
Going Beyond Linear RL: Sample Efficient Neural
Function Approximation

Baihe Huang1∗, Kaixuan Huang2∗, Sham M. Kakade3,4∗, Jason D. Lee2∗

Qi Lei2∗, Runzhe Wang2∗, Jiaqi Yang5∗

1Peking University 2Princeton University 3Harvard University
4Microsoft Research 5Tsinghua University

Abstract

Deep Reinforcement Learning (RL) powered by neural net approximation of the
Q function has had enormous empirical success. While the theory of RL has
traditionally focused on linear function approximation (or eluder dimension) ap-
proaches, little is known about nonlinear RL with neural net approximations of the
Q functions. This is the focus of this work, where we study function approximation
with two-layer neural networks (considering both ReLU and polynomial activation
functions). Our first result is a computationally and statistically efficient algorithm
in the generative model setting under completeness for two-layer neural networks.
Our second result considers this setting but under only realizability of the neural
net function class. Here, assuming deterministic dynamics, the sample complexity
scales linearly in the algebraic dimension. In all cases, our results significantly
improve upon what can be attained with linear (or eluder dimension) methods.

1 Introduction

In reinforcement learning (RL), an agent aims to learn the optimal decision-making rule by interacting
with an unknown environment [71]. Deep Reinforcement Learning, empowered by deep neural
networks [48, 32], has achieved tremendous success in various real-world applications, such as Go
[68], Atari [54], Dota2 [7], Texas Holdém poker [56], and autonomous driving [66]. Those modern
RL applications are characterized by large state-action spaces, and the empirical success of deep
RL corroborates the observation that deep neural networks can extrapolate well across state-action
spaces [35, 55, 50].

Although in practice non-linear function approximation scheme is prevalent, theoretical understand-
ings of the sample complexity of RL mainly focus on tabular or linear function approximation
settings [69, 38, 5, 41, 63, 88, 1, 43, 44, 77]. These results rely on finite state space or exact linear ap-
proximations. Recently, sample efficient algorithms under non-linear function approximation settings
are proposed [82, 11, 20, 12, 51, 72, 13, 91, 86]. Those algorithms are based on Bellman rank [40],
eluder dimension [64], neural tangent kernel [37, 4, 14, 92], or sequential Rademacher complexity
[60, 61]. Yet, the understanding of how deep RL learns and generalizes in large state spaces is far
from complete. While the aforementioned works study function approximation structures that possess
the nice properties of linear models, such as low information gain and low eluder dimensions, the
highly non-linear nature of neural networks renders challenges on their applicability to deep RL.
For one thing, recent wisdoms in deep learning theory cast doubt on the ability of neural tangent
kernel and random features to model the actual neural networks. Indeed, the neural tangent kernel

∗Alphabetical order. Correspondence to: Baihe Huang, baihehuang@pku.edu.cn, Jason D. Lee, Jasondl@
princeton.edu.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

baihehuang@pku.edu.cn
Jasondl@princeton.edu
Jasondl@princeton.edu

approximately reduces neural networks to linear models, but the RKHS norm of neural networks
is exponential [87]. Moreover, it remains unclear what neural networks models have low eluder
dimensions. For example, recent work [13] shows that two layer neural networks have exponential
eluder dimension in the dimension of features. Thus, the mismatch between the empirical success of
deep RL and its theoretical understanding remains significant, which yields the following important
question:

What are the structural properties that allow sample-efficient algorithms for RL with neural network
function approximation?

Recent work in RL suggests that learning RL with neural networks function approximation is
exponentially hard [13, 49, 52]. In this paper, however, we advance the understanding of the above
question by displaying several structural properties that allow efficient RL algorithms with neural
function approximations. We consider several value function approximation models that possess
high information gain and high eluder dimension. Specifically, we study two structures, namely two-
layer neural networks and structured polynomials (i.e. two-layer neural networks with polynomial
activation functions), under two RL settings, namely RL with simulator model and online RL. In the
simulator (generative model) setting [45, 67], the agent can simulate the MDP at any state-action pair.
In online RL, the agent can only start at an initial state and interact with the MDP step by step. The
goal in both settings is to find a near-optimal policy while minimizing the number of samples used.

We obtain the following results. For the simulator setting, we propose sample-efficient algorithms
for RL with two-layer neural network function approximation. Under either policy completeness,
Bellman completeness, or gap conditions, our method provably learns near-optimal policy with
polynomial sample complexities. For online RL, we provide sample-efficient algorithms for RL with
structured polynomial function approximation. When the transition is deterministic, we also present
sample-efficient algorithms under only the realizability assumption [18, 78]. Our main techniques
are based on neural network recovery [90, 39, 28], and algebraic geometry [53, 65, 8, 76].

1.1 Summary of our results

Our main results in different settings are summarized in Table 1. We consider two-layer neural
networks f(x) = ⟨v, σ(Wx)⟩ (where σ is ReLU activation) and rank k polynomials (see Example
4.3).

Table 1: Baselines and our main results for the sample complexity to find an ϵ-optimal policy.
rank k polynomial Neural Net of Width k

Sim. + Det. (R) Onl. + Det. (R) Sim. + Det. (R) Sim. + Gap. (R) Sim. + Stoch. (C)
Baseline O(dp) O(dp) O(dpoly(1/ϵ)) (*) O(dpoly(1/ϵ)) O(dpoly(1/ϵ))

Our results O(dk) O(dk) Õ(poly(d) · exp(k)) Õ(poly(d, k)) Õ(poly(d, k)/ϵ2)

We make the following elaborations on Table 1.

• For simplicity, we display only the dependence on the feature dimension d, network width
or polynomial rank k, precision ϵ, and degree p (of polynomials).

• In the table Sim. denotes simulator model, Onl. denotes online RL, Det. denotes deter-
ministic transitions, Stoch. denotes stochastic transitions, Gap. denotes gap condition,
(R) denotes realizability assumption only, and (C) denotes completeness assumption (either
policy complete or Bellman complete) together with realizability assumption.

• We apply [21] for the deterministic transition baseline, and apply [19] for the stochastic
transition baseline. We are unaware of any methods that can directly learn MDP with neural
network value function approximation2.

• In polynomial case, the baseline first vectorizes the tensor
(
1
x

)⊗p

into a vector in R(d+1)p

and then performs on this vector. In the neural network case, the baseline uses a polynomial
of degree 1/ϵ to approximate the neural network with precision ϵ and then vectorizes the
polynomial into a vector in Rdpoly(1/ϵ)

. The baseline method for realizable model (denoted

2

by (*)) needs a further gap assumption of gap ≥ dpoly(1/ϵ)ϵ to avoid the approximation
error from escalating [21]; note for small ϵ this condition never holds but we include it in
the table for the sake of comparison.

• In rank k polynomial case, our result O(dk) in simulator model can be found in Theo-
rem 4.7 and our result O(dk) in online RL model can be found in Theorem 4.8. These
results only require a realizability assumption. Efficient explorations are guaranteed by
algebraic-geometric arguments. In neural network model, our result Õ(poly(d) · exp(k)) in
simulator model can be found in Theorem 3.4. This result also only relies on the realizability
assumption. For stochastic transitions, our result Õ(poly(d, k)/ϵ2) works for either policy
complete or Bellman complete settings, as in Theorem 3.5 and Theorem 3.6 respectively.
The Õ(poly(d, k)) result for gap condition can be found in Theorem 3.8.

1.2 Related Work

Linear Function Approximation. RL with linear function approximation has been widely studied
under various settings, including linear MDP and linear mixture MDP [44, 89, 85]. While these
papers have proved efficient regret and sample complexity bounds, their analyses relied heavily on
two techniques: they used the confidence ellipsoid to quantify the uncertainty, and they used the
elliptical potential lemma to bound the total uncertainty [2]. These two techniques were integral to
their analyses but are so restrictive that they generally do not extend to nonlinear cases.

Eluder Dimension. [62, 59] proposed eluder dimension, a complexity measure of the function
space, and proved regret and sample complexity bounds that scaled with the eluder dimension, for
bandits and reinforcement learning [73, 42]. They also showed that the eluder dimension is small in
several settings, including generalized linear models and LQR. However, as shown in [13], the eluder
dimension could be exponentially large even with a single ReLU neuron, which suggested the eluder
dimension would face difficulty in dealing with neural network cases. The eluder dimension is only
known to give non-trivial bounds for linear function classes and monotone functions of linear function
classes. For structured polynomial classes, the eluder dimension simply embeds into an ambient
linear space of dimension dp, where d is the dimension, and p is the degree. This parallels the lower
bounds in linearization / neural tangent kernel (NTK) works [79, 30, 3], which show that linearization
also incurs a similarly large penalty of dp sample complexity, and more advanced algorithm design is
need to circumvent linearization[6, 9, 22, 83, 26, 58, 29, 57, 34, 75, 10].

Bellman Rank and Completeness. [40, 70] studied RL with general function approximation.
They used Bellman rank to measure the error of the function class under the Bellman operator
and gave proved bounds in the term of it. Recently, [16] propose bilinear rank and encompass
more function approximation models. However, it is hard to bound either the Bellman rank or the
bilinear rank for neural nets. Therefore, their results are not known to include the neural network
approximation setting. Another line of work shows that exponential sample complexity is unavoidable
even with good representations [19, 80, 78], which implies the realizability assumption alone might
be insufficient for function approximations.

2 Preliminaries

An episodic Markov Decision Process (MDP) is defined by the tupleM = (S,A, H,P, r) where
S is the state space, A is the action set, H is the number of time steps in each episode, P is the
transition kernel and r is the reward function. In each episode the agent starts at a fixed initial
state s1 and at each time step h ∈ [H] it takes action ah, receives reward rh(sh, ah) and transits to
sh+1 ∼ P(·|sh, ah).
A deterministic policy π is a length-H sequence of functions π = {πh : S 7→ A}Hh=1. Given a policy
π, we define the value function V π

h (s) as the expected sum of reward under policy π starting from

2Prior work on neural function approximation has focused on neural tangent kernels, which would require
dpoly(1/ϵ) to approximate a two-layer network [31].

3

sh = s:

V π
h (s) := E

[
H∑
t=h

rt(st, at)|sh = s

]
and we define the Q function Qπ

h(s, a) as the the expected sum of reward taking action a in state
sh = s and then following π:

Qπ
h(s, a) := E

[
H∑
t=h

rt(st, at)|sh = s, ah = a

]
.

The Bellman operator Th applied to Q-function Qh+1 is defined as follow

Th(Qh+1)(s, a) := rh(s, a) + Es′∼P(·|s,a)[max
a′

Qh+1(s
′, a′)].

There exists an optimal policy π∗ that gives the optimal value function for all states, i.e. V π∗

h (s) =

supπ V
π
h (s) for all h ∈ [H] and s ∈ S. For notational simplicity we abbreviate V π∗

as V ∗ and
correspondingly Qπ∗

as Q∗. Therefore Q∗ satisfies the following Bellman optimality equations for
all s ∈ S, a ∈ A and h ∈ [H]:

Q∗
h(s, a) = Th(Q∗

h+1)(s, a).

The goal is to find a policy π that is ϵ-optimal in the sense that V ∗
1 (s1)− V π

1 (s1) ≤ ϵ, within a small
number of samples. We consider two query models of interacting with MDP:

• In the simulator model ([45], [67]), the agent interacts with a black-box that simulates the
MDP. At each time step h ∈ [H], the agent can start at a state-action pair (s, a) and interact
with the black box by executing some policy π chosen by the agent.

• In online RL, the agent can only start at the initial state and interact with the MDP by using
a policy and observing the rewards and the next states. In each episode k, the agent proposes
a policy πk based on all history up to episode k − 1 and executes πk to generate a single
trajectory {skh, akh}Hh=1 with akh = πk

h(s
k
h) and skh+1 ∼ P(·|skh, akh).

2.1 Function approximation

In reinforcement learning with value function approximation, the learner is given a function class
F = F1×· · ·×FH , whereFh ⊂ {f : S×A 7→ [0, 1]} is a set of candidate functions to approximate
Q∗. The following assumption is commonly adopted in the literature [43, 74, 42, 17].
Assumption 2.1 (Realizability). Q∗

h ∈ Fh for all h ∈ [H].

The function approximation is equipped with feature mapping ϕ : S ×A 7→ {u ∈ Rd : ∥u∥2 ≤ Bϕ}
that is known to the agent. We focus the continuous action setting (e.g. in control and robotics
problems) and make the following regularity assumption on the feature function ϕ.
Assumption 2.2 (Bounded features). Assume ϕ(s, a) ≤ Bϕ,∀(s, a) ∈ S ×A.

Notation For any vector x ∈ Rd, let xmax := maxi∈[d] xi and xmin := mini∈[d] xi. Let si(·)
denote the i-th singular value, smin(·) denotes the minimum eigenvalue and smax(·) denotes the
maximum eigenvalue. The conditional number is defined by κ(·) := smax(·)/smin(·). We use ⊗ to
denote Kronecker product and ◦ to denote Hadamard product. For a given integer H , we use [H]
to denote the set {1, 2, . . . ,H}. For a function f : X 7→ Y, we use f−1(y) := {x ∈ X : f(x) = y}
to denote the preimage of y ∈ Y. We use the shorthand x ≲ y (x ≳ y) to indicate x ≤ O(y)
(x ≥ Ω(y)).

3 Neural Network Function Approximation

In this section we show sample-efficient algorithms with neural network function approximations.
The function class of interest is given in the following definition. More general neural network class
is discussed in Appendix B.5.

4

Definition 3.1 (Neural Network Function Class). We use FNN to denote the function class of
f(ϕ(s, a)) : S ×A 7→ R where f(x) = ⟨v, σ(Wx)⟩ : Rd 7→ R is a two-layer neural network where
σ is ReLU, ∥W∥F ≤ BW , v ∈ {±1}k,

∏k
i=1 si(W)/smin(W) ≤ λ, smax(W)/smin(W) ≤ κ and

k ≤ d. Here ϕ : A × S 7→ Rd is a known feature map whose image contains a ball {u ∈ Rd :
∥u∥2 ≤ δϕ} with δϕ ≥ d · polylog(d).3

We introduce the following completeness properties in the setting of value function approximations.
Along with Assumption 2.1, they are commonly adopted in the literature .
Definition 3.2 (Policy complete). Given MDPM = (S,A,P, r,H), function class Fh : S ×A 7→
R, h ∈ [H] is called policy complete if for all π and h ∈ [H], Qπ

h ∈ Fh.
Definition 3.3 (Bellman complete). Given MDPM = (S,A,P, r,H), function class Fh : S ×A 7→
R, h ∈ [H] is called Bellman complete if for all h ∈ [H] and Qh+1 ∈ Fh+1, Th(Qh+1) ∈ Fh.

3.1 Warmup: Realizable Q∗ with deterministic transition

We start by considering the case when the transition kernel is deterministic. In this case only Assump-
tion 2.1 is required for the expressiveness of neural network function approximations. Algorithm 1
learns optimal policy from time step H to 1. Suppose we have learned policies πh+1, . . . , πH at
level h and they are exactly the optimal policies. We first explore features ϕ(sih, a

i
h) over a stan-

dard Gaussian distribution, and if ∥ϕ(sih, aih)∥2 ≥ δϕ then we simply skip this trial. Recall that
δϕ ≥ d ·poly log(d), so with high probability (w.r.t d) almost all feature samples will be explored. We
next construct an estimate Q̂i

h of Q∗(sih, a
i
h) by collecting cumulative rewards using πh+1, . . . , πH as

the roll-out. Since the transition is deterministic, Q̂i
h = Q∗(sih, a

i
h) for all explored samples (sih, a

i
h).

Recall that Q∗
h is a two-layer neural network, we can now recover its parameters in Line 12 exactly

by invoking techniques in neural network optimization (see, e.g. [39, 27, 90]). Details of this step can
be found in Appendix B.5, where the method is mainly based on [90]. This means the reconstructed
Q̂h in Line 13 is precisely Q∗, and the algorithm can thus find optimal policy π∗

h in the h-th level.

Algorithm 1 Learning realizable Q∗ with deterministic transition

1: for h = H, . . . 1 do
2: Sample xi

h, i ∈ [n] from standard Gaussian N (0, Id)
3: for i ∈ [n] do
4: if ∥xi

h∥ ≤ δϕ then
5: Find (sih, a

i
h) ∈ ϕ−1(xi

h) and locate the state sih in the generative model
6: Pull action aih and use πh+1, . . . , πH as the roll-out to collect rewards r(i)h , . . . , r

(i)
H

7: Construct estimation

Q̂i
h ← r

(i)
h + · · ·+ r

(i)
H

8: else
9: Let Q̂i

h ← 0.
10: end if
11: end for
12: Compute (vh,Wh)← NEURALNETRECOVERY({(xi

h, Q̂
i
h) : i ∈ [n]})

13: Set Q̂h(s, a)← v⊤h σ(Whϕ(s, a))

14: Let πh(s)← argmaxa∈S Q̂h(s, a)
15: end for
16: Return π1, . . . , πH

Theorem 3.4. (Informal) If n ≥ d · poly(κ, k, λ, log d,BW , Bϕ, H), then with high probability
Algorithm 1 learns the optimal policy.

The formal statement and complete proof are deferred to the Appendix B.1. The main idea of exact
neural network recovery can be summarized in the following. We first use method of moments to

3Here the δϕ is chosen only for simplicity. In general this assumption can be relaxed to that the image of ϕ
contains an arbitrary dense ball near the origin, since one can always rescale the feature mapping in the neural
function approximation.

5

find a ‘rough’ parameter recovery. If this ‘rough’ recovery is sufficiently close to the true parameter,
the empirical ℓ2 loss function is locally strongly convex and there is unique global minimum. Then
we can apply gradient descent to find this global minimum which is exactly the true parameter.

3.2 Policy complete neural function approximation

Now we consider general stochastic transitions. Difficulties arise in this scenario due to noises
in the estimation of Q-functions. In the presence of model misspecification, these noises cause
estimation errors to amplify through levels and require samples to be exponential in H . In this
section, we show that neural network function approximation is still learnable, assuming the function
class FNN is policy complete with regard to MDP M. Thus for all π ∈ Π, we can denote
Qπ

h(s, a) = ⟨vπ, σ(Wπϕ(s, a))⟩.

Algorithm 2 Learn policy complete NN with simulator.

1: for h = H, . . . 1 do
2: Sample xi

h, i ∈ [n] from standard Gaussian N (0, Id)
3: for i ∈ [n] do
4: if ∥xi

h∥ ≤ δϕ then
5: Find (sih, a

i
h) ∈ ϕ−1(xi

h) and locate the state sih in the generative model
6: Pull action aih and use πh+1, . . . , πH as the roll-out to collect rewards r(i)h , . . . , r

(i)
H

7: Construct unbiased estimation of Qπh+1,...,πH

h (sih, a
i
h)

Q̂i
h ← r

(i)
h + · · ·+ r

(i)
H

8: else
9: Let Q̂i

h ← 0.
10: end if
11: end for
12: Compute (vh,Wh)← NEURALNETNOISYRECOVERY({(xi

h, Q̂
i
h) : i ∈ [n]})

13: Set Q̂h(s, a)← v⊤h σ(Whϕ(s, a))

14: Let πh(s)← argmaxa∈S Q̂h(s, a)
15: end for
16: Return π1, . . . , πH

Algorithm 2 learns policy from level H,H − 1, . . . , 1. In level h, the algorithm has learned policy
πh+1, . . . , πH that is only sub-optimal by (H − h)ϵ/H . Then it explores features ϕ(s, a) from
N (0, Id). The algorithm then queries (s, a) and uses learned policy πh+1, . . . , πH as roll out to
collect an unbiased estimate of the Q-function Q

πh+1,...,πH

h (s, a). Since Qπh+1,...,πH

h (s, a) ∈ FNN is
a two-layer neural network, it can then be recovered from samples. Details of this step can be found
in Appendix B.5, where the methods are mainly based on [90]. The algorithm then reconstructs this
Q-function and finds its optimal policy πh.

Theorem 3.5. (Informal) Fix ϵ, t, if n ≥ ϵ−2 · d · poly(κ, k,BW , Bϕ, H, log(d/t)), then with
probability at least 1− t Algorithm 2 returns an ϵ-optimal policy π.

The formal statement and complete proof are deferred to Appendix B.2. Notice that unlike the case
of Theorem 3.4, the sample complexity does not depend on λ, thus avoiding the potential exponential
dependence in k.

The main idea of the proof is that at each time step a neural network surrogate of Q∗ can be constructed
by the policy already learned. Suppose we have learned πh+1, . . . , πH in level h, then from policy
completeness Q

πh+1,...,πH

h belongs to FNN and we can interact with the simulator to obtain its
estimate Q̂h. If ∥Q̂h −Q

πh+1,...,πH

h ∥∞ is small, the optimistic planning based on Q̂h is not far from
the optimal policy of Qπh+1,...,πH

h . Therefore the errors can be decoupled into the errors in recovering
Q

πh+1,...,πH

h and the suboptimality of Qπh+1,...,πH

h , which depends on level h + 1. This reasoning
can then be recursively performed to level H , and thus we can bound the suboptimality of πh.

6

3.3 Bellman complete neural function approximation

In addition to policy completeness, we show that neural network function approximation can also
learn efficiently under the setting where the function class FNN is Bellman complete with regard to
MDPM. Specifically, for Qh+1 ∈ Fh+1, there are vQh+1 and WQh+1 such that Th(Qh+1)(s, a) =
⟨vQh+1 , σ(WQh+1ϕ(s, a))⟩.
Algorithm 3 is similar to the algorithm in previous section. Suppose in level h, the algorithm has
constructed the Q-function Q̂h+1(s, a) = v⊤h+1σ(Wh+1ϕ(s, a)) that is (H − h)ϵ/H-close to the

optimal Q∗
h+1. It then recovers weights vh,Wh from Th(Q̂h+1)(s, a) = ⟨vQ̂h+1 , σ(W Q̂h+1ϕ(s, a))⟩,

using unbiased estimates rh(sih, a
i
h) + V̂h+1(s

i
h+1). The Q-function Q̂h(s, a) = v⊤h σ(Whϕ(s, a))

reconstructed from weights vh,Wh is thus (H − h+ 1)ϵ/H-close to the Q∗
h.

Algorithm 3 Learn Bellman complete NN with simulator.

1: for h = H, . . . 1 do
2: Sample xi

h, i ∈ [n] from standard Gaussian N (0, Id)
3: for i ∈ [n] do
4: if ∥xi

h∥ ≤ δϕ then
5: Find (sih, a

i
h) ∈ ϕ−1(xi

h) and locate the state sih in the generative model
6: Pull action aih and and observe rh(s

i
h, a

i
h), s

i
h+1

7: Construct unbiased estimation of Th(Q̂h+1)(s
i
h, a

i
h)

Q̂i
h ← rh(s

i
h, a

i
h) + V̂h+1(s

i
h+1)

8: else
9: Let Q̂i

h ← 0.
10: end if
11: end for
12: Compute (vh,Wh)← NEURALNETNOISYRECOVERY({(xi

h, Q̂
i
h) : i ∈ [n]})

13: Set Q̂h(s, a)← v⊤h σ(Whϕ(s, a)) and V̂h ← maxa∈A Q̂h(s, a)

14: Let πh(s)← argmaxa∈A Q̂h(s, a)
15: end for
16: Return π1, . . . , πH

Theorem 3.6. (Informal) Fix ϵ, t, if n ≥ ϵ−2 · d · poly(κ, k,BW , Bϕ, H, log(d/t)), then with
probability at least 1− t Algorithm 3 returns an ϵ-optimal policy π.

Due to Bellman completeness, the error of estimation Q̂h can be controlled recursively. In fact, we
can show ∥Q̂h − Q∗(s, a)∥∞ is small by induction. The formal statement and detailed proof are
deferred to Appendix B.3. Similar to Theorem 3.5, the sample complexity does not explicitly depend
on λ, thus avoiding potentially exponential dependence in k.

3.4 Realizable Q∗ with optimality gap

In this section we consider MDPs where there is a non-zero gap between the optimal policy and any
other ones. This concept, known as optimality gap, is widely used in reinforcement learning and
bandit literature [20, 19, 21].

Definition 3.7. The optimality gap is defined as

ρ = inf
a:Q∗(s,a) ̸=V ∗(s)

V ∗(s)−Q∗(s, a).

We show that in the presence positive optimality gap, there exists an algorithm that can learn the
optimal policy with polynomial samples even without the completeness assumptions. Intuitively, this
is because one only needs to recover the neural network up to precision ρ/4 in order to make sure
the greedy policy is identical to the optimal one. The formal statement and proof are deferred to
Appendix B.4.

7

Theorem 3.8. (Informal) Fix t ∈ (0, 1), if n = d
ρ2 · poly(κ, k,BW , Bϕ, H, log(d/t)), then with

probability at least 1− t there exists an algorithm that returns the optimal policy π∗.

Remark 3.9. In all aforementioned methods, there are two key components that allow efficient
learning. First, the exploration is conducted in a way that guarantees an ℓ∞ recovery of candidate
functions. By ℓ∞ recovery we mean the algorithm recovers a candidate Q-function in this class
deviating from the target function Q∗ by at most ϵ uniformly for all state-action pairs in the domain
of interest. This notion of learning guarantee has received study in active learning [33, 46] and
recently gain interest in contextual bandits [25]. Second, the agent constructs unbiased estimators of
certain approximations to Q∗ that lie in the neural function approximation class. This allows the
recovery error to decouple linearly across time steps, which is made possible in several well-posed
MDP instances, such as deterministic MDPs, MDPs with completeness assumptions, and MDPs with
gap conditions. In principle, we note that provably efficient RL algorithms with general function
approximation is possible as long as the above two components are present. We will see in the next
section another example of learning RL with highly non-convex function approximations, where the
function class of interest, admissible polynomial families, also allows for exploration schemes to
achieve ℓ∞ recovery.

4 Polynomial Realizability

In this section, we study the sample complexity to learn deterministic MDPs under polynomial
realizability. We identify sufficient and necessary conditions for efficiently learning the MDPs for
two different settings — the generative model setting and the online RL setting. Specifically, we show
that if the image of the feature map ϕh(sh, ah) satisfies some positive measure conditions, then by
random exploring, we can identify the optimal policy with samples linear in the algebraic dimension
of the underlying polynomial class. We also provide a lower bound example showing the separation
between the two settings.

Next, we introduce the notion of Admissible Polynomial Families, which are the families of
structured polynomials that enable efficient learning.

Definition 4.1 (Admissible Polynomial Families). For x ∈ Rd, denote x̃ = [1, x⊤]⊤. Let X :={
x̃⊗p : x ∈ Rd

}
. For any algebraic variety V , we define FV := {fΘ(x) = ⟨Θ, x̃⊗p⟩ : Θ ∈ V} as

the polynomial family parameterized by Θ ∈ V . We say FV is admissible4 w.r.t. X , if for any Θ ∈ V ,
dim(X ∩ {X ∈ X : ⟨X,Θ⟩ = 0⟩}) < dim(X) = d. We define the dimension D of the family to be
the dimension of V .

The following theorem shows that to learn an admissible polynomial family, the sample complexity
only scales with the algebraic dimension of the polynomial family.

Theorem 4.2 ([36]). Consider the polynomial family FV of dimension D. For n ≥ 2D, there exists
a Lebesgue-measure zero set N ∈ Rd × . . .Rd, such that if (x1, · · · , xn) /∈ N , for any yi, there is a
unique f (or no such f) to the system of equations yi = f(xi) for f ∈ FV .

We give two important examples of admissible polynomial families with low dimension.

Example 4.3. (Low-rank Polynomial of rank k) The function f ∈ FV is a polynomial with k terms,
that is

F (x) =

k∑
i=1

λi⟨vi, x⟩pi ,

where p = max{pi}. The dimension of this family is upper bounded by D ≤ dk. Neural network
with monomial/polynomial activation functions are low-rank polynomials.

Example 4.4. The function f ∈ FV is of the form f(x) = q(Ux), where U ∈ Rk×d and q is a
degree p polynomial. The polynomial q and matrix U are unknown. The dimension of this family is
upper bounded by D ≤ d(k + 1)p.

Next, we introduce the notion of positive measure.

4Admissible means the dimension of X decreases by one when there is an additional linear constraint
⟨Θ, X⟩ = 0

8

Definition 4.5. We say a measurable set E ∈ Rd is of positive measure if µ(E) > 0, where µ is the
standard Lebesgue measure on Rd.

If a measurable set E satisfies µ(E) > 0, then there exists a procedure to draw samples from E,
such that for any N ⊂ Rd of Lebesgue-measure zero, the probability that the sample falls in N is
zero. In fact, the sampling probability can be given by Px∈N (0,Id)(·|x ∈ E). The intuition behind
its definition is that for all admissible polynomial families, the set of (x1, · · · , xn) with "redundant
information" about learning the parameter Θ is of Lebesgue-measure zero. Therefore, a positive
measure set allows you to query randomly and avoids getting coherent measurements.

Next two theorems identify the sufficent conditions for efficiently learning deterministic MDPs under
polynomial realizability. Specifically, under online RL setting, we require the strong assumption that
the set {ϕh(s, a)|a ∈ A} is of positive measure for all h ∈ [H] and all s ∈ S , while under generative
model setting, we only require the union set

⋃
s∈S{ϕh(s, a)|a ∈ A} to be of positive measure for all

h ∈ [H]. The algorithms for solving the both cases are summarized in Algorithms 4 and 5.
Assumption 4.6 (Polynomial Realizability). For all h ∈ [H], Q∗

h(sh, ah), viewed as the function of
ϕh(sh, ah), lies in some admissible polynomial family FVh

with dimension bounded by D.
Theorem 4.7. For the generative model setting, assume that the set {ϕh(s, a) | s ∈ S, a ∈ A} is of
positive measure at any level h. Under the polynomial realizability, Algorithm 4 almost surely learns
the optimal policy π⋆ with at most N = 2DH samples.
Theorem 4.8. For the online RL setting, assume that {ϕh(s, a) | a ∈ A} is of positive measure for
every state s at every level h. Under polynomial realizability, within T = 2DH episodes, Algorithm
5 learns the optimal policy π⋆ almost surely.

Algorithm 4 Dynamic programming under generative model settings

1: for h = H, · · · , 1 do
2: Sample 2D points {ϕh(s

(i)
h , a

(i)
h)}2Di=1 according to Px∈N (0,Id)(·|x ∈ Eh) where Eh =

{ϕh(s, a) | s ∈ S, a ∈ A}.
3: Query the generative model with state-action pair (s(i)h , a

(i)
h) at level h for i = 1, . . . , 2D,

and observe the next state s̃
(i)
h and reward r

(i)
h .

4: Solve for Q∗
h with the 2D equations Q∗

h(s
(i)
h , a

(i)
h) = r

(i)
h + V ∗

h+1(s̃
(i)
h).

5: Set π∗
h(s) = argmaxa Q

∗
h(s, a) and V ∗

h (s) = maxa Q
∗
h(s, a).

6: end for
7: Output π∗

Algorithm 5 Dynamic programming under online RL settings

1: for h = H, · · · , 1 do
2: Fix any action sequence a1, · · · , ah−1.
3: Play a1, · · · , ah−1 for the first h − 1 levels and reach a state sh. Sample 2D points
{ϕh(sh, a

(i)
h)}2Di=1 according to Px∈N (0,Id)(·|x ∈ Eh) where Eh = {ϕh(sh, a) | a ∈ A}.

4: Play a
(i)
h at sh for i = 1, . . . , 2D, and observe the next state s̃

(i)
h and reward r

(i)
h .

5: Solve for Q∗
h with the 2D equations Q∗

h(s
(i)
h , a

(i)
h) = r

(i)
h + V ∗

h+1(s̃
(i)
h).

6: Set π∗
h(s) = argmaxa Q

∗
h(s, a) and V ∗

h (s) = maxa Q
∗
h(s, a).

7: end for
8: Output π∗

We remark that our Theorem 4.8 for learning MDPs under the online RL setting relies on a very
strong assumption that allows the learner to explore randomly for any state. However, this assumption
is necessary in some sense, as is suggested by our lower bound example in the next subsection.

4.1 Necessity of Generic Feature Maps in Online RL

In this section, we consider lower bounds for learning deterministic MDPs with polynomial realizable
Q∗ under online RL setting. Our goal is to show that in the online setting the generic assumption on

9

the feature maps ϕh(s, ·) is necessary. On the contrary, under the generative model setting one can
efficiently learn the MDPs without such a strong assumption, since at every level h the we can set the
state arbitrarily.

MDP construction We briefly introduce the intuition of our construction. Consider a family of
MDPs with only two states S = {Sgood, Sbad}. we set the feature map ϕh such that, for the good state
Sgood, it allows the learner to explore randomly, i.e., {ϕh(Sgood, a) | a ∈ A} is of postive measure.

However, for the bad state Sbad, all actions are mapped to some restricted set, which forbids random
exploration, i.e., {ϕh(Sbad, a) | a ∈ A} is measure zero. This is illustrated in Figure 1.

Specifically, at least Ω(dp) actions are needed to identify the groud-truth polynomial of Q∗
h for Sbad,

while O(d) actions suffice for Sgood.

The transition Ph is constructed as Ph(sbad|s, a) = 1 for all s ∈ S, a ∈ A, which means it is
impossible for the online scenarios to reach the good state for h > 1.

state action set

Figure 1: An illustration of the hard case for deterministic MDPs with polynomial realizable Q∗. The
image of the feature map ϕh at Sgood is of positive measure, while the image of ϕh at Sbad is not. This
makes it difficult to learn under the online RL setting.

Theorem 4.9. There exists a family of MDPs satisfying Assumption 4.6, such that the set
{ϕh(s, a) | s ∈ S, a ∈ A} is of positive measure at any level h, but for all h there is some sbad ∈ S
such that {ϕh(sbad, a) | a ∈ A} is measure zero. Under the online RL setting, any algorithm needs
to play at least Ω(dp) episodes to identify the optimal policy. On the contrary, under the generative
model setting, only O(d)H samples are needed.

5 Conclusions

In this paper, we consider neural network and polynomial function approximations in the simulator
and online settings. To our knowledge, this is the first paper that shows sample-efficient reinforcement
learning is possible with neural net function approximation. Our results substantially improve upon
what can be achieved with existing results that primarily rely on embedding neural networks into
linear function classes. The analysis reveals that for function approximations that allows for efficient
ℓ∞ recovery, such as two layer neural networks and admissible polynomial families, reinforcement
learning can be reduced to parameter recovery problems, as well-studied in theories for deep learning,
phase retrieval, and etc. Our method can also be potentially extended to handle three-layer and deeper
neural networks, with advanced tools in [23, 24].

Our results for polynomial activation require deterministic transitions, since we cannot handle how
noise propagates in solving polynomial equations. We leave to future work an in-depth study of the
stability of roots of polynomial systems with noise, which is a fundamental mathematical problem and
even unsolved for homogeneous polynomials. In particular, noisy tensor decomposition approaches
combined with zeroth-order optimization may allow for stochastic transitions [36].

In the online RL setting, we can only show efficient learning under a very strong yet necessary
assumption on the feature mapping. We leave to future work identifying more realistic and natural
conditions which permit efficient learning in the online RL setting.

Finally, in future work, we hope to consider deep neural networks where parameter recovery or ℓ∞
error is unattainable, and deep reinforcement learning with representation learning [84, 15].

10

Acknowledgements

JDL acknowledges support of the ARO under MURI Award W911NF-11-1-0303, the Sloan Research
Fellowship, NSF CCF 2002272, and an ONR Young Investigator Award. QL is supported by NSF
2030859 and the Computing Research Association for the CIFellows Project. SK acknowledges
funding from the NSF Award CCF-1703574 and the ONR award N00014-18-1-2247.

References
[1] Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvari, and Gellert Weisz. Exploration-

enhanced POLITEX. arXiv preprint arXiv:1908.10479, 2019.

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,
2011.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels?
arXiv preprint arXiv:1905.10337, 2019.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning (ICML), pages
242–252, 2019.

[5] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning, pages 263–272, 2017.

[6] Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation
of wide neural networks. In International Conference on Learning Representations, 2020.

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, and Chris Hesse. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[8] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36.
Springer Science & Business Media, 2013.

[9] Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard
Socher. Towards understanding hierarchical learning: Benefits of neural representations. Neural
Information Processing Systems (NeurIPS), 2020.

[10] Alex Damian, Tengyu Ma, and Jason Lee. Label noise sgd provably prefers flat global minimiz-
ers. arXiv preprint arXiv:2106.06530, 2021.

[11] Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and
Robert E. Schapire. On oracle-efficient PAC-RL with rich observations. In Advances in Neural
Information Processing Systems, 2018.

[12] Kefan Dong, Jian Peng, Yining Wang, and Yuan Zhou.
√
n-regret for learning in Markov

decision processes with function approximation and low Bellman rank. In Conference on
Learning Theory, pages 1554–1557. PMLR, 2020.

[13] Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable model-based nonlinear bandit and reinforce-
ment learning: Shelve optimism, embrace virtual curvature. arXiv preprint arXiv:2102.04168,
2021.

[14] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning (ICML),
pages 1675–1685. PMLR, 2019.

[15] Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning
the representation, provably. arXiv preprint arXiv:2002.09434, 2020.

11

[16] Simon S. Du, Sham M. Kakade, Jason D. Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun,
and Ruosong Wang. Bilinear classes: A structural framework for provable generalization in rl.
arXiv preprint arXiv:2103.10897, 2021.

[17] Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in RL.
arXiv preprint arXiv:2103.10897, 2021.

[18] Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on Learning
Representations, 2020.

[19] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on Learning
Representations, 2020.

[20] Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient RL with rich observations via latent state decoding. In International
Conference on Machine Learning, pages 1665–1674, 2019.

[21] Simon S Du, Jason D Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic Q-learning with
function approximation in deterministic systems: Tight bounds on approximation error and
sample complexity. Advances in Neural Information Processing Systems, 2020.

[22] Cong Fang, Jason D Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field
framework for over-parameterized deep neural networks. arXiv preprint arXiv:2007.01452,
2020.

[23] Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Robust and resource efficient
identification of two hidden layer neural networks. arXiv preprint arXiv:1907.00485, 2019.

[24] Massimo Fornasier, Jan Vybíral, and Ingrid Daubechies. Robust and resource efficient iden-
tification of shallow neural networks by fewest samples. arXiv preprint arXiv:1804.01592,
2019.

[25] Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert E. Schapire.
Practical contextual bandits with regression oracles. Proceedings of the 35th International
Conference on Machine Learning, 2018.

[26] Ruiqi Gao, Tianle Cai, Haochuan Li, Liwei Wang, Cho-Jui Hsieh, and Jason D Lee. Convergence
of adversarial training in overparametrized networks. Neural Information Processing Systems
(NeurIPS), 2019.

[27] Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017.

[28] Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. In International Conference on Learning Representations (ICLR), 2018.

[29] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. International Conference on Learning Representations (ICLR), 2018.

[30] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized
two-layers neural networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.

[31] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized
two-layers neural networks in high dimension. The Annals of Statistics, 49(2):1029–1054, 2021.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[33] Steve Hanneke. Active learning for cost-sensitive classification. Foundations and Trends® in
Machine Learning, 7(2-3):131–309, 2014.

[34] Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Shape matters: Understanding the
implicit bias of the noise covariance. arXiv preprint arXiv:2006.08680, 2020.

12

[35] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[36] Baihe Huang, Kaixuan Huang, Sham M Kakade, Jason D Lee, Qi Lei, Runzhe Wang, and Jiaqi
Yang. Optimal gradient-based algorithms for non-concave bandit optimization. arXiv preprint
arXiv:2107.04518, 2021.

[37] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing systems
(NeurIPS), pages 8571–8580, 2018.

[38] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[39] Majid Janzamin, Hanie Sedghi, and Anankumar Anima. Beating the perils of nonconvexity:
Guaranteed training of neural networks using tensor methods. arXiv preprint arXiv:1506.08473,
2015.

[40] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the
34th International Conference on Machine Learning, pages 1704–1713, 2017.

[41] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

[42] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of
rl problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00875, 2021.

[43] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[44] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143, 2020.

[45] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD thesis,
University of College London, 2003.

[46] Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daume III, and John Lang-
ford. Active learning for cost-sensitive classification. Proceedings of the 34th International
Conference on Machine Learning, 2017.

[47] Volodymyr Kuleshov, Arun Chaganty, and Percy Liang. Tensor factorization via matrix factor-
ization. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics (AISTATS), page 507–516, 2015.

[48] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[49] Gene Li, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. Eluder dimension and generalized
rank. arXiv preprint arXiv:2104.06970, 2021.

[50] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[51] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy
optimization attains globally optimal policy. arXiv preprint arXiv:1906.10306, 2019.

[52] Dhruv Malik, Aldo Pacchiano, Vishwak Srinivasan, and Yuanzhi Li. Sample efficient rein-
forcement learning in continuous state spaces: A perspective beyond linearity. arXiv preprint
arXiv:2106.07814, 2021.

13

[53] James S. Milne. Algebraic geometry (v6.02), 2017. Available at www.jmilne.org/math/.

[54] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan-
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learningep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[56] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

[57] Edward Moroshko, Suriya Gunasekar, Blake Woodworth, Jason D Lee, Nathan Srebro, and
Daniel Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy.
Neural Information Processing Systems (NeurIPS), 2020.

[58] Mor Shpigel Nacson, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel Soudry. Lexico-
graphic and depth-sensitive margins in homogeneous and non-homogeneous deep models. In
International Conference on Machine Learning, pages 4683–4692. PMLR, 2019.

[59] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,
2013.

[60] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning via sequential
complexities. Journal of Machine Learning Research, 16(6):155–186, 2015.

[61] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform
martingale laws of large numbers. Probability Theory and Related Fields, 161(1-2):111–153,
2015.

[62] Dan Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, pages 2256–2264, 2013.

[63] Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In
Advances in Neural Information Processing Systems, pages 14433–14443, 2019.

[64] Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, 2013.

[65] Igor R Shafarevich. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer
Science & Business Media, 2013.

[66] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[67] Aaron Sidford, Mengdi Wang, Xian Wu, Lin F Yang, and Yinyu Ye. Near-optimal time and
sample complexities for solving discounted markov decision process with a generative model.
arXiv preprint arXiv:1806.01492, 2018.

[68] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc
Lanctot. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484, 2016.

[69] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC
model-free reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888. ACM, 2006.

[70] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-
based RL in contextual decision processes: PAC bounds and exponential improvements over
model-free approaches. In Conference on Learning Theory, pages 2898–2933, 2019.

14

[71] Richard S Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[72] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods:
Global optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2020.

[73] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Provably efficient reinforcement
learning with general value function approximation. arXiv preprint arXiv:2005.10804, 2020.

[74] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Provably efficient reinforcement
learning with general value function approximation. Advances in Neural Information Processing
Systems, 2020.

[75] Xiang Wang, Chenwei Wu, Jason D Lee, Tengyu Ma, and Rong Ge. Beyond lazy training for
over-parameterized tensor decomposition. Neural Information Processing Systems (NeurIPS),
2020.

[76] Yang Wang and Zhiqiang Xu. Generalized phase retrieval: measurement number, matrix
recovery and beyond. Applied and Computational Harmonic Analysis, 47(2):423–446, 2019.

[77] Yining Wang, Ruosong Wang, Simon S. Du, and Akshay Krishnamurthy. Optimism in rein-
forcement learning with generalized linear function approximation. In International Conference
on Learning Representations, 2021.

[78] Yuanhao Wang, Ruosong Wang, and Sham M. Kakade. An exponential lower bound for
linearly-realizable mdps with constant suboptimality gap. arXiv preprint arXiv:2103.12690,
2021.

[79] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization
and optimization of neural nets vs their induced kernel. In Advances in Neural Information
Processing Systems, pages 9709–9721, 2019.

[80] Gellert Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in
mdps with linearly-realizable optimal action-value functions. arXiv preprint arXiv:2010.01374,
2020.

[81] Zheng Wen and Benjamin Van Roy. Efficient exploration and value function generalization in
deterministic systems. In Advances in Neural Information Processing Systems, pages 3021–
3029, 2013.

[82] Zheng Wen and Benjamin Van Roy. Efficient reinforcement learning in deterministic systems
with value function generalization. Math. Oper. Res., 42(3):762–782, 2017.

[83] Blake Woodworth, Suriya Genesekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Kernel and
deep regimes in overparametrized models. In Conference on Learning Theory (COLT), 2019.

[84] Jiaqi Yang, Wei Hu, Jason D Lee, and Simon S Du. Provable benefits of representation learning
in linear bandits. arXiv preprint arXiv:2010.06531, 2020.

[85] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. International Conference on Machine Learning, 2020.

[86] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael Jordan. Provably efficient
reinforcement learning with kernel and neural function approximations. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 13903–13916. Curran Associates, Inc., 2020.

[87] Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for under-
standing neural networks. arXiv preprint arXiv:1904.00687, 2019.

[88] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference
on Machine Learning, pages 7304–7312, 2019.

15

[89] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent Bellman error. In International Conference on Machine
Learning, 2020.

[90] Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery
guarantees for one-hidden-layer neural networks. Proceedings of the Thirty-fourth International
Conference on Machine Learning (ICML), 70, 2017.

[91] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. Proceedings of the 37th International Conference on Machine Learning, 2020.

[92] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Our abstract and introduction accurately reflect our
main contribution.

(b) Did you describe the limitations of your work? [Yes] In the Preliminary section we
clearly state the settings we considered and when our results apply.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is theoretical and generally will not have negative social impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-

tions are clearly included in every theorem or lemma.
(b) Did you include complete proofs of all theoretical results? [Yes] All the proofs can be

found in the appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

	Introduction
	Summary of our results
	Related Work

	Preliminaries
	Function approximation

	Neural Network Function Approximation
	Warmup: Realizable Q with deterministic transition
	Policy complete neural function approximation
	Bellman complete neural function approximation
	Realizable Q with optimality gap

	Polynomial Realizability
	Necessity of Generic Feature Maps in Online RL

	Conclusions

