

normalizing the return by its maximum value over all time steps and over all tasks. Note, within a250

sequence each task is derived from the same environment, hence we use the maximum over all tasks251

which differs from Powers et al. [40]. When comparing performances of two tasks Ti and Tj within252

one task sequence we generally assume i < j.253

ρi(t) =
Rt(π, Ti)

max
1≤t≤T,1≤k≤N

Rt(π, Tk)
(1)

Average performance The performance at any time step averaged across all tasks. We consider its254

final value P(t = T) for evaluation.255

P(t) =
1

N

N∑
i=1

ρi(t) (2)

Forward transfer Measures the influence that learning a task Ti has on the performance of a256

future task Tj . It can occur when the model is able to perform zero-shot learning [10], e.g., Powers257

et al. [40] refer to the corresponding metric as zero-shot forward transfer.258

FT =
2

N(N − 1)

N∑
j=2

j−1∑
i=1

FTj where FTj = ρj(t = i · TT)− ρj(t = (i− 1) · TT) (3)

Backward transfer In contrast to the findings reported by Wołczyk et al. [58], where they observe259

no occurrence of backward transfer in their scenario, we find the prospect intriguing for our specific260

purposes. Differences between tasks in our context may be more nuanced, implying that learning261

a modification of an environment could potentially enhance performance on the initial task in a262

retrospective manner.263

To be precise, we actually use positive backward transfer following the argumentation of Díaz-264

Rodríguez et al. [10] and Wołczyk et al. [58].265

BT =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

BTi where BTi = max{0, ρi(t = j ·TT)− ρi(t = (j− 1) ·TT)}

(4)

Forgetting It represents the decrease of performance from a learned task during later tasks.266

F =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

Fi where Fi = max{0, ρi(t = (j − 1) · TT)− ρi(t = j · TT)} (5)

In alignment with the argumentation presented in Powers et al. [40] and akin to the approach taken267

by Lopez-Paz and Ranzato [34], unlike Chaudhry et al. [6] we use the performance right before268

6

training on a new task rather than the maximum value observed so far. That approach corresponds to269

a more task isolated view, hence Powers et al. [40] denotes their metric isolated forgetting. Wołczyk270

et al. [58] consider the decrease of performance after ending the training on the whole task sequence.271

They compute Fi = ρi(t = i · TT)− ρi(t = T), which corresponds to a more cumulative effect of272

forgetting.273

Also note, to emphasize two different concepts, we explicitly distinguish positive backward transfer274

and forgetting, although Equation 4 and 5 are quite related [10].275

5.1.3 One dynamic switch276

In this scenario, a SAC agent trains for TT = T/2 steps on a task 1, T1, and continues training on277

task 2, T2, for the same number of steps. T1 is the unmodified environment. T2 comes from the same278

environment, but with modified action dynamics. The modification is defined by the type of action279

wrapper, the action dimension to be modified, and if applicable a wrapper specific configuration280

value. In Figure 2 we use the InvertAction and the ScaleAction wrapper. We modify only action281

dimension 0. For ScaleAction we consider three scaling factors {0.2, 0.5, 0.8}.282

With the one dynamic switch setup and the selection of action effect modifications we showcase the283

different metrics defined in Section 5.1.2. While the InvertAction switch is a perfect example284

for (catastrophic) forgetting (F = 0.92), we cannot observe any forgetting of the first task after the285

ScaleAction switch (cf. Figure 2a). It applies analogously for the forward transfer. Just considering286

individual task returns, the agent is not able to transfer knowledge from the baseline environment287

to the same environment with the InvertAction modification. ScaleAction allows for forward288

transfer, correlating with the manifestation of the switch. The lower the scaling value, the higher the289

contrast between tasks. For scaling values 0.8, 0.5 and 0.2 we have FT = 0.96, FT = 0.89 and290

FT = 0.49, respectively. To analyze positive backward transfer we consider the HalfCheetah-v4291

environment (cf. Figure 2b). For a ScaleAction switch and lower scaling values we can observe292

positive backward transfer, while forgetting emerges otherwise. For scaling values 0.8, 0.5 and 0.2293

we have BT = 0.12, BT = 0.02, and BT = 0.0, respectively.294

0 500K 1M

0

250

500

750

1000
ScaleAction

0 500K 1M

0

250

500

750

1000
InvertAction

0.2 0.5 0.8 Task 1 Task 2

(a) walker-walk-v0 environment.

0 1M 2M

3000

6000

9000

12000

ScaleAction

0 1M 2M

0

3000

6000

9000

12000

InvertAction

0.2 0.5 0.8 Task 1 Task 2

(b) HalfCheetah-v4 environment.

Figure 2: Per task evaluation returns for the sequential training setup with one dynamic switch. To
establish the switch we use the InvertAction and the ScaleAction wrapper. We modify only
action dimension 0. For ScaleAction we consider three scaling factors {0.2, 0.5, 0.8}. The switch
happens at T/2.

5.1.4 Continual adaptation to new dynamics295

In this scenario a SAC agent trains for TT = T/10 steps on the unmodified action dynamic, task T1.296

Then nine times for TT = T/10 steps on modified action dynamics, varied by the wrapper value,297

tasks {T2, T3, . . . , T10}. We construct the sequence of tasks with increasing difficulty. One could298

think of a curriculum learning schedule. For NoiseAction tasks are determined by the standard299

deviation for the Gaussian noise in {0.1, 0.2, . . . , 0.9}, for OffsetAction the action offset is in300

{−0.1,−0.2, . . . ,−0.9} and for ScaleAction the scaling factor is in {0.9, 0.8, . . . , 0.1}.301

Consider solely the training return in Figure 3a, the agent can adapt to the action effect changes302

smoothly without larger collapses. In that regard there is no difference between the three action303

effect wrapper. Now consider the evaluation returns for each individual task at every time step in304

Figure 3b. Differences in forward transfer and forgetting stand out. While the forward transfer in305

7

the NoiseAction and OffsetAction experiments mostly happens during the training of task T1,306

in the ScaleAction experiment it occurs on a wider time span, i.e., during the training of T1 to T5.307

Nevertheless, overall according to Equation 3 all three experiments have the same total FT = 0.19.308

As the metric is averaged across tasks and training periods, it cannot provide an isolated view on309

forward transfer. Observing Figure 3b or the distribution of FTj (cf. Equation 3) is more appropriate.310

Towards the end of the training sequence the agent shows to some degree forgetting of the earlier311

tasks in the context of the OffsetAction experiment. The longer it is been since the training of312

a task, the more is forgotten. Interestingly, this notion is not observed in the NoiseAction and313

ScaleAction experiments.314

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

(a) Train returns.

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
ScaleAction

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Task 7
Task 8

Task 9
Task 10

(b) Evaluation returns.

Figure 3: Returns for the sequential training setup with continual adaptation. A SAC agent is trained
on the walker-walk-v0 environment. After first training on the unmodified action dynamic, action
effect changes occur every T/10 steps. For NoiseAction tasks are determined by an action wrapper
value in {0.1, 0.2, . . . , 0.9}, for OffsetAction in {−0.1,−0.2, . . . ,−0.9}, for ScaleAction in
{0.9, 0.8, . . . , 0.1}. The modification is done on action dimension 0.

5.2 Parallel training setup (multi-task learning)315

5.2.1 Experimental setting316

The main difference compared to the sequential setup is that multiple dynamics are to be317

learned simultaneously and that task identifiers are passed to the agent for this purpose uti-318

lizing the DynamicsHintObservation wrapper. For the environments walker-walk-v0 and319

HalfCheetah-v4 we train the agent for T = 1000000 and T = 2000000 steps, respectively. The320

steps eventually trained per task Ti are evenly distributed. In general we consider only a pair of tasks,321

hence {T1, T2}.322

In our multi-task experiments we solely rely on one-hot task identifiers. For example, Sodhani et al.323

[47] communicate tasks from Meta-World [62] to the agent through language descriptions. They324

show that similarities between these descriptions can be exploited for learning. Applying this idea to325

modifications in action effects would yield interesting experiments, which we defer to future research326

endeavors.327

5.2.2 Metrics328

Again, Rt(π, Ti) is the episodic return under the policy π on task Ti at time step t. We define a329

performance measure ρi(t) by normalizing the return by its maximum value over all time steps and330

over all tasks. As in the sequential case, Equation 1 applies.331

8

Average performance Similar to the setup for sequential training, we measure the performance at332

any time step averaged across all tasks. We consider its final performance P(t = T) for evaluation.333

Equation 2 applies.334

Parallel transfer In the sequential learning setup Chaudhry et al. [6] define an intransigence metric335

for measuring forward transfer by comparing the maximum return for a task trained independently to336

the return achieved while it was trained sequentially [58, 40].337

For the multi-task learning setup we propose an analogous metric to assess parallel transfer. We338

compare the performance ρbi for a task trained independently (single-task, baseline) to the performance339

ρi achieved while it was trained in parallel to other tasks (multi-task). We assume both, the single-task340

and the multi-task run, train for the same number of steps. ρi and ρbi are both normalized by the341

overall (single-task or multi-task condition) maximum value.342

PT =
1

N

N∑
i=1

PTi where PTi = ρi(t = T)− ρbi (t = T) (6)

5.2.3 Pair-wise multi-task343

We train a SAC agent in parallel on two tasks in the walker-walk-v0 environment, i.e., on the344

unmodified action dynamic and on a modification of such. We compare the performances of the345

two tasks trained in a multi-task setting to their baseline performances achieved in a single-task346

setting. While we observe hardly any parallel transfer if the InvertAction modification is done on347

only one dimension (cf. Figure 4a, PT = −0.02), if it is done on all action dimensions the agent348

cannot cope with both tasks in parallel. Figure 4b illustrates an instance of negative parallel transfer349

(PT = −0.14). In all our experiments (cf. Table 11 and 12 in the Appendix) we were not able350

to observe positive parallel transfer which might be due to not using a specific multi-task learning351

algorithm.352

0 500K 1M

0

250

500

750

1000
MT InvertAction

0 500K 1M

0

250

500

750

1000
ST InvertAction

Task 1 Task 2

(a) Modification on action dimension 0.

0 500K 1M

0

250

500

750

1000
MT InvertAction

0 500K 1M

0

250

500

750

1000
ST InvertAction

Task 1 Task 2

(b) Modification on all action dimensions.

Figure 4: Evaluation returns for a SAC agent trained on the walker-walk-v0 environment. It
independently trains on two tasks in parallel (multi-task, MT) and individually (baseline, single-
task, ST). Tasks correspond to the unmodified action dynamic (solid lines) and a InvertAction
modification (dashed lines).

6 Conclusions353

We propose a Universal Benchmark for Actuation Dynamics Adaptation (UBADA) comprising a354

set of universal wrappers adhering to the Gymnasium API standard. UBADA can modify arbitrary355

environments and turn them into challenges for both continual (serial) and multi-task (parallel)356

learning scenarios. It focuses specifically on adaptation to changing action dynamics. With our357

experiments we utilize these challenges to advance the understanding and evaluation of RL agents’358

transfer capabilities under continual and sudden dynamic changes. Research on adaptability to359

changing dynamics is crucial for robustness and eventually real-world applications. With our360

benchmark, we place a clear emphasis on dynamic changes associated with variations in action effects,361

and we are confident that UBADA can aid systematic research on that perspective of robustness.362

9

References363

[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,364

O. Pieter Abbeel, and W. Zaremba. Hindsight Experience Replay. In Advances in Neural365

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.366

[2] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,367

N. Heess, and T. Lillicrap. Distributed Distributional Deterministic Policy Gradients. In368

International Conference on Learning Representations, 2018.369

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An370

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,371

2013.372

[4] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S. Döhler, A. Biedenkapp, B. Rosenhahn,373

F. Hutter, and M. Lindauer. Contextualize Me - The Case for Context in Reinforcement Learning.374

Transactions on Machine Learning Research, 2023.375

[5] A. Carta, L. Pellegrini, A. Cossu, H. Hemati, and V. Lomonaco. Avalanche: A PyTorch library376

for deep continual learning. Journal of Machine Learning Research, 24(363):1–6, 2023.377

[6] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr. Riemannian Walk for Incremental378

Learning: Understanding Forgetting and Intransigence. In Proceedings of the European379

Conference on Computer Vision (ECCV), pages 532–547, 2018.380

[7] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and381

Y. Bengio. BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning,382

2019.383

[8] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Bench-384

mark Reinforcement Learning. In Proceedings of the 37th International Conference on Machine385

Learning, pages 2048–2056. PMLR, 2020.386

[9] R. de Lazcano, K. Andreas, J. J. Tai, S. R. Lee, and J. Terry. Gymnasium robotics, 2023.387

[10] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget, there is more than388

forgetting: New metrics for Continual Learning. CoRR, abs/1810.13166, 2018.389

[11] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An390

empirical investigation of the challenges of real-world reinforcement learning, 2021.391

[12] O. Eberhard, J. Hollenstein, C. Pinneri, and G. Martius. Pink Noise Is All You Need: Colored392

Noise Exploration in Deep Reinforcement Learning. In The Eleventh International Conference393

on Learning Representations, 2022.394

[13] J. P. Ebert and D. M. Wegner. Time warp: Authorship shapes the perceived timing of actions395

and events. Consciousness and Cognition, 19(1):481–489, 2010. ISSN 1053-8100. doi:396

10.1016/j.concog.2009.10.002.397

[14] B. Ellenberger. PyBullet gymperium, 2018/2019.398

[15] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic399

methods. In International Conference on Machine Learning, pages 1582–1591, 2018.400

[16] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum401

Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th402

International Conference on Machine Learning, pages 1861–1870. PMLR, 2018.403

[17] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent404

dynamics for planning from pixels. In International Conference on Machine Learning, pages405

2555–2565, 2019.406

[18] N. Hansen and X. Wang. Generalization in reinforcement learning by soft data augmentation.407

In International Conference on Robotics and Automation, 2021.408

[19] P. Henderson, W.-D. Chang, F. Shkurti, J. Hansen, D. Meger, and G. Dudek. Benchmark409

Environments for Multitask Learning in Continuous Domains, 2017.410

[20] J. Hollenstein, S. Auddy, M. Saveriano, E. Renaudo, and J. Piater. Action noise in off-policy411

deep reinforcement learning: Impact on exploration and performance. Transactions on Machine412

Learning Research, 2022. ISSN 2835-8856.413

10

[21] M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson. Transient Non-stationarity414

and Generalisation in Deep Reinforcement Learning. In International Conference on Learning415

Representations, 2020.416

[22] S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison. RLBench: The robot learning benchmark417

& learning environment. IEEE Robotics and Automation Letters, 2020.418

[23] R. Khraishi and R. Okhrati. Simple Noisy Environment Augmentation for Reinforcement419

Learning, 2023.420

[24] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A Survey of Zero-shot Generalisation421

in Deep Reinforcement Learning. Journal of Artificial Intelligence Research, 76:201–264, 2023.422

ISSN 1076-9757. doi: 10.1613/jair.1.14174.423

[25] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,424

J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and425

R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the National426

Academy of Sciences, 114(13):3521–3526, 2017. doi: 10.1073/pnas.1611835114.427

[26] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani,428

D. Gordon, Y. Zhu, A. Kembhavi, A. Gupta, and A. Farhadi. AI2-THOR: An Interactive 3D429

Environment for Visual AI, 2022.430

[27] I. Kostrikov. JAXRL: Implementations of reinforcement learning algorithms in JAX, 2022.431

[28] H. Küttler, N. Nardelli, A. Miller, R. Raileanu, M. Selvatici, E. Grefenstette, and T. Rocktäschel.432

The NetHack Learning Environment. In Advances in Neural Information Processing Systems,433

volume 33, pages 7671–7684. Curran Associates, Inc., 2020.434

[29] E. D. Langlois and T. Everitt. How RL agents behave when their actions are modified. Pro-435

ceedings of the AAAI Conference on Artificial Intelligence, 35(13):11586–11594, 2021. doi:436

10.1609/aaai.v35i13.17378.437

[30] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau, and S. Legg.438

AI Safety Gridworlds, 2017.439

[31] M. Liesner, W. Kirsch, and W. Kunde. The interplay of predictive and postdictive components440

of experienced selfhood. Consciousness and Cognition, 77:102850, 2020. ISSN 1053-8100.441

doi: 10.1016/j.concog.2019.102850.442

[32] M. Liesner, W. Kirsch, R. Pfister, and W. Kunde. Spatial action–effect binding depends on443

type of action–effect transformation. Attention, Perception, & Psychophysics, 82(5):2531–2543,444

2020. ISSN 1943-393X. doi: 10.3758/s13414-020-02013-2.445

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.446

Continuous control with deep reinforcement learning. In 4th International Conference on447

Learning Representations, ICLR, 2016.448

[34] D. Lopez-Paz and M. A. Ranzato. Gradient Episodic Memory for Continual Learning. In449

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.450

[35] N. Lucchesi, A. Carta, V. Lomonaco, and D. Bacciu. Avalanche RL: A Continual Reinforcement451

Learning Library, 2022.452

[36] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling.453

Revisiting the arcade learning environment: Evaluation protocols and open problems for general454

agents. Journal of Artificial Intelligence Research, 61(1):523–562, 2018. ISSN 1076-9757.455

[37] J. A. Mendez, M. Hussing, M. Gummadi, and E. Eaton. CompoSuite: A Compositional456

Reinforcement Learning Benchmark, 2022.457

[38] J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen,458

R. Calandra, A. Faust, F. Hutter, and M. Lindauer. Automated Reinforcement Learning459

(AutoRL): A Survey and Open Problems. Journal of Artificial Intelligence Research, 74, 2022.460

ISSN 1076-9757. doi: 10.1613/jair.1.13596.461

[39] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,462

M. Chociej, P. Welinder, V. Kumar, and W. Zaremba. Multi-Goal Reinforcement Learning:463

Challenging Robotics Environments and Request for Research, 2018.464

11

[40] S. Powers, E. Xing, E. Kolve, R. Mottaghi, and A. Gupta. CORA: Benchmarks, Baselines, and465

Metrics as a Platform for Continual Reinforcement Learning Agents. In Proceedings of The 1st466

Conference on Lifelong Learning Agents, pages 705–743. PMLR, 2022.467

[41] A. Raffin. RL baselines3 zoo, 2020.468

[42] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-Baselines3:469

Reliable Reinforcement Learning Implementations. Journal of Machine Learning Research, 22470

(268):1–8, 2021. ISSN 1533-7928.471

[43] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience Replay for Continual472

Learning. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,473

Inc., 2019.474

[44] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro, F. Petroni, H. Kuttler,475

E. Grefenstette, and T. Rocktäschel. MiniHack the planet: A sandbox for open-ended reinforce-476

ment learning research. In Thirty-Fifth Conference on Neural Information Processing Systems477

Datasets and Benchmarks Track (Round 1), 2021.478

[45] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and479

R. Hadsell. Progress & Compress: A scalable framework for continual learning. In Proceedings480

of the 35th International Conference on Machine Learning, pages 4528–4537. PMLR, 2018.481

[46] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and482

D. Fox. ALFRED: A benchmark for interpreting grounded instructions for everyday tasks. In483

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.484

[47] S. Sodhani, A. Zhang, and J. Pineau. Multi-Task Reinforcement Learning with Context-based485

Representations, 2021.486

[48] D. Starch. A demonstration of the trial and error method of learning. Psychological Bulletin, 7487

(1):20–23, 1910. ISSN 1939-1455. doi: 10.1037/h0063796.488

[49] A. Stone, O. Ramirez, K. Konolige, and R. Jonschkowski. The Distracting Control Suite – A489

Challenging Benchmark for Reinforcement Learning from Pixels, 2021.490

[50] L. Sun, H. Zhang, W. Xu, and M. Tomizuka. PaCo: Parameter-Compositional Multi-Task491

Reinforcement Learning, 2022.492

[51] J. J. Tai, M. Towers, and E. Tower. Shimmy: Gymnasium and PettingZoo wrappers for493

commonly used environments. Zenodo, 2023.494

[52] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012495

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.496

doi: 10.1109/IROS.2012.6386109.497

[53] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. de Cola, T. Deleu, M. Goulão,498

A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J.499

Shen, and O. G. Younis. Gymnasium, 2023.500

[54] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,501

N. Heess, and Y. Tassa. Dmcontrol: Software and tasks for continuous control. Software502

Impacts, 6:100022, 2020. ISSN 2665-9638. doi: 10.1016/j.simpa.2020.100022.503

[55] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Physical Review,504

36(5):823–841, 1930. doi: 10.1103/PhysRev.36.823.505

[56] H. van Seijen, H. Nekoei, E. Racah, and S. Chandar. The LoCA regret: A consistent metric506

to evaluate model-based behavior in reinforcement learning. In Proceedings of the 34th507

International Conference on Neural Information Processing Systems, 2020.508

[57] P. Wawrzyński. A Cat-Like Robot Real-Time Learning to Run. In Adaptive and Natural Comput-509

ing Algorithms, volume 5495, pages 380–390. Springer Berlin Heidelberg, Berlin, Heidelberg,510

2009. ISBN 978-3-642-04920-0 978-3-642-04921-7. doi: 10.1007/978-3-642-04921-7_39.511

[58] M. Wołczyk, M. Zając, R. Pascanu, Ł. Kuciński, and P. Miłoś. Continual World: A Robotic512

Benchmark For Continual Reinforcement Learning, 2021.513

[59] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample514

efficiency in model-free reinforcement learning from images. 2019.515

12

[60] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep516

reinforcement learning from pixels. In International Conference on Learning Representations,517

2021.518

[61] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient Surgery for519

Multi-Task Learning, 2020.520

[62] T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shively, A. Bellathur, K. Hausman,521

C. Finn, and S. Levine. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta522

Reinforcement Learning, 2021.523

[63] L. Zintgraf, S. Schulze, C. Lu, L. Feng, M. Igl, K. Shiarlis, Y. Gal, K. Hofmann, and S. Whiteson.524

VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning. Journal of Machine525

Learning Research, 22(289):1–39, 2021. ISSN 1533-7928.526

13

A More examples527

A well known example for switched action dynamics is the backward bicycle, which refers to a528

modified bicycle that has its handlebars connected to the front wheel over a gear, so that turning the529

handlebars to the right makes the wheel turn to the left, and vice versa. This modification creates530

a counterintuitive steering mechanism where the bike responds opposite to the rider’s expectations.531

Riding such a bike can be a challenging and it highlights how difficult it can be for individuals to532

adapt to new ways of thinking or doing things, even when presented with clear evidence of the need533

for change.534

Note the difference to the mirror drawing or tracing task, a famous test in psychology for which535

participants have to draw or trace a figure (such as a shape or a pattern) on the drawing surface by536

looking only at the reflection of their hand in the mirror. The catch is that the visual-motor feedback is537

reversed due to the mirror, meaning that if the participant moves their hand to the right, the reflection538

in the mirror appears to move to the left on the drawing surface [48]. Though being closely related,539

in that case the action effect remains the same, instead only the observation is reversed.540

B Extended background541

B.1 Transfer Learning in RL542

Transfer learning in the context of RL involves leveraging knowledge gained from one task to improve543

the learning or performance of a related but different task. This is especially relevant when the tasks544

share some underlying structure or features.545

On a basic level one can distinguish two kinds of transfer: Positive transfer, where the knowledge546

gained on a source task enhances the learning or performance on the target task and negative transfer,547

where the transferred knowledge hinders performance on the target task. Obviously positive transfer548

is desired whilst negative transfer is a potential risk in transfer learning, and careful design is needed549

to mitigate it.550

For our purpose it may also be beneficial to distinguish parallel and serial transfer. Parallel transfer551

implies the simultaneous transfer of knowledge or skills across multiple tasks. In an RL context, this552

might involve training on several tasks concurrently, with the expectation that knowledge gained553

in one task can benefit learning in others. This is the intention behind multi-task RL. The subtle554

difference in serial transfer is that future tasks are unknown, thus it refers to a sequential transfer of555

knowledge or skills. In the broad field of meta RL, this corresponds to transferring knowledge from a556

source task to an unknown target task. In the context of continual RL, serial transfer translates to557

the learning of a series of tasks one after the other. The scheduling of tasks is further specified in558

curriculum learning, where each task builds on the knowledge gained from previous ones, possibly559

with increasing difficulty or complexity.560

In the serial transfer learning domain, specifically for the continual learning case one may further561

make a difference between forward and backward transfer. Forward transfer occurs when knowledge562

or skills acquired from learning on earlier tasks positively influence the learning or performance on563

future tasks. Backward transfer, on the other hand, occurs when knowledge or skills acquired from564

learning on later tasks positively influence the learning or performance on earlier tasks.565

B.2 Multi-task RL566

The objective of multi-task RL is to acquire a unified policy, denoted as π(a|s, z), where z represents567

the task ID or an encoding thereof. This policy is designed to maximize the average expected return568

across all considered tasks. Task information can be communicated to the policy through various569

means, such as language or a one-hot task identification encoding, which is supplied in addition to570

the current state.571

One seeks to understand how effectively the policy generalizes and performs across a spectrum of572

related tasks. Multi-task RL algorithms attempt to make use of shared knowledge and skills across573

these tasks, enhancing the efficiency of the learning process, i.e., learn a set of tasks more quickly574

and more proficiently than learning them independently. This can be considered a parallel transfer of575

knowledge. The constant access to all tasks is equivalent to ignoring non-stationarity, while continual576

14

RL focuses on just that. Multi-task RL algorithms are commonly evaluated by considering their577

average performance across all training tasks, as opposed to meta RL, which utilizes separate test578

tasks for assessment.579

B.3 Continual RL580

Continual RL is a field of study dedicated to creating algorithms that can effectively adapt to changing581

environments, i.e., they are capable of handling non-stationarity. The goal is to develop agents that582

can progressively learn new skills and tackle unfamiliar tasks without neglecting what they have583

learned before. This ability to adapt continuously over extended periods is often referred to as lifelong584

learning or endless adaptation.585

In the training process, a series of tasks is presented to the system. The transitions between these586

tasks may be seamless and unknown to the agent. When evaluating these systems, researchers587

are often interested in assessing the agent’s ability to apply previously acquired knowledge to new588

tasks (forward transfer), as well as retaining knowledge when faced with new challenges (backward589

transfer), all while avoiding catastrophic forgetting. Forward and backward transfer can be considered590

as some kind of serial transfer as opposed to parallel transfer as in the multi-task setting.591

C Action wrapper overview592

Table 1: An overview of action effect wrappers including a brief description and motivation.

Wrapper Description Motivation

InvertAction Inverts one/all dimension(s) of the con-
tinuous action.

backwards bicycle

ScaleAction Scales one/all dimension(s) of the con-
tinuous action.

sim2real gap

OffsetAction Adds an offset to one/all dimension(s) of
the continuous action.

sim2real gap, systematic
error

NoiseAction Adds gaussian noise to one/all dimen-
sion(s) of the continuous action.

sim2real gap, random er-
ror

SineNoiseAction Adds gaussian noise overlaid with a sine
offset to one/all dimension(s) of the con-
tinuous action.

sim2real gap, random er-
ror with systematic com-
ponent

ZeroAction Randomly zeros one/all dimension(s) of
the continuous action for a defined num-
ber of steps.

loose contact

RepeatAction Randomly repeats one/all dimension(s)
of the continuous/discrete action for a
defined number of steps.

loose contact

SwapAction Swaps one dimension of the continu-
ous/discrete action with another (ran-
domly picked) or shuffles all dimensions.
Changed order of dimensions is kept.

interchanged cables

D Hyperparameters593

We use implementations provided by Kostrikov [27] (JAXRL2) and Raffin et al. [42] (Stable-Baselines594

3). We intended not to tune the hyperparamter and rather kept them the default values. An overview595

is provided in Table 2.596

Additional remarks: For the walker-walk-v0(pixel) environment typically an action repeat value597

of 2 is used [17]. In DrQ, again for walker-walk-v0(pixel), we use the standard choice in598

15

JAXRL2 for the image encoder which is originated from D4PG [2]. For the reduction of the twinned599

critic we use the mean Q-value in DrQ and the minimum Q-value in SAC which is both the default600

configuration. For the goal-conditioned environments FetchReach-v2 and FetchPush-v2 we use601

SAC as the learner and use HER [1] to sample from the replay buffer. For HER we set the number of602

additional, virtual goals sampled per real goal to 4 which is again the default in Stable-Baselines 3.603

For the hidden dimensions of actor and critic we used feasible values in accordance to Raffin [41].604

Table 2: Hyperparamters for the SAC base used in the experiments.

Parameter Value

Buffer capacity 1000000
Batch size 256
Discount γ 0.99
Optimizer Adam
Critic LR 0.0003
Actor LR 0.0003
Temperature LR 0.0003
Critic soft target update τ 0.005
Init temperature (SAC) 1.0
Init temperature (DrQ) 0.1
Hidden dims (general) (256, 256)
Hidden dims (FetchReach-v2) (64, 64)
Hidden dims (FetchPush-v2) (256, 256, 256)

E Classification of the modifications605

The purpose of the experiments in Section 5 and G is to illustrate the universal applicability of606

action modifications across varied environments, hence they are applicable for different problem607

statements. In some cases, the wrappers yield fundamentally different modifications. NoiseAction608

and OffsetAction might be considered comparable in their functionality, whereas InvertAction609

enables the investigation of a fundamentally different problem. They are intended to reveal the610

limits of the agent, in particular with regard to dimensions of robustness and transfer capabilities.611

It is not the sole aim to simulate realistic scenarios. For example it is hard to imagine a real-world612

scenario where the SwapAction wrapper seems appropriate. In Table 1 in the Appendix we provide613

the example of interchanged cables which is intended to elucidate the functionality but is arguably614

far-fetched. Still, in an idealized world it makes for an interesting case to investigate how the agent615

behaves under these circumstances.616

Based on the experimental results in Section 5 and Section G one may distinguish two main groups.617

First, SwapAction and InvertAction, although the modifications seem minimal, hardly any transfer618

is possible for the baseline agent. In the sequential setup it basically has to relearn from scratch (cf.619

Figure 5), possibly the return drops to the initial level (cf. Figure 2, respectively on the right). For620

the other modifications which may form the second group, namely ScaleAction, OffsetAction,621

NoiseAction, SineNoiseAction, ZeroAction, RepeatAction, transfer seems natural. Though,622

the experiments show that also with modifications from this group the adaptation can become arbitrary623

hard, depending on the configuration value and whether the modification is applied on only one624

dimension or all.625

F Relearning in a new dynamic626

Analogously to the one dynamic switch experiment in Section 5.1.3 we trained a SAC agent for TT =627

20000 steps to succeed on the FetchReach-v2 environment (cf. Figure 5a). In that environment628

the agent is supposed to reach a sampled goal with a robotic arm. Then we modified the action629

16

dynamic using the InvertAction wrapper such that the action dimension which corresponds to630

the x coordinate is inverted. The agent trains for another TT = 20000 steps on the new dynamic.631

Figure 5b shows trajectories of the goal reaching robot arm before (stage 0) and after (stages 1-5)632

the dynamic switch. As expected, right after the switch (no relearning, stage 1) the trajectories are633

mirrored in the x coordinate, while the position on the y coordinate is intact. The agent seems to634

relearn the behavior corresponding to the x coordinate from scratch, respectively, it has to compensate635

for the mirroring which seems to gradually improve over the stages 2-5.636

(a) FetchReach-v2 environ-
ment.

x coordinate

y
co

o
rd

in
a
te

0

1
2345

relearn

Goal

Start

(b) x-y trajectories.

Figure 5: Relearning behavior of a SAC agent in the FetchReach-v2 environment. It is first trained
on the default dynamic and then a switch is established using the InvertAction wrapper on the
dimension 0 which corresponds to the x coordinate. Trajectories (in x-y coordinates) of the goal
reaching robot arm before (stage 0, dashed trajectory) and after (stages 1-5, solid trajectory) the
dynamic switch are shown.

G Extended results for experiments637

In the Figures and Tables within this section we show extended results for a variety of task combina-638

tions, within the sequential and the multi-task setup. We present curves for training and evaluation639

returns. While the training curve only provides the overall view, evaluation returns for individual640

tasks allow for a more complete analysis, it allows for calculating the defined metrics in Section 5.641

We consider five environments or variants of such: The first two are the goal-conditioned environ-642

ments FetchReach-v2 and FetchPush-v2 initially developed by Plappert et al. [39] and currently643

maintained by de Lazcano et al. [9]. The third is HalfCheetah-v4 based on work by Wawrzyński644

[57] and available through Towers et al. [53]. The fourth and fifth are walker-walk-v0 from DM645

Control [54], utilized via Towers et al. [53] and Tai et al. [51], with, respectively, proprioceptive and646

visual observation inputs. We denote the latter as walker-walk-v0(pixel).647

In the sequential training setup, for the environments FetchReach-v2, FetchPush-v2,648

walker-walk-v0, walker-walk-v0(pixel) and HalfCheetah-v4 we train each task Ti for649

TT = 100000, TT = 500000, TT = 500000, TT = 500000 or TT = 1000000 steps, respec-650

tively. The choice of TT is made to ensure that, at the very least, the unmodified environment can be651

trained to a reasonable degree. We only consider sequences of tasks where TT is constant for each652

individual task.653

In the multi-task training setup, for the environments walker-walk-v0 and HalfCheetah-v4 we654

train the agent for T = 1000000 and T = 2000000 steps, respectively. The steps eventually trained655

per task Ti are evenly distributed. In general we consider only a pair of tasks, hence {T1, T2}.656

An overview for quicker access to all experiment variants is provided in Table 3.657

17

Table 3: An overview of the extended experiments with references to the corresponding performance
figures and metric tables.

Setting Environment Algorithm Returns Metrics

Sequential, one switch,
dimension 0

walker-walk-v0 SAC Figure 6 Table 4

Sequential, one switch,
all dimensions

walker-walk-v0 SAC Figure 7 Table 4

Sequential, one switch,
dimension 0

walker-walk-v0
(pixel)

DrQ Figure 8 Table 5

Sequential, one switch,
all dimensions

walker-walk-v0
(pixel)

DrQ Figure 9 Table 5

Sequential, one switch,
dimension 0

HalfCheetah-v4 SAC Figure 10 Table 6

Sequential, one switch,
all dimensions

HalfCheetah-v4 SAC Figure 11 Table 6

Sequential, one switch,
dimension 0

FetchReach-v2 SAC+HER Figure 12 Table 7

Sequential, one switch,
all dimensions

FetchReach-v2 SAC+HER Figure 13 Table 7

Sequential, one switch,
dimension 0

FetchPush-v2 SAC+HER Figure 14 Table 8

Sequential, one switch,
all dimensions

FetchPush-v2 SAC+HER Figure 15 Table 8

Sequential, one parallel switch,
combine ScaleAction,
all dimensions

walker-walk-v0 SAC Figure 16 -

Sequential, one parallel switch,
combine OffsetAction,
all dimensions

walker-walk-v0 SAC Figure 17 -

Sequential, continual adaptation,
10 tasks, dimension 0

walker-walk-v0 SAC Figure 18 Table 9

Sequential, continual adaptation,
10 tasks, all dimensions

walker-walk-v0 SAC Figure 19 Table 9

Sequential, continual adaptation,
10 tasks, dimension 0

HalfCheetah-v4 SAC Figure 20 Table 10

Sequential, continual adaptation,
10 tasks, all dimensions

HalfCheetah-v4 SAC Figure 21 Table 10

Sequential, continual adaptation,
500 tasks, dimension 0

walker-walk-v0 SAC Figure 22 -

Sequential, continual adaptation,
500 tasks, all dimensions

walker-walk-v0 SAC Figure 23 -

Multi-task,
dimension 0

walker-walk-v0 SAC Figure 24 Table 11

Multi-task,
all dimensions

walker-walk-v0 SAC Figure 25 Table 11

Multi-task,
dimension 0

HalfCheetah-v4 SAC Figure 26 Table 12

Multi-task,
all dimensions

HalfCheetah-v4 SAC Figure 27 Table 12

18

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

0

250

500

750

1000

RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

0

250

500

750

1000

SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

250

500

750

1000

NoiseAction

0 500K 1M

250

500

750

1000

OffsetAction

0 500K 1M

250

500

750

1000

RepeatAction

0 500K 1M

250

500

750

1000

ScaleAction

0 500K 1M

250

500

750

1000

SineNoiseAction

0 500K 1M

250

500

750

1000
SwapAction

0 500K 1M

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 6: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1. Colors represent the varied wrapper value. Solid lines represent the unmodified action
dynamic, dashed lines the modified one. The modification is done on action dimension 0.

19

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

0

250

500

750

1000

RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

0

250

500

750

1000

SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

250

500

750

1000
RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

250

500

750

1000

SineNoiseAction

0 500K 1M

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 7: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1. Colors represent the varied wrapper value. Solid lines represent the unmodified action
dynamic, dashed lines the modified one. The modification is done on all action dimensions.

20

0 500K 1M

0

200

400

600

800

InvertAction

0 500K 1M

200

400

600

800

NoiseAction

0 500K 1M

200

400

600

800

OffsetAction

0 500K 1M

200

400

600

800

RepeatAction

0 500K 1M

200

400

600

800

ScaleAction

0 500K 1M

200

400

600

800

SineNoiseAction

0 500K 1M
0

200

400

600

800

SwapAction

0 500K 1M

200

400

600

800

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

200

400

600

800

InvertAction

0 500K 1M

200

400

600

800

NoiseAction

0 500K 1M

200

400

600

800

OffsetAction

0 500K 1M

200

400

600

800

RepeatAction

0 500K 1M

200

400

600

800

ScaleAction

0 500K 1M

200

400

600

800

SineNoiseAction

0 500K 1M

200

400

600

800

SwapAction

0 500K 1M

200

400

600

800

ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 8: Returns for the sequential training setup. A DrQ agent is trained on the
walker-walk-v0(pixel) environment. One dynamics switch: The agent trains for T/2 steps
on the unmodified action dynamic, and then for T/2 steps on the modified action dynamic. The
modification is configured with the action wrapper, the action dimension and if applicable a wrapper
specific value, see Section 4 and Table 1. Colors represent the varied wrapper value. Solid lines
represent the unmodified action dynamic, dashed lines the modified one. The modification is done on
action dimension 0.

21

0 500K 1M

0

200

400

600

800

InvertAction

0 500K 1M

200

400

600

800

NoiseAction

0 500K 1M

0

200

400

600

800

OffsetAction

0 500K 1M

200

400

600

800

RepeatAction

0 500K 1M

0

200

400

600

800

ScaleAction

0 500K 1M

200

400

600

800

SineNoiseAction

0 500K 1M

0

200

400

600

800

SwapAction

0 500K 1M

0

200

400

600

800

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

200

400

600

800

InvertAction

0 500K 1M

200

400

600

800

NoiseAction

0 500K 1M

200

400

600

800

OffsetAction

0 500K 1M

200

400

600

800

RepeatAction

0 500K 1M

0

200

400

600

800

ScaleAction

0 500K 1M

200

400

600

800

SineNoiseAction

0 500K 1M

200

400

600

800

SwapAction

0 500K 1M

0

200

400

600

800

ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 9: Returns for the sequential training setup. A DrQ agent is trained on the
walker-walk-v0(pixel) environment. One dynamics switch: The agent trains for T/2 steps
on the unmodified action dynamic, and then for T/2 steps on the modified action dynamic. The
modification is configured with the action wrapper, the action dimension and if applicable a wrapper
specific value, see Section 4 and Table 1. Colors represent the varied wrapper value. Solid lines
represent the unmodified action dynamic, dashed lines the modified one. The modification is done on
all action dimensions.

22

0 1M 2M

0

3000

6000

9000

12000

InvertAction

0 1M 2M

3000

6000

9000

12000

NoiseAction

0 1M 2M

3000

6000

9000

12000

OffsetAction

0 1M 2M

2500

5000

7500

10000

RepeatAction

0 1M 2M

3000

6000

9000

12000

ScaleAction

0 1M 2M

3000

6000

9000

12000

SineNoiseAction

0 1M 2M

0

3000

6000

9000

12000

SwapAction

0 1M 2M

2500

5000

7500

10000

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 1M 2M

2500

5000

7500

10000

InvertAction

0 1M 2M

2500

5000

7500

10000

12500
NoiseAction

0 1M 2M

2500

5000

7500

10000

12500
OffsetAction

0 1M 2M

2000

4000

6000

8000

10000

RepeatAction

0 1M 2M

2500

5000

7500

10000

ScaleAction

0 1M 2M

2500

5000

7500

10000

SineNoiseAction

0 1M 2M

2500

5000

7500

10000

SwapAction

0 1M 2M

2000

4000

6000

8000

10000

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 10: Returns for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1. Colors represent the varied wrapper value. Solid lines represent the unmodified action
dynamic, dashed lines the modified one. The modification is done on action dimension 0.

23

0 1M 2M

0

3000

6000

9000

InvertAction

0 1M 2M

0

3000

6000

9000

12000

NoiseAction

0 1M 2M

0

3000

6000

9000

12000

OffsetAction

0 1M 2M

0

2500

5000

7500

10000

RepeatAction

0 1M 2M

0

3000

6000

9000

12000

ScaleAction

0 1M 2M

0

3000

6000

9000

12000

SineNoiseAction

0 1M 2M

0

3000

6000

9000

SwapAction

0 1M 2M

0

3000

6000

9000

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 1M 2M

0

2500

5000

7500

10000

InvertAction

0 1M 2M

2500

5000

7500

10000

NoiseAction

0 1M 2M

0

3000

6000

9000

12000

OffsetAction

0 1M 2M

0

2500

5000

7500

10000

RepeatAction

0 1M 2M

0

2500

5000

7500

10000

ScaleAction

0 1M 2M

0

2500

5000

7500

10000

SineNoiseAction

0 1M 2M

2500

5000

7500

10000

SwapAction

0 1M 2M

0

2500

5000

7500

10000

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 11: Returns for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1. Colors represent the varied wrapper value. Solid lines represent the unmodified action
dynamic, dashed lines the modified one. The modification is done on all action dimensions.

24

0 100K 200K

0.00

0.25

0.50

0.75

1.00

InvertAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

NoiseAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

OffsetAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

RepeatAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

ScaleAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

SineNoiseAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

SwapAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 12: Evaluation success rates for the sequential training setup. A SAC agent is trained with
HER on the goal-conditioned FetchReach-v2 environment. One dynamics switch: The agent
trains for T/2 steps on the unmodified action dynamic, and then for T/2 steps on the modified
action dynamic. The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. The
modification is done on action dimension 0.

0 100K 200K

0.00

0.25

0.50

0.75

1.00

InvertAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

NoiseAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

OffsetAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

RepeatAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

ScaleAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

SineNoiseAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

SwapAction

0 100K 200K

0.00

0.25

0.50

0.75

1.00

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 13: Evaluation success rates for the sequential training setup. A SAC agent is trained with
HER on the goal-conditioned FetchReach-v2 environment. One dynamics switch: The agent
trains for T/2 steps on the unmodified action dynamic, and then for T/2 steps on the modified
action dynamic. The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. The
modification is done on all action dimensions.

25

0 500K 1M

0.25

0.50

0.75

1.00

InvertAction

0 500K 1M

0.2

0.4

0.6

0.8

NoiseAction

0 500K 1M

0.25

0.50

0.75

1.00

OffsetAction

0 500K 1M

0.25

0.50

0.75

1.00

RepeatAction

0 500K 1M

0.25

0.50

0.75

1.00

ScaleAction

0 500K 1M

0.25

0.50

0.75

1.00
SineNoiseAction

0 500K 1M

0.25

0.50

0.75

1.00
SwapAction

0 500K 1M

0.25

0.50

0.75

1.00

ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 14: Evaluation success rates for the sequential training setup. A SAC agent is trained with
HER on the goal-conditioned FetchPush-v2 environment. One dynamics switch: The agent
trains for T/2 steps on the unmodified action dynamic, and then for T/2 steps on the modified
action dynamic. The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. The
modification is done on action dimension 0.

0 500K 1M

0.00

0.25

0.50

0.75

1.00
InvertAction

0 500K 1M

0.25

0.50

0.75

1.00

NoiseAction

0 500K 1M

0.25

0.50

0.75

1.00

OffsetAction

0 500K 1M

0.25

0.50

0.75

1.00

RepeatAction

0 500K 1M

0.25

0.50

0.75

1.00

ScaleAction

0 500K 1M

0.25

0.50

0.75

1.00

SineNoiseAction

0 500K 1M

0.25

0.50

0.75

1.00
SwapAction

0 500K 1M

0.25

0.50

0.75

1.00
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 15: Evaluation success rates for the sequential training setup. A SAC agent is trained with
HER on the goal-conditioned FetchPush-v2 environment. One dynamics switch: The agent
trains for T/2 steps on the unmodified action dynamic, and then for T/2 steps on the modified
action dynamic. The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. The
modification is done on all action dimensions.

26

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000
NoiseAction

0 500K 1M

0

250

500

750

1000
OffsetAction

0 500K 1M

0

250

500

750

1000
RepeatAction

0 500K 1M

0

250

500

750

1000
ScaleAction

0 500K 1M

0

250

500

750

1000
SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

250

500

750

1000
NoiseAction

0 500K 1M

0

250

500

750

1000
OffsetAction

0 500K 1M

250

500

750

1000
RepeatAction

0 500K 1M

0

250

500

750

1000
ScaleAction

0 500K 1M

250

500

750

1000
SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 16: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. One parallel dynamics switch: The agent trains for T/2 steps on the unmodified
action dynamic, and then for T/2 steps on the modified action dynamic. Two parallel modifications
are applied. One modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. On top of
that, the ScaleAction wrapper is applied with a scaling value of 0.5 representing a combination of
changes. The modifications are done on all action dimensions.

27

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000
NoiseAction

0 500K 1M

0

250

500

750

1000
OffsetAction

0 500K 1M

0

250

500

750

1000
RepeatAction

0 500K 1M

0

250

500

750

1000
ScaleAction

0 500K 1M

0

250

500

750

1000
SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

250

500

750

1000
NoiseAction

0 500K 1M

0

250

500

750

1000
OffsetAction

0 500K 1M

250

500

750

1000
RepeatAction

0 500K 1M

0

250

500

750

1000
ScaleAction

0 500K 1M

250

500

750

1000
SineNoiseAction

0 500K 1M

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Train returns. Varied wrapper configuration value.

Figure 17: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. One parallel dynamics switch: The agent trains for T/2 steps on the unmodified
action dynamic, and then for T/2 steps on the modified action dynamic. Two parallel modifications
are applied. One modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied wrapper
value. Solid lines represent the unmodified action dynamic, dashed lines the modified one. On top of
that, the OffsetAction wrapper is applied with an offset value of 0.5 representing a combination of
changes. The modifications are done on all action dimensions.

28

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
ScaleAction

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Task 7
Task 8

Task 9
Task 10

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

(b) Train returns.

Figure 18: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action dy-
namic, task T1. Then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value, tasks in {T2, T3, . . . , T10}. For NoiseAction tasks are determined
by an action wrapper value in {0.1, 0.2, . . . , 0.9}, for OffsetAction in {−0.1,−0.2, . . . ,−0.9},
for ScaleAction in {0.9, 0.8, . . . , 0.1}. The modification is configured with the action wrapper,
the action dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors
represent the different modifications based on a varied wrapper value. The modification is done on
action dimension 0.

29

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
ScaleAction

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Task 7
Task 8

Task 9
Task 10

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 1M 2M 3M 4M 5M

0

250

500

750

1000
NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000
ScaleAction

(b) Train returns.

Figure 19: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action dy-
namic, task T1. Then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value, tasks in {T2, T3, . . . , T10}. For NoiseAction tasks are determined
by an action wrapper value in {0.1, 0.2, . . . , 0.9}, for OffsetAction in {−0.1,−0.2, . . . ,−0.9},
for ScaleAction in {0.9, 0.8, . . . , 0.1}. The modification is configured with the action wrapper,
the action dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors
represent the different modifications based on a varied wrapper value. The modification is done on
all action dimensions.

30

0 2M 4M 6M 8M 10M

0

4000

8000

12000

NoiseAction

0 2M 4M 6M 8M 10M

0

4000

8000

12000

OffsetAction

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

ScaleAction

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Task 7
Task 8

Task 9
Task 10

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

NoiseAction

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

OffsetAction

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

ScaleAction

(b) Train returns.

Figure 20: Returns for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action dy-
namic, task T1. Then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value, tasks in {T2, T3, . . . , T10}. For NoiseAction tasks are determined
by an action wrapper value in {0.1, 0.2, . . . , 0.9}, for OffsetAction in {−0.1,−0.2, . . . ,−0.9},
for ScaleAction in {0.9, 0.8, . . . , 0.1}. The modification is configured with the action wrapper,
the action dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors
represent the different modifications based on a varied wrapper value. The modification is done on
action dimension 0.

31

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

NoiseAction

0 2M 4M 6M 8M 10M

0

4000

8000

12000

OffsetAction

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

ScaleAction

Task 1
Task 2

Task 3
Task 4

Task 5
Task 6

Task 7
Task 8

Task 9
Task 10

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 2M 4M 6M 8M 10M

0

2500

5000

7500

10000

NoiseAction

0 2M 4M 6M 8M 10M

0

3000

6000

9000

12000

OffsetAction

0 2M 4M 6M 8M 10M

0

2500

5000

7500

10000

ScaleAction

(b) Train returns.

Figure 21: Returns for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action dy-
namic, task T1. Then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value, tasks in {T2, T3, . . . , T10}. For NoiseAction tasks are determined
by an action wrapper value in {0.1, 0.2, . . . , 0.9}, for OffsetAction in {−0.1,−0.2, . . . ,−0.9},
for ScaleAction in {0.9, 0.8, . . . , 0.1}. The modification is configured with the action wrapper,
the action dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors
represent the different modifications based on a varied wrapper value. The modification is done on
all action dimensions.

32

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

Task 1
Task 57

Task 112
Task 168

Task 223
Task 278

Task 334
Task 389

Task 444
Task 500

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

(b) Train returns.

Figure 22: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. Continual slowly adaptation: The agent trains for T/500 steps on the unmodified
action dynamic, task T1. Then 499 times for T/500 steps on modified action dynamics with increasing
difficulty, determined by the wrapper value, tasks in {T2, T3, . . . , T500}. For NoiseAction tasks are
determined by an action wrapper value in {0.0, . . . , 0.9}, for OffsetAction in {0.0, . . . ,−0.9}, for
ScaleAction in {1.0, . . . , 0.1}. The modification is configured with the action wrapper, the action
dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the
different modifications based on a varied wrapper value. Only ten tasks are shown for better clarity.
The modification is done on action dimension 0.

33

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

Task 1
Task 57

Task 112
Task 168

Task 223
Task 278

Task 334
Task 389

Task 444
Task 500

(a) Evaluation returns. Different tasks based on varied wrapper configuration values.

0 1M 2M 3M 4M 5M

0

250

500

750

1000

NoiseAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

OffsetAction

0 1M 2M 3M 4M 5M

0

250

500

750

1000

ScaleAction

(b) Train returns.

Figure 23: Returns for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. Continual slowly adaptation: The agent trains for T/500 steps on the unmodified
action dynamic, task T1. Then 499 times for T/500 steps on modified action dynamics with increasing
difficulty, determined by the wrapper value, tasks in {T2, T3, . . . , T500}. For NoiseAction tasks are
determined by an action wrapper value in {0.0, . . . , 0.9}, for OffsetAction in {0.0, . . . ,−0.9}, for
ScaleAction in {1.0, . . . , 0.1}. The modification is configured with the action wrapper, the action
dimension and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the
different modifications based on a varied wrapper value. Only ten tasks are shown for better clarity.
The modification is done on all action dimensions.

34

0 500K 1M

0

250

500

750

1000

InvertAction

0 500K 1M

0

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

0

250

500

750

1000

RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

0

250

500

750

1000

SineNoiseAction

0 500K 1M

0

250

500

750

1000

SwapAction

0 500K 1M

0

250

500

750

1000

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M
0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

250

500

750

1000

RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M
0

250

500

750

1000

SineNoiseAction

0 500K 1M
0

250

500

750

1000

SwapAction

0 500K 1M

0

250

500

750

1000
ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 24: Returns for the multi-task training setup. A SAC agent is trained on the walker-walk-v0
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied
wrapper value. Solid lines represent the unmodified action dynamic, dashed lines the modified one.
The modification is done on action dimension 0.

35

0 500K 1M

0

250

500

750

1000
InvertAction

0 500K 1M

0

250

500

750

1000

NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

250

500

750

1000

RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

0

250

500

750

1000

SineNoiseAction

0 500K 1M

0

250

500

750

1000
SwapAction

0 500K 1M

0

250

500

750

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 500K 1M
0

200

400

600

800

InvertAction

0 500K 1M
0

250

500

750

1000
NoiseAction

0 500K 1M

0

250

500

750

1000

OffsetAction

0 500K 1M

200

400

600

800

1000
RepeatAction

0 500K 1M

0

250

500

750

1000

ScaleAction

0 500K 1M

250

500

750

1000

SineNoiseAction

0 500K 1M

250

500

750

1000
SwapAction

0 500K 1M
0

200

400

600

ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 25: Returns for the multi-task training setup. A SAC agent is trained on the walker-walk-v0
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied
wrapper value. Solid lines represent the unmodified action dynamic, dashed lines the modified one.
The modification is done on all action dimensions.

36

0 1M 2M

3000

6000

9000

12000

InvertAction

0 1M 2M

3000

6000

9000

12000

NoiseAction

0 1M 2M

3000

6000

9000

12000

OffsetAction

0 1M 2M

0

3000

6000

9000

12000

RepeatAction

0 1M 2M
0

3000

6000

9000

12000

ScaleAction

0 1M 2M

3000

6000

9000

12000

SineNoiseAction

0 1M 2M

0

3000

6000

9000

12000

SwapAction

0 1M 2M

2500

5000

7500

10000

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 1M 2M

2500

5000

7500

10000

InvertAction

0 1M 2M

2500

5000

7500

10000

NoiseAction

0 1M 2M

2500

5000

7500

10000

OffsetAction

0 1M 2M

0

2500

5000

7500

10000

RepeatAction

0 1M 2M
0

2500

5000

7500

10000

ScaleAction

0 1M 2M

2500

5000

7500

10000

SineNoiseAction

0 1M 2M

2500

5000

7500

10000

SwapAction

0 1M 2M

2000

4000

6000

8000

ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 26: Returns for the multi-task training setup. A SAC agent is trained on the HalfCheetah-v4
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied
wrapper value. Solid lines represent the unmodified action dynamic, dashed lines the modified one.
The modification is done on action dimension 0.

37

0 1M 2M

0

3000

6000

9000

12000

InvertAction

0 1M 2M

0

3000

6000

9000

12000

NoiseAction

0 1M 2M

0

3000

6000

9000

12000

OffsetAction

0 1M 2M

0

2000

4000

6000

8000

RepeatAction

0 1M 2M

0

3000

6000

9000

12000

ScaleAction

0 1M 2M

0

2500

5000

7500

10000

SineNoiseAction

0 1M 2M

0

2500

5000

7500

10000

SwapAction

0 1M 2M

0

2000

4000

6000

8000

ZeroAction

0.2 0.5 0.8

(a) Evaluation returns. Varied wrapper configuration value.

0 1M 2M

0

2500

5000

7500

10000

InvertAction

0 1M 2M

0

2500

5000

7500

10000

NoiseAction

0 1M 2M

2500

5000

7500

10000

OffsetAction

0 1M 2M

0

1500

3000

4500

RepeatAction

0 1M 2M

0

2500

5000

7500

10000

ScaleAction

0 1M 2M

0

2000

4000

6000

8000

SineNoiseAction

0 1M 2M

0

2500

5000

7500

10000

SwapAction

0 1M 2M

0

1500

3000

4500

ZeroAction

0.2 0.5 0.8

(b) Train returns. Varied wrapper configuration value.

Figure 27: Returns for the multi-task training setup. A SAC agent is trained on the HalfCheetah-v4
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1. Colors represent the varied
wrapper value. Solid lines represent the unmodified action dynamic, dashed lines the modified one.
The modification is done on all action dimensions.

38

Table 4: Metrics for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1.

Wrapper Dim. Value Avg. perf. Fwd. trans. Bwd. trans. Forgetting

InvertAction 0 - 0.54 (0.01) -0.01 (0.01) 0.0 (0.0) 0.92 (0.02)
all - 0.17 (0.06) 0.0 (0.0) 0.0 (0.0) 0.7 (0.12)

NoiseAction 0 0.2 1.0 (0.0) 0.96 (0.0) 0.01 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.96 (0.01) 0.01 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.92 (0.03) 0.01 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.96 (0.01) 0.01 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.85 (0.07) 0.01 (0.0) 0.0 (0.0)
0.8 0.92 (0.02) 0.57 (0.04) 0.0 (0.0) 0.01 (0.01)

OffsetAction 0 0.2 1.0 (0.0) 0.96 (0.0) 0.01 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.95 (0.01) 0.01 (0.0) 0.0 (0.0)
0.8 0.99 (0.0) 0.45 (0.08) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.96 (0.01) 0.01 (0.0) 0.0 (0.0)
0.5 0.98 (0.01) 0.48 (0.05) 0.0 (0.0) 0.0 (0.0)
0.8 0.45 (0.04) 0.05 (0.02) 0.0 (0.0) 0.32 (0.07)

RepeatAction 0 0.2 1.0 (0.0) 0.94 (0.02) 0.01 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.91 (0.04) 0.01 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.92 (0.03) 0.01 (0.0) 0.0 (0.0)

all 0.2 0.99 (0.0) 0.8 (0.06) 0.01 (0.0) 0.0 (0.0)
0.5 0.95 (0.02) 0.67 (0.04) 0.0 (0.0) 0.0 (0.0)
0.8 0.74 (0.08) 0.58 (0.04) 0.0 (0.0) 0.12 (0.06)

ScaleAction 0 0.2 1.0 (0.0) 0.51 (0.05) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.9 (0.05) 0.01 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.96 (0.0) 0.01 (0.0) 0.0 (0.0)

all 0.2 0.37 (0.05) 0.01 (0.0) 0.0 (0.0) 0.29 (0.1)
0.5 0.72 (0.06) 0.26 (0.05) 0.0 (0.0) 0.08 (0.04)
0.8 1.0 (0.0) 0.88 (0.08) 0.01 (0.0) 0.0 (0.0)

SineNoiseAction 0 0.2 1.0 (0.0) 0.96 (0.01) 0.01 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.95 (0.01) 0.01 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.87 (0.05) 0.01 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.95 (0.01) 0.01 (0.0) 0.0 (0.0)
0.5 0.99 (0.0) 0.77 (0.07) 0.01 (0.0) 0.0 (0.0)
0.8 0.81 (0.03) 0.44 (0.04) 0.0 (0.0) 0.0 (0.0)

SwapAction 0 - 0.88 (0.04) 0.06 (0.04) 0.0 (0.0) 0.24 (0.08)
all - 0.77 (0.06) 0.0 (0.0) 0.0 (0.0) 0.46 (0.12)

ZeroAction 0 0.2 1.0 (0.0) 0.78 (0.06) 0.01 (0.0) 0.0 (0.0)
0.5 0.99 (0.0) 0.52 (0.05) 0.01 (0.0) 0.0 (0.0)
0.8 0.96 (0.03) 0.34 (0.05) 0.0 (0.0) 0.01 (0.01)

all 0.2 0.71 (0.01) 0.36 (0.03) 0.0 (0.0) 0.0 (0.0)
0.5 0.5 (0.03) 0.07 (0.01) 0.0 (0.0) 0.06 (0.04)
0.8 0.44 (0.02) 0.01 (0.0) 0.0 (0.0) 0.14 (0.03)

39

Table 5: Metrics for the sequential training setup. A DrQ agent is trained on the
walker-walk-v0(pixel) environment. One dynamics switch: The agent trains for T/2 steps
on the unmodified action dynamic, and then for T/2 steps on the modified action dynamic. The
modification is configured with the action wrapper, the action dimension and if applicable a wrapper
specific value, see Section 4 and Table 1.

Wrapper Dim. Value Avg. perf. Fwd. trans. Bwd. trans. Forgetting

InvertAction 0 - 0.52 (0.01) -0.0 (0.0) 0.0 (0.0) 0.73 (0.18)
all - 0.51 (0.01) -0.0 (0.0) 0.0 (0.0) 0.92 (0.02)

NoiseAction 0 0.2 1.0 (0.01) 0.9 (0.02) 0.09 (0.04) 0.01 (0.01)
0.5 0.99 (0.01) 0.78 (0.07) 0.13 (0.07) 0.0 (0.0)
0.8 0.98 (0.01) 0.67 (0.13) 0.24 (0.13) 0.01 (0.01)

all 0.2 0.98 (0.02) 0.9 (0.02) 0.06 (0.02) 0.01 (0.01)
0.5 0.94 (0.02) 0.75 (0.03) 0.04 (0.02) 0.0 (0.0)
0.8 0.88 (0.08) 0.52 (0.06) 0.06 (0.06) 0.05 (0.02)

OffsetAction 0 0.2 0.99 (0.02) 0.89 (0.02) 0.05 (0.03) 0.02 (0.01)
0.5 0.98 (0.03) 0.67 (0.03) 0.04 (0.02) 0.05 (0.03)
0.8 0.95 (0.02) 0.38 (0.02) 0.0 (0.0) 0.08 (0.03)

all 0.2 0.99 (0.01) 0.8 (0.05) 0.04 (0.02) 0.0 (0.0)
0.5 0.91 (0.03) 0.24 (0.05) 0.06 (0.04) 0.11 (0.06)
0.8 0.29 (0.06) 0.03 (0.01) 0.0 (0.0) 0.88 (0.05)

RepeatAction 0 0.2 0.99 (0.01) 0.87 (0.04) 0.08 (0.02) 0.0 (0.0)
0.5 0.98 (0.01) 0.89 (0.03) 0.06 (0.02) 0.0 (0.0)
0.8 1.0 (0.02) 0.86 (0.05) 0.05 (0.03) 0.01 (0.01)

all 0.2 0.94 (0.02) 0.77 (0.02) 0.02 (0.01) 0.0 (0.0)
0.5 0.86 (0.02) 0.71 (0.03) 0.0 (0.0) 0.07 (0.02)
0.8 0.85 (0.03) 0.67 (0.02) 0.0 (0.0) 0.09 (0.03)

ScaleAction 0 0.2 0.94 (0.03) 0.43 (0.06) 0.02 (0.01) 0.08 (0.04)
0.5 0.99 (0.01) 0.77 (0.02) 0.03 (0.02) 0.03 (0.02)
0.8 0.99 (0.03) 0.87 (0.02) 0.06 (0.02) 0.03 (0.03)

all 0.2 0.04 (0.0) 0.0 (0.0) 0.0 (0.0) 0.96 (0.02)
0.5 0.77 (0.03) 0.2 (0.03) 0.0 (0.0) 0.2 (0.04)
0.8 0.98 (0.02) 0.74 (0.04) 0.07 (0.04) 0.02 (0.02)

SineNoiseAction 0 0.2 0.99 (0.02) 0.86 (0.03) 0.07 (0.02) 0.0 (0.0)
0.5 1.0 (0.17) 0.82 (0.21) 0.08 (0.04) 0.0 (0.0)
0.8 0.98 (0.01) 0.72 (0.03) 0.03 (0.02) 0.01 (0.01)

all 0.2 1.0 (0.03) 0.8 (0.07) 0.14 (0.07) 0.0 (0.0)
0.5 0.93 (0.01) 0.62 (0.03) 0.03 (0.02) 0.0 (0.0)
0.8 0.81 (0.02) 0.41 (0.03) 0.02 (0.02) 0.06 (0.02)

SwapAction 0 - 0.26 (0.13) 0.14 (0.02) 0.0 (0.0) 0.74 (0.08)
all - 0.1 (0.03) 0.03 (0.02) 0.0 (0.0) 0.89 (0.05)

ZeroAction 0 0.2 0.97 (0.02) 0.62 (0.04) 0.08 (0.03) 0.0 (0.0)
0.5 0.96 (0.13) 0.4 (0.1) 0.14 (0.09) 0.05 (0.03)
0.8 0.96 (0.02) 0.27 (0.06) 0.01 (0.0) 0.04 (0.02)

all 0.2 0.63 (0.02) 0.3 (0.04) 0.0 (0.0) 0.18 (0.04)
0.5 0.07 (0.01) 0.06 (0.01) 0.0 (0.0) 0.92 (0.03)
0.8 0.04 (0.0) 0.0 (0.0) 0.0 (0.0) 0.96 (0.03)

40

Table 6: Metrics for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. One dynamics switch: The agent trains for T/2 steps on the unmodified action
dynamic, and then for T/2 steps on the modified action dynamic. The modification is configured
with the action wrapper, the action dimension and if applicable a wrapper specific value, see Section 4
and Table 1.

Wrapper Dim. Value Avg. perf. Fwd. trans. Bwd. transfer Forgetting

InvertAction 0 - 0.56 (0.01) 0.09 (0.01) 0.0 (0.0) 0.79 (0.02)
all - 0.4 (0.02) 0.01 (0.02) 0.0 (0.0) 1.02 (0.01)

NoiseAction 0 0.2 0.99 (0.02) 0.84 (0.02) 0.16 (0.02) 0.0 (0.0)
0.5 0.98 (0.01) 0.83 (0.03) 0.09 (0.01) 0.0 (0.0)
0.8 0.95 (0.01) 0.75 (0.02) 0.06 (0.02) 0.01 (0.01)

all 0.2 0.95 (0.01) 0.72 (0.04) 0.03 (0.02) 0.0 (0.0)
0.5 0.61 (0.01) 0.34 (0.03) 0.0 (0.0) 0.29 (0.03)
0.8 0.39 (0.01) 0.2 (0.01) 0.0 (0.0) 0.51 (0.02)

OffsetAction 0 0.2 1.0 (0.03) 0.85 (0.02) 0.14 (0.02) 0.0 (0.0)
0.5 1.0 (0.03) 0.81 (0.02) 0.09 (0.03) 0.0 (0.0)
0.8 0.98 (0.01) 0.69 (0.04) 0.01 (0.01) 0.02 (0.01)

all 0.2 0.94 (0.02) 0.62 (0.09) 0.0 (0.0) 0.04 (0.01)
0.5 0.82 (0.04) 0.26 (0.04) 0.0 (0.0) 0.22 (0.06)
0.8 0.01 (0.01) 0.09 (0.02) 0.0 (0.0) 0.97 (0.02)

RepeatAction 0 0.2 0.9 (0.02) 0.56 (0.03) 0.0 (0.0) 0.02 (0.0)
0.5 0.8 (0.02) 0.39 (0.02) 0.0 (0.0) 0.12 (0.03)
0.8 0.77 (0.02) 0.33 (0.02) 0.0 (0.0) 0.16 (0.02)

all 0.2 0.51 (0.02) 0.25 (0.03) 0.0 (0.0) 0.39 (0.03)
0.5 0.32 (0.01) 0.12 (0.03) 0.0 (0.0) 0.63 (0.02)
0.8 0.25 (0.02) 0.08 (0.02) 0.0 (0.0) 0.75 (0.08)

ScaleAction 0 0.2 0.47 (0.06) 0.4 (0.01) 0.0 (0.0) 0.66 (0.11)
0.5 0.94 (0.02) 0.74 (0.02) 0.02 (0.01) 0.04 (0.02)
0.8 0.98 (0.02) 0.83 (0.02) 0.12 (0.02) 0.0 (0.0)

all 0.2 0.0 (0.0) 0.01 (0.01) 0.0 (0.0) 1.03 (0.02)
0.5 0.01 (0.03) 0.21 (0.01) 0.0 (0.0) 1.01 (0.02)
0.8 0.95 (0.01) 0.76 (0.02) 0.01 (0.01) 0.02 (0.01)

SineNoiseAction 0 0.2 0.99 (0.02) 0.84 (0.02) 0.15 (0.02) 0.0 (0.0)
0.5 0.95 (0.02) 0.8 (0.02) 0.12 (0.03) 0.0 (0.0)
0.8 0.94 (0.02) 0.76 (0.04) 0.06 (0.02) 0.0 (0.0)

all 0.2 0.94 (0.01) 0.65 (0.06) 0.01 (0.0) 0.0 (0.0)
0.5 0.62 (0.03) 0.24 (0.02) 0.0 (0.0) 0.26 (0.07)
0.8 0.37 (0.01) 0.08 (0.01) 0.0 (0.0) 0.52 (0.02)

SwapAction 0 - 0.57 (0.03) 0.07 (0.03) 0.0 (0.0) 0.81 (0.08)
all - 0.5 (0.02) 0.02 (0.02) 0.0 (0.0) 0.98 (0.03)

ZeroAction 0 0.2 0.88 (0.01) 0.59 (0.02) 0.01 (0.01) 0.03 (0.02)
0.5 0.72 (0.03) 0.39 (0.01) 0.0 (0.0) 0.24 (0.06)
0.8 0.55 (0.06) 0.32 (0.01) 0.0 (0.0) 0.51 (0.13)

all 0.2 0.33 (0.02) 0.21 (0.01) 0.0 (0.0) 0.58 (0.03)
0.5 0.05 (0.01) 0.03 (0.0) 0.0 (0.0) 0.94 (0.03)
0.8 0.0 (0.01) 0.0 (0.0) 0.0 (0.0) 1.0 (0.02)

41

Table 7: Metrics for the sequential training setup. A SAC agent is trained with HER on the goal-
conditioned FetchReach-v2 environment. One dynamics switch: The agent trains for T/2 steps
on the unmodified action dynamic, and then for T/2 steps on the modified action dynamic. The
modification is configured with the action wrapper, the action dimension and if applicable a wrapper
specific value, see Section 4 and Table 1.

Wrapper Dim. Value Avg. perf. Fwd. trans. Bwd. trans. Forgetting

InvertAction 0 - 0.38 (0.07) -0.04 (0.02) 0.0 (0.0) 0.88 (0.1)
all - 0.21 (0.08) -0.02 (0.02) 0.0 (0.0) 1.0 (0.0)

NoiseAction 0 0.2 1.0 (0.0) 0.94 (0.02) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.98 (0.02) 0.0 (0.0) 0.0 (0.0)
0.8 0.98 (0.01) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 1.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.5 0.99 (0.01) 0.92 (0.04) 0.0 (0.0) 0.0 (0.0)
0.8 0.94 (0.03) 0.84 (0.04) 0.0 (0.0) 0.0 (0.0)

OffsetAction 0 0.2 1.0 (0.0) 1.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.5 0.99 (0.01) 1.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.8 0.94 (0.04) 0.98 (0.02) 0.0 (0.0) 0.02 (0.02)

all 0.2 0.99 (0.01) 1.0 (0.0) 0.0 (0.0) 0.02 (0.02)
0.5 0.94 (0.05) 1.0 (0.0) 0.0 (0.0) 0.12 (0.1)
0.8 0.97 (0.02) 0.76 (0.08) 0.0 (0.0) 0.0 (0.0)

RepeatAction 0 0.2 1.0 (0.0) 0.94 (0.04) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.92 (0.06) 0.0 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.8 (0.06) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.92 (0.06) 0.0 (0.0) 0.0 (0.0)
0.5 0.99 (0.01) 0.62 (0.12) 0.0 (0.0) 0.0 (0.0)
0.8 0.95 (0.04) 0.52 (0.02) 0.0 (0.0) 0.02 (0.02)

ScaleAction 0 0.2 0.98 (0.02) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.98 (0.02) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)

SineNoiseAction 0 0.2 1.0 (0.0) 0.94 (0.02) 0.0 (0.0) 0.0 (0.0)
0.5 0.99 (0.01) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.8 0.99 (0.01) 0.78 (0.07) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 1.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.5 0.98 (0.01) 0.9 (0.04) 0.0 (0.0) 0.0 (0.0)
0.8 0.87 (0.01) 0.68 (0.11) 0.0 (0.0) 0.0 (0.0)

SwapAction 0 - 0.61 (0.17) 0.0 (0.04) 0.0 (0.0) 0.54 (0.22)
all - 0.87 (0.13) 0.0 (0.03) 0.0 (0.0) 0.2 (0.2)

ZeroAction 0 0.2 0.98 (0.02) 0.96 (0.02) 0.0 (0.0) 0.02 (0.02)
0.5 1.0 (0.0) 0.94 (0.04) 0.0 (0.0) 0.0 (0.0)
0.8 0.88 (0.03) 0.7 (0.08) 0.0 (0.0) 0.0 (0.0)

all 0.2 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.5 1.0 (0.0) 0.96 (0.02) 0.0 (0.0) 0.0 (0.0)
0.8 0.82 (0.02) 0.58 (0.02) 0.0 (0.0) 0.04 (0.02)

42

Table 8: Metrics for the sequential training setup. A SAC agent is trained with HER on the goal-
conditioned FetchPush-v2 environment. One dynamics switch: The agent trains for T/2 steps
on the unmodified action dynamic, and then for T/2 steps on the modified action dynamic. The
modification is configured with the action wrapper, the action dimension and if applicable a wrapper
specific value, see Section 4 and Table 1.

Wrapper Dim. Value Avg. perf. Fwd. trans. Bwd. trans. Forgetting

InvertAction 0 - 0.24 (0.12) 0.1 (0.05) 0.0 (0.0) 0.59 (0.2)
all - 0.26 (0.1) 0.08 (0.04) 0.0 (0.0) 0.55 (0.19)

NoiseAction 0 0.2 1.0 (0.24) 0.67 (0.25) 0.36 (0.23) 0.0 (0.0)
0.5 0.98 (0.3) 0.88 (0.34) 0.25 (0.15) 0.03 (0.03)
0.8 0.96 (0.33) 0.79 (0.32) 0.21 (0.21) 0.11 (0.11)

all 0.2 1.0 (0.01) 0.78 (0.15) 0.2 (0.16) 0.0 (0.0)
0.5 0.98 (0.24) 0.85 (0.18) 0.25 (0.19) 0.28 (0.24)
0.8 0.92 (0.16) 0.71 (0.18) 0.22 (0.16) 0.17 (0.17)

OffsetAction 0 0.2 0.65 (0.22) 0.92 (0.05) 0.0 (0.0) 0.33 (0.2)
0.5 0.78 (0.14) 0.84 (0.04) 0.0 (0.0) 0.29 (0.14)
0.8 0.6 (0.16) 0.31 (0.06) 0.0 (0.0) 0.33 (0.18)

all 0.2 0.43 (0.21) 0.92 (0.06) 0.0 (0.0) 0.53 (0.22)
0.5 0.54 (0.2) 0.74 (0.06) 0.0 (0.0) 0.47 (0.18)
0.8 0.41 (0.16) 0.18 (0.07) 0.0 (0.0) 0.47 (0.21)

RepeatAction 0 0.2 0.98 (0.31) 0.66 (0.31) 0.38 (0.26) 0.09 (0.06)
0.5 0.54 (0.21) 0.95 (0.1) 0.02 (0.02) 0.54 (0.24)
0.8 0.99 (0.22) 0.88 (0.12) 0.12 (0.08) 0.1 (0.07)

all 0.2 0.98 (0.3) 0.67 (0.35) 0.33 (0.26) 0.07 (0.04)
0.5 0.77 (0.2) 0.88 (0.05) 0.02 (0.02) 0.24 (0.17)
0.8 0.94 (0.16) 0.64 (0.09) 0.08 (0.05) 0.08 (0.05)

ScaleAction 0 0.2 0.57 (0.16) 0.31 (0.06) 0.0 (0.0) 0.31 (0.19)
0.5 0.62 (0.16) 0.9 (0.04) 0.0 (0.0) 0.37 (0.17)
0.8 0.82 (0.14) 0.94 (0.04) 0.0 (0.0) 0.22 (0.18)

all 0.2 0.44 (0.14) 0.35 (0.08) 0.0 (0.0) 0.33 (0.2)
0.5 0.44 (0.23) 0.82 (0.05) 0.0 (0.0) 0.55 (0.22)
0.8 0.46 (0.18) 0.92 (0.03) 0.0 (0.0) 0.55 (0.17)

SineNoiseAction 0 0.2 0.89 (0.34) 0.96 (0.36) 0.07 (0.07) 0.11 (0.07)
0.5 0.88 (0.41) 0.96 (0.41) 0.08 (0.08) 0.23 (0.14)
0.8 0.98 (0.31) 0.72 (0.3) 0.25 (0.18) 0.06 (0.06)

all 0.2 0.98 (0.08) 0.83 (0.13) 0.19 (0.19) 0.06 (0.06)
0.5 0.95 (0.18) 0.79 (0.22) 0.26 (0.21) 0.19 (0.19)
0.8 0.92 (0.17) 0.44 (0.15) 0.07 (0.05) 0.02 (0.02)

SwapAction 0 - 0.51 (0.16) 0.2 (0.08) 0.0 (0.0) 0.43 (0.15)
all - 0.67 (0.1) 0.24 (0.12) 0.0 (0.0) 0.24 (0.06)

ZeroAction 0 0.2 0.98 (0.31) 0.61 (0.32) 0.33 (0.23) 0.03 (0.03)
0.5 0.85 (0.16) 0.58 (0.1) 0.1 (0.07) 0.12 (0.08)
0.8 0.62 (0.02) 0.17 (0.04) 0.17 (0.1) 0.02 (0.02)

all 0.2 0.98 (0.45) 0.87 (0.46) 0.44 (0.34) 0.44 (0.38)
0.5 0.68 (0.14) 0.49 (0.13) 0.1 (0.07) 0.22 (0.16)
0.8 0.56 (0.03) 0.13 (0.04) 0.19 (0.1) 0.02 (0.02)

43

Table 9: Metrics for the sequential training setup. A SAC agent is trained on the walker-walk-v0
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action
dynamic, and then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value (increasing for NoiseAction and OffsetAction, decreasing for
ScaleAction). The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1.

Wrapper Dim. Avg. perf. Fwd. trans. Bwd. trans. Forgetting

NoiseAction 0 1.0 (0.0) 0.19 (0.0) 0.0 (0.0) 0.0 (0.0)
all 0.97 (0.0) 0.19 (0.0) 0.0 (0.0) 0.0 (0.0)

OffsetAction 0 0.71 (0.05) 0.19 (0.0) 0.04 (0.02) 0.09 (0.01)
all 0.04 (0.0) 0.11 (0.0) 0.0 (0.0) 0.11 (0.0)

ScaleAction 0 0.98 (0.0) 0.19 (0.0) 0.0 (0.0) 0.01 (0.0)
all 0.03 (0.0) 0.1 (0.0) 0.0 (0.0) 0.11 (0.0)

Table 10: Metrics for the sequential training setup. A SAC agent is trained on the HalfCheetah-v4
environment. Continual adaptation: The agent trains for T/10 steps on the unmodified action
dynamic, and then nine times for T/10 steps on modified action dynamics with increasing difficulty,
determined by the wrapper value (increasing for NoiseAction and OffsetAction, decreasing for
ScaleAction). The modification is configured with the action wrapper, the action dimension and if
applicable a wrapper specific value, see Section 4 and Table 1.

Wrapper Dim. Avg. perf. Fwd. trans. Bwd. trans. Forgetting

NoiseAction 0 0.83 (0.01) 0.18 (0.0) 0.01 (0.0) 0.02 (0.0)
all 0.34 (0.0) 0.12 (0.0) 0.0 (0.0) 0.06 (0.0)

OffsetAction 0 0.36 (0.02) 0.15 (0.0) 0.04 (0.01) 0.11 (0.01)
all -0.03 (0.0) 0.08 (0.0) 0.01 (0.0) 0.08 (0.0)

ScaleAction 0 0.81 (0.03) 0.17 (0.0) 0.04 (0.0) 0.06 (0.01)
all -0.02 (0.0) 0.06 (0.0) 0.01 (0.0) 0.08 (0.0)

44

Table 11: Metrics for the multi-task training setup. A SAC agent is trained on the walker-walk-v0
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1.

Wrapper Dim. Value Avg. perf. Parallel trans.

InvertAction 0 - 0.99 (0.03) -0.02 (0.03)
all - 0.86 (0.08) -0.14 (0.08)

NoiseAction 0 0.2 1.0 (0.05) -0.04 (0.05)
0.5 1.0 (0.0) 0.01 (0.01)
0.8 1.0 (0.02) -0.0 (0.0)

all 0.2 1.0 (0.01) -0.0 (0.01)
0.5 1.0 (0.0) -0.0 (0.0)
0.8 0.97 (0.01) -0.02 (0.01)

OffsetAction 0 0.2 0.98 (0.01) -0.0 (0.02)
0.5 1.0 (0.0) 0.02 (0.01)
0.8 0.99 (0.01) -0.0 (0.01)

all 0.2 1.0 (0.0) -0.0 (0.0)
0.5 0.98 (0.01) -0.0 (0.01)
0.8 0.55 (0.03) -0.28 (0.08)

RepeatAction 0 0.2 1.0 (0.0) -0.0 (0.0)
0.5 0.99 (0.02) -0.02 (0.02)
0.8 1.0 (0.0) 0.0 (0.0)

all 0.2 0.99 (0.0) -0.0 (0.0)
0.5 0.98 (0.0) -0.0 (0.01)
0.8 0.95 (0.0) -0.03 (0.0)

ScaleAction 0 0.2 1.0 (0.0) -0.0 (0.0)
0.5 1.0 (0.0) 0.01 (0.01)
0.8 1.0 (0.0) -0.0 (0.0)

all 0.2 0.51 (0.01) -0.08 (0.02)
0.5 0.71 (0.08) -0.17 (0.07)
0.8 1.0 (0.0) 0.01 (0.01)

SineNoiseAction 0 0.2 1.0 (0.0) -0.0 (0.0)
0.5 1.0 (0.0) 0.0 (0.0)
0.8 1.0 (0.0) -0.0 (0.0)

all 0.2 1.0 (0.0) 0.0 (0.0)
0.5 0.98 (0.05) -0.05 (0.05)
0.8 0.9 (0.04) -0.08 (0.04)

SwapAction 0 - 0.62 (0.1) -0.0 (0.01)
all - 0.55 (0.02) 0.02 (0.02)

ZeroAction 0 0.2 0.99 (0.03) -0.03 (0.03)
0.5 0.97 (0.01) 0.0 (0.03)
0.8 0.95 (0.04) -0.01 (0.06)

all 0.2 0.76 (0.06) -0.16 (0.06)
0.5 0.52 (0.01) -0.08 (0.01)
0.8 0.52 (0.02) -0.04 (0.02)

45

Table 12: Metrics for the multi-task training setup. A SAC agent is trained on the HalfCheetah-v4
environment. The agent trains on two tasks resulting from the unmodified action dynamic and one
modification of such. The modification is configured with the action wrapper, the action dimension
and if applicable a wrapper specific value, see Section 4 and Table 1.

Wrapper Dim. Value Avg. perf. Parallel trans.

InvertAction 0 - 1.0 (0.02) -0.06 (0.01)
all - 0.99 (0.12) -0.16 (0.02)

NoiseAction 0 0.2 0.98 (0.02) 0.0 (0.03)
0.5 0.95 (0.01) -0.02 (0.01)
0.8 0.92 (0.18) -0.11 (0.18)

all 0.2 0.92 (0.01) 0.02 (0.07)
0.5 0.73 (0.19) -0.34 (0.11)
0.8 0.62 (0.22) -0.42 (0.08)

OffsetAction 0 0.2 1.0 (0.19) -0.13 (0.16)
0.5 0.97 (0.02) 0.01 (0.04)
0.8 0.93 (0.01) -0.02 (0.02)

all 0.2 0.98 (0.01) -0.01 (0.0)
0.5 0.9 (0.01) -0.04 (0.02)
0.8 0.7 (0.06) -0.2 (0.05)

RepeatAction 0 0.2 0.87 (0.01) -0.02 (0.06)
0.5 0.84 (0.04) -0.09 (0.1)
0.8 0.8 (0.14) -0.21 (0.1)

all 0.2 0.71 (0.03) -0.18 (0.03)
0.5 0.56 (0.05) -0.22 (0.03)
0.8 0.67 (0.18) -0.38 (0.07)

ScaleAction 0 0.2 0.86 (0.18) -0.26 (0.08)
0.5 0.91 (0.18) -0.17 (0.13)
0.8 0.97 (0.01) -0.06 (0.04)

all 0.2 0.56 (0.14) -0.34 (0.06)
0.5 0.72 (0.02) -0.11 (0.02)
0.8 0.91 (0.01) -0.05 (0.02)

SineNoiseAction 0 0.2 0.98 (0.01) -0.02 (0.02)
0.5 0.96 (0.0) 0.01 (0.02)
0.8 0.93 (0.01) -0.03 (0.02)

all 0.2 0.93 (0.26) -0.36 (0.15)
0.5 0.74 (0.03) -0.18 (0.02)
0.8 0.67 (0.12) -0.39 (0.05)

SwapAction 0 - 0.61 (0.09) -0.04 (0.02)
all - 0.51 (0.11) -0.16 (0.07)

ZeroAction 0 0.2 0.88 (0.05) -0.07 (0.06)
0.5 0.88 (0.04) -0.21 (0.02)
0.8 0.85 (0.16) -0.21 (0.1)

all 0.2 0.64 (0.03) -0.19 (0.02)
0.5 0.51 (0.01) -0.2 (0.01)
0.8 0.5 (0.13) -0.34 (0.04)

46

	Introduction
	Related work
	Transfer, multi-task and continual learning benchmarks
	Environment modification benchmarks

	Background
	Manipulate the action effect
	Action effect benchmark
	Sequential training setup (continual learning)
	Experimental setting
	Metrics
	One dynamic switch
	Continual adaptation to new dynamics

	Parallel training setup (multi-task learning)
	Experimental setting
	Metrics
	Pair-wise multi-task

	Conclusions
	More examples
	Extended background
	Transfer Learning in RL
	Multi-task RL
	Continual RL

	Action wrapper overview
	Hyperparameters
	Classification of the modifications
	Relearning in a new dynamic
	Extended results for experiments

