

S^2 -GUIDANCE: STOCHASTIC SELF-GUIDANCE FOR TRAINING-FREE ENHANCEMENT OF DIFFUSION TRANSFORMERS

Anonymous authors

Paper under double-blind review

Figure 1: **Visual results of S^2 -Guidance versus CFG.** Our proposed method S^2 -Guidance significantly elevates the quality and coherence of both T2I and T2V generation. **Observe (in examples surrounding the center):** Our method produces generations with **superior temporal dynamics**, including more pronounced motion (bear) and dynamic camera angles that convey speed (car). It renders **finer details**, such as the astronaut’s transparent helmet and rich facial details, and creates images with **fewer artifacts** (runner, woman with umbrella), **richer artistic detail** (abstract portrait, castle, colored powder exploding), and **improved object coherence** (cat and rocket, sheep). See Appendix B.5 for our prompts.

ABSTRACT

Classifier-free Guidance (CFG) is a widely used technique for improving conditional generation in diffusion models. However, our empirical analysis of both Gaussian mixture data and real-world image data distributions reveals a discrepancy between the suboptimal results produced by CFG and the ground truth. The model’s excessive reliance on these suboptimal predictions often leads to low fidelity and semantic incoherence. To address this issue, we first empirically demonstrate that the model’s suboptimal predictions can be effectively rectified using sub-networks of the model itself, without requiring additional training or the integration of external modules. Building on this insight, we propose S^2 -Guidance (Stochastic Self-Guidance), a novel method that leverages stochastic block-dropping during the denoising process to activate sub-networks for self-guidance. This approach effectively steers the sampling trajectory towards high-quality regions. Comprehensive experiments, including on class-conditional ImageNet generation and across multiple benchmarks for text-to-image and text-to-video generation, demonstrate the superiority of S^2 -Guidance. Both qualitative and quantitative results show that S^2 -Guidance consistently surpasses CFG and other advanced guidance strategies. Our code will be released.

1 INTRODUCTION

Diffusion models (Song et al., 2020a; Ho et al., 2020) have enabled rapid advances in high-quality text-to-image (Rombach et al., 2022; Podell et al., 2023) and text-to-video (Polyak et al., 2025; Wan et al., 2025; Kong et al., 2024) generation. A key driver of this success is the advent of conditional

guidance techniques, which steer the generation process to enhance adherence to given conditions. However, naively applying the conditioning signal often proves insufficient (Mukhopadhyay et al., 2023). Classifier-free Guidance (CFG) (Ho & Salimans, 2022) has become the mainstream approach for improving conditional generation. It employs a Bayesian implicit classifier to prioritize conditional probability, enhancing adherence to conditions and image quality. However, despite its effectiveness, it often results in semantic incoherence and a loss of fine details, as shown in Figure 1.

Recent studies (Chung et al., 2024; Sadat et al., 2024; Fan et al., 2025; Kynkänniemi et al., 2024; Zheng & Lan, 2024; Jin et al., 2025) have further explored methods to improve guidance. Although these methods improve quality to some extent, they primarily address specific issues while leaving the underlying mechanisms of CFG unexplored. A representative work that begins to explore this issue is Autoguidance (Karras et al., 2024), which identifies deficiencies in the model’s training objective and proposes using a weak model for guidance. Subsequent works (Hong et al., 2023; Ahn et al., 2024; Jeon, 2025; Hong, 2024) propose modifying specific attention regions to mimic a weak model for various tasks (Qi et al., 2023; Simsar et al., 2024). However, these methods either require training to acquire the weak model or rely on empirical, task-specific modifications to the network, which in turn demand meticulous hyperparameter tuning.

To address this, we first analyze the suboptimal results produced by CFG and the underlying mechanisms of weak-model guidance. Specifically, our analysis begins with a toy example on Gaussian mixture modeling, where a closed-form solution allows for precise evaluation against the ground truth (Brown et al., 2022; Pope et al., 2021), and is subsequently validated on real-world image data. Furthermore, we observe that applying stochastic block-dropping during the model’s forward process produces results highly similar to the weak model used in Autoguidance. Building on this discovery, we propose S^2 -Guidance, a simple yet effective approach to address the suboptimal predictions of CFG and guide sampling towards higher quality and fidelity. Unlike prior methods that rely on externally trained or manually tuned weak models, S^2 -Guidance leverages the model’s own intrinsic structure in a training-free manner, effectively steering the denoising trajectory away from failure modes to enhance the performance of conditional diffusion transformers.

Our contributions are summarized as follows:

(i) We first analyze the guidance behavior of CFG and the underlying mechanisms of weak-model guidance through a series of toy examples. These examples, encompassing 1D and 2D Gaussian mixtures as well as real-world image data, allow us to visually analyze the suboptimal results of CFG. Empirical observations reveal that the sampling trajectory can be effectively rectified by the model’s own sub-networks, which exhibit guidance behavior similar to that of a weak model.

(ii) We propose S^2 -Guidance, a novel method that leverages stochastic block-dropping during the forward process to activate sub-networks for self-guidance, thereby bypassing the need to construct weak models through additional training or a trial-and-error manual selection process. Furthermore, we demonstrate that in the iterative denoising process, a single block-dropping per timestep is sufficient to steer the sampling trajectory towards high-quality regions. This approach achieves strong performance while substantially reducing computational costs compared to the naive variant.

(iii) Our method can be seamlessly adapted to various diffusion transformers. Comprehensive experiments—on class-conditional ImageNet generation and across multiple benchmarks for text-to-image and text-to-video tasks—establish the superiority of S^2 -Guidance. Both qualitative and quantitative results confirm that S^2 -Guidance consistently surpasses not only CFG but also other advanced guidance strategies.

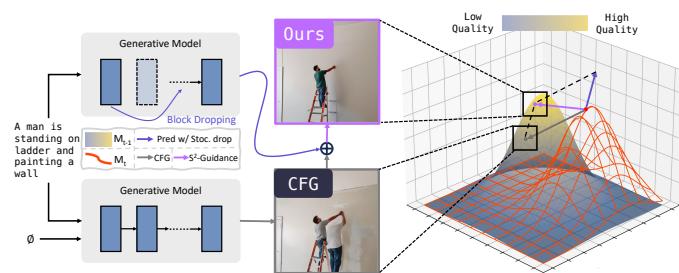


Figure 2: Unlike suboptimal CFG guidance (gray), S^2 -Guidance computes a corrective prediction (blue) via stochastic block-dropping. This steers the generation update (purple) towards the optimal quality peak (yellow).

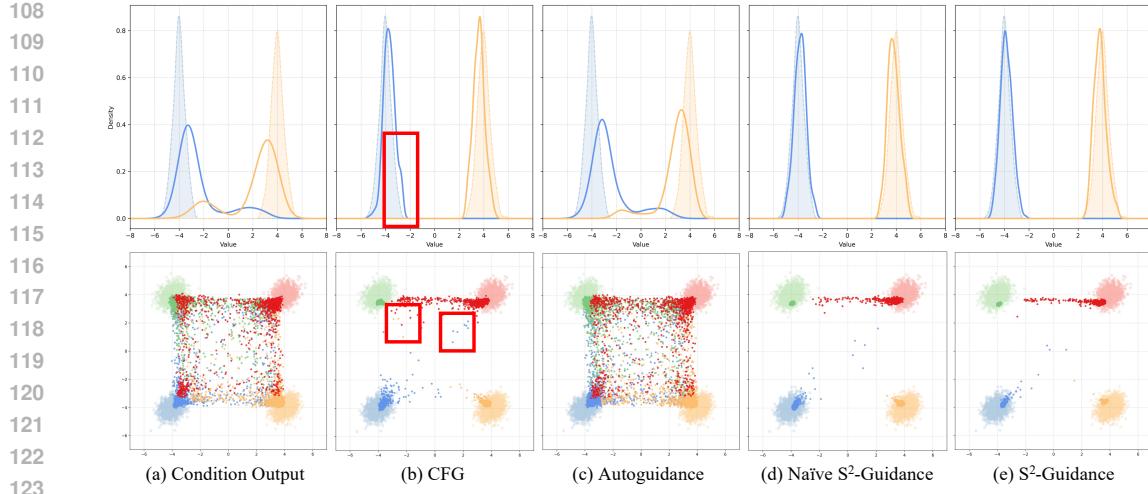


Figure 3: **S^2 -Guidance successfully balances guidance strength and distribution fidelity.** Comparison on 1D (top) and 2D (bottom) toy examples. Unlike CFG, which distorts the sample distribution (see red boxes), or other methods that fail to separate modes, S^2 -Guidance accurately captures both the location and shape of the ground truth distributions (semi-transparent).

2 BACKGROUND

Diffusion Models and Classifier-free Guidance. Diffusion models (Croitoru et al., 2023; Peebles & Xie, 2023b; Esser et al., 2024; Chu et al., 2025) are a class of powerful generative models that learn to reverse a predefined forward process, which gradually perturbs data x_0 into Gaussian noise x_T . The reverse process is typically governed by a time-reversed stochastic differential equation (SDE) (Song et al., 2020b), which relies on accurately estimating a score function $\nabla_{x_t} \log p_t(x_t)$ using a neural network D_θ . Flow-based models (Lipman et al., 2023; Liu et al., 2022; Gat et al., 2024) can also be viewed as a special class of diffusion models, as they both aim to learn a continuous transformation between a simple prior distribution and the complex data distribution (Gao & Zhu, 2025).

In practical applications (Huang et al., 2023a; Zhu et al., 2024; Huang et al., 2024a; Mao et al., 2025), generation is often conditioned on signals c (e.g., text prompts), shifting the objective to modeling the conditional score $\nabla_{x_t} \log p_t(x_t|c)$. **Classifier-free Guidance (CFG)** (Ho & Salimans, 2022) has become the cornerstone for controllable generation by offering a simple yet effective mechanism to enhance conditioning. It has found widespread applications across various domains (Huang et al., 2023b; Wang et al., 2024; Fang et al., 2025; He et al., 2025; Ma et al., 2023; 2024b).

Instead of only using the conditional prediction $D_\theta(x_t|c)$, CFG forms a guided score by extrapolating from an unconditional one $D_\theta(x_t|\phi)$:

$$\tilde{D}_\theta^\lambda(x_t|c) = D_\theta(x_t|\phi) + \lambda (D_\theta(x_t|c) - D_\theta(x_t|\phi)), \quad (1)$$

where λ is the guidance scale. However, despite its effectiveness, this approach suffers from notable drawbacks (Sadat et al., 2024; Hong et al., 2023; Karras et al., 2024), including semantic inconsistencies and a significant loss of fine-grained details, as illustrated in Figure 1.

Weak-model Guidance. A promising direction to improve CFG is to leverage an auxiliary "weak" model to refine the guidance signal. For instance, Autoguidance (Karras et al., 2024) employs a separately trained, degraded version of the full model, but such models are often infeasible to obtain for large-scale pretrained models. To circumvent this, recent works simulate a weak model by modifying the model's architecture or perturbing its internal states. For instance, some studies rely on heuristic perturbations like attention-guided blurring of predicted samples (Hong et al., 2023; Ahn et al., 2024); SEG (Hong, 2024) later proposes an alternative from an energy-based perspective; and other works develop strategies for specific tasks (Jeon, 2025; Hyung et al., 2025). However, these perturbation techniques often rely on task-specific, hand-crafted architectural modifications, which limits their generalizability. In contrast, as shown in Figure 2, our S^2 -Guidance introduces a novel

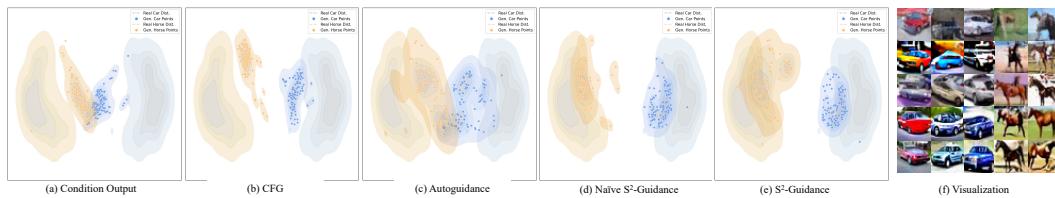


Figure 4: **S^2 -Guidance avoids the distributional collapse of CFG on CIFAR-10.** t-SNE shows generated features (points) vs. real data (contours). CFG (b) exhibits severe collapse, whereas S^2 -Guidance (e) preserves the distribution’s structure while ensuring class separation. See (f) for qualitative examples.

and flexible approach. We guide the sampling process by dynamically activating sub-networks via stochastic block dropping, thereby avoiding the need to construct a weak model through auxiliary training or manually designed perturbation schemes.

3 METHODOLOGY

3.1 VISUALIZING AND REVISITING WEAK-MODEL GUIDANCE

We begin by visualizing the suboptimal outcomes of CFG using Gaussian mixture data (Ho & Salimans, 2022), a toy example with closed-form solutions. This allows us to systematically observe the discrepancies between predictions and ground truth. Building on the analysis of how weak-model guidance (Karras et al., 2024) improves results, we identify its limitations and propose incorporating stochastic sub-networks into the CFG framework, providing a novel approach to enhance model performance.

CFG improves conditional generation by implicitly amplifying the conditional probability density, raising it to a power greater than one (Bradley & Nakkiran, 2024). Figure 3 illustrates a 1D toy example (top) aimed at learning a Gaussian Mixture distribution with modes at -4 and 4 . While CFG significantly improves the baseline conditional output, it also introduces a notable drawback: as highlighted by the red box, the mode of the generated distribution is slightly shifted from the ground truth. A similar shift occurs in a 2D toy example (bottom), where samples are scattered into unintended regions. These findings suggest that, although CFG enhances sample quality, its distributional fidelity remains suboptimal. Autoguidance, as a representative of weak-model guidance (Karras et al., 2024; Hong et al., 2023; Hong, 2024; Ahn et al., 2024), is designed to guide the model toward well-learned, high-probability regions by leveraging a weak model. As shown in Figure 3 (middle), AutoGuidance improves the peak near -4 but remains limited. Its improvement stems from the construction of a weak model, with the extent of enhancement depending on the weak model’s effectiveness. Such models are typically created by reducing model capacity or training epochs.

However, this approach faces practical limitations that restrict its broader applicability. First, relying on externally designed weak models poses scalability challenges, as obtaining a reduced version trained for fewer epochs alongside a large-scale pretrained model is often impractical. Second, as highlighted by (Karras et al., 2024), selecting an appropriate weak model is constrained by various factors. Once chosen, the weak model affects the entire denoising process, limiting the flexibility of guidance. A poorly designed weak model fails to effectively prevent low-quality outputs (Hong, 2024), as shown in Figure 3 (c), where guided outputs still deviate notably from the target distribution.

This raises an important question: *Can we eliminate the reliance on externally prescribed weak models while still identifying error-prone regions?* Prior works (Lou et al., 2024; Avrahami et al., 2025; Yuan et al., 2024) have shown that mainstream generative architectures, such as DiT (Peebles & Xie, 2023b; Chu et al., 2024), exhibit significant redundancy, as outputs across different transformer blocks often show high similarity (Chen et al., 2024). Inspired by this, we hypothesize that sub-networks within such architectures can function as weak models, capturing outputs similar to the full model but with more pronounced errors. By leveraging these sub-network predictions, we aim

216 to refine existing CFG, effectively steering the model away from suboptimal outputs. The following
 217 subsections present a detailed description of our approach along with its empirical validation.
 218

219 **3.2 NAIVE S^2 -GUIDANCE**
 220

221 Building on the preceding observation, our key insight is that *we can leverage the model’s own sub-*
 222 *networks to intrinsically steer the denoising trajectory away from potential failure modes, thereby*
 223 *refining the suboptimal results of CFG.*
 224

225 As revealed in Autoguidance (Karras et al., 2024), problems in generative models depend on vari-
 226 ous factors (e.g., network architecture, dataset properties, etc.), making it difficult to pinpoint which
 227 components play a decisive role. Therefore, it is challenging to *a priori* define an optimal sub-
 228 network that best captures low-quality regions. Motivated by (Gal & Ghahramani, 2016), a naive
 229 solution is to leverage as many diverse stochastic sub-networks as possible to construct multiple
 230 weak models. These weak models then guide the main model away from low-quality regions dur-
 231 ing each forward pass by steering it away from their outputs. We refer to this approach as Naive
 232 Stochastic Sub-network Guidance (Naive S^2 -Guidance). Intuitively, this can be understood as ap-
 233 plying stochastic “dropout” to different blocks, constructing various sub-networks that capture di-
 234 verse low-probability regions.
 235

236 Specifically, for a given binary mask \mathbf{m} , sampled via stochastic block-dropping from the induced
 237 distribution $p(\mathbf{m})$, the weak model’s prediction is defined as:
 238

$$\hat{D}_\theta(x_t | c, \mathbf{m}) = D_\theta(x_t | c; \boldsymbol{\theta} \odot \mathbf{m}), \quad (2)$$

239 where \mathbf{m} determines which blocks of the network parameters $\boldsymbol{\theta}$ are activated, forming a latent sub-
 240 network during each forward pass. Naive S^2 -Guidance is then expressed as:
 241

$$\begin{aligned} \tilde{D}_\theta^\lambda(x_t | c) &= D_\theta(x_t | \phi) + \lambda(D_\theta(x_t | c) - D_\theta(x_t | \phi)) \\ &\quad - \frac{\omega}{N} \sum_{i=1}^N (\hat{D}_\theta(x_t | c, \mathbf{m}_i)), \end{aligned} \quad (3)$$

242 where $\mathbf{m}_i \sim p(\mathbf{m})$ is the binary mask for the i -th stochastic sub-network, ω controls the strength
 243 of the self-guidance, referred to as the S^2 Scale. $\hat{D}_\theta(x_t | c, \mathbf{m}_i)$ represents the prediction from the
 244 i -th sampled sub-network, and N denotes the total number of latent sub-networks sampled during
 245 each forward pass. For the sampling distribution $p(\mathbf{m})$, a crucial consideration is to ensure its effec-
 246 tiveness and generalizability across different models. Our approach is predicated on the principle of
 247 identifying and preserving the model’s structurally critical components. Based on empirical anal-
 248 ysis, we exclude these key blocks from the dropping process and then sample a proportion of the
 249 remaining blocks to be dropped.
 250

251 To validate our hypothesis, we conduct experiments on toy examples with 1D and 2D Gaussian
 252 mixture data, as well as on real-world datasets (see Appendix B.1.1 for more details). As shown in
 253 Figure 3 (d), compared to the original CFG, our Naive S^2 -Guidance not only leads to predictions
 254 that better fit the target distribution but also mitigates the drift phenomenon, thereby improving
 255 fidelity. This demonstrates that our method effectively refines the suboptimal results of CFG. Fur-
 256 thermore, compared to Autoguidance, S^2 -Guidance eliminates the need for explicitly constructing
 257 weak models. By adopting this simple yet effective approach, it avoids generating results that lie in
 258 intermediate regions, thereby reducing mode confusion. These results provide strong empirical evi-
 259 dence that leveraging Naive S^2 -Guidance can significantly enhance both the quality and robustness
 260 of conditional generation.
 261

262 **3.3 S^2 -GUIDANCE IS SUFFICIENT**
 263

264 However, Naive S^2 -Guidance incurs significant computational overhead, which severely limits
 265 its practicality. In the process of constructing sub-networks, we find that constraining stochas-
 266 tic block-dropping within a specific range allows sub-networks, even those generated by drop-
 267 ping at different blocks, to consistently guide the model toward the ideal distribution (Figure 9).
 268

270 271	Model	Method	HPSv2.1 (%) ↑					T2I-CompBench (%) ↑			Qalign ↑	
			272	273	274	275	276	277	278	279	280	281
273	SD3	CFG	31.55	30.87	31.22	28.27	30.48	53.61	51.20	52.45	4.66	4.74
274		CFG++	31.57	30.76	30.96	27.54	30.21	46.39	47.18	46.33	4.68	4.73
275		APG	30.77	30.18	30.53	27.12	29.65	45.28	46.27	46.84	4.68	4.73
276		CFG-Zero	<u>31.99</u>	<u>31.17</u>	<u>31.42</u>	28.54	<u>30.78</u>	52.70	52.84	53.37	4.66	4.77
277		SEG	31.20	30.56	<u>31.07</u>	<u>28.74</u>	30.39	<u>58.20</u>	<u>57.68</u>	57.17	4.33	4.45
278		Ours	32.14	31.32	31.70	29.19	31.09	59.63	58.71	<u>56.77</u>	4.65	4.74
279	SD3.5	CFG	32.34	31.51	31.50	27.93	30.82	51.29	47.71	47.39	4.63	4.66
280		CFG++	31.99	31.02	31.36	27.32	30.42	38.05	37.52	34.87	4.65	4.58
281		APG	31.43	30.74	31.12	27.07	30.09	35.67	37.86	35.67	4.68	4.65
282		CFG-Zero	<u>32.77</u>	<u>31.91</u>	<u>31.95</u>	28.27	<u>31.23</u>	52.01	46.99	48.36	4.66	4.70
283		SEG	31.77	31.30	31.40	<u>28.34</u>	30.71	57.59	55.52	54.03	4.41	4.45
284		Ours	32.89	32.15	32.28	28.94	31.56	<u>57.57</u>	<u>51.23</u>	<u>50.13</u>	4.70	4.74

Table 1: **Quantitative evaluation of T2I guidance methods on SD3 and SD3.5 models.** Our method establishes a new state-of-the-art, demonstrating significant improvements even on highly competitive benchmarks. On **HPSv2.1**, a benchmark where score margins are typically narrow, S^2 -Guidance consistently outperforms all baselines across every individual dimension. This lead is even more pronounced on **T2I-CompBench**, where our approach shows substantial gains in compositional attributes like Color and Shape. Notably, S^2 -Guidance also achieves the highest or near-highest aesthetic scores (**Qalign**) on both benchmarks, demonstrating its superior performance in visual quality. Higher scores (↑) are better. Best results are in **bold**; second-best are underlined.

Therefore, we propose a simplified approach: performing a single stochastic block-dropping operation at each timestep for self-guidance. We refer to this approach as S^2 -Guidance, which achieves highly competitive results. At timestep t , S^2 -Guidance is expressed as:

$$\begin{aligned} \tilde{D}_\theta^\lambda(x_t|c) &= D_\theta(x_t|\phi) + \lambda(D_\theta(x_t|c) - D_\theta(x_t|\phi)) \\ &\quad - \omega(\hat{D}_\theta(x_t|c, \mathbf{m}_t)). \end{aligned} \quad (4)$$

The overall algorithm is summarized in Algorithm 1.

We empirically validate the proposed S^2 -Guidance on toy examples with 1D and 2D Gaussian mixture data, as well as on real-world datasets. As shown in Figure 3 (e), S^2 -Guidance performs comparably to Naive S^2 -Guidance. On both 1D and 2D Gaussian mixture distributions, it produces results that closely align with the ideal distribution, while exhibiting efficiency without significant degradation. Moreover, as illustrated in Figure 4 (e, f), S^2 -Guidance achieves highly competitive performance on real-world datasets, highlighting its practical effectiveness. To further analyze the stochastic block-dropping strategy, we conduct a detailed experimental study in Section 4.5. Our empirical analysis reveals that, when the block drop ratio is maintained around 10% of the network’s blocks, the resulting sub-networks consistently enable the model to achieve better performance. This strategy proves effective across mainstream DiT (Peebles & Xie, 2023a) architectures, leveraging the redundancy in the outputs to dynamically construct diverse stochastic sub-networks. Unlike explicitly constructed weak models, which once selected affect the entire denoising process, stochastic block-dropping enables the creation of sub-networks independently at different timesteps. This dynamic diversity introduces self-guidance throughout the diffusion process, allowing predictions to evolve iteratively and steering the outputs toward higher-quality results.

Method	IS↑	FID↓
Baseline	125.13	9.41
w/ CFG	258.09	2.15
w/ ADG	257.92	2.37
w/ CFG++	257.04	2.25
w/ SEG	258.35	2.29
w/ CFG-Zero	258.87	2.10
w/ Ours	259.12	2.03

Table 2: **Quantitative evaluation on ImageNet 256 × 256 dataset.**

Algorithm 1 S^2 -Guidance

Require: Trained denoiser D_θ , initial noise x_T , guidance scale λ , S^2 scale ω , number of timesteps T .

- 1: **for** $t = T, \dots, 1$ **do**
- 2: $m_t \leftarrow \text{GenerateStochasticMask}()$ **# Generate mask**
- 3: $D_{\text{uncond}} \leftarrow D_\theta(x_t, \phi, t)$
- 4: $D_{\text{cond}} \leftarrow D_\theta(x_t, c, t)$
- 5: $\hat{D}_s \leftarrow D_\theta(x_t, c, t, m_t)$ **# Prediction from the stochastic sub-network**
- 6: $\tilde{D} \leftarrow D_{\text{uncond}} + \lambda(D_{\text{cond}} - D_{\text{uncond}}) - \omega \hat{D}_s$
- 7: $x_{t-1} \leftarrow \text{SchedulerStep}(\tilde{D}, x_t, t)$
- 8: **end for**
- 9: **return** x_0

Figure 5: **S^2 -Guidance consistently generates superior images in both aesthetic quality and prompt coherence.** While existing guidance methods like CFG, APG, CFG++, and Zero (CFG-Zero) often produce artifacts, distorted objects, or fail to follow complex prompts (see red boxes), our approach yields clean, coherent, and visually pleasing results without such flaws.

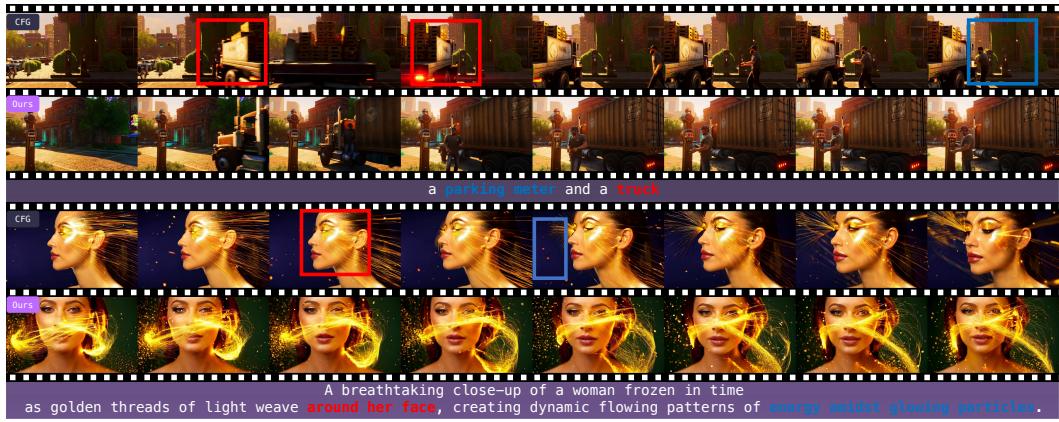


Figure 6: **S^2 -Guidance generates temporally coherent and physically plausible videos, overcoming key failures of CFG.** **Top Row:** CFG struggles with plausible motion, depicting a truck that unnaturally slides sideways instead of driving forward (red boxes). Our method renders a stable and realistic scene. **Bottom Row:** CFG fails to capture the full prompt, as the light does not weave “around her face” (red box) and lacks “glowing particles” (blue box). S^2 -Guidance faithfully produces a dynamic, visually rich scene adhering to the complex description.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmark. We perform comprehensive evaluations across three tasks: class-conditional image generation, text-to-image (T2I) and text-to-video (T2V) generation. For class-conditional generation, we use ImageNet at a 256×256 resolution. For T2I evaluation, we use two popular benchmarks: HPSv2.1 (Wu et al., 2023b), a benchmark designed to evaluate alignment with human preferences across 3,200 prompts in four styles, and T2I-CompBench (Huang et al., 2023a) for assessing performance in complex scenes. In addition to the benchmark-specific evaluation metrics, we employ Qalign (Wu et al., 2023a) to compute aesthetic scores for a more comprehensive assessment. For T2V evaluation (Liu et al., 2024; Ling et al., 2025; Feng et al., 2025; Chen et al., 2025), we adopt the standard prompts and evaluation metrics provided by VBench (Huang et al., 2024b).

Baselines. For T2I task, we employ the high-performing Stable Diffusion 3 (SD3) and SD3.5. For T2V task, we utilize the latest Wan-1.3B and Wan-14B models (Wan et al., 2025). Furthermore, to demonstrate the versatility of our guidance approach, we conduct a comparative analysis not only against original CFG but also with five state-of-the-art methods: CFG++ (Chung et al., 2024), CFG-

Model	Method	Total Score	Quality Score	Semantic Score	Subject Consistency	Background Consistency	Aesthetic Quality	Imaging Quality	Object Class	Appearance Style
Wan1.3B	CFG	80.29	84.32	64.16	96.53	95.46	60.52	67.65	77.06	20.15
	CFG++	80.35	83.58	67.43	96.70	93.28	59.02	69.14	70.06	19.75
	APG	70.83	77.13	45.61	96.45	95.39	49.42	64.39	59.02	20.01
	STG	78.78	83.92	58.19	95.03	96.04	59.03	65.59	68.20	21.51
	CFG-Zero	<u>80.71</u>	<u>84.51</u>	65.53	96.33	94.56	<u>59.69</u>	<u>69.05</u>	78.16	20.31
	Ours	80.93	84.74	<u>65.70</u>	96.57	<u>95.80</u>	60.52	68.19	<u>78.09</u>	<u>20.59</u>
Wan14B	CFG	82.65	84.88	73.76	94.45	97.66	68.68	67.82	84.97	22.14
	Ours	82.84	84.89	74.65	94.21	97.56	68.78	67.77	89.08	22.27

Table 3: **Quantitative comparison on VBench.** S^2 -Guidance consistently outperforms mainstream methods on both Wan-1.3B and Wan-14B models. While evaluated on all 16 dimensions, this table shows a representative subset of 9 key metrics. Our method achieves the highest **Total Score** and demonstrates significant improvements. Best results are in **bold**; second-best are underlined.

Zero (Fan et al., 2025), APG (Sadat et al., 2024), STG (Hyung et al., 2025) and SEG (Hong, 2024). See Appendix B.2 for additional evaluations and Appendix B.4 for implementation details.

4.2 CLASS-CONDITIONAL IMAGENET GENERATION

Evaluated on ImageNet 256×256 with a pretrained SiT-XL model (Ma et al., 2024a), S^2 -Guidance demonstrates clear superiority over both CFG and other advanced guidance strategies (many of which are not designed for advanced flow-based models and thus struggle to perform well (Fan et al., 2025)). As shown in Table 2, our method achieves the best performance, attaining both the highest Inception Score of **259.22** for image diversity and fidelity, and the lowest FID of **2.08** for perceptual quality and distributional alignment.

4.3 TEXT-TO-IMAGE GENERATION

The quantitative comparisons are presented in Table 1. On HPSv2.1, S^2 -Guidance achieves the best performance not only in average scores but also across all individual dimensions, demonstrating the effectiveness of our method. By steering the sampling trajectory away from suboptimal paths inherent in CFG, S^2 -Guidance achieves better alignment with human preferences. The performance on T2I-CompBench further highlights the strength of our approach, showcasing its effectiveness in handling complex generation tasks. Moreover, the high aesthetic scores confirm our method’s ability to produce images with superior visual appeal.

The qualitative comparisons are presented in Figure 5. Compared to CFG and other methods, S^2 -Guidance achieves significant improvements in both visual quality and semantic coherence: it produces higher-quality images with finer details and better semantic alignment with text descriptions, a result consistent with our toy examples.

4.4 TEXT-TO-VIDEO GENERATION

The quantitative comparisons are presented in Table 3. On the Wan-1.3B model, S^2 -Guidance achieves the highest **Total Score** (80.93), outperforming all baselines. We further conduct experiments on the larger Wan-14B model, demonstrating significant improvements compared to CFG.

The quantitative comparisons are presented in Figure 6. Our method generates videos with substantially improved quality and coherence. The examples highlight that S^2 -Guidance effectively addresses two critical failures of original CFG: the loss of physical plausibility in object motion and the inability to adhere to complex, compositional prompts. Consequently, our approach yields videos that are not only more physically realistic but also demonstrate superior prompt coherence, faithfully realizing the user’s creative intent.

We further perform user study for both T2I and T2V generation. Our method is significantly preferred over all baselines in terms of both visual quality and prompt alignment. Full details are presented in Appendix B.3.

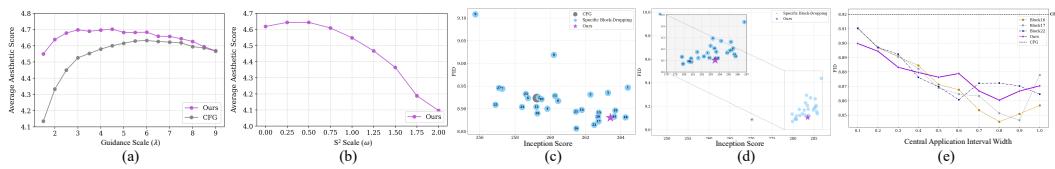


Figure 7: **Comprehensive ablation analysis of S^2 -Guidance.** (a) Comparing aesthetic scores of S^2 -Guidance and CFG across various guidance scales (λ). (b) Analyzing aesthetic scores of S^2 -Guidance across various self-guidance scales (ω). (c, d) Comparison of our stochastic block-dropping strategy against dropping a single, fixed block for the SiT and DiT architectures, respectively. Performance is measured by the FID-IS trade-off, where the lower-right corner indicates a better balance. (e) Ablation on the application range of S^2 -Guidance. The x-axis represents the width of the central interval of noise levels where block-dropping is applied (e.g., a value of 0.2 corresponds to the central 20% of the denoising process).

4.5 ABLATION STUDY

Performance across Different Guidance Scales. We conduct experiments to compare S^2 -Guidance with CFG across various guidance scales, focusing on aesthetic scores. As shown in Figure 7 (a), S^2 -Guidance consistently outperforms CFG across a wide range of scales. Unlike CFG, which shows significant performance variance depending on the scale, our method exhibits stability and achieves high performance with minimal sensitivity to guidance scales. Notably, in most cases, our method even surpasses the best performance achieved by CFG, demonstrating its robustness.

Analysis of Block-dropping Strategy. We conduct a series of experiments to thoroughly analyze the effectiveness and robustness of our block-dropping strategy. First, to investigate the **importance of individual block**, we perform experiments on diverse model architectures. We drop a single, specific block throughout the entire denoising process to obtain the sub-network prediction and compare its performance against our method. As shown in Figure 7 (c,d), dropping the initial block consistently leads to performance degradation across both models. However, for the remaining blocks, this block-wise ablation does not yield a universal rule. We find that the optimal block to drop varies significantly across different architectures, a challenge also highlighted by AutoGuidance (Karras et al., 2024). In contrast, our method eliminates the need for such complex tuning. Its simple stochastic strategy automatically outperforms most meticulously selected fixed configurations. Furthermore, inspired by (Kynkänniemi et al., 2024), we analyze the **optimal application interval** for block-dropping. As shown in the Figure 7 (e), applying block-dropping within the central 80% interval of noise levels yields robust performance. Our method reduces FID compared to CFG and often outperforms the top-performing configurations derived from prior block-wise ablation. See Appendix B.2 for further analysis on the **drop ratio** and a **comparison between naive S^2 -Guidance and final S^2 -Guidance**.

Effect of S^2 Scale ω . We conduct experiments to analyze the scale of S^2 -Guidance ω , as shown in Figure 7 (b). When ω is set to a smaller value, it improves the aesthetic score. However, since CFG has already produced a suboptimal result, using a larger ω tends to overadjust, leading to a decline in quality.

5 CONCLUSION

In this work, we propose S^2 -Guidance, a training-free stochastic self-guidance method that enhances diffusion transformers by improving the CFG mechanism. We first conduct an empirical analysis of CFG, revealing that it often generates suboptimal results. Building on this insight, we introduce S^2 -Guidance, which leverages stochastic block-dropping during the forward pass to effectively guiding the model away from potential low-quality predictions, thereby improving fidelity. Theoretical analysis and extensive experiments, including class-conditional image, text-to-image and text-to-video generation across multiple models and benchmarks, demonstrate that S^2 -Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies.

486 REFERENCES
487

488 Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim,
489 Hyun Hee Park, Kyong Hwan Jin, and Seungryong Kim. Self-rectifying diffusion sampling with
490 perturbed-attention guidance. In *European Conference on Computer Vision*, pp. 1–17. Springer,
491 2024.

492 S AI. Stable diffusion 3.5 large, 2024.

493 Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
494 Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the*
495 *Computer Vision and Pattern Recognition Conference*, pp. 7877–7888, 2025.

496 Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. *arXiv*
497 *preprint arXiv:2408.09000*, 2024.

498 Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel
499 Loaiza-Ganem. Verifying the union of manifolds hypothesis for image data. *arXiv preprint*
500 *arXiv:2207.02862*, 2022.

501 Honghao Chen, Yurong Zhang, Xiaokun Feng, Xiangxiang Chu, and Kaiqi Huang. Revealing
502 the dark secrets of extremely large kernel convnets on robustness. In *Forty-first International*
503 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=rkYOxLLv2x>.

504 Rui Chen, Lei Sun, Jing Tang, Geng Li, and Xiangxiang Chu. Finger: Content aware fine-grained
505 evaluation with reasoning for ai-generated videos. In *ACM MM*, 2025.

506 Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
507 for vision tasks. In *European Conference on Computer Vision*, pp. 1–18. Springer, 2024.

508 Xiangxiang Chu, Renda Li, and Yong Wang. Usp: Unified self-supervised pretraining for image
509 generation and understanding. In *ICCV*, 2025.

510 Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye.
511 Cfg++: Manifold-constrained classifier free guidance for diffusion models. *arXiv preprint*
512 *arXiv:2406.08070*, 2024.

513 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
514 in vision: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(9):
515 10850–10869, 2023.

516 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
517 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
518 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
519 2024.

520 Weichen Fan, Amber Yijia Zheng, Raymond A Yeh, and Ziwei Liu. Cfg-zero*: Improved classifier-
521 free guidance for flow matching models. *arXiv preprint arXiv:2503.18886*, 2025.

522 Chengyu Fang, Chunming He, Longxiang Tang, Yuelin Zhang, Chenyang Zhu, Yuqi Shen, Chubin
523 Chen, Guoxia Xu, and Xiu Li. Integrating extra modality helps segmentor find camouflaged
524 objects well. *arXiv preprint arXiv:2502.14471*, 2025.

525 Xiaokun Feng, Haiming Yu, Meiqi Wu, Shiyu Hu, Jintao Chen, Chen Zhu, Jiahong Wu, Xiangxiang
526 Chu, and Kaiqi Huang. Narrlv: Towards a comprehensive narrative-centric evaluation for long
527 video generation models. *arXiv preprint arXiv:2507.11245*, 2025.

528 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
529 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
530 PMLR, 2016.

531 Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of dif-
532 fusion models in wasserstein distances, 2025. URL <https://arxiv.org/abs/2401.17958>.

540 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 541 and Yaron Lipman. Discrete flow matching, 2024. URL <https://arxiv.org/abs/2407.15595>.

543 Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun Zhang, Wang-
 544 meng Zuo, Zhenhua Guo, and Xiu Li. Diffusion models in low-level vision: A survey. *IEEE
 545 Transactions on Pattern Analysis and Machine Intelligence*, 2025.

547 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
 548 arXiv:2207.12598*, 2022.

549 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 550 neural information processing systems*, 33:6840–6851, 2020.

552 Susung Hong. Smoothed energy guidance: Guiding diffusion models with reduced energy curvature
 553 of attention. *Advances in Neural Information Processing Systems*, 37:66743–66772, 2024.

555 Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving sample quality of
 556 diffusion models using self-attention guidance. In *Proceedings of the IEEE/CVF International
 557 Conference on Computer Vision*, pp. 7462–7471, 2023.

558 Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
 559 Snapshot ensembles: Train 1, get m for free. *arXiv preprint arXiv:1704.00109*, 2017.

560 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehen-
 561 sive benchmark for open-world compositional text-to-image generation. *Advances in Neural
 562 Information Processing Systems*, 36:78723–78747, 2023a.

564 Nisha Huang, Fan Tang, Weiming Dong, Tong-Yee Lee, and Changsheng Xu. Region-aware diffu-
 565 sion for zero-shot text-driven image editing. *arXiv preprint arXiv:2302.11797*, 2023b.

566 Nisha Huang, Yuxin Zhang, Fan Tang, Chongyang Ma, Haibin Huang, Weiming Dong, and Chang-
 567 sheng Xu. Diffstyler: Controllable dual diffusion for text-driven image stylization. *IEEE Trans-
 568 actions on Neural Networks and Learning Systems*, 2024a.

570 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 571 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 572 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 573 Pattern Recognition*, pp. 21807–21818, 2024b.

574 Junha Hyung, Kinam Kim, Susung Hong, Min-Jung Kim, and Jaegul Choo. Spatiotemporal skip
 575 guidance for enhanced video diffusion sampling. In *Proceedings of the Computer Vision and
 576 Pattern Recognition Conference*, pp. 11006–11015, 2025.

578 Boseong Jeon. Spg: Improving motion diffusion by smooth perturbation guidance. *arXiv preprint
 579 arXiv:2503.02577*, 2025.

580 Cheng Jin, Zhenyu Xiao, Chutao Liu, and Yuantao Gu. Angle domain guidance: Latent diffusion
 581 requires rotation rather than extrapolation. *arXiv preprint arXiv:2506.11039*, 2025.

583 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 584 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing
 585 Systems*, 37:52996–53021, 2024.

586 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 587 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 588 models. *arXiv preprint arXiv:2412.03603*, 2024.

590 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
 591 Applying guidance in a limited interval improves sample and distribution quality in diffusion
 592 models. *Advances in Neural Information Processing Systems*, 37:122458–122483, 2024.

593 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

594 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 595 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 596 30, 2017.

597

598 Xinran Ling, Chen Zhu, Meiqi Wu, Hangyu Li, Xiaokun Feng, Cundian Yang, Aiming Hao, Jiashu
 599 Zhu, Jiahong Wu, and Xiangxiang Chu. Vmbench: A benchmark for perception-aligned video
 600 motion generation. In *ICCV*, 2025.

601 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 602 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

603

604 Xiao Liu, Xinhao Xiang, Zizhong Li, Yongheng Wang, Zhuoheng Li, Zhuosheng Liu, Weidi
 605 Zhang, Weiqi Ye, and Jiawei Zhang. A survey of ai-generated video evaluation. *arXiv preprint*
 606 *arXiv:2410.19884*, 2024.

607 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 608 transfer data with rectified flow, 2022. URL <https://arxiv.org/abs/2209.03003>.

609

610 Jinming Lou, Wenyang Luo, Yufan Liu, Bing Li, Xinmiao Ding, Weiming Hu, Jiajiong Cao, Yuming
 611 Li, and Chenguang Ma. Token caching for diffusion transformer acceleration. *arXiv preprint*
 612 *arXiv:2409.18523*, 2024.

613 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 614 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 615 transformers, 2024a. URL <https://arxiv.org/abs/2401.08740>.

616 Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Ying Shan, Xiu Li, and Qifeng Chen. Fol-
 617 low your pose: Pose-guided text-to-video generation using pose-free videos. *arXiv preprint*
 618 *arXiv:2304.01186*, 2023.

619

620 Yue Ma, Yingqing He, Hongfa Wang, Andong Wang, Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng
 621 Li, Heung-Yeung Shum, Wei Liu, et al. Follow-your-click: Open-domain regional image anima-
 622 tion via short prompts. *arXiv preprint arXiv:2403.08268*, 2024b.

623 Fangyuan Mao, Aiming Hao, Jintao Chen, Dongxia Liu, Xiaokun Feng, Jiashu Zhu, Meiqi Wu,
 624 Chubin Chen, Jiahong Wu, and Xiangxiang Chu. Omni-effects: Unified and spatially-controllable
 625 visual effects generation, 2025.

626

627 Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan, Archana
 628 Swaminathan, Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion models beat
 629 gans on image classification. *arXiv preprint arXiv:2307.08702*, 2023.

630 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023a. URL
 631 <https://arxiv.org/abs/2212.09748>.

632

633 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 634 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023b.

635 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 636 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 637 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

638

639 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 640 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 641 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Ja-
 642 gadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu,
 643 Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sum-
 644 baly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean
 645 Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu,
 646 Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-
 647 Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola,
 Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Car-
 leigh Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix

648 Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar,
 649 Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K.
 650 Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming
 651 Du. Movie gen: A cast of media foundation models, 2025.

652 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
 653 dimension of images and its impact on learning. In *9th International Conference on Learning
 654 Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL
 655 <https://openreview.net/forum?id=XJk19XzGq2J>.

656 Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
 657 Chen. Fatezero: Fusing attentions for zero-shot text-based video editing, 2023. URL <https://arxiv.org/abs/2303.09535>.

658 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 659 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference
 660 on computer vision and pattern recognition*, pp. 10684–10695, 2022.

661 Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. Eliminating oversaturation and arti-
 662 facts of high guidance scales in diffusion models. In *The Thirteenth International Conference on
 663 Learning Representations*, 2024.

664 Enis Simsar, Alessio Tonioni, Yongqin Xian, Thomas Hofmann, and Federico Tombari. Lime:
 665 Localized image editing via attention regularization in diffusion models, 2024. URL <https://arxiv.org/abs/2312.09256>.

666 671 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 672 preprint arXiv:2010.02502*, 2020a.

673 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 674 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 675 arXiv:2011.13456*, 2020b.

676 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 677 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 678 models. *arXiv preprint arXiv:2503.20314*, 2025.

679 Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
 680 and Ying Shan. Taming rectified flow for inversion and editing. *arXiv preprint arXiv:2411.04746*,
 681 2024.

682 Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
 683 ensemble and lifelong learning. *arXiv preprint arXiv:2002.06715*, 2020.

684 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 685 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
 686 discrete text-defined levels. *arXiv preprint arXiv:2312.17090*, 2023a.

687 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 688 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 689 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023b.

690 Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
 691 Guohao Dai, and Yu Wang. Diffastattn: Attention compression for diffusion transformer models.
 692 *Advances in Neural Information Processing Systems*, 37:1196–1219, 2024.

693 Candi Zheng and Yuan Lan. Characteristic guidance: Non-linear correction for diffusion model at
 694 large guidance scale, 2024. URL <https://arxiv.org/abs/2312.07586>.

695 Chenyang Zhu, Kai Li, Yue Ma, Longxiang Tang, Chengyu Fang, Chubin Chen, Qifeng Chen, and
 696 Xiu Li. Instantswap: Fast customized concept swapping across sharp shape differences. *arXiv
 697 preprint arXiv:2412.01197*, 2024.

702 **A APPENDIX**
703704 **OVERVIEW**
705707 This appendix is divided into two main parts, covering method details and experimental supple-
708 ments.
709710 **Appendix A** The first part focuses on the details and discussions of the methodology, including:
711712 • A principled derivation of Naive S^2 -Guidance from a Bayesian perspective.
713 • A detailed analysis between S^2 -Guidance and Naive S^2 -Guidance.
714716 **Appendix B** The second part provides supplementary information about experiments, covering:
717718 • Explanation of the toy example and additional experimental results.
719 • More comprehensive evaluation and ablation study.
720 • User study.
721 • Further implementation details of the experiments.
722 • Detailed Prompts for the Experiments.
723727 **A EXTENDED DISCUSSION AND ANALYSIS OF OUR METHODS**
728729 **A.1 A PRINCIPLED DERIVATION OF NAIVE S^2 -GUIDANCE FROM A BAYESIAN PERSPECTIVE**
730731 In this subsection, we provide a principled theoretical foundation for our proposed Naive Stochastic
732 Sub-network Guidance (Naive S^2 -Guidance) method. We move beyond a heuristic interpretation
733 and formally derive our approach by drawing a direct line to the principles of Bayesian inference,
734 as established in the seminal work "Dropout as a Bayesian Approximation" by [Gal & Ghahramani](#)
735 (2016). Our central argument is that Naive S^2 -Guidance is not merely inspired by Bayesian ideas,
736 but can be derived as a principled mechanism for correcting the predictions of a deterministic model
737 by leveraging its own epistemic uncertainty.
738739 **A.1.1 FOUNDATIONAL BAYESIAN FORMULATION**
740741 Let $\mathcal{D} = \{x_i, c_i\}_{i=1}^M$ be our training dataset. A fully Bayesian approach to generative modeling
742 would seek to compute the true posterior predictive distribution for a new sample x_t given a condi-
743 tion c :
744

745
$$p(D|x_t, c, \mathcal{D}) = \int_{\Theta} p(D|x_t, c, \theta)p(\theta|\mathcal{D})d\theta, \quad (5)$$

746

747 where $\theta \in \Theta$ are the model parameters, $p(\theta|\mathcal{D})$ is the true posterior distribution over these param-
748 eters, and $p(D|x_t, c, \theta)$ is the likelihood of a specific prediction D given parameters θ . The true
749 posterior is given by Bayes' theorem:
750

751
$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int_{\Theta} p(\mathcal{D}|\theta')p(\theta')d\theta'}. \quad (6)$$

752

753 The integral in the denominator, known as the marginal likelihood or model evidence, is intractable
754 for deep neural networks. To circumvent this, we employ Variational Inference (VI), introducing a
755 tractable approximate posterior distribution $q_{\phi}(\theta)$ (parameterized by ϕ) to approximate $p(\theta|\mathcal{D})$. We

756 minimize the Kullback-Leibler (KL) divergence between these two distributions:
 757

$$\phi^* = \arg \min_{\phi} \text{KL}(q_{\phi}(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathcal{D})) \quad (7)$$

$$= \arg \min_{\phi} \int q_{\phi}(\boldsymbol{\theta}) \log \frac{q_{\phi}(\boldsymbol{\theta})}{p(\boldsymbol{\theta} | \mathcal{D})} d\boldsymbol{\theta} \quad (8)$$

$$= \arg \min_{\phi} \int q_{\phi}(\boldsymbol{\theta}) \log \frac{q_{\phi}(\boldsymbol{\theta}) p(\mathcal{D})}{p(\mathcal{D} | \boldsymbol{\theta}) p(\boldsymbol{\theta})} d\boldsymbol{\theta} \quad (9)$$

$$= \arg \min_{\phi} (\text{KL}(q_{\phi}(\boldsymbol{\theta}) || p(\boldsymbol{\theta})) - \mathbb{E}_{q_{\phi}(\boldsymbol{\theta})} [\log p(\mathcal{D} | \boldsymbol{\theta})]). \quad (10)$$

766
 767 Minimizing this objective is equivalent to maximizing the Evidence Lower Bound (ELBO). $\mathcal{L}_{\text{ELBO}}$.
 768 The work of [Gal & Ghahramani \(2016\)](#) provides the theoretical grounding for interpreting stochastic
 769 network perturbations, such as dropout, as a form of this Bayesian optimization.

770 In our work, we generalize this concept from neuron-level dropout to block-level dropout. Each
 771 binary mask $\mathbf{m}_i \sim p(\mathbf{m})$ applied via stochastic block dropping effectively samples a specific set of
 772 weights $\boldsymbol{\theta}_i = \boldsymbol{\theta} \odot \mathbf{m}_i$ from this approximate posterior, which we denote simply as $q(\boldsymbol{\theta})$.
 773

774 A.1.2 MONTE CARLO ESTIMATION OF THE APPROXIMATE POSTERIOR PREDICTIVE 775

776 The prediction of a single sub-network, $\hat{D}_{\boldsymbol{\theta}}(x_t | c, \mathbf{m}_i)$, is a legitimate sample from the *approximate*
 777 *posterior predictive distribution*, $p_q(D | x_t, c)$:

$$\hat{D}_{\boldsymbol{\theta}}(x_t | c, \mathbf{m}_i) \triangleq D(x_t | c; \boldsymbol{\theta}_i), \quad \text{where } \boldsymbol{\theta}_i \sim q(\boldsymbol{\theta}). \quad (11)$$

780 The first moment of this distribution, the posterior mean μ_{post} , is theoretically defined as the integral
 781 over the variational distribution:
 782

$$\mu_{\text{post}}(x_t | c) \triangleq \mathbb{E}_{q(\boldsymbol{\theta})}[D(x_t | c; \boldsymbol{\theta})] = \int D(x_t | c; \boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta}. \quad (12)$$

786 Since this integral is analytically intractable for deep neural networks, we rely on **Monte Carlo**
 787 **integration** to estimate it. The empirical average computed by our algorithm serves as this estimator:
 788

$$\hat{\mu}_{\text{post}}(x_t | c) \approx \frac{1}{N} \sum_{i=1}^N \hat{D}_{\boldsymbol{\theta}}(x_t | c, \mathbf{m}_i). \quad (13)$$

793 Computing high-dimensional integrals via empirical averaging over diverse predictive hypotheses is
 794 a standard practice in deep learning. This paradigm is supported by extensive literature, including
 795 explicit methods like [Lakshminarayanan et al. \(2017\)](#); [Huang et al. \(2017\)](#); [Gal & Ghahramani](#)
 796 [\(2016\)](#); [Wen et al. \(2020\)](#). These works collectively establish that aggregating predictions from
 797 stochastic sub-states or ensemble members effectively approximates the predictive posterior. Our
 798 algorithm is a direct application of this principle to the sub-networks induced by block-dropping.

799 This posterior mean, μ_{post} , represents the "center of mass" of the model's belief. The second central
 800 moment, the variance, quantifies the **epistemic uncertainty**:

$$\begin{aligned} \text{Var}_{q(\boldsymbol{\theta})}[D(x_t | c; \boldsymbol{\theta})] &= \mathbb{E}_{q(\boldsymbol{\theta})}[(D(x_t; \boldsymbol{\theta}) - \mu_{\text{post}})^2] \\ &\approx \frac{1}{N} \sum_{i=1}^N (\hat{D}_{\boldsymbol{\theta}}(x_t; \mathbf{m}_i) - \hat{\mu}_{\text{post}}(x_t))^2. \end{aligned} \quad (14)$$

807 Our central hypothesis is that **low-quality generative outputs often arise in regions of high epis-**
 808 **temic uncertainty**. In such regions, the posterior mean, μ_{post} , often corresponds to a "safe," but
 809 ultimately low-quality output (e.g., a blurry artifact). The deterministic MAP estimate, $D_{\boldsymbol{\theta}}(x_t | c)$,
 however, might be unjustifiably confident in these very regions.

810 A.1.3 DERIVING S^2 -GUIDANCE AS AN UNCERTAINTY-AWARE CORRECTION
811812 Based on this hypothesis, we formulate a principled correction to the Classifier-free Guidance (CFG)
813 prediction, \tilde{D}_{CFG} . The standard guidance is:

814
$$\tilde{D}_{\text{CFG}}(x_t | c) = D_\theta(x_t | \phi) + \lambda(D_\theta(x_t | c) - D_\theta(x_t | \phi)). \quad (15)$$

815

816 We define our corrected prediction, $\tilde{D}_\theta^{\lambda, \omega}(x_t | c)$, as the solution to an optimization problem where
817 we seek a prediction that remains faithful to the original guidance while being repelled from the
818 center of uncertainty. Let us define a correction vector ΔD . We propose that this correction should
819 be in the direction opposite to the posterior mean, which acts as the locus of uncertainty-induced
820 artifacts:

821
$$\Delta D \triangleq -\omega \cdot \mu_{\text{post}}(x_t | c), \quad (16)$$

822

823 where ω is a scalar controlling the magnitude of the repulsion. The corrected prediction is thus the
824 linear superposition of the original guidance and this correction term:

825
$$\tilde{D}_\theta^{\lambda, \omega}(x_t | c) \triangleq \tilde{D}_{\text{CFG}}(x_t | c) + \Delta D, \quad (17)$$

826

827
$$= \tilde{D}_{\text{CFG}}(x_t | c) - \omega \cdot \mu_{\text{post}}(x_t | c), \quad (18)$$

828

829
$$= \underbrace{D_\theta(x_t | \phi) + \lambda(D_\theta(x_t | c) - D_\theta(x_t | \phi))}_{\text{Standard CFG}} - \underbrace{\omega \cdot \mathbb{E}_{q(\theta)}[D(x_t | c; \theta)]}_{\text{Uncertainty-Aware Repulsion Term}}. \quad (19)$$

830
831
832

833 Substituting the Monte Carlo approximation from Eq. 13 into Eq. 17, we recover our full Naive
834 S^2 -Guidance formulation:

835
$$\tilde{D}_\theta^{\lambda, \omega}(x_t | c) = D_\theta(x_t | \phi) + \lambda(D_\theta(x_t | c) - D_\theta(x_t | \phi))$$

836
$$- \frac{\omega}{N} \sum_{i=1}^N \hat{D}_\theta(x_t | c, \mathbf{m}_i). \quad (20)$$

837

838 A.1.4 THEORETICAL INTERPRETATION AND DECOMPOSITIONS
839840 This derivation provides a much deeper understanding of Naive S^2 -Guidance.
841842 **Decomposition of Predictive Components.** We can rearrange Eq. 19 to analyze the contribution
843 of each component to the final prediction:

844
$$\tilde{D}_\theta^{\lambda, \omega}(x_t | c) = (1 - \lambda)D_\theta(x_t | \phi) + \lambda D_\theta(x_t | c)$$

845
$$- \omega \cdot \mu_{\text{post}}(x_t | c) \quad (21)$$

846

847
$$= \underbrace{\lambda D_\theta(x_t | c)}_{\text{MAP Guidance}} + \underbrace{(1 - \lambda)D_\theta(x_t | \phi)}_{\text{Unconditional Prior}}$$

848
$$- \underbrace{\omega \cdot \mu_{\text{post}}(x_t | c)}_{\text{Bayesian Correction}}. \quad (22)$$

849

850 This shows a clear trade-off: we leverage the strong guidance from the conditional MAP estimate
851 ($D_\theta(x_t | c)$) and the unconditional prior ($D_\theta(x_t | \phi)$), but temper both with a Bayesian correction
852 term that represents the consensus of a diverse committee of model hypotheses. It acts to regularize
853 the overconfidence of the single MAP estimate.
854855 **A Gradient-Space Perspective.** In diffusion models, the guidance is applied in the noise prediction
856 space. Let $\epsilon_\theta(x_t, c)$ be the model's noise prediction. The standard CFG-guided noise $\tilde{\epsilon}_{\text{CFG}}$
857 is:

858
$$\tilde{\epsilon}_{\text{CFG}}(x_t, c) = \epsilon_\theta(x_t, \phi) + \lambda(\epsilon_\theta(x_t, c) - \epsilon_\theta(x_t, \phi)). \quad (23)$$

859

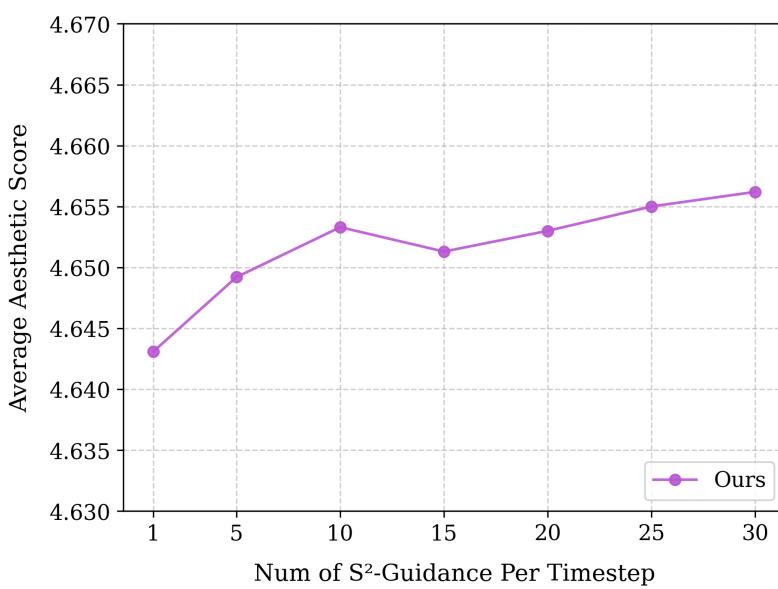


Figure 8: **Aesthetic score gains brought by increasing the number of forward passes with stochastic block dropping at each time step.**

Our method introduces a correction term directly in this space. Let $\bar{\epsilon}_{\text{post}}(x_t, c) = \mathbb{E}_{q(\theta)}[\epsilon_\theta(x_t, c; \theta)]$ be the posterior mean of the noise prediction. Our corrected noise prediction becomes:

$$\tilde{\epsilon}_{S^2G}(x_t, c) = \tilde{\epsilon}_{CFG}(x_t, c) - \omega \cdot \bar{\epsilon}_{\text{post}}(x_t, c) \quad (24)$$

$$= \tilde{\epsilon}_{CFG}(x_t, c) - \omega \cdot \left(\frac{1}{N} \sum_{i=1}^N \epsilon_\theta(x_t, c; \theta_i) \right). \quad (25)$$

This reveals that Naive S^2 -Guidance is performing a direct modification of the guidance vector at each step of the denoising process. The repulsion from the "center of uncertainty" is not an abstract concept but a concrete vector subtraction in the high-dimensional noise space.

Connection to Negative Ensemble Distillation. Our method can be framed as a novel form of *negative distillation* applied at inference time. Standard ensemble distillation trains a single model to mimic the average output of an ensemble. In contrast, Naive S^2 -Guidance uses the ensemble's average prediction (μ_{post}) not as a target to be imitated, but as an anti-target to be actively repelled. This "distillation-rejection" mechanism is a new and principled way to harness the wisdom of an ensemble without collapsing to its mean.

In summary, Naive S^2 -Guidance is a theoretically grounded method that leverages the principles of Bayesian model averaging and uncertainty quantification. It operationalizes the insight that high-quality generation requires not only strong conditional guidance but also a mechanism to actively avoid regions of high model uncertainty. Our derivation shows that subtracting the Monte Carlo average of stochastic sub-networks is a direct and principled way to implement this avoidance, thereby correcting for the inherent limitations of a single, deterministic generative model, as shown in Figure 9.

A.2 COMPARATIVE ANALYSIS OF S^2 -GUIDANCE AND NAIVE S^2 -GUIDANCE

Our investigation into the behavior of sub-networks reveals a crucial property. We find that when the stochastic block-dropping ratio is constrained within a specific range, the guidance provided by different sub-networks appears remarkably consistent. As illustrated in Figure 10, even when different blocks are dropped to form distinct sub-network configurations, their individual guidance effects on the model's output distribution exhibit a strong similarity.

918 This consistent behavior motivates us to formalize the relationship between the two methods using
 919 the principle of **unbiased estimation**.
 920

921 Let θ be the model parameters and $p(\mathbf{m})$ be the distribution of binary masks. Following [Gal &](#)
 922 [Ghahramani \(2016\)](#), the stochastic block-dropping process induces a variational distribution $q(\tilde{\theta})$
 923 over the parameter space. We define the **Theoretical Expected Guidance** (the population mean) as
 924 the exact predictive mean under this induced distribution:

$$925 \quad \mathcal{G}^* \triangleq \omega \cdot \mathbb{E}_{q(\tilde{\theta})}[D(x_t | c; \tilde{\theta})] \equiv \omega \cdot \mathbb{E}_{\mathbf{m} \sim p(\mathbf{m})}[\hat{D}_\theta(x_t | c, \mathbf{m})]. \quad (26)$$

927 **Naive S^2 -Guidance** approximates this target using a Monte Carlo average of N i.i.d. samples:

$$928 \quad G_{\text{Naive}} = \frac{\omega}{N} \sum_{i=1}^N \hat{D}_\theta(x_t | c, \mathbf{m}_i). \quad (27)$$

931 By the linearity of expectation, it holds that $\mathbb{E}[G_{\text{Naive}}] = \mathcal{G}^*$.
 932

933 In contrast, our simplified **S^2 -Guidance** employs a stochastic guidance term from a single sample
 934 ($N = 1$):

$$935 \quad G_{S^2\text{-Guidance}} = \omega \cdot \hat{D}_\theta(x_t | c, \mathbf{m}_t), \quad \text{where } \mathbf{m}_t \sim p(\mathbf{m}). \quad (28)$$

936 We formally derive that $G_{S^2\text{-Guidance}}$ is also an unbiased estimator of the same theoretical target \mathcal{G}^* :

$$937 \quad \mathbb{E}_{p(\mathbf{m}_t)}[G_{S^2\text{-Guidance}}] = \mathbb{E}_{p(\mathbf{m}_t)}[\omega \cdot \hat{D}_\theta(x_t | c, \mathbf{m}_t)] = \mathcal{G}^*. \quad (29)$$

939 Since $\mathbb{E}[G_{S^2\text{-Guidance}}] = \mathbb{E}[G_{\text{Naive}}] = \mathcal{G}^*$, both methods are mathematically **unbiased Monte Carlo**
 940 **estimators** of the same target, differing only in variance. While $G_{S^2\text{-Guidance}}$ naturally exhibits higher
 941 variance per step compared to the ensemble average G_{Naive} , the iterative nature of diffusion sampling
 942 effectively performs temporal integration. This smooths out the stochastic noise over the trajectory
 943 (as confirmed by our variance analysis in Appendix B), confirming that a single stochastic sample is
 944 sufficient and theoretically justified.

945 Further experiments, such as repeating the process with a small number of samples (as shown in
 946 Figure 8), corroborate this perspective by demonstrating diminishing returns, validating the practical
 947 efficiency of our approach.

949 B MORE DETAILS ABOUT OUR EXPERIMENTS

951 B.1 TOY EXAMPLES

953 B.1.1 MORE RESULTS OF TOY EXAMPLES

954 To further analyze the guidance mechanisms, we visualize the full denoising trajectories for the
 955 1D Bimodal Gaussian Distribution in Figure 9. The figure illustrates that while standard CFG
 956 and Autoguidance improve upon the unguided baseline, their final predictions consistently deviate
 957 from the distributions centered at -4 and 4. This visually demonstrates the mode-shifting problem
 958 discussed in the main paper.

959 In stark contrast, the paths for both Naive S^2 -Guidance and our final S^2 -Guidance method are more
 960 direct and successfully converge to the correct endpoints. This suggests that our self-guidance signal
 961 effectively corrects the generation path at each timestep, preventing the model from settling in the
 962 suboptimal regions favored by other methods.

964 B.1.2 NAIVE S^2 -GUIDANCE VERSUS S^2 -GUIDANCE IN TOY EXAMPLES

966 In our methodology, we first proposed Naive S^2 -Guidance, which averages the predictions from
 967 multiple stochastic sub-networks to create a robust negative guidance signal. However, this approach
 968 carries a significant computational cost. To address this, we introduced our final, more efficient S^2 -
 969 Guidance, which uses only a single stochastic sub-network per timestep.

970 To validate that this simplification does not cause a meaningful performance degradation, we con-
 971 duct a direct comparison on the 2D Gaussian mixture. As illustrated in Figure 10, the sample distri-
 972 butions generated by both methods are qualitatively indistinguishable across multiple independent

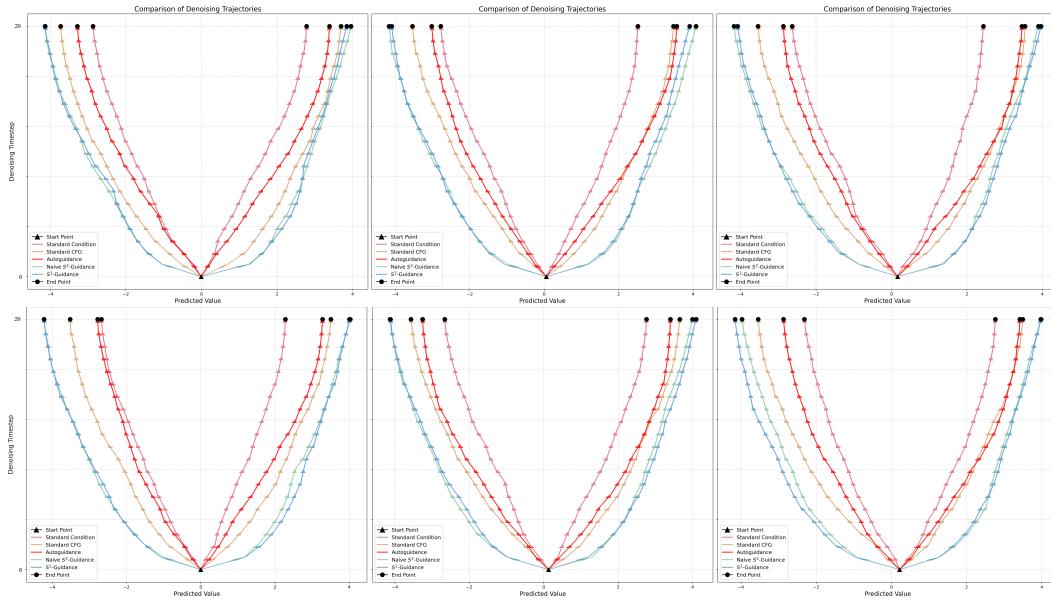


Figure 9: **Visualization of Denoising Trajectories on the 1D Bimodal Gaussian Data.** Each panel shows the paths taken by different guidance methods to generate samples targeting the ground truth modes at -4 and 4. The y-axis represents the denoising timestep (from start to end), and the x-axis shows the predicted sample value. While standard CFG and Autoguidance improve upon the unguided baseline, they consistently fail to reach the ground truth. In contrast, both **Naive S²-Guidance** and our final **S²-Guidance** method successfully steer the generation process to the correct endpoints. The more direct paths of our methods indicate a more accurate guidance signal throughout the entire denoising process.

runs. Both approaches effectively guide the generation process to the correct modes and prevent the mode collapse issues seen in standard CFG (see Figure 3 in the main paper).

Given the negligible difference in performance, the substantial computational advantage of S²-Guidance makes it the far more practical and efficient choice than the naive variant. This finding strongly supports our adoption of the simplified approach as our final method.

B.1.3 DETAILS OF TOY EXAMPLES

Below are the implementation details for the experiments on both synthetic and real-world data, as referenced in the main paper. All experiments were conducted using class-balanced datasets to assess the performance of our method.

- **1-D Bimodal Gaussian Distribution:** This experiment was designed to test the model’s ability to stably and completely capture both modes of a bimodal distribution. The ground-truth data is an equally-weighted mixture of two Gaussians. The diffusion model, parameterized by a standard neural network, was trained for iterations to reconstruct the target distribution. Analysis involved visualizing the final sample distribution and denoising trajectories to show that S²-Guidance consistently covers both modes, whereas the baseline may exhibit instability or mode preference (see Figure 3 in the main paper).
- **2-D Gaussian Mixture (4-Modes):** This experiment assessed the model’s capacity to generate samples from a disconnected, multi-modal manifold. The data consisted of an equally-weighted mixture of 4 isotropic Gaussians, with means located at (-4, -4), (-4, 4), (4, -4), and (4, 4). The analysis focused on the final distribution and denoising paths to demonstrate that S²-Guidance successfully captures all 4 distinct modes, improving upon the baseline’s mode coverage.
- **Real-Image Data (CIFAR-10):** To validate S²-Guidance on high-dimensional data, we used a class-balanced dataset from CIFAR-10, consisting of 5,000 ‘horse’ images and

1026 5,000 ‘car’ images. The diffusion model employed a neural network parameterization
 1027 common for image tasks. The primary goal of the analysis was to assess the quality and
 1028 class-separability of the generations. To this end, we generated 3,000 images and visual-
 1029 ized their **CLIP (ViT-B/32) features** in 2-D using **t-SNE**. The resulting plot demonstrates
 1030 that S^2 -Guidance produces more distinct and well-separated class clusters compared to
 1031 the baseline, indicating higher-quality and less ambiguous generations (see Figure 4 in the
 1032 main paper).

1033 B.2 EXTENDED EVALUATIONS

1034 **Experiments using Flux.** In addition to the main experiments conducted with SD3 and SD3.5, we
 1035 further evaluate our method using Flux, a state-of-the-art (SOTA) model for text-to-image genera-
 1036 tion. Note that Flux is a CFG-distilled model, meaning that directly applying classifier-free guidance
 1037 (CFG) may lead to different results. We use a De-distilled version of Flux (Labs, 2024) in our ex-
 1038 periments. Additionally, we follow the same benchmark setting as HPSv2.1 to ensure consistency
 1039 and comparability.

Method	HPSv2.1(%) \uparrow					Qalign \uparrow
	Anime	Concept Art	Paintings	Photo	Avg.	
CFG	31.29	29.85	30.03	28.16	29.84	4.65
CFG(1.4 NFE)	31.59	30.10	30.35	28.47	30.13	4.68
Ours	31.48	30.21	30.48	28.88	30.26	4.70

1042 Table 4: **Quantitative evaluation of CFG and our approach using Flux under the HPSv2.1**
 1043 **benchmark.** The HPSv2.1 grouping evaluates different styles, while Qalign measures aesthetic
 1044 quality. Higher scores (\uparrow) are better. Best results are in bold.

1045 The results in Table 4 show that our method consistently outperforms the baseline CFG across
 1046 different categories, including Anime, Concept Art, Paintings, and Photo. Specifically, we observe
 1047 an average improvement of **0.42**, highlighting the robustness and effectiveness of our approach.

1048 For more qualitative results, please refer to Figure 12 and Figure 13. These comprehensive results
 1049 demonstrate the effectiveness of our proposed approach across various scenarios.

1050 **Effect of Drop-Ratio.** We investigate the impact of the drop-
 1051 ratio on the SD3.5 model with 24 blocks. As shown in Table 5,
 1052 when the number of dropped blocks is limited to 3/24 (approx-
 1053 imately 10%), the aesthetic score remains stable at a relatively
 1054 high level. However, dropping more blocks leads to a gradual
 1055 decline in performance. Empirically, we observe that a drop-
 1056 ratio of about 10% significantly improves performance.

1057 **Analysis of S^2 -Guidance and Naive S^2 -Guidance.** We
 1058 compare applying block-dropping once versus multiple times
 1059 per sampling step. Empirically, increasing the number of ap-
 1060 plications yields diminishing returns in aesthetic scores (Fig-
 1061 ure 8). We therefore conclude that a single application per timestep is sufficient, striking an effective
 1062 balance between high performance and computational efficiency. See Appendix B.1.2 for further vi-
 1063 sualizations and Appendix A.1 for the theoretical analysis.

1064 **Computational Cost and Peak Memory** We conduct a direct comparison of FLOPs, runtime, and
 1065 peak memory requirements against standard CFG. The benchmark, performed on a text-to-image
 1066 task with 28 inference steps, is summarized in Table 6. The results show that our S^2 -Guidance incurs
 1067 an overhead of approximately 40% in both runtime and computational cost. While this entails a
 1068 notable overhead, we posit that it is justified by a **superior performance-efficiency trade-off**, as we
 1069 demonstrate in the subsequent analysis. Notably, peak GPU memory allocation remains unchanged.
 1070 This is because the two forward passes within each denoising step—one for the full model and one

Stochastic Block-Dropping	
Num.	Aes.
0	4.618
1	4.652
2	4.643
3	4.616
4	4.531

1071 Table 5: Effect of the Number (Ratio) of Dropped Blocks on Aes-
 1072 thetic Scores.

1080 for the sub-network—are executed sequentially. The memory from the first pass is released before
 1081 the second begins, ensuring the peak memory footprint does not exceed that of a single standard
 1082 CFG evaluation.

1083

Method	Total Runtime	Transformer FLOPs	Peak GPU Memory
CFG	29.2 s	168.4 TFLOPs	~33.8 GB
S^2 -Guidance	40.2 s	237.6 TFLOPs	~33.8 GB

1088

Table 6: Computational cost and memory comparison for a 28-step inference task.

1089

1090 **Performance-Efficiency Trade-off** While our method entails a computational overhead, we argue
 1091 it is justified by a superior performance-efficiency trade-off, as analyzed in Figure 14. This figure
 1092 plots the HPS Score against a normalized computational cost, where the cost for S^2 -Guidance is
 1093 scaled by a factor of 1.4 to account for its $\sim 40\%$ overhead per step. The results clearly show
 1094 that our method establishes a more favorable performance-efficiency frontier, consistently achieving
 1095 higher performance for any given computational budget. For instance, S^2 -Guidance with only 20
 1096 inference steps (equivalent cost of 28) surpasses the HPS score of standard CFG with 60 steps. This
 1097 analysis compellingly demonstrates that our approach is a more practical and advanced choice for
 1098 maximizing generation quality within a given computational budget.

1099

1100 **Analysis of Variance from Stochastic Dropping** To assess the stability of our method, we quanti-
 1101 fy the output variance introduced by the stochastic dropping of network blocks. In our experiment,
 1102 we generate multiple images for the same prompt while keeping the initial noise seed fixed, thereby
 1103 isolating the variance attributable solely to the stochastic dropping process. The quantitative results,
 1104 presented in Table 7, demonstrate that the run-to-run variance is negligible. As shown, S^2 -Guidance
 1105 exhibits a variance on the order of 10^{-6} and a coefficient of variation of less than 1%. This indicates
 1106 an extremely high degree of stability and output consistency, confirming that the stochastic element
 1107 does not compromise the reliability of the generation process.

1108

Method	Mean (%)	Var.	Std. Dev.	Coeff. of Var.
CFG	30.48	—	—	—
S^2 -Guidance	30.86	7×10^{-6}	0.0026	0.84%

1112

Table 7: Analysis of variance from stochastic dropping with a fixed initial seed.

1113

1114

1115

1116 **Visual Analysis of Block Dropping Impact** To intuitively address concerns about how dropping
 1117 blocks affects the final output, we provide a visual analysis in Figure 15. This figure presents the
 1118 results of an extreme test case on the SiT-XL model for the ImageNet 256 \times 256 task. In this setup,
 1119 for each of the 28 generated images, a single, fixed transformer block was dropped for the entire
 1120 duration of the inference process. As can be observed, the resulting images exhibit remarkable
 1121 visual consistency and coherence, with no single dropped block leading to severe artifacts or a
 1122 collapse in quality. This provides compelling visual evidence of the model’s inherent robustness
 1123 against block-level perturbations.

1124

1125

B.3 USER STUDY

1126

1127 To quantitatively evaluate the perceptual quality and prompt fidelity of our method, we conducted
 1128 a comprehensive user study comparing S^2 -Guidance against four strong baselines: CFG (Ho &
 1129 Salimans, 2022), APG (Sadat et al., 2024), CFG++ (Chung et al., 2024), and CFG-Zero (Fan et al.,
 1130 2025). The evaluation was performed on images generated from a diverse set of diffusion models to
 1131 assess the generalizability of our approach.

1132

1133

We recruited 14 participants with expertise in computer vision and generative AI. For each evalua-
 1134 tion instance, participants were presented with a text prompt and the corresponding images generated
 1135 by all five methods, displayed in a randomized order to prevent bias. Participants were instructed to
 1136 evaluate the results based on three key criteria:

- **Detail Preservation:** The clarity, sharpness, and richness of details in the generated image.
- **Color Consistency:** The naturalness, harmony, and realism of the colors.
- **Image-Text Alignment:** How well the generated image accurately reflects the content and intent of the text prompt.

For each criterion, participants were asked to select the image (or images) they found to be the most successful. This design allows for multiple selections if a participant deems more than one result to be of high quality for a given aspect, thereby capturing a more nuanced assessment of performance.

The results of the user study are presented in Figure 11. The findings demonstrate a clear and consistent preference for our proposed method, S^2 -Guidance, across all evaluated metrics. Specifically, in the *Detail Preservation* category, S^2 -Guidance was preferred in 32.5% of cases, significantly outperforming the runner-up, CFG (18.3%). A similar dominant trend is observed for *Color Consistency*, where S^2 -Guidance achieved a 29.6% preference rate. Furthermore, for *Image-Text Alignment*, our method was chosen 31.1% of the time, again marking a substantial lead over all baselines.

Aggregating the votes, the *Overall* preference for S^2 -Guidance stands at 31.0%, confirming its comprehensive superiority. This strong performance in human evaluations validates that S^2 -Guidance not only improves guidance from a theoretical standpoint but also translates to tangible and perceptually superior generation quality that is easily recognized by human users.

B.4 IMPLEMENTATION DETAILS

To ensure fair comparisons, the implementation details of our experiments are as follows: For the text-to-image comparisons, we used SD3 and SD3.5 (Esser et al., 2024; AI, 2024) with the guidance scale set to 7.5. For our scale parameter ω , we set it to 0.25. For the text-to-video comparisons, we use a guidance scale of 5.0. Similarly, our scale parameter ω is set to 0.25. All other hyperparameters are set to the default configurations of the respective models. For the baseline comparisons, we follow the original implementations provided in their official repositories. Specifically, APG (Sadat et al., 2024) and CFG++ (Chung et al., 2024) are implemented using the community-contributed versions that are integrated into the Diffusers framework. All experiments are conducted on NVIDIA H20 GPUs with 96GB memory.

B.5 DETAILED PROMPTS FOR FIGURE 1

This section provides the prompts used to generate the visual results presented in Figure 1. The examples are referenced by their grid position in the figure (row, column).

- **(Top, 1) Astronaut in space (Video):** “An astronaut flying in space.”
- **(Top, 2) Floating Castle (Image):** “A magnificent castle sitting high on a floating island above the clouds. Fluffy clouds surround the base of the island and form the text ‘ S^2 Guidance Is All You Need’ in a romantic, swirling style. The castle is adorned with towers, golden lights twinkling in the windows, and vines of blooming flowers climbing its walls. The scene is lit by a warm, golden light glowing from the sun, with a starry heaven faintly visible on the horizon.”
- **(Top, 3) Abstract Portrait (Image):** “The bold dramatic strokes of the painter’s brush created a stunning abstract masterpiece a work of emotional depth and intensity.”
- **(Top, 4) Cat with Rocket (Image):** “A cat sitting besides a rocket on a planet with a lot of cactuses.”
- **(Top, 5) Sports Car Driving (Video):** “a car accelerating to gain speed.”
- **(Bottom, 1) Woman with Colored Powder (Video):** “A close-up of a beautiful woman’s face with colored powder exploding around her, creating an abstract splash of vibrant hues.”
- **(Bottom, 2) Woman with Umbrella (Image):** “A woman sitting under an umbrella in the middle of a restaurant.”
- **(Bottom, 3) Man Running on Beach (Image):** “A man is running his hand over a smooth rock at the beach.”

1188 • **(Bottom, 4) Clay Sheep (Image):** “*a red book and an ivory sheep.*”
1189 • **(Bottom, 5) Bear Climbing Tree (Video):** “*a bear climbing a tree.*”
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

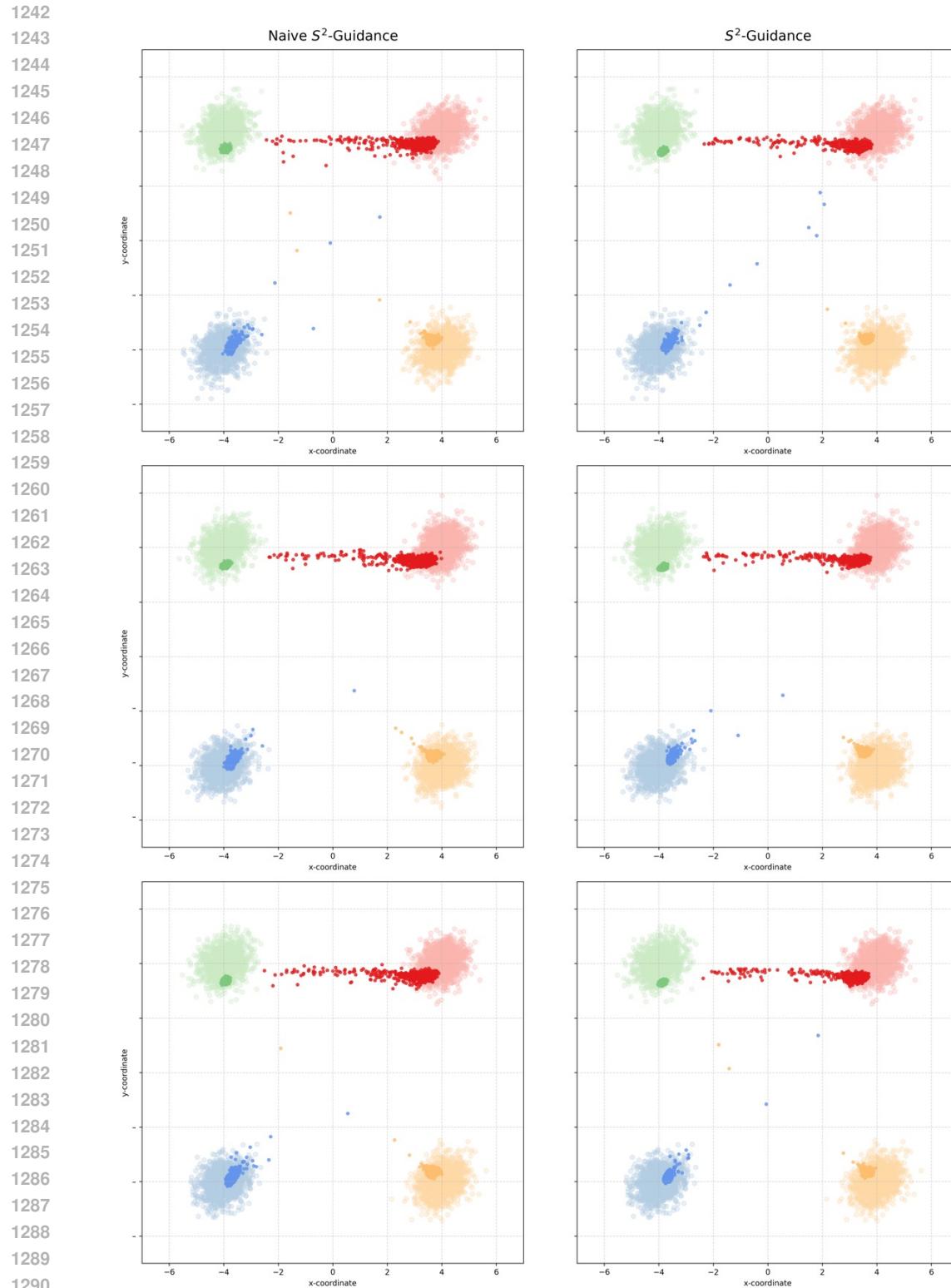


Figure 10: More Visual Comparisons of Naive S²-Guidance and S²-Guidance on the 2D Gaussian Mixture. Left: Naive S²-Guidance. Right: S²-Guidance. Each row corresponds to a different random seed. The generated sample distributions are virtually identical, demonstrating that the performance gain from the computationally intensive naive approach is minimal. This justifies our adoption of the more efficient S²-Guidance method.

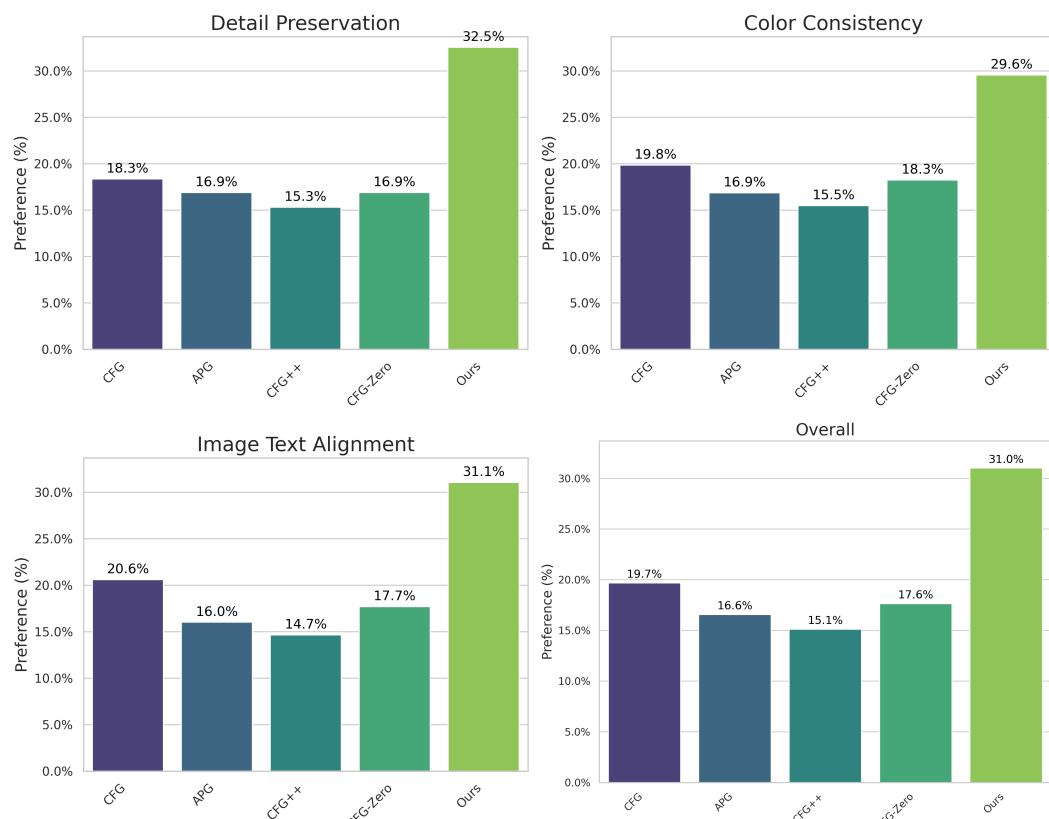


Figure 11: **Human preference evaluation results for S^2 -Guidance against baseline methods.** The bar charts show the percentage of times each method was selected as the best for three criteria: Detail Preservation, Color Consistency, and Image-Text Alignment, along with an Overall aggregated score. Our method, S^2 -Guidance, is significantly preferred by human evaluators across all categories, achieving a preference rate of over 29% in every dimension and surpassing 30% overall. This demonstrates its robust ability to generate perceptually superior images.

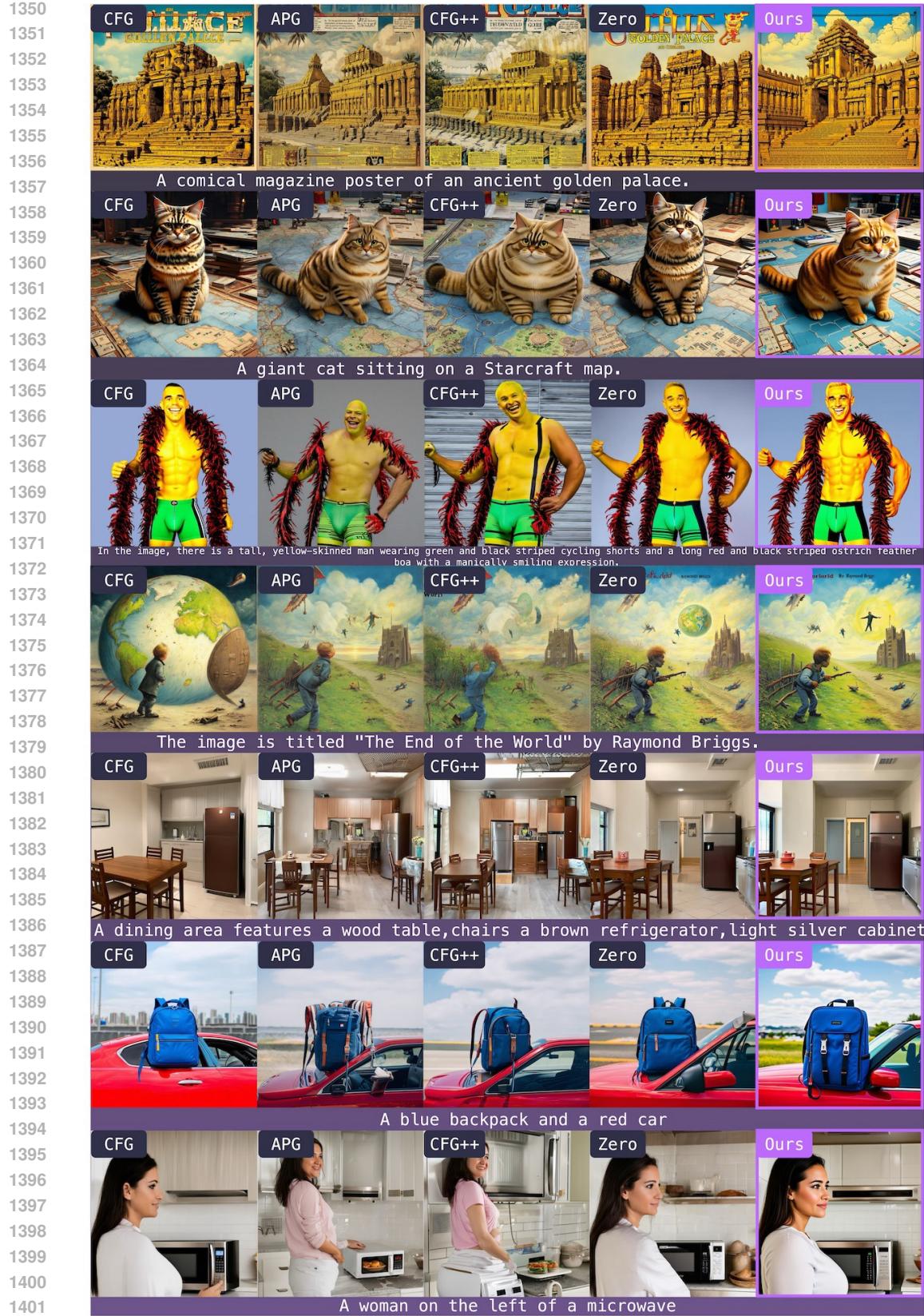


Figure 12: **Qualitative comparison of S^2 -Guidance with baseline methods.** Our method consistently generates images with superior visual quality, better prompt alignment, and fewer artifacts across a variety of prompts. For instance, S^2 -Guidance excels at stylistic replication (row 4), complex concept combinations (row 5).

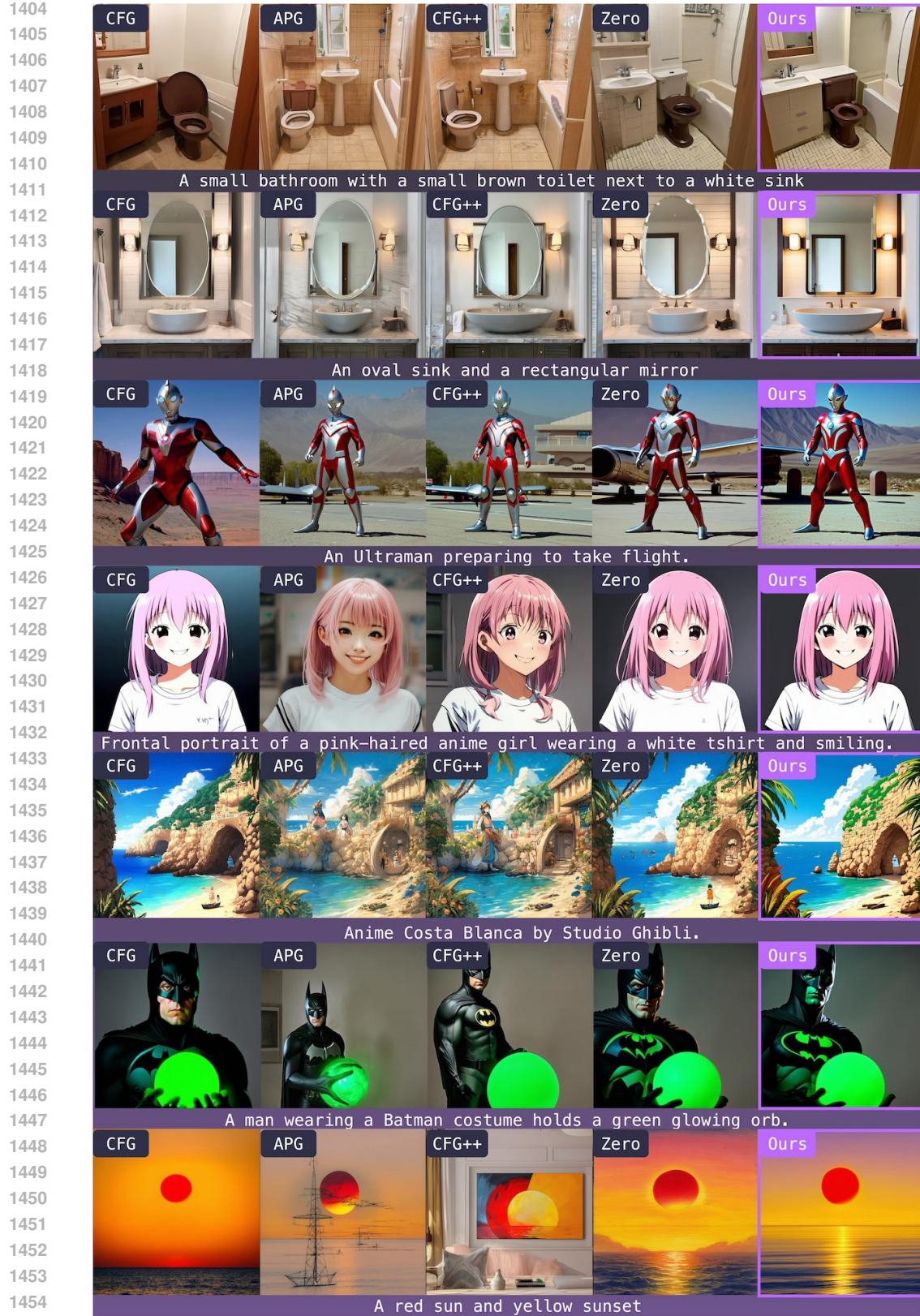


Figure 13: **Further qualitative comparisons of S^2 -Guidance against baseline methods.** Our approach demonstrates robust improvements in both prompt fidelity and aesthetic quality. Key advantages include accurate attribute binding (e.g., “oval sink and rectangular mirror” in row 2), faithful character and style generation (rows 3, 4, 5), and superior handling of lighting and composition (rows 6, 7). S^2 -Guidance consistently avoids the conceptual blending and visual artifacts that affect other methods.

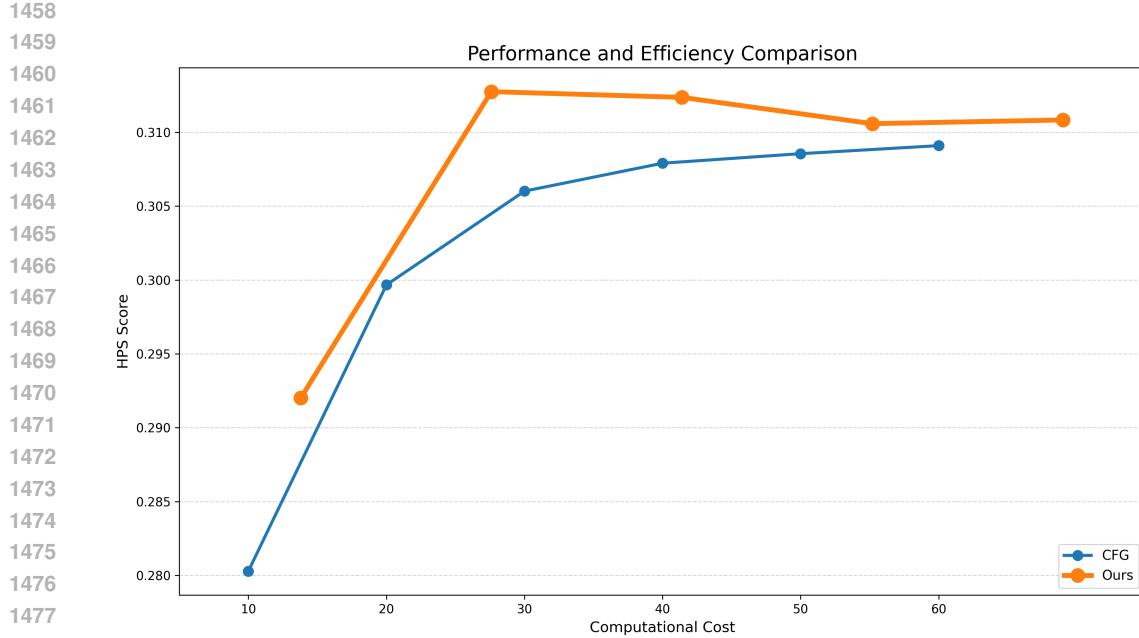


Figure 14: **Performance-Efficiency Trade-off Analysis.** This figure compares our method against CFG by plotting HPS Score as a function of computational cost. (Curves positioned further toward the **top-left** indicate superior methods.) The x-axis represents a normalized computational cost, where the cost for CFG equals its inference steps, while the cost for our method is scaled by a factor of 1.4 to reflect its $\sim 40\%$ computational overhead. The plot illustrates that our method offers a significantly better trade-off. For instance, our method with just 20 inference steps (equivalent cost ≈ 28) already achieves a higher HPS score than CFG at 60 steps. This demonstrates that our method yields substantial quality improvements for a comparable or even lower computational budget.

Figure 15: **Impact of dropping a single, fixed transformer block in SiT-XL.** Each of the 28 images corresponds to dropping one specific block for all timesteps on the ImageNet 256 \times 256 task. The visual consistency across the grid demonstrates the model’s robustness against block-level perturbations.