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Abstract

In supervised learning, the estimation of prediction error on unlabeled test data
is an important task. Existing methods are usually built on the assumption that
the training and test data are sampled from the same distribution, which is often
violated in practice. As a result, classical estimators like cross-validation (CV)
will be biased and this may result in poor model selection. In this paper, we
assume that we have a test dataset in which the feature values are available but
not the outcome labels, and focus on a particular form of distributional shift of
covariate shift. We propose an alternative method based on parametric bootstrap of
the target of conditional error ErrX [2]. Empirically our method outperforms CV
for both simulation and real data example across different modeling tasks, and is
comparable to state-of-the-art methods for image classification.

1 Introduction

In predictive modeling, it is essential to estimate the generalization error on future test datasets. Given
a particular model, such generalization error is implicitly dependent on the distribution from which
the test data is drawn. Existing methods such as cross-validation (CV) ([3]) usually rely on stationary
assumptions between training and test data, which are often violated in practice due to time shift,
location change, sampling bias, batch effects, etc. We consider estimation of generalization error
when the covariate shift between training and test data is observed, and seek to improve upon existing
methods by leveraging the additional covariate information of test data.

Our method is based on a slightly modified version of the target of inference ErrX [2], which is
the average prediction error of models fit on other unseen training datasets, and is shown to be an
approximate estimand for CV without covariate shift ([19], [6], [17], [11], [15], [2]). That is, CV can
be seen as a special case of ErrX estimator under no distribution shift, thus motivating the principled
use of ErrX as the target of inference for estimation of prediction error under covariate shift. Unlike
the instance specific out of sample error, ErrX can be conveniently estimated based on parametric
bootstrap. We propose two ways to estimate the target of inference ErrX using either direct estimation
or decomposition formula, resulting in two alternative estimators ErrX.dir and ErrX.dec. We will
mainly discuss linear regression and classification, but our method can be applied to any predictive
model.

2 Setup and Notation

We consider the supervised learning setting, where we have a training data set X =
(x1, . . . , xn),Y = (y1, . . . , yn) of n observations drawn i.i.d from some joint distribution P . That
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is, (xi, yi)i∈[n]
i.i.d∼ P ∈ P(X × Y), where X ⊂ Rp and Y ⊂ R. Denote by δX the empirical distri-

bution of covariates in X, PX as the marginal distribution of covariates, and PY |X as the conditional
distribution of Y given X . Let f̂(x, θ) be a function that predicts outcome y from covariates x ∈ Rp

using a parametric model with parameter θ ∈ Θ ⊂ Rd. Let θ̂ be a function that maps values from
(X × Y)n to parameter estimates in Θ. Suppose that there is a new dataset consisting of i.i.d draws
from Q ∈ P(X × Y), where Q could be a different joint distribution but the conditional distribution
of outcome given covariates remains the same. We are interested in predicting the test error, without
access to the ground truth outcomes, as measured by a loss function,

ℓ :Y × Y → R≥0

(ŷ, y) 7→ ℓ(ŷ, y)

such that ℓ(y, y) = 0 for all y. (For example, ℓ could be square error loss, misclassification error, or
deviance.)

The most intuitive target of inference for test error is the out-of-sample error,

ErrQX,Y := E(x0,y0)∼Q

[
ℓ(y0, f̂(x0, θ̂(X,Y))) | X,Y

]
, (1)

which is the expected loss when applying a model trained with X,Y on a new data point (x0, y0) ∼ Q.
Suppose that we are given a particular unlabeled test set with ntest samples and test covariates Xtest.
Similarly, let δXtest

be the empirical distribution of covariates in Xtest, and QY |X be the conditional
distribution of outcome given covariates in the test population. Since we make the assumption that the
conditional distribution remains unchanged and only deals with observed covariate shift, we have that
QY |X = PY |X . Notice that for an abuse of notation, we write y ∼ PY |X=X to mean the sampling of
a random vector, (y1, . . . , yn) ∼ PY |X=x1

× . . .× PY |X=xn
.

3 ErrX method

3.1 Target

We propose to estimate out-of-sample error in equation (1) by studying a similar averaged target first
introduced in [2] as follows:

ErrQX := E[ErrQX,Y|X] = Ey∼PY |X=X
E(x0,y0)∼Q[ℓ(y0, f̂(x0, θ̂(X, y))) | X]. (2)

Notice that since Q is usually unknown, it is difficult to estimate ErrQX directly. But given test data
covariates and the assumption of no conditional distribution shift, we can study a slightly modified
version of the estimand, by replacing sampling from an unknown joint distribution (x0, y0) ∼ Q with
its empirical counterpart.

ErrQX,Xtest
:= Ey∼PY |X=X

Ey0∼PY |X=x0
Ex0∼δXtest

[ℓ(y0, f̂(x0, θ̂(X, y))) | X]. (3)

Since our new target ErrQX is a function of features in the training set, it has connections with in-
sample error, which is the target of estimation for traditional covariance-penalty based methods ([10],
[1]), [12], [13]). The decomposition formula and its correponding estimation method is in Appendix
A.1.

3.2 General method of estimation

Our methods of estimation are based on the idea of parametric bootstrap. Let P θ
Y |X be a parametric

model and θ̂ be a parameter estimate. Then drawing parametric bootstrap samples y ∼ P θ̂
Y |X means

generating new outcomes for given covariate information based on the model parameterized by θ̂.

For direct estimation of the target in (3), we illustrate the steps in Algorithm 1. After obtaining the ini-
tial parameter estimate from training data, we draw parametric bootstrap samples of pseudo outcomes
for both training and test covariates. For each bootstrap sample, we refit and compute empirical loss
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with the bootstrap labels. The final estimate ErrX.dir can be obtained as an average of bootstrap errors.

Algorithm 1 Direct estimation for ErrX.dir

Input: training data (X,Y), test covariates Xtest, loss ℓ, number of bootstrap samples B, fitting
algorithm θ̂(·), parametric model P θ

Y |X

1: Fit a model on training data to obtain θ̂(X,Y).
2: for each b ∈ {1, . . . , B} do
3: Generate vectors of outcomes for training and test data,

Y(b) ∼ P
θ̂(X,Y)
Y |X=X

Y
(b)
test ∼ P

θ̂(X,Y)
Y |X=Xtest

.

4: Refit a model on bootstrap sample X, Y(b) to obtain θ̂(b) = θ̂(X,Y(b)).
5: Compute

ÊrrX
(b)

=
1

ntest

ntest∑
i=1

ℓ
(
[Y

(b)
test]i, f̂(X

test
i , θ̂(b)))

)
.

6: Compute and return ErrX.dir = 1
B

∑B
b=1 ÊrrX

(b)
.

Similarly, for estimation of ErrX target via decomposition, we illustrate the steps in Algorithm 2 in
Appendix. For the remaining of the paper, we will denote estimators for the target in (3) as ErrX.dir
(introduced later in Algorithm 1) and that for the decomposition in (5) as ErrX.dec (introduced later
in Algorithm 2).

3.3 Debias estimation

The performance of ErrX estimator as described in Algorithm 1 relies on the accuracy of θ̂ from
which we generate bootstrap samples. While it can be shown that both ErrX.dir and ErrX.dec are
unbiased when fitting ordinary least squares under the correct linear model, it is usually not the case
when the initial fitted parameter is biased and when the model is not well specified. In such cases,
debiasing modification is needed in order to achieve better prediction accuracy.

In general, one can fit a saturated model such as deep neural network as a basis for the parametric
bootstrap step for debiasing. However, as can be seen in the experimental results section below, appli-
cation of Algorithm 1 with no debiasing or simple debiasing already demonstrates improvements over
existing methods. For example, for linear regression or logistic regression with Lasso regularization
as model fitting, we use either multiplicative bias correction or relaxed Lasso correction for debiasing.
Further descriptions can be found in A.2.

4 Application

4.1 Simulation

We illustrate the application of the estimators ErrX.dir and ErrX.dec to specific settings, including
linear models (OLS and Lasso) and logistic regression for classification. The summary of result
comparisons under covariate shift can be found in Table 1. Since the metric used is the average
signed difference between error estimates and true test error, we compare estimators based on bias.
We also include an illustration example in Figure 1 that plots visualize the comparison under different
magnitudes of covariate shifts. Under covariate shift, our two proposed estimators of ErrX.dir and
ErrX.dec perform much better than CV across all simulation settings.

In the illustration example presented in Figure 1, we compare our method of ErrX with CV in a
simulated example. Consider a linear model yi = xT

i θ + ϵi, where ϵi are i.i.d N (0, σ2) and xi ∈ Rp

for p = 50 features. Suppose that we have a training data set of 100 observations and an unlabeled test
data set of 1000 samples. We choose the training feature matrix X to be comprised of independent
and identically distributed (i.i.d.) standard normal variables, while the test feature matrix Xtest has
entries of i.i.d N (0, λ2) random variables, where λ represents the amount of covariate shift from
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training data. For each simulation setting, we choose λ such that the signal-to-noise ratio (SNR) is
approximately 3. We fit the training data with Lasso using the glmnet" package [5] and evaluates
its performance on the test set.

In Figure 1, we compare the performance of error estimates in terms of the signed proportional
difference from true test error, which can be seen as a measure of bias. Proportional difference is
the ratio of the difference between error estimate and true test error divided by true test error. For
example, the signed proportional difference for an estimator ê and true test error e is (ê− e)/e. We
can see that while CV predicts true test error well when the test data matrix is drawn from the same
distribution as that of training data, its performance deteriorates significantly when there is covariate
shift. On the other hand, the two estimators using our proposed method estimate true test error better
across the spectrum of covariate shifts.

OLS Linear (Lasso) Logistic (Lasso)

p = 10 p = 50 p = 10 p = 50

CV 0.766 0.452 0.481 0.453 0.541

ErrX.dir 0.0645 -0.058 -0.124 0.232 0.367

ErrX.dec 0.0655 -0.0371 -0.0569 0.109 0.225
Table 1: Comparison of average signed difference between error estimates and actual test error for
above simulation settings with covariate shift. The values in the table are standardized by the mean
test error. Smaller absolute values are better. Multiplicative correction is used for linear regression
with Lasso penalty, and relaxed Lasso correction is used for logistic regression.
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Figure 1: Result of illustration example showing comparison between the two estimators that we
propose (ErrX.dec, ErrX.dir) and cross validation (CV): The left-hand side is a plot of the average
signed proportional difference between estimated prediction error and true test error under different
magnitudes of covariate shifts according to parameter λ. The right-hand side compares error
estimates with true test error for a particular magnitude of covariate shift at λ = 2, with grey lines
connecting error estimates for the same iteration/sample. 200 simulations are conducted for each
choice of λ.

4.2 Real data example

We apply ErrX method on the K-class image classification task CIFAR10 [9] and compare with two
other existing methods: Average confidence (ConfScore) ([8]), and Projection Norm (ProjNorm)
([18]).

For test data involving distribution shift, we consider both the orginal version and some adapted
version of the common corruptions dataset ([7]). Since labels for images remain the same after
corruption, they may not satisfy the exact covariate shift assumption. We provided an adapted
common corruptions dataset via relabeling to ensure only covariate shift in test data.

From Figures 2 and 3, it can be seen that the method of ErrX has similar performance in terms of
correlation with actual test errors as compared to the other two methods that specialize in classification
tasks. While the method of ErrX is computationally slower when calculating estimates using
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parametric bootstrap, it saves computation time by avoiding the task of calibration. Among the three
predictions of test error, only ErrX is a direct estimate while the other two need calibration to match
ProjNorm/ConfScore to final error predictions, where calibration parameters may differ depending
on training data, neural network architecture, etc.

Figure 2: Test error versus prediction on CIFAR10 with ResNet18 in the original common corrup-
tions dataset. We plot the actual test errors on each corrupted dataset against predictions given by
ProjNorm(left), ConfScore(middle), and ErrX(right).

Figure 3: Test error versus prediction on CIFAR10 with ResNet18 in the adapted common corruptions
dataset with covariate shift. We plot the actual test errors on each corrupted dataset against predictions
given by ProjNorm(left), ConfScore(middle), and ErrX(right).
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A Appendix

A.1 ErrX method via decomposition

Since our new target ErrQX is a function of features in the training set, it has connections with in-sample
error, which is the target of estimation for traditional covariance-penalty based methods. Recall that
in-sample error Errin(X) is the error for a fresh sample with the same covariates as training data.

Errin(X) := Ey,y′∼PY |X=X

[
1

n

n∑
i=1

ℓ
(
y′i, f̂(xi, θ̂(X, y))

)
| X

]
= Ey∼PY |X=X

Ey0∼PY |X=x0
Ex0∼δX [ℓ(y0, f̂(x0, θ̂(X, y)) | X]. (4)

Notice that we can combine equations (3) and (4) to obtain the following decomposition similarly as
in [2].

ErrQX,Xtest
= Errin(X) + Ey∼PY |X=X

Ey0∼PY |X=x0

[
Ex0∼δXtest

[ℓ(y0, f̂(x0, θ̂(X, y))]

−Ex0∼δX [ℓ(y0, f̂(x0, θ̂(X, y))]
]
.

(5)

The value of this decomposition in (5) is that it offers an alternative way to estimate our target of
ErrQX,Xtest

. For estimation of in-sample error Errin, we can use standard Mallows Cp for linear
models and bootstrap estimation for covariance penalty otherwise. The details of general estimation
method for ErrQX,Xtest

can be found in Algorithm 2.
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Algorithm 2 Estimate via decomposition ErrX.dec

Input: training data (X,Y), test covariates Xtests, loss , number of bootstrap samples B, fitting
algorithm θ̂(·), parametric model P θ

Y |X

1: Fit a model on training data to obtain θ̂(X,Y).
2: Compute estimate of Errin(X) denoted as Êrrin(X).
3: for each b ∈ {1, . . . , B} do
4: Generate vectors of outcomes for training and test data,

Y(b) ∼ P
θ̂(X,Y)
Y |X=X

Y
(b)
test ∼ P

θ̂(X,Y)
Y |X=Xtest .

5: Refit a model on bootstrap sample X, Y(b) to obtain θ̂(b) = θ̂(X,Y(b)).
6: Compute

ÊrrX
(b)

=
1

ntest

ntest∑
i=1

l
(
[Y

(b)
test]i, f̂(X

test
i , θ̂)

)
Êrrin

(b)
(X) =

1

n

n∑
i=1

l
(
Y

(b)
i , f̂(Xi, θ̂)

)
.

7: Compute and return ErrX.dec = Êrrin(X) + 1
B

∑B
b=1 ÊrrX

(b)
− Êrrin

(b)
(X).

It remains to discuss possible ways to obtain suitable estimates of in-sample error Êrrin(X) in step
2 of Algorithm 2. Notice that for ordinary least squares (OLS) with linear model, the well-known
Mallows Cp [10] is an unbiased estimate of in-sample error Errin(X) by

Êrr
(Cp)

:=
1

n

n∑
i=1

(yi − f̂(xi, θ̂(X,Y)))2 +
2pσ2

n
. (6)

For Lasso penalty in a linear model, we can replace the dimension of covariates p with the number of
nonzero coefficient estimates for estimating in-sample error via a degree of freedom argument ([14]).
When dropping the linear model assumption, [16] and [4] give a more general form of covariance
penalty identity for in-sample error,

Errin(X) = E

[
1

n

n∑
i=1

(
yi − f̂(xi, θ̂(X,Y))

)2

| X

]
+

2

n

n∑
i=1

Cov
(
yi, f̂(xi, θ̂(X,Y)) | X

)
. (7)

This identity allows us to estimate in-sample error by parametric bootstrap as follows in Algorithm 3
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Algorithm 3 Estimate of in-sample error under squared error

Input: training data (X,Y), number of bootstrap samples B, fitting algorithm θ̂(·), parametric
model P θ

Y |X

1: Fit a model on training data to obtain θ̂(X,Y).
2: for each b ∈ {1, . . . , B} do
3: Generate vectors of outcomes for training data with parameter θ̂(X,Y)

Y(b) ∼ P
θ̂(X,Y)
Y |X=X.

4: Refit a model on bootstrap sample X, Y(b) to obtain θ̂(b) = θ̂(X,Y(b)).
5: for each i = 1,. . . , n do
6: Compute sample averages Ȳi =

1
B

∑B
b=1 Y

(b)
i and f̄i =

1
B

∑B
b=1 f̂(xi, θ̂

(b)).
7: Compute

Ĉovi =
1

B

B∑
b=1

(
Y

(b)
i − Ȳi

)(
f̂(xi, θ̂

(b))− f̄i

)
8: Compute

Êrrin(X) =
1

n

n∑
i=1

(
Yi − f̂(Xi, θ̂(X,Y))

)2

+
2

n

n∑
i=1

Ĉovi

Output: Êrrin(X)

The covariance penalty based method of estimating in-sample can be generalized to a wider class of
loss functions beyond squared error [4]. In the case of logistic regression with counting error, error
function q(u) = min(u, 1− u). We have the following identity,

E[Errin] = E

[
1

n

n∑
i=1

l(Yi, f̂(Xi, θ̂(X,Y)))

]
+ 2Cov(Yi, λi),

where l is counting error function, λi = − ∂q
∂u (f̂(Xi, θ̂(X,Y)))/2. That is, λi = −1/2 if

f̂(Xi, θ̂(X,Y)) = 0 and λi = 1/2 otherwise. We shift all λi by 1/2 to get λ̂i = λi + 1/2 =

f̂(Xi, θ̂(X,Y)) without changing the covariance penalty term. Therefore, to estimate in-sample
error for logistic regression with being counting error loss, we only need to replace the last step in
algorithm 3 with

Êrrin(X) =
1

n

n∑
i=1

l
(
Yi, f̂(Xi, θ̂(X,Y))

)
+

2

n

n∑
i=1

Ĉovi.

A.2 Bias correction

Since our method of ErrX relies on having an unbiased initial model, we need bias correction steps in
order to achieve better prediction accuracy especially when regularization is applied. Since the Lasso
estimator is biased, the parametric bootstrap step will carry on the bias, requiring corrections to the
output estimators ErrX.dir and ErrX.dec. Here we propose two existing methods of bias correction
for predicting test error of Lasso as an example, i.e. (1) Multiplicative bootstrap correction and (2)
Relaxed Lasso. The details are as follows.

1. Multiplicative bootstrap bias correction: Multiply estimators ErrX.dir and ErrX.dec by a
constant shrinking factor c. Let θ̂(X,Y) and θ̂(X,Y(b)) denote the fitted parameters from
initial model and bootstrap samples. Then we propose to choose,

c =
∥θ̂(X,Y)∥2

1
B

∑B
b=1 ∥θ̂(X,Y(b))∥2

.

The intuition is that we adjust for the scaling factor between the true parameter θ and learned
parameter θ̂ by that between θ̂ and refitted parameter after bootstrap.
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2. Relaxed Lasso correction: Use relaxed Lasso fit on the initial training data to form
parametric bootstrap samples. The idea is that we want to reduce the bias between true
parameter θ and that used in generating parametric bootstrap samples.

A.3 Additional simulation results

Linear model

First consider the setting of linear model with homoscedastic Gaussian errors,

yi = xT
i θ + ϵi, where ϵi

i.i.d∼ N (0, σ2).

Given a particular choice of loss function such as square error loss, the general method of ErrX can
be applied.
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Figure 4: Estimates of prediction error for OLS under the absence (left) and presence (right) of
covariate shift. For estimates, comparisons are among true test error, ErrX estimates (ErrX.dir and
ErrX.dec), and cross validation. For each setting, a pairwise comparison is included in the second
row corresponding to the proportion of deviation from true test error for each of the three estimates.
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Figure 5: Estimates of errors for linear regression with Lasso penalty in the lower dimensional setting
(p = 10) under the absence(left) and presence(right) of covariate shift. For estimates, comparisons
are among true test error, ErrX estimates (ErrX.dir and ErrX.dec), and cross validation. For each
setting, a pairwise comparison is included in the second row corresponding to the proportion of
deviation from true test error for each of the three estimates.

For simulation, we consider the setting with n = 100 observations of p = 10 features for training,
ntest = 1000 observations of unlabeled test data, and coefficient vector of 4 nonzero entries with
equal strength of 2. The training feature matrix consists of i.i.d entries drawn from N (0, 1). We
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Figure 6: Estimates of errors for linear regression with Lasso penalty in the higher dimensional setting
(p = 50) under the absence(left) and presence(right) of covariate shift. For estimates, comparisons
are among true test error, ErrX estimates (ErrX.dir and ErrX.dec), and cross validation. For each
setting, a pairwise comparison is included in the second row corresponding to the proportion of
deviation from true test error for each of the three estimates.

consider two situations, one without covariate shift and one with covariate shift. The detailed setup is
as follows.

1. No covariate shift: The feature matrix of test data are comprised of i.i.d entries drawn
from N (0, 1). We choose σ = 3 so that signal-to-noise ratio (snr) is approximately 2. For
sensitivity to model misspecification, we include a quadratic transformation to 1/3 of the
feature coordinates.

2. Covariate shift: The feature matrix of test data are comprised of i.i.d entries drawn from
N (2, 2). We choose σ = 5 so that signal-to-noise ratio (snr) is approximately 2. For
sensitivity to model misspecification, we include a quadratic transformation to 1/5 of the
feature coordinates.

Notice that we choose different transformations such that the change in test error with or without
taking the transformation into account is approximately 50− 100%. From Figure 4 and 5, it can be
seen that while both cross validation and ErrX estimation predicts true test error well when there is
no covariate shift (left plot), our method of ErrX estimation performs better than CV in the presence
of covariate shift (right plot). Under model misspecification, while CV demonstrates slightly more
robustness without covariate shift, the bias in CV error estimation in the presence of covariate shift
outweighs the robustness advantage. An additional high dimensional example (p = 50) with linear
regression fit by Lasso regularization is provided in Figure 6

Generalized Linear Model (GLM)

Our method of estimating ErrX can similarly be applied to other nonlinear generalized linear models
(GLM). For Bernoulli observations as an example, we can replace square error loss with a suitable loss
for binary classification such as counting error or binomial deviance, and use logistic regression as the
fitting algorithm. It is worth noting that as part of the procedure to produce the estimator ErrX.dec,
we need to estimate in-sample error, which can be obtained with general covariance penalties [4].

For simulation of ErrX estimation in nonlinear GLM, we consider a sparse logistic model

P (Yi = 1|Xi = xi) =
1

1 + e−xT
i θ

,

with n = 200 observations and two cases for the number of features: a low dimensional setting
p = 10, and a higher dimensional setting p = 50. The training feature matrix consists of i.i.d entries
drawn from N (0, 1). We are interested in the comparison of different error estimates using counting
error, both with and without covariate shift. For covariate shift, we draw i.i.d test data from N (3, 1)
and subsample training data so that the training labels are imbalanced with ratio of 3. We chose the
sparsity and signal strength so that signal-to-noise ratio is approximately 3.
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Similarly as in the case of linear regression, we need to apply bias correction to the Lasso parameter
estimates. Here we use relaxed Lasso correction for bootstrap in both ErrX estimation and in
estimating in-sample error.
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Figure 7: Estimates of errors for logistic regression with Lasso penalty in the lower dimensional setting
(p = 10) under the absence(left) and presence(right) of covariate shift. For estimates, comparisons
are among true test error, ErrX estimates (ErrX.dir and ErrX.dec), and cross validation. For each
setting, a pairwise comparison is included in the second row corresponding to the proportion of
deviation from true test error for each of the three estimates.
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Figure 8: Estimates of errors for logistic regression with Lasso penalty in the higher dimensional
setting (p = 50) under the absence(left) and presence(right) of covariate shift. For estimates,
comparisons are among true test error, ErrX estimates (ErrX.dir and ErrX.dec), and cross validation.
For each setting, a pairwise comparison is included in the second row corresponding to the proportion
of deviation from true test error for each of the three estimates.

The simulation results for p = 10 and p = 50 are given in Figure 7 and Figure 8, respectively.
Similarly as in OLS and linear regression with Lasso penalty, the two proposed estimates ErrX.dir
and ErrX.dec recovers true test error better than CV in the presence of covariate shift. It has to be
acknowledged that when there is model misspecification along covariate shift, none of the error
estimates resembles true test error. However, the model misspecification that we introduced is an
artificial and drastic one, which makes about 1/5 of the covariates in the linear model quadratic
instead. Good performance under model misspecification is not a reasonable expectation, and the
setting is included only as a caution for application under model misspecification.

A.4 Additional real data example

We analyze a public data set on yearly state crime rates from 1977 to 2014. The data set contains 42
demographic variables as predictors for the outcome of violent crime rate, with a total number of
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1887 entries. We first split the data set into two parts for training and testing. We fit a linear model
with Lasso penalty on the training set and apply different methods for error estimations, including our
proposed estimators ErrX.dir and ErrX.dec, as well as cross-validation. We then compare different
error estimates with true test error evaluated on the test set outcomes. We consider three different
scenarios for splitting as follows and summarize the mean squared difference between error estimates
and true test error in Table 2.

1. Random half splits: Data is randomly assigned to training and testing, regardless of the
state and year.

2. Random half splits by states: States are randomly assigned to training and testing. Data
entries belonging to the same state are kept in the same fold in cross-validation.

3. Two-means clustering by states: Two-means clustering is applied on centroid of all states
to split states into training and testing. Data entries belonging to the same state are kept in
the same fold in cross-validation.

CV ErrX.dir ErrX.dec

Multi Relax Multi Relax

Random half splits 5.93e-3 6.42e-3 6.11e-3 5.93e-3 5.96e-3

Random half splits by states 0.572 0.438 0.468 0.415 0.473

Two-means clustering by states 0.904 0.561 0.708 0.561 0.710
Table 2: Comparison of mean squared difference between error estimates and actual test error for
various splitting settings. Each mean squared difference is averaged over 200 splits. Both ErrX.dir
and ErrX.dec are calculated via two bias correction methods, i.e. multiplicative correction and
relaxed Lasso correction. Smaller values are better. Note that in multiplicative correction, we cap the
error above zero and restrict the multiplicative factor from being too large.

In the first case of random half splits, we expect no distribution shift, where all error estimates
considered are close to the actual test error. In the second case of random half splits by states, we
expect some covariate shift as well as possible distribution shift due to different relations between
demographic predictors and outcome across different states. It can be seen that ErrX.dir and ErrX.dec
perform slightly better than cross-validation. The recovery of true test error is not perfect due to
potential violation of the assumption of no conditional distribution shift. In the third case of two-means
clustering by states, we try to maximize covariate shift between training and testing. Estimators
ErrX.dir and ErrX.dec perform much better than cross-validation despite potential conditional
distribution shift.

We also analyze the crime rate data by fixing a training set consisting of data from a few states in the
west including California, Washington, Nevada, New Mexico, Arizona, and Texas. We then compare
different error estimates and actual test error by traversing over the remaining test states in Figure
9. The estimates of ErrX.dir and ErrX.dec perform strictly better than cross-validation in every
test case, especially in Nebraska, Iowa, Oklahoma, New York, District of Columbia, Pennsylvania,
Missouri, Florida, and Utah, possibly due to smaller shift in conditional distribution of crime rate
given predictor variables.
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Figure 9: Comparison of proportional difference between error estimates and actual test error for
each state as test set. The fixed training set include California, Washington, Nevada, New Mexico,
Arizona, and Texas. Multiplicative bias correction method is used to estimate ErrX.dir and ErrX.dec.
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