
Differentiable Dec-Options:
Scalable Neural Network Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Temporally extended actions, or options, provide a powerful abstraction for solving1

reinforcement learning (RL) problems, especially in transfer learning settings where2

knowledge reuse is needed. Recent work presented Dec-Options, an approach that3

uses simple insights from computer programming: program decomposition and4

reuse. This method treats neural networks as programs that can be decomposed5

into functions, similarly to how software engineers refactor reusable code from6

larger programs. Dec-Options evaluates all functions in a network so it can select7

reusable options. The issue is that the number of functions that a feedforward8

neural network encodes grows exponentially with the size of the network, so the9

approach is restricted to small networks. In this paper, we show how the search10

for subfunctions of a neural network can be done with gradient descent, which11

allows us to scale Dec-Options to larger networks. Moreover, we show how the12

extracted functions can be parameterized with learned default parameters that13

help with generalization across tasks. When using piecewise-linear activations14

(e.g., ReLU), the extracted options are compressed into networks smaller than the15

original network. This is similar to how functions extracted from a program have16

fewer lines of code than the original program. Empirical results on challenging17

gridworld problems demonstrate the effectiveness of our approach—namely, our18

neural-programmatic options improve sample efficiency in downstream tasks.19

1 Introduction20

In transfer learning settings, an agent benefits from reusing skills learned in previous tasks. Knowledge21

reuse with neural networks can be complex due to factors such as catastrophic forgetting [French,22

1999] and loss of plasticity [Dohare et al., 2024]. Some of these difficulties do not arise when using23

other types of representations, such as programming languages. For example, DreamCoder learns24

a library of lambda calculus programs by compressing solutions to tasks it has solved, so that the25

programs in the library can reduce the complexity of solving downstream tasks [Ellis et al., 2023].26

Alikhasi and Lelis [2024] take a programmatic view of neural networks to learn reusable skills through27

a method called Dec-Options. Dec-Options decomposes feedforward neural networks encoding a28

solution to a sequential decision-making problem into an equivalent structure called a neural tree.29

Then, it evaluates each subtree of the neural tree for reusable subfunctions that could be stored in a30

library of programs to help reduce the complexity of solving downstream problems. The extracted31

programs can be seen as temporally extended actions, or options [Sutton et al., 1999].32

The main drawback of Dec-Options is that it evaluates all possible subtrees of a neural tree, whose33

size grows exponentially with the number of neurons in the original neural network. As a result,34

Dec-Options can only be used with small neural networks, which prevents it from being used on35

more challenging problems (Dec-Options were evaluated with networks with only six neurons). In36

this paper, we overcome this problem by searching in the space of possible subtrees of the neural37



tree with gradient descent. Our method, Differentiable Dec-Options (DIDEC, which we pronounce38

“Dye-Deck”), leverages that each subtree of the neural tree can be recovered by using a mask over the39

neurons of the underlying network. That way, learning masks over neurons is equivalent to searching40

for subfunctions of the network. This allows DIDEC scale to larger networks—we use networks with41

more than 100 neurons in our experiments.42

We also show that subfunctions needed to help the agent solve downstream tasks might only be43

recovered if we also learn “default input parameters”. For example, consider the case where the44

agent learns a behavior that could be reused in different locations of the environment. However, the45

network encoding the behavior depends on features present only in the location where the agent46

learned the behavior. In this case, a subfunction will encode the behavior that generalizes to any47

location only if we learn default location parameters, which allow the agent to “pretend” to be where48

it was when it originally learned the behavior. DIDEC also learns default parameters with gradient49

descent by masking the input observation—it searches for a subfunction and its default parameters50

simultaneously.51

We evaluate DIDEC in a transfer learning setting where we have neural models encoding solutions to52

previous tasks, and the agent can use these models to improve its sample efficiency while learning53

how to solve the current task. DIDEC decomposes the networks encoding the solution to previous54

problems to equip the agent with a library of options. We hypothesize that DIDEC can extract reusable55

options even from larger networks. We evaluate this hypothesis by checking whether DIDEC’s56

options can generalize better to downstream tasks than baselines that use the solution to previous57

tasks without decomposing them. Empirical results in challenging gridworld problems support our58

hypotheses.59

2 Problem Formulation60

We are interested in solving partially observable Markov decision processes (POMDP), which are61

defined as (S,A,O, p, q, r, S0). Here, S, A, O are the sets of states, actions, and observations,62

respectively. The function p : S × A → S defines the transition dynamics of the environment by63

returning the next state sj+1 given the current state sj and an action the agent takes at sj ; function64

q : S → O defines what the agent observes in the current state. Function r : S × A defines the65

reward value the agent observes after performing an action in a given state. Finally, S0 defines the66

distribution of initial states. A policy π : O × A → [0, 1] receives an observation o and an action67

a and returns the probability that a is taken in o. We consider the transfer learning setting where68

we learn to solve a sequence of POMDPs P1, P2, · · · , Pi−1 and is evaluated in the i-th POMDP, Pi.69

This means that for each Pj with j < i, we have a policy πj that approximates π∗
j , where70

π∗
j = argmax

π∈Π
Es0∼S0

[R(s0, π)] .

In an episodic setting with T time steps, R(s0, π) =
∑T

t=0 r(st, at), and Π is the class of possible71

policies. Given the collection of neural policies {πj}i−1
j=1, we want to approximate π∗

i while optimizing72

for sample efficiency. We approach this problem by decomposing the neural policies {πj}i−1
j=173

(Section 3) into options (Section 4) that can improve the agent’s sample efficiency while solving Pi.74

3 Decomposing Feedforward Neural Networks75

We assume that the policies {πj}i−1
j=1 are encoded in fully connected feedforward neural networks,76

such as the one shown in the lower left corner of Figure 1. Each layer k has nk neurons (1, · · · , nk),77

with n1 = |X|, where X is the observation vector passed as input to the network. The network’s78

trainable parameters are the values between any subsequent layers k and k + 1. We denote such79

weights as W k ∈ Rnk+1×nk and Bk ∈ Rnk+1×1. The z-th row vectors of W k and Bk, denoted W k
z80

and Bk
z , represent the weights and the bias term of the z-th neuron of the (k + 1)-th layer.81

We denote the vector with the values produced in the k-th layer of the network as Ak ∈ Rnk×1. Here,82

A1 = X and Am is the model output of a network with m layers. We compute Ai = g(Zi), where83

g(·) is an activation function, and Zi = W i−1 ·Ai−1 +Bi−1. Initially, we consider piecewise-linear84

activation functions, such as ReLU, where g(z) = max(0, z), later we consider other functions.85
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Alikhasi and Lelis [2024] showed how a mapping between a neural network that uses piecewise-linear86

activation functions into an equivalent neural tree allows us to extract subfunctions from the network.87

We explain this mapping with the example in Figure 1. Each neuron is mapped to a level in the tree.88

In Figure 1, neuron A2
1 is represented by the root level of the tree, A2

2 by the second level of the tree,89

and A3
1 by the tree’s leaves. Each node considers the two possible outcomes of a ReLU neuron: if90

Z ≤ 0, the output is 0.0 (left branch); if Z > 0, the output is Z (right branch). In our example, the91

output of the leaf nodes in the left subtree of the root is calculated for A2
1 = 0, while the output of the92

leaf nodes in the right subtree of the root is calculated for A2
1 = Z2

1 . For example, when following the93

left branch twice from the root, we have A2
1 = A2

2 = 0, so A3
1 = σ(5), which is the Sigmoid function94

of the bias term of the output neuron. If we follow the right and then the left branches from the root,95

then A2
1 = −x1 +4x3 and A2

2 = 0, so the leaf output is σ(−1(−x1 +4x3)+ 5) = σ(x1− 4x3 +5).96

Each subtree of the neural tree provides a subfunction of the policy. Since the number of subtrees97

grows exponentially with the number of neurons in the hidden layer, Alikhasi and Lelis [2024]98

considered networks with only six neurons so that all subtrees could be evaluated in terms of their99

utility as options for downstream problems. Next, we explain Alikhasi and Lelis’s Dec-Options.100

4 Dec-Options101

Dec-Options extracts subfunctions of the policies in {πj}i−1
j=1 so that they can be used as options [Sut-102

ton et al., 1999]. An option ω is a tuple (Iω, πω, Tω), where Iω is the set of observations in which103

the option can be invoked, πω is the policy that the agent follows once the option starts, Tω is a104

function that receives an observation ot and returns the probability that the option terminates in ot.105

We consider the call-and-return execution of options, where the agent follows πω until ω terminates.106

Dec-Options operates in two steps, given the policies {πj}i−1
j=1, which we will refer to as Πtrain. First,107

it decomposes each policy πj in Πtrain into all possible subtrees of the neural tree of πj (Section 4.1).108

Then, it selects a subset of these subtrees to be used as options for solving Pi (Section 4.2).109

4.1 Subtrees to Options110

Options are temporal abstractions because they encode policies that execute over multiple steps before111

terminating. Feedforward neural networks do not represent programs with loops, which can be run112

many iterations; instead, they represent chains of if-then-else structures. Dec-Options incorporates113

the temporal aspect of these abstractions by wrapping each subtree, extracted from a policy, in loops.114

Let Ttrain= {Tj}i−1
j=1 be the set of trajectories obtained by rolling each πj in Πtrain out from an initial115

state of each POMDP in {Mj}i−1
j=1. Each trajectory Tj is a sequence of observation-action pairs116

of the form {(o0, a0), (o1, a1), · · · , (oTj , aTj )}. Let Tmax = maxj Tj be the length of the longest117

trajectory in Πtrain, and Uj be all subtrees that can be extracted from πj . Dec-Options wraps each u in118

Uj in programs repeat(t):u, where subtree u is invoked t times before termination. Dec-Options119

considers one such program for each t in {2, · · · , Tmax}. The programs obtained from the subtrees120

in Uj form the set of options Ωj extracted from πj . For Dec-Options, Iω = O, that is, the options121

can be invoked from any observation, and Tω is deterministic as options are executed for t steps.122

4.2 Dec-Options Subset Selection123

We denote the set of options extracted from Πtrain as Ω = ∪i−1
j=1Ωj . Given the size of Ω, attempting to124

use all options to solve downstream problems would slow down learning, as the agent would have to125

learn to use a very large number of options. That is why Dec-Options selects a subset Ω′ of Ω based126

on the Levin loss [Orseau et al., 2018] of Ω′. The Levin loss approximates the usefulness of Ω′ in127

solving downstream tasks. Intuitively, the Levin loss evaluates whether the likelihood of an agent128

solving a problem Pj would increase if we augmented the action space of the agent with Ω′.129

L(Tj , π) =
|Tj |∏

(s,o)∈Tj
π(s, o)

.

The Levin loss L(Tj , π) computes the expected number of samples an agent following π requires130

to recover the trajectory Tj . The denominator of L gives the expected number of rollouts the agent131
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following π needs to perform to observe the trajectory Tj ; the numerator is the required number of132

agent interactions with the environment in each rollout. Dec-Options selects a subset Ω′ of Ω such133

that the resulting policy π minimizes the Levin loss on trajectories Ttrain.134

To simulate the scenario in which the agent is starting to learn how to solve a problem, the policy135

π used in the computation of the Levin loss is the uniform policy—a randomly initialized neural136

network can produce a probability distribution over actions that is close to uniform. The uniform137

policy on the agent’s action space augmented with options Ω′ is denoted πΩ′

u . In this way, the larger138

the set Ω′, the smaller π(s, o), which increases the Levin loss. Conversely, if the options in Ω′ cover139

sub-trajectories of the trajectories in Ttrain, then the number of decisions the agent must make to140

reproduce the trajectories is reduced, which decreases the Levin loss. The loss balances the negative141

(increase π(s, o)) and positive (decrease the number of decisions) effects of adding options to Ω′.142

Dec-Options approximates a solution to the problem of selecting a subset Ω′ of Ω that minimizes143

the sum of the Levin loss of the trajectories in Ttrain. Importantly, when computing the value of144

L(Tj , πΩ′

u ), Dec-Options does not consider the options ω in Ω′ that were extracted from πj . This145

is to prevent the selection of trivial policies that do not generalize to downstream problems. For146

example, the policy that reduces the Levin loss the most for the trajectory Tj is πj , which is unlikely147

to generalize because it is too specialized in πj . Alikhasi and Lelis [2024] used a greedy algorithm to148

approximate a solution to the subset selection problem. They also presented a dynamic programming149

procedure to compute the Levin loss for a given subset Ω′. Please refer to Appendix A for details.150

5 Differentiable Dec-Options (DIDEC)151

Dec-Options has two important shortcomings. First, since the number of subtrees grows exponentially152

with the number of neurons in the network, Dec-Options can only be used with small networks153

(Alikhasi and Lelis [2024] used networks with only six neurons), limiting the approach’s applicability.154

Second, as we show in Section 5.2.1, the functions Dec-Options extracts from neural networks might155

not generalize to downstream problems because the extracted functions do not come with “default156

parameters”. Differentiable Dec-Options (DIDEC) overcomes these two shortcomings.157

5.1 Subtree Extraction as Masking Neurons158

Alikhasi and Lelis [2024] showed that the number of possible subtrees a neural network with d hidden159

neurons is
∑d

i=0

(
d
i

)
· 2i. For the neural tree in Figure 1, we have 1 + 4 + 4 = 9 subtrees. The 1160

represents the entire neural tree, the first 4 represents the subtrees of the root: there are 2 subtrees161

when A2
1 is the root, and another 2 when A2

2 is the root. Finally, the last 4 is the number of leaf nodes.162

We note the binomial identity (1+x)d =
∑d

i=0

(
d
i

)
·xi, so if x = 2, then

∑d
i=0

(
d
i

)
·2i = (1+2)d =163

3d. This identity is useful because it suggests a gradient-based solution to the problem of finding164

helpful neural subfunctions. In a subtree of the neural tree, each ReLU neuron can be active, when165

it returns z, inactive, when it returns 0, or part of the program, when the neuron’s function is166

accounted for in the subtree. To illustrate, consider the left subtree of the tree in Figure 1, neuron A2
1167

is inactive (we follow its left child), while A2
2 is part of the program because its node is in the subtree.168

This means that extracting a subtree from the neural tree is equivalent to setting one of the following169

states for each neuron: active, inactive, or part of the extracted program, for a total of 3d possibilities.170

DIDEC learns masks for neurons to extract subtrees of the underlying tree. Masks are given by a matrix171

Θk ∈ Rnk×3 with trainable weights
(
(θk1,1, θ

k
1,2, θ

k
1,3), (θ

k
2,1, θ

k
2,2, θ

k
2,3), . . . , (θ

k
nk,1

, θknk,2
, θknk,3

)
)

for172

the nk neurons in the k-th layer of the network. The parameters (θkj,1, θ
k
j,2, θ

k
j,3) are used in a Softmax173

operation to determine the state of the j-th neuron in the k-th layer, as shown in Algorithm 1.174

In line 1 of Algorithm 1, we compute the logits Zk. In line 2 we compute the mask of the neurons.175

This is done by computing the Softmax function for each row vector of Θk and then discretizing the176

values by generating one-hot vectors as rows of the mask matrix Mk. The j-th element of the i-th177

row will be 1 and the other columns 0 if the j-th element is the largest. Finally, in line 3 we compute178

the masked output Ak of the nk neurons. The rows whose first element is 1 contribute with 0 in the179

sum (inactive neurons); the rows whose second element is 1 contribute with Zk (active neurons); the180

rows whose third element is 1 contribute with ReLU(Zk) (neurons that are part of the program).181
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Algorithm 1 MASKED FORWARD PASS OF THE k-TH LAYER

1: Zk = W k−1 ·Ak−1 +Bk−1

2: Mk
ij = D

(
exp(θk

ij)∑3
j′=1

exp(θk
ij′ )

)
where

D(x) =

1 if x = max

(
exp(θk

i1)∑3
j′=1

exp(θk
ij′ )

,
exp(θk

i2)∑3
j′=1

exp(θk
ij′ )

,
exp(θk

i3)∑3
j′=1

exp(θk
ij′ )

)
0 otherwise

3: Ak = Mk
:,1 × 0 +Mk

:,2 × Zk +Mk
:,3 × ReLU(Zk)

The function D(x) in line 2 is non-differentiable due to the max operation. When updating Θk182

with gradient descent, we use the straight-through estimator [Bengio et al., 2013], which passes the183

gradient computed up to the discretization step in the backward pass directly to the Softmax layer.184

We also considered the modified tanh function of Pitis [2017] and Koul et al. [2019] to discretize185

over 3 values, but preliminary experiments favored the use of the Softmax approach of Algorithm 1.186

5.1.1 Learning Masks as Neural Subtree Selection187

Ideally, we would learn the parameters Θk such that we minimize the Levin loss of a subset of188

options Ω′. However, the Levin loss is computed with a dynamic programming process, as shown in189

Appendix A, which is not differentiable. Similarly to Dec-Options, DIDEC uses the same dynamic190

programming procedure to calculate the Levin loss, and it also treats the subset selection problem as191

a discrete optimization problem. In contrast to Dec-Options that considers all 3d subtrees of a neural192

tree, DIDEC considers a potentially much smaller number by learning masks with gradient descent.193

For each Tj of Ttrain, we consider all subsequences τ of observation-action pairs of Tj with length194

z in {2, 3, · · · , zmax}. Here, zmax ≤ Tj is a hyperparameter. Each subsequence is used to train195

masks for neurons in the πj network. We use the cross-entropy loss to learn Θ such that the masked196

network predicts the actions in the observation-action pairs of τ . Similarly to Dec-Options, to allow197

for generalization, DIDEC learns parameters Θ for policies πi and a subsequence τ of the trajectory198

Tj only if i ̸= j. This forces DIDEC to extract subfunctions of πi that help solve a problem Pj for199

which πi was not trained to solve. We hypothesize DIDEC’s gradient-based process for selecting200

subtrees of the policy allows for the discovery of options that generalize to downstream problems.201

For a subsequence τ with length b of Tj , we train the parameters Θ to generate an option of the form202

repeat(b):πΘ
j , where πΘ

j is the policy πj masked with Θ, as shown in Algorithm 1. Larger zmax203

values will generate more options. Also, options trained with larger zmax-values tend to be specific204

to the behavior Tj , thus less likely to generalize to downstream problems. Choosing smaller values of205

zmax reduces the system’s overall computational complexity while automatically eliminating options206

less likely to generalize. DIDEC’s set Ω is formed by one option for each subsequence τ . We describe207

the process in which DIDEC selects a subset Ω′ of Ω in Appendix B.208

Dec-Options considers all 3d subtrees of a neural tree as options. Each of these subtrees is wrapped209

around programs with repeat-loops, yielding a total of 3d×
∑Tmax

i=2 (Tmax−i+1) which is O(3d·T 2
max),210

where Tmax is the length of the longest sequence in Ttrain. This contrasts with DIDEC, which considers211

only
∑zmax

i=2 (Tmax − i + 1) options, with complexity O(Tmax · zmax). DIDEC’s complexity does212

not include the term 3d because it uses gradient descent to find the subtrees more likely to yield213

helpful options, rather than evaluating all 3d possibilities as Dec-Options does. This means we can214

use DIDEC with larger networks, since the number of options evaluated no longer depends on d.215

5.2 Learning Default Parameters216

While subtrees of a neural tree might encode helpful subfunctions that can be reused in downstream217

tasks, in this section we argue that neural decomposition can be more effective if we learn “default218

parameters” to the extracted functions. Consider the motivating example in the next section.219
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(a) ComboGrid (b) Observation-Action Pairs (c) Neural Policy
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Figure 1: (a) Instance of a ComboGrid environment with combos of length two. The sequence of
actions 1, 0 has the effect of moving up, while the sequence 1, 1 has the effect of moving right. The
agent ‘A’ starts at x3 and finishes at x2 after applying the sequence of actions 1, 0, 1, 1. (b) Table with
observation-action pairs for the trajectory depicted in (a). In addition to the agent location (x1, x2, x3,
and x4), the observation includes the bit x5, which is set to 1 if no action in a sequence was taken,
and 0 otherwise. (c) Neural network that fits the data from the observation-action pairs in (b). The
hidden neurons use ReLU activation functions, while the output neuron uses a sigmoid function.
The connections with zero weight between the input and the hidden neurons are omitted for clarity.
(d) Neural tree equivalent to the network from (c). The left subtree of the neural tree represents the
subfunction “right”, because it returns the combo 1, 1 independently of the agent’s location. The
right subtree with the default parameter x3 = 1 represents the subfunction “up”. (e) The compressed
version of the original model when neuron A2

1 is set to active, and is removed from the network.

5.2.1 Motivating Example220

Consider the ComboGrid problem shown in the upper left corner of Figure 1. The cell in the 2× 2221

grid are denoted as x1, x2, x3, and x4; the agent ‘A’ starts in x3. In ComboGrid, the agent needs to222

perform a sequence of actions until the effect of moving to a different cell is observed. The agent223

can perform two actions in a given time step: 0 or 1. After performing action 1 and then 0, the224

agent moves to x1; the “combo” 1, 0 produces the effect of moving up. Similarly, the sequence 1, 1225

produces the effect of moving right. The sequence 1, 0, 1, 1 moves the agent from x3 to x2.226

Observations are given by a one-hot encoding of the position of the agent on the grid and an extra bit,227

x5, which indicates whether the number of actions the agent has taken so far is even (x5 = 1) or odd228

(x5 = 0). This way, if x5 = 1, then the agent has not started a combo sequence. The observation of229

the agent shown in the grid is given by o1 in the table of observation-action pairs. Observations o2230

and o3 are obtained by applying actions 1, 0 from o1. Finally, once the agent performs action 1 in o4,231

it moves to cell x2, whose observation is not shown in the table of observation-action pairs.232

The neural network shown in the lower left corner of Figure 1 produces the sequence of actions given233

in the table of observation-action pairs. This network uses ReLU actions in the hidden layer and a234

sigmoid function in the output layer. The neural tree shown in the lower right corner of the figure is235

equivalent to the neural network. The left subtree of the neural tree encodes the “right combo”. Its236

root checks whether −x5 + 0.5 ≤ 0. Since before starting the sequence, x5 = 1, we follow the left237

child, leading to σ(5) = 0.99 (action 1). After action 1 is performed, x5 = 0, so we follow the right238

child to the function σ(8x5 + 1) = σ(1) = 0.73 (action 1). Since this subtree depends only on x5, it239

represents a function that performs the “up combo” independently of the location of the agent.240

Consider now the right subtree of the neural tree. Before the agent starts performing a sequence,241

x5 = 1, so we follow the left child, leading to σ(x1 − 4x3 + 5). Note that x1 − 4x3 + 5 ≥ 1242

for any combination of x1 and x3, so σ(x1 − 4x3 + 5) ≥ 0.73, thus always producing action243
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1 when x5 = 1. After performing action 1, x5 = 0 so we follow the right child, leading to244

σ(x1 − 4x3 + 8x5 + 1) = σ(x1 − 4x3 + 1). In this case, the output value the model produces245

depends on both x1 and x3 and that if x3 = 1, then x1− 4x3+1 ≤ −2 and σ(x1− 4x3+1) ≤ 0.11.246

Thus, this subtree always produces action 0 when x5 = 0 and x3 = 1. By extracting the function247

represented by the right subtree of the neural tree and setting the default value of x3 to 1, we have a248

function that performs the “up combo” independently of the agent’s position.249

5.2.2 Learning Input Masks250

In addition to learning masks for neurons, DIDEC also learns masks for input values, to allow default251

parameters, as discussed in the example in Section 5.2.1. We consider learning masks for input values252

for problem domains with a discrete and finite number of input values. For binary inputs, we learn253

masks with the same Softmax approach described in Section 5.1. The input masks defines one of the254

three possibilities for a given input feature: always 1, always 0, or read value from environment.255

For the example from Section 5.2.1, a generalizable “up combo” can be obtained by setting the mask256

of x3 to “always 1”, while all other input values could be “read value from the environment”.257

Note that masking input values might be sufficient to learn subfunctions that generalize. For example,258

learning that x3 is always 1 in the problem of Figure 1 is equivalent to extracting the right subtree with259

the default parameter x3 = 1, thus making the masking of neurons unnecessary. Our experiments260

evaluate DIDEC with three masking schemas: input-only, neurons-only, and input-and-neurons.261

Independent of the benefit of masking neurons in discovering options, masking neurons can be a262

valuable compression scheme. In the example from Figure 1 (e), once we mask A2
1 to be active, we263

can reduce the size of the network by making A3
1 a function of x and A2

2: A3
1 = σ(x1−4x3−8A2

2+5)264

and removing A2
1 from the model. In general, every neuron at layer k that is masked to be active265

or inactive can be removed by rewriting the function of the neurons at layers k + 1 accordingly.266

This compression is similar to how a software engineer extracts functions from a codebase: both the267

extracted functions and the masked models have fewer lines than the original implementation.268

The approach of masking only the inputs has the advantage of being applicable to neural networks269

that use activation functions other than piecewise-linear functions and to other neural architectures.270

We evaluate DIDEC with input-only masking to extract options from tanh recurrent networks.271

6 Related Work272

Options Early work on options relied on manual design [Sutton et al., 1999], but many methods273

now learn options automatically—though they often require human choices such as the number274

of options [Bacon et al., 2017; Igl et al., 2020] or their duration [Frans et al., 2017; Tessler et al.,275

2017]. Dec-Options avoids such supervision but depends on data from previously solved tasks. Our276

setting matches that of Dec-Options, though we introduce a limit smax on the number of options.277

This constraint reduces DIDEC’s computational cost and regularizes the learned options, preventing278

overspecialization to Ttrain. While options have also been explored for improving exploration [Jinnai279

et al., 2020; Machado et al., 2023], both Dec-Options and DIDEC focus on compressing reusable280

behaviors to facilitate downstream transfer [Konidaris and Barto, 2007].281

Transfer Learning Knowledge transfer across tasks has been studied via regularization [Kirkpatrick282

et al., 2017], architectural priors [Rusu et al., 2016; Yoon et al., 2017; Schwarz et al., 2018],283

and experience replay [Rolnick et al., 2019]. A common strategy is to reuse parts of pretrained284

models [Clegg et al., 2017; Shao et al., 2018]. Unlike these approaches, DIDEC transfers knowledge285

by extracting reusable programs—options—through gradient-based network decomposition.286

Library Learning DIDEC belongs to a family of library-learning methods [Cao et al., 2023;287

Bowers et al., 2023; Rahman et al., 2024; Palmarini et al., 2024]. For instance, DreamCoder [Ellis et288

al., 2023] builds a library of reusable lambda calculus functions to solve program synthesis problems289

more efficiently. Similarly, DIDEC constructs a library of reusable neural programs from solved tasks.290

However, prior work typically assumes symbolic representations and supervised settings, whereas291

DIDEC operates in reinforcement learning using neural function approximators. It contributes toward292

bridging symbolic and neural paradigms in library learning.293
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Masking Networks Masking has been used in transfer learning, e.g., SupSup [Wortsman et al.,294

2020] and Modulating Masks [Ben-Iwhiwhu et al., 2022], but these approaches mask weights, not295

activations. In contrast, DIDEC masks neurons with piecewise-linear activations, enabling subfunction296

extraction. Input masking has also been explored—for mitigating visual distractions [Bertoin et297

al., 2022; Grooten et al., 2024] or learning auxiliary tasks [Yu et al., 2022]—but DIDEC uses input298

masking to define default parameters that allow subfunctions to generalize across tasks.299

7 Experimental Results300

In our experiments, we evaluate our hypothesis that DIDEC’s masking scheme can extract options301

that generalize to downstream tasks, even when using networks with substantially larger than those302

considered by Dec-Options (six neurons). We begin by describing our experimental setup, then303

introduce the benchmark domains, and finally present results on option extraction and comparison to304

several baselines.305

7.1 Experimental Setup306

We focus on feed-forward policies with a single hidden layer of 64 ReLU units. Such networks307

induce an immense option space—on the order of 3.43× 1030 possible subtrees—far exceeding the308

capacity of prior Dec-Options [Alikhasi and Lelis, 2024]. For each policy we learn three masking309

variants: Input-Only, Neuron-Only, and Input-and-Neuron.310

To demonstrate that our approach is agnostic to the choice of learning algorithm, we used two311

different policy-gradient methods: Advantage Actor-Critic (A2C)[?] and Proximal Policy Optimiza-312

tion (PPO)[Schulman et al., 2017]. All architectural and implementation details are provided in313

Appendix D.314

7.2 Benchmark Domains315

We evaluated on the same two benchmark suites originally used to assess Dec-Options: Combo-316

Grid [Alikhasi and Lelis, 2024] and MiniGrid [Chevalier-Boisvert et al., 2023]. In each suite, we317

designate a set of training environments Pj
i−1
j=1 from which options are extracted, and one or more318

held-out test environments Pi on which we measure the usefullness of the learned options.319

MiniGrid. For training, we used three variants of the SimpleCrossing task on a 9×9 grid, where320

an agent must navigate around a central barrier to reach a fixed goal location. For testing, we adopted321

three configurations of the FourRoom environment on a 19 × 19 grid, each differing in agent and322

goal placement to impose increasing difficulty. In Level 1, the agent and goal share the same room.323

In Levels 2 and 3, the agent must cross one and two doorways, respectively, to reach the goal. The324

agent’s observation consist of an egocentric view of size 5× 5 or 9× 9 around the agent in addition325

to the agent’s orientation.326

ComboGrid. Training consists of four simple 5 × 5 grids, in which the agent and goal occupy327

opposite corners. The test task is also a 5× 5 grid, with multiple goals at the midpoints of the outer328

walls. The agent’s observation includes its position, the goal’s position, and the two most recent329

actions. We also replicate this setup on 6× 6 grids to evaluate generalization to a larger environment.330

7.3 Option Extraction and Baseline Comparison331

For each masking variant (input-only, neuron-only, input-and-neuron) we learn masks over sub-332

trajectories of length 2 to 24 steps, using PPO in MiniGrid and A2C in ComboGrid. We compare the333

performance of DIDEC’s extracted options against four baselines:334

1. Vanilla: No options, only primitive actions.335

2. Transfer: Directly applying the optimal policy from the training environments as the options336

for the test environment.337

3. DecWhole: Apply the hill-climbing subset-selection procedure (Appendix B) to all sub-338

trajectory fragments (lengths 2–24) of the optimal policies, choosing the subset that mini-339

mizes Levin Loss.340
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4. FineTune: Fine-tune each training policy (instead of masking), then perform hill-climbing341

subset selection as in DecWhole.342

Figure 2 compares the performance of DIDECagainst all baselines on the MiniGrid domain. Across343

every difficulty level and for both egocentric view sizes, DIDEC and the FineTune baseline consistently344

rank as the top two methods.345

Level 1 Level 2 Level 3

R
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n

R
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ur
n

Level 1 Level 2 Level 3

Figure 2: Average return on MiniGrid with egocentric view sizes of 5 (top) and 9 (bottom) across
three difficulty levels (30 independent runs).

Figure 3 shows results on ComboGrid, where DIDEC and the DecWhole baseline achieve the highest346

average returns.347
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Figure 3: Average return on ComboGrid (15 independent runs).

Overall, DIDEC exhibited more stability than the other baselines and remains among the top perform-348

ers across both domains.349

8 Conclusion350

In this work, we introduced Differentiable Dec-Options (DIDEC), a novel, gradient-based framework351

for extracting temporally extended actions (options) from neural policies at scale. By casting352

subtree selection as a differentiable masking problem over neurons and inputs, DIDEC overcomes the353

exponential blow-up of prior work [Alikhasi and Lelis, 2024], enabling option discovery in networks354

with tens or even hundreds of neurons and thereby highlighting its scalability.355

Our empirical evaluation on challenging gridworld benchmarks—ComboGrid and Mini-356

Grid—demonstrates that DIDEC’s extracted options consistently match or outperform the strongest357

baselines across both domains, underlining its stability and robustness.358
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A Greedy Algorithm and Levin Loss Computation457

In this section, we explain the greedy algorithm Alikhasi and Lelis [2024] used to select subsets.458

In Dec-Options’ greedy algorithm, we start with an empty Ω′ and select the option ω from Ω that459

minimizes the sum of the Levin loss for the trajectories in Πtrain the most. Then, it makes Ω′ = {ω}.460

In the next iteration, the procedure chooses another ω from Ω such that Ω′ ∪ {ω} minimizes the sum461

of the Levin losses the most. This process continues until adding another option to Ω′ would increase462

the Levin loss. The algorithm then stops and returns Ω′ as its selected subset.463

A key step in the greedy algorithm for subset selection is the computation of the Levin loss for a given464

subset Ω′ and a trajectory T . The algorithm 2 shows a dynamic programming approach to compute465

the loss. Such a procedure is necessary because the computation of the Levin loss depends on which466

options are used in each trajectory step. For example, if Ω′ = {ω1, ω2} and both options can be467

applied in time step 1 of the trajectory, then for which should the loss be computed? Algorithm 2468

shows an efficient procedure for considering all possibilities of use of options.469

Algorithm 2 COMPUTE-LOSS

Require: Sequence S = {o0, o1, · · · , oT+1} of states of a trajectory T , probability pu,Ω, options Ω
Ensure: L(T , πΩ

u )
1: ▷ Initialize table P as if no options were available: to reach the j-th state we need j actions
2: M [j]← j for j = 0, 1, · · · , T + 1
3: for j = 0 to T + 1 do
4: if j > 0 then
5: M [j]← min(M [j − 1] + 1,M [j])
6: for ω in Ω do
7: if ω is applicable in oj then
8: ▷ Option ω is used in oj for ωz steps
9: M [j + ωz]← min(M [j + ωz],M [j] + 1)

10: ▷ M [T + 1] stores the smallest number of actions to reach the end of the sequence. The value of
pu,Ω is the probability of taking an action in the option-augmented action space according to the
uniform policy. The function returns the minimum Levin loss for T and Ω.

11: return |T | · (pu,Ω)−M [T+1]

B Stochastic Hill Climbing for Subset Selection470

Alikhasi and Lelis [2024] used a common approximation to the NP-hard subset selection prob-471

lem [Garey and Johnson, 1979], which greedily and iteratively selects the option that minimizes the472

Levin loss the most (see Appendix A). Preliminary experiments favored a stochastic hill climbing473

(SHC) algorithm over the greedy approach for selecting a subset of options. We use SHC with both474

DIDEC and with baselines that require approximating a solution to the subset selection problem.475

SHC is a hill-climbing approach with a stochastic neighborhood function. SHC starts with a randomly476

selected candidate solution c and greedily selects the best neighbor c′ of c. If c′ has a better Levin477

loss value than c, the search continues with c′ as the new c. Otherwise, the search terminates and478

returns c. We use SHC with random restarts. Once a candidate is returned, we repeat it from another479

initial candidate. The SHC result is the candidate with the smallest loss across all restarts.480

In DIDEC, a candidate solution is a subset Ω′ of Ω. To reduce the search space, all candidates481

considered in the search satisfy |Ω′| ≤ smax, where ≤ smax is a hyperparameter that limits the482

maximum number of options that can be selected. The neighborhood function N is defined as483

follows. Given a candidate Ω′, we sample v options Ω′′ from Ω− Ω′. If |Ω′| < smax, we generate484

v neighbors Ω′ ∪ {ω}, one for each ω in Ω′′. We also generate v2 neighbors, where each ω′′ in Ω′′485

is used to replace an ω′ in Ω′. Finally, we generate other |Ω′| neighbors where we remove each ω′486

from Ω′, thus generating neighbors of size |Ω′| − 1. The function N returns the union of all these487

neighbors.488

We sample the v options from Ω′′ according to a distribution that favors options complementary to489

the current candidate subset Ω′. Let T Ω′

train be the set of observation-action pairs from Πtrain that are490

“not covered” by an option in Ω′. Formally, the j-th observation-action pair of a trajectory is not491
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covered by an option in Ω′ if, while computing the Levin loss of Ω′ in Algorithm 2, line 5, the min492

operator returns M [j − 1] + 1. Given the set of observation-actions pairs T Ω′

train, we define the value493

of each ω in Ω′′ as the number of times ω can be initiated at a pair in T Ω′

train. An option ω of the form494

repeat(b):πω can be initiated at a pair (oj , aj) if πω(oj+i) returns aj+i for i in {0, 1, · · · , b− 1}.495

We sample options from Ω′′ proportionally to their value. This neighborhood function favors options496

that can be used more often in pairs that are not yet covered by the options in the current candidate.497

C DIDEC - Overall Approach498

Algorithm 3 Differentiable Dec-Options (DIDEC)

Require: Observation-action trajectories Ttrain = {Tj}i−1
j=1, neural policies Πtrain = {πj}i−1

j=1 that
generated the trajectories in Ttrain, maximum subset size smax, maximum length of an option
zmax, neighborhood function Nv , number of epochs E, learning rate α, a number of restarts r.

Ensure: A set of at most smax options of the form repeat(b):ωπ .
1: ▷ Generating training sequences by sliding a window of size z = 2, · · · , zmax over the

observation-action trajectories the policies in Πtrain generate.
2: D ← ∅, Ω← ∅
3: for z = 2, 3, . . . , zmax do
4: for each trajectory Tj in Ttrain do
5: for t = 0, 1, . . . , Tj − z do
6: D ← D ∪ {(ot, at), (ot+1, at+1), . . . , (ot+z−1, at+z−1)}
7: ▷ Training masks for selecting subtrees of the neural trees of policies in Πtrain. The masks can be

input-only, neurons-only, or input-and-neurons. Each masked policy πΘ results in an option.
8: for each subsequence τ in D do
9: Initialize Θ randomly

10: for epoch = 1, 2, . . . , E do
11: â = πΘ(τ)
12: L(Θ) = −τ⊤a log(â)

13: ∇Θ← ∂L(Θ)
∂Θ

14: Θ← Θ− α · ∇Θ
15: Ω← Ω ∪ {repeat(|τ |)πΘ}
16: ▷ Perform hill climbing to select a subset of Ω. The neighborhood function Nv(c, smax) returns

a set of neighbors after sampling v options from the options not in c; each neighbor has at most
smax options, as described in Appendix B. Compute-Loss is as described in Algorithm 2.

17: c∗ ← ∅, l∗ ←∞
18: for restart = 1, 2, . . . , r do
19: c← Random subset of Ω with size at most smax

20: l← Compute-Loss(c)
21: cbest ← c, lbest ← l
22: while True do
23: i← False
24: for each neighbor c′ ∈ Nv(c, smax) do
25: l′ ← Compute-Loss(c′)
26: if l′ < lbest then
27: cbest ← c′, lbest ← l′, i← True
28: if not i then
29: break
30: if lbest < l∗ then
31: c∗ ← cbest, l∗ ← lbest
32: return The set of options c∗ represents
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D Neural Architectures499

We adopt a neural Actor-Critic framework based on the Advantage Actor-Critic (A2C) algorithm.500

The model is composed of two networks with shared input: an actor that parameterizes a stochastic501

policy, and a critic that estimates the value function.502

Let dobs denote the dimensionality of the observation vector (after flattening), and let |A| be the503

number of discrete actions.504

Actor Network. The actor network maps an input observation to a distribution over actions via the505

following architecture:506

• A linear layer with input size dobs and output size 64,507

• ReLU activation,508

• A final linear layer with output size |A| producing unnormalized action logits.509

The final layer is initialized with a reduced standard deviation (std = 0.01) to promote stability510

during early exploration.511

Critic Network. The critic network has a deeper architecture to estimate the state value:512

• A linear layer from dobs to 64 units,513

• ReLU activation,514

• Another linear layer with 64 hidden units,515

• ReLU activation,516

• A final linear layer mapping to a scalar value.517

The final layer of the critic is initialized with std = 1.0, which improves learning stability by518

producing meaningful value estimates early in training.519

Weight Initialization. Weights are initialized orthogonally with a gain factor (default
√
2) to520

preserve activation variance, and biases are set to a constant (default 0.0), following common RL521

practice for stable and efficient training.522
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