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Abstract
In this paper, we propose the first
sketch-and-project Newton method with
fast O

(
k−2

)
global convergence rate while using

low-rank updates. Our method, SGN, can be
viewed in three ways: i) as a sketch-and-project
algorithm projecting updates of Newton method,
ii) as a cubically regularized Newton method in
sketched subspaces, and iii) as a damped Newton
method in sketched subspaces. SGN inherits
best of all three worlds: cheap iteration costs
of sketch-and-project methods (up to O(1)),
state-of-the-art O

(
k−2

)
global convergence

rate of full-rank Newton-like methods and the
algorithm simplicity of damped Newton methods.
Finally, we demonstrate its comparable empirical
performance to baseline algorithms.

1. Introduction
Second-order methods have always been a fundamental
component of both scientific and industrial computing.
Their origins can be traced back to the works Newton
(1687), Raphson (1697), and Simpson (1740), and they
have undergone extensive development throughout history
(Kantorovich, 1948; Moré, 1978; Griewank, 1981). For
the more historical development of classical methods, we
refer the reader to (Ypma, 1995). The amount of practical
applications is enormous, with over a thousand papers
included in the survey Conn et al. (2000) on trust-region
and quasi-Newton methods alone.

Second-order methods are highly desirable due to their
invariance to rescaling and coordinate transformations,
which significantly reduces the complexity of
hyperparameter tuning. Moreover, this invariance
allows convergence independent of the conditioning of
the underlying problem. In contrast, the convergence rate
of first-order methods is fundamentally dependent on the
function conditioning. Moreover, first-order methods can
be sensitive to variable parametrization and function scale,
hence parameter tuning (e.g., step size) is often crucial for
efficient execution.

Algorithm 1 SGN: Sketchy Global Newton (new)

1: Requires: Initial point x0 ∈ Rd, distribution of sketch
matrices D, constant Lest ≥ supS∼D LS

{Choose Lest ≥ 1.2 supS LSL̂
2
S > 0 for global linear

rate}
2: for k = 0, 1, 2 . . . do
3: Sample Sk ∼ D

4: αk,S =
−1+

√
1+2Lest∥∇Sk

f(xk)∥∗
xk,Sk

Lest∥∇Sk
f(xk)∥∗

xk,Sk

5: xk+1 = xk − αk,SSk

[
∇2

Sk
f(xk)

]†∇Sk
f(xk)

6: end for

On the other hand, even the simplest and most classical
second-order method, Newton’s method (Kantorovich,
1948), achieves an extremely fast, quadratic convergence
rate (precision doubles in each iteration) (Nesterov and
Nemirovski, 1994) when initialized sufficiently close to the
solution. However, the convergence of the Newton method
is limited only to the neighborhood of the solution. Several
works, including Jarre and Toint (2016), Mascarenhas
(2007), Bolte and Pauwels (2022) demonstrate that when
initialized far from optimum, the line search and trust-region
Newton-like method can diverge on both convex and
nonconvex problems.

1.1. Demands of modern machine learning

Despite the long history of the field, research on
second-order methods has been thriving to this day.
Newton-like methods with a fast O

(
k−2

)
global rate were

introduced relatively recently under the name Globally
Regularized Newton methods (Nesterov and Polyak,
2006; Doikov and Nesterov, 2022; Mishchenko, 2021;
Hanzely et al., 2022). The main limitation of these
methods is their poor scalability for modern large-scale
machine learning. Large datasets with numerous features
necessitate well-scalable algorithms. While tricks or inexact
approximations can be used to avoid computing the inverse
Hessian, simply storing the Hessian becomes impractical
when the dimensionality d is large. This motivated recent
developments; works Qu et al. (2016), Luo et al. (2016),
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Table 1. Global convergence rates of low-rank Newton methods for convex and Lipschitz smooth functions.
For simplicity, we disregard differences between various notions of smoothness. We use fastest
full-dimensional algorithms as the baseline. For extended version, see Section 4.

Update
direction

Update
oracle Full-dimensional

(direction is deterministic)
Low-rank

(direction in expectation)

Non-Newton
direction

O(k−2)
Cubic Newton (Nesterov and Polyak, 2006)

Glob. Regularized Newton (Mishchenko, 2021)
(Doikov and Nesterov, 2021)

O(k−1)
Stoch. Subspace Cubic Newton (Hanzely et al., 2020)

Newton
direction

O(k−2)
Affine-Invariant Cubic Newton (Hanzely et al., 2022)

O(k−2)
Sketchy Global Newton (this work)

O(k−1)
Randomized Subspace Newton (Gower et al., 2019)

Gower et al. (2019), Doikov and Richtárik (2018), and
Hanzely et al. (2020) propose Newton-like method operating
in random low-dimensional subspaces. This approach is also
known as sketch-and-project Gower and Richtárik (2015).
It reduces iteration cost drastically, but for the cost of slower,
O
(
k−1

)
convergence rate (Gower et al., 2020), (Hanzely

et al., 2020).

1.2. Contributions

In this work, we argue that second-order methods can
be used for modern large-scale Machine Learning. We
propose a first sketch-and-project method (Sketchy Global
Newton, SGN, Algorithm 1) with fast O

(
k−2

)
global

convex convergence rate – matching global fast rate of
full-dimensional Globally regularized Newton methods
(as summarized in Table 1). In particular, sketching
on O(1)-dimensional subspaces leads to O

(
k−2

)
global

convex convergence with an iteration cost O(1). As a
cherry on top, we additionally show i) local linear rate
independent on the condition number, ii) global linear
convergence under relative convexity assumption. We
summarize the contributions below and in Tables 4, 2:

• One connects all: We present SGN through
three orthogonal viewpoints: sketch-and-project method,
subspace Newton method with stepsize, and Regularized
Newton method. Compared to established algorithms, SGN
is AICN in subspaces, SSCN in local norms, and RSN with
a stepsize schedule.
• Fast global convergence: SGN is first low-rank method
that solves convex functions with O

(
k−2

)
global rate

(Theorem 2). This matches state-of-the-art rates of full-rank
Newton-like methods. Other sketch-and-project methods,
in particular, SSCN and RSN have slower O

(
k−1

)
rate.

• Cheap iterations: SGN uses τ -dimensional updates.
Naively implemented, its per-iteration cost is proportional to
τ3 while full-rank Newton methods have cost proportional
to d3 and d≫ τ .
• Linear local rate: SGN has local linear rate O

(
d
τ log 1

ε

)
(Theorem 3) dependent only on the ranks of the sketching
matrices. This improves over the condition-dependent linear

rate of RSN or any rate of first-order methods.
• Global linear rate: Under µ̂-relative convexity,
SGN achieves global linear rate O

(
Lest
ρµ̂ log 1

ε

)
1 to a

neighborhood of the solution (Theorem 4).
• Geometry and interpretability: Update of SGN
uses well-understood projections2 of Newton method
with stepsize schedule AICN. Moreover, those stochastic
projections are affine-invariant and in expectation preserve
direction (1). On the other hand, implicit steps
of regularized Newton methods including SSCN lack
geometric interpretability.
• Algorithm simplicity: SGN is affine-invariant and
independent of the choice of the basis. This removes one
parameter from potential parameter tuning. Update rule
(5) is simple and explicit. Conversely, most of the fast
globally-convergent Newton-like algorithms require an extra
subproblem solver in each iteration.
• Analysis: The analysis of SGN is simple, all steps have
clear geometric interpretation. On the other hand, the
analysis of SSCN (Hanzely et al., 2020) is complicated as
it measures distances in both l2 norms and local norms.
This not only makes it harder to understand but also
leads to worse constants, which ultimately cause a slower
convergence rate.

1.3. Notation

Our paper requires a nontrivial amount of notation. To
facilitate reference, we will highlight new definitions in gray
and theorems in light blue. We consider the optimization
objective

min
x∈Rd

f(x), (1)

where f is convex, twice differentiable, bounded from
below, and potentially ill-conditioned. The number of
features d is potentially large. Subspace methods use a
sparse update

x+ = x+ Sh, (2)

1ρ is condition number of a expected projection matrix, (17),
Lest is constant affecting stepsize, (9).

2Gower et al. (2020) describes six equivalent viewpoints.
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Table 2. Globally convergent Newton-like methods. For simplicity, we disregard differences and
assumptions - we assume strong convexity, L-smoothness, semi-strong self-concordance and bounded
level sets. We highlight the best know rates in blue.

Algorithm Stepsize
range

Affine
invariant

algorithm?

Iteration
cost(dim)

Linear(lin)

convergence

Global
convex

convergence
Reference

Newton 1 ✓ O
(
d3

)
✗ ✗ Kantorovich (1948)

Damped Newton B (0, 1] ✓ O
(
d3

)
✗ O

(
k− 1

2

)
(Nesterov and Nemirovski, 1994)

AICN (0, 1] ✓ O
(
d3

)
✗ O

(
k−2

)
(Hanzely et al., 2022)

Cubic Newton 1 ✗ O
(
d3 log 1

ε

)(imp) ✗ O
(
k−2

)
(Nesterov and Polyak, 2006)

Glob. Reg. Newton 1 ✗ O
(
d3

)
✗ O

(
k− 1

4

)
(Polyak, 2009)

Glob. Reg. Newton 1 ✗ O
(
d3

)
✗ O

(
k−2

) (Mishchenko, 2021)
(Doikov and Nesterov, 2021)

Exact Newton Descent 1
L

(c) ✓ O
(
d3

)
glob(c) ✗ (Karimireddy et al., 2018)

RSN 1
L ✓ O

(
τ3

)
glob(c) O

(
k−1

)
(Gower et al., 2019)

SSCN 1 ✗ O
(
τ3 log 1

ε

)(imp) loc O
(
k−1

)
(Hanzely et al., 2020)

SGN
(our) (0, 1] ✓ O

(
τ3

)
loc + glob(sep) O

(
k−2

)
This work

(dim) d is function dimension, τ is rank of sketch matrices S ∈ Rd×τ . We report rate of implementation using matrix inverses.
(lin) “loc" and “glob” denotes whether algorithms have local and global linear rate (under possibly stronger assumptions).
(imp) Cubic Newton and SSCN solve implicit problem each iteration. Naively implemented, it requires × log 1

ε matrix inverses to
approximate sufficiently in order to converge to ε-neighborhood (Hanzely et al., 2022).

(c) Authors assume c-stability or relative smoothness,implied by Lipschitz smoothness + strong convexity. (Gower et al., 2019)
(sep) Separate results for local convergence (Theorem 3) and global convergence to corresponding neighborhood (Theorem 4).

where S ∈ Rd×τ(S),S ∼ D is a thin matrix and h ∈ Rτ(S).
We denote gradients and Hessians along the subspace
spanned by columns of S as ∇Sf(x)

def
= S⊤∇f(x) and

∇2
Sf(x)

def
= S⊤∇2f(x)S. Also, denote any minimizer

of function f as x∗
def
= argminx∈R f(x) and its value

f∗
def
= f(x∗). We can define norms based on a symmetric

positive definite matrix H ∈ Rd×d. For x, g ∈ Rd, denote

∥x∥H
def
= ⟨Hx, x⟩1/2 , ∥g∥∗H

def
=
〈
g,H−1g

〉1/2
.

As a special case H = I, we get l2 norm ∥x∥I = ⟨x, x⟩1/2.
For local Hessian norm H = ∇2f(x), we use shorthands

∥h∥x
def
=
〈
∇2f(x)h, h

〉1/2
, ∥g∥∗x

def
=
〈
g,∇2f(x)−1g

〉1/2
.

(3)
As we will be restricting iteration steps to subspaces, we
will work with ∥h∥x,S = ∥h∥∇2

Sf(x)
.

For a matrix H ∈ Rd×d and a fixed x ∈ Rd, operator
norm is defined by ∥H∥op

def
= supv∈E

∥Hv∥∗
x

∥v∥x
. Note that the

operator norm of Hessian in the corresponding point x is
one,

∥∥∇2f(x)
∥∥
op

= 1.

2. Three faces of the algorithm
Our algorithm combines the best of three worlds (Table 4)
and we can write it in three different ways.

Theorem 1 (SGN). If ∇f(xk) ∈ Range(∇2f(xk)) then
following update rules are equivalent:

•xk+1 = xk + Sk argmin
h∈Rd

TSk
(xk, h), (4)

•xk+1 = xk − αk,Sk
Sk[∇2

Sk
f(xk)]

†∇Sk
f(xk), (5)

•xk+1 = xk − αk,Sk
PSk

xk
[∇2f(xk)]

†∇f(xk), (6)

where

PS
x

def
= S

(
S⊤∇2f(x)S

)†
S⊤∇2f(x), (7)

TS(x, h)
def
= f(x) + ⟨∇f(x),Sh⟩+ 1

2∥Sh∥
2
x + Lest

6 ∥Sh∥
3
x,

(8)

αk,S
def
=

−1+
√

1+2Lest∥∇Sf(xk)∥∗
xk,S

Lest∥∇Sf(xk)∥∗
xk,S

. (9)

We call this algorithm Sketchy Global Newton, SGN
(Algorithm 1), and those particular viewpoints as
Regularized Newton step (4), Damped Newton step (5), and
Sketch-and-project step (6).
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Notice αk,Sk
∈ (0, 1] and αk,Sk

Lest∥∇Sk
f(xk)∥∗

xk,Sk
→0

−−−−−−−−−−−−−−−−→ 1

and αk,Sk

Lest∥∇Sk
f(xk)∥∗

xk,Sk
→∞

−−−−−−−−−−−−−−−−−→ 0. For SGN, we can
easily transition between gradients and model differences by
identity. xk+1 − xk

(5)
= −αk,Sk

Sk[∇2
Sk
f(xk)]

†∇Sk
f(xk)

2.1. Geometric properties of sketches

Matrix PS
x in (7) is a projection matrix on Range(S) w.r.t.

norm ∥·∥x (Lemma 8) and from (6), its unbiasedness means
that SGN preserves Newton’s direction in expectation.

Assumption 1. For distribution D there exists τ > 0, s.t.

ES∼D
[
PS

x

]
= τ

d I. (10)

Lemma 1. Assumption 1 implies ES∼D [τ(S)] = τ .

2.2. Invariance to affine transformations

We use assumptions invariant to the problem scale and
choice of basis. An affine-invariant version of smoothness is
called self-concordance, we formulate it in sketched spaces.

Definition 1. Convex function f ∈ C3 is
LS-self-concordant in range of S if

LS
def
= max

x∈Rd
max

h∈Rτ(S)

h̸=0

|∇3f(x)[Sh]3|
∥Sh∥3x

, (11)

where ∇3f(x)[h]3
def
= ∇3f(x)[h, h, h] is 3-rd order

directional derivative of f at x along h ∈ Rd.

Proposition 1 (Lemma 2.2 (Hanzely et al., 2020)).
Constant LS is determined from Range(S), and Range(S) =
Range(S′) implies LS = LS′ .

In case S = I, Definition 1 matches definition of
self-concordance and LS ≤ LI. We will also use a slightly
stronger version, semi-strong self-concordance, introduced
in Hanzely et al. (2022).

Definition 2. Convex function f ∈ C2 is called
semi-strongly self-concordant if for ∀y, x ∈ Rd holds∥∥∇2f(y)−∇2f(x)

∥∥
op
≤ Lsemi∥y − x∥x. (12)

Our last convergence result is a global linear rate under
relative smoothness in subspaces S and relative convexity.
We are going to state the assumption and present rates.

Definition 3. We call relative convexity and relative
smoothness in subspace S positive constants µ̂, L̂S s.t.
following inequalities hold ∀x, y ∈ Q(x0) and h ∈ Rτ(S):

f(x+ Sh) ≤ f(x) + ⟨∇Sf(x), h⟩+ L̂S

2 ∥h∥
2
x,S, (13)

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ̂
2 ∥y − x∥2x.

(14)

3. Convergence guarantees
We will first present the globalO

(
k−2

)
convergence rate in

the convex regime. For that, denote initial level setQ(x0)
def
={

x ∈ Rd : f(x) ≤ f(x0)
}
. Lemma 4 imply that iterates of

SGN stay in Q(x0), xk ∈ Q(x0)∀k ∈ N. Denote its
diameter R def

= supx,y∈Q(x0) ∥x− y∥x.
Theorem 2. For Lsemi-semi-strongly concordant function f
with finite diameter of initial level set Q(x0), R <∞ and
sketching matrices with Assumption 1, SGN has O

(
k−2

)
global convergence rate,

E [f(xk)− f∗] ≤ 4d3(f(x0)−f∗)
τ3k3 + 9(maxLest+Lsemi)d

2R3

2τ2k2 .
(15)

We can state the fast local linear convergence theorem.

Theorem 3. Let function f be LS-self-concordant in
subspaces S ∼ D and expected projection matrix be
unbiased (Assumption 1). For iterates of SGN x0, . . . , xk

such that ∥∇Sk
f(xk)∥∗xk,Sk

≤ 4
LSk

, we have local linear
convergence rate

E [f(xk)− f∗)] ≤
(
1− τ

4d

)k
(f(x0)− f∗) (16)

and the local complexity of SGN is independent on the
problem conditioning, O

(
d
τ log 1

ε

)
.

The global linear convergence rate depends on the
conditioning of the scaled expected projection matrix PS

x ,

ρ(x)
def
= [∇2f(x)]

1
2E
[
αx,SP

S
x

]
[∇2f(x)]†

1
2 . (17)

Theorem 4. Let f be LS-relative smooth in subspaces
S and µ̂-relative convex. Let sampling S ∼ D satisfy
Null(S⊤∇2f(x)S) = Null(S) and Range(∇2f(x)) ⊂
Range

(
E
[
SkS

⊤
k

])
. Then 0 < ρ(x) ≤ 1. Denote

ρ
def
= minx∈Q(x0) ρ(x) and choose parameter in stepsize

Lest = supS∼D
9
8LSL̂

2
S.

While iterates x0, . . . , xk satisfy ∥∇Sk
f(xk)∥∗xk,Sk

≥ 4
LSk

,

then SGN has global linear rate O
(

1
ρµ̂ log 1

ε

)
,

E [f(xk)− f∗] ≤
(
1− 4

3ρµ̂
)k

(f(x0)− f∗). (18)

4. Experiments
We support our theory by comparing SGN to SSCN
on logistic regression empirical risk minimization on
LIBSVM datasets (Chang and Lin, 2011). Figure 1 (in
Appendix) shows that despite simplicity of SGN and
SGN-unfavourable practical adjustments (Appendix C),
SGN performs comparably to SSCN.
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A. Table of notation

A† Moreau pseudoinverse of A
d dimension of problem

f : Rd → R optimization function
x, x+, xk ∈ Rd iterates

y ∈ Rd virtual iterate (for analysis only)
h, h′ ∈ Rd difference between consecutive iterates

x∗ optimal model
f∗ optimal function value
Q(x0) set of models with functional value less than x0

R diameter of Q(x0)
∥·∥op operator norm

∇Sf,∇2
Sf, ∥h∥x,S gradient, Hessian, local norm in range S, resp.
∥·∥x local norm at x
∥·∥∗x local dual norm at x
αk,Sk

SGN stepsize
TS(·, x) upperbound on f based on gradient and Hessian in x

S ∈ Rd×τ(S) randomized sketching matrix
τ(S) dimension of randomized sketching matrix
τ fixed dimension constraint on S
LS self-concordance constant in range of S
PS

x projection matrix on subspace S w.r.t. local norm at x
ρ(x) condition numbers of expected projection matrix E

[
PS

x

]
ρ lower bound on condition numbers ρ(x)

Lsc, Lsemi self-concordance and semi-strong self-concordance constants, resp.
Lest smoothness estimate, affects stepsize of SGN
L̂, µ̂ relative smoothness and relative convexity constants

Table 3. Table of notation

B. Insights
B.1. Sketch matrices PS

x

Note that restriction on the sketch matrices PS
x (Assumption 1) is formulated in the local norm, so it might seem restrictive.

Next lemma demonstrates that such sketching matrices can be obtained from sketches with l2-unbiased projection (which
were used in (Hanzely et al., 2020)).

Lemma 2 (Construction of sketch matrix S). If we have a sketch matrix distribution D̃ so that a projection on
Range(M),M ∼ D is unbiased in l2 norms,

EM∼D̃

[
M⊤ (M⊤M

)†
M
]
= τ

d I, (19)

then distribution D of S defined as S⊤ def
= M

[
∇2f(x)

]−1/2
(for M ∼ D̃) satisfy Assumption 1,

ES∼D
[
PS

x

]
= τ

d I. (20)

Matrices PS
x have easily clear contractive properties, as tated in the next lemma.
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Table 4. Three approaches for second-order global minimization. We denote xk ∈ Rd model iterates, Sk ∼ D
distribution of sketch matrices with rank τ ≪ d, αk, αk,Sk stepsizes, L2, LS smoothness constants, cstab

Hessian stability constant. For simplicity, we disregard differences in assumptions. We report algorithm
complexities when matrix inverses are naively implemented.

Orthogonal lines
of work

Sketch-and-Project
(Gower and Richtárik, 2015)

(various update rules)

Damped Newton
(Nesterov and Nemirovski, 1994)

(Karimireddy et al., 2018)

Globally Regularized Newton (r)

(Nesterov and Polyak, 2006)
(Polyak, 2009)

(Mishchenko, 2021)
(Doikov and Nesterov, 2021)

Update
xk+1 − xk =

αk,Sk
P

Sk
xk

(update(xk)),
for Sk ∼ D

αk[∇2f(xk)]
†∇f(xk)

argmin
h∈Rd T (xk, h),

for T (x, h)
def
= ⟨∇f(x), h⟩+

+ 1
2∥h∥

2
x +

L2
6 ∥h∥3

2

Characteristics

+ cheap, low-rank updates
+ global linear convergence
(conditioning-dependent)

- optimal rate: linear

+ affine-invariant geometry
- iteration cost O

(
d3

)
Fixed αk = c−1

stab :
+ global linear convergence

Schedule αk ↗ 1:
+ local quadratic rate

+ global convex rate O
(
k−2

)
+ local quadratic rate
- implicit updates
- iteration cost O

(
d3 log 1

ε

)
Combinations

+ retained benefits Sketch-and-Project Damped Newton Globally Regularized Newton

RSN
(Gower et al., 2019)

Algorithm 3

✓

+ iteration cost O
(
τ3

) ✓

+ global rate O
(

1
ρ

L̂
µ̂ log 1

ε

)
✗

SSCN
(Hanzely et al., 2020)

Algorithm 4

✓

+ iteration cost O
(
τ3 log 1

ε

)
+ local rate O

(
d
τ log 1

ε

) ✗
✓

+ global convex rate O
(
k−2

)
AICN

(Hanzely et al., 2022)
Algorithm 5

✗

✓
+ affine-invariant geometry
- no global linear rate proof (lin)

✓

+ global convex rate O
(
k−2

)
+ local quadratic rate

+ iteration cost O
(
d3

)
+ simple, explicit updates

SGN
(this work)
Algorithm 1

✓

+ iteration cost O
(
τ3 log 1

ε

)
+ local rate O

(
d
τ log 1

ε

)
- quadratic rate unachievable

✓
+ affine-invariant geometry

+ global rate O
(

1
ρ

L̂
µ̂ log 1

ε

) ✓

+ global convex rate O
(
k−2

)
+ simple, explicit updates

Three descriptions
of SGN

Sketch-and-Project
of Damped Newton method

Damped Newton
in sketched subspaces

Affine-Invariant Cubic Newton
in sketched subspaces

Update
xk+1 − xk =

αk,Sk
P

Sk
xk

[∇2f(xk)]
†∇f(xk) αk,Sk

Sk[∇Sk
f(xk)]

†∇Sk
f(xk)

Sk argmin
h∈Rd TSk

(xk, h),

for TS(x, h)
def
= ⟨∇f(x),Sh⟩+

+ 1
2∥Sh∥

2
x +

LS
6 ∥Sh∥3

x

(r) Works Polyak (2009), Mishchenko (2021), Doikov and Nesterov (2021) have explicit updates and iteration cost O
(
d3

)
, but for the

costs of slower global rate, slower local rate, and slower local rate, respectively.
(lin) (Hanzely et al., 2022) didn’t show global linear rate of AICN. However, it follows from our Theorems 4, 3 for Sk = I.

Lemma 3 (Contractive properties of projection matrix PS
x). For any g, h ∈ Rd we have

E
[∥∥PS

xh
∥∥2
x

]
= h⊤∇2f(x)E

[
PS

x

]
h

As.1
=

τ

d
∥h∥2x, (21)

E
[∥∥PS

xg
∥∥∗2
x

]
= g⊤E

[
PS

x

]
[∇2f(x)]†g

As.1
=

τ

d
∥g∥∗2x , (22)∥∥PS

xh
∥∥2
x
≤
∥∥PS

xh
∥∥2
x
+
∥∥(I−PS

x)h
∥∥2
x
= ∥h∥2x, (23)

E
[∥∥PS

xh
∥∥3
x

]
≤ E

[
∥h∥x ·

∥∥PS
xh
∥∥2
x

]
= ∥h∥xE

[∥∥PS
xh
∥∥2
x

]
As.1
=

τ

d
∥h∥3x. (24)

We can bound condition number of the expected projection matrix. Define

P̂S
x

def
= [∇2f(x)]

1
2S
[
∇2

Sf(x)
]†

S⊤[∇2f(x)]
1
2 = [∇2f(x)]

1
2PS

x [∇2f(x)]†
1
2 .

Proposition 2 (Analogy to Lemma 7 in (Gower et al., 2019)). For S ∼ D satisfying conditions

Null(S⊤∇2f(x)S) = Null(S) and Range(∇2f(x)) ⊂ Range
(
E
[
SkS

⊤
k

])
, (25)

also exactness condition holds
Range(∇2f(x)) = Range

(
E
[
P̂S

x

])
, (26)

and formula for ρ(x) can be simplified
ρ(x) = λ+

min

(
E
[
αx,SP

S
x

])
> 0 (27)
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and bounded 0 < ρ(x) ≤ 1. Consequently, 0 < ρ ≤ 1.

B.2. Function upperbound as Regularized Newton method

We can show a key idea from Regularized Newton methods: that TS(x, h) is the function value upper bound, and minimizing
it in h decreases the function value.

Proposition 3 (Lemma 2 in (Hanzely et al., 2022)). For Lsemi-semi-strong self-concordant f , and any x ∈ Rd, h ∈ Rτ(S),

sketches S ∈ Rd×τ(S) and x+
def
= x+ Sh it holds∣∣∣f(x+)− f(x)− ⟨∇f(x),Sh⟩ − 1

2∥Sh∥
2
x

∣∣∣ ≤ Lsemi
6 ∥Sh∥

3
x, (28)

f(x+) ≤ TS(x, h), (29)

hence for h∗ def
= argminh∈Rτ(S) TS(x, h) and corresponding x+ we have functional value decrease,

f(x+) ≤ TS(x, h
∗) = min

h∈τ(S)
TS(x, h) ≤ TS(x, 0) = f(x).

Next we show one step decrease in local sketched norms.

Lemma 4. For LS-self-concordant function f , updates SGN, (5) decrease functional value as

f(xk)− f(xk+1) ≥
(
2max

{√
Lest∥∇Sk

f(xk)∥∗xk,Sk
, 2
})−1

∥∇Sk
f(xk)∥∗2xk,Sk

. (30)

We can show show one step decrease based on a virtual point y. Following lemma is crucial for global convex convergence.

Lemma 5. Fix any y ∈ Rd. Let the function f be Lsemi-semi-strong self-concordant and sketch matrices Sk ∼ D have
unbiased projection matrix, Assumption 1. Then SGN has decrease

E [f(xk+1|xk] ≤
(
1− τ

d

)
f(xk) +

τ
df(y) +

τ
d
maxLest+Lsemi

6 ∥y − xk∥3xk
. (31)

B.3. Convergence limitations of sketch-and-project methods

Similarly to AICN, we can show a quadratic decrease of the gradient norm in the sketched direction.

Lemma 6. For Lsemi-semi-strong self-concordant function f and parameter choice Lest ≥ Lsemi, one step of SGN has
quadratic decrease in the Range(S),

∥∇Sf(xk+1)∥∗xk,S
≤ Lestα

2
k,Sk
∥∇Sf(xk)∥∗2xk,S

. (32)

Nevertheless, this is insufficient for superlinear local convergence; we can achieve a linear rate at best. We illustrate this
on an edge case where f is a quadratic function. Then self-concordance holds with LS = 0 and as αk,Sk

LS→0−−−−→ 1, SGN
stepsize becomes 1 and SGN simplifies to subspace Newton method. Unfortunately, it has just linear local convergence
(Gower et al., 2019).

B.4. Why is global linear convergence achievable?

Gower et al. (2019) shows that updates x+ = x+ Sh, where h is a minimizer of RHS of (13) converge linearly and can be
written as Newton method with stepsize 1

L̂
. Conversely, our stepsize αk,Sk

varies (9), so it is not directly applicable to us.
However, a small tweak will do the trick. Observe following:

• We already have fast local convergence (Theorem 3), so we just need to show linear convergence for points
∥∇Sk

f(xk)∥∗xk,Sk
≥ 4

LSk
.

• For bounded stepsize αk,Sk
smaller than 1

L̂
, we can follow global linear proof of RSN.

• Stepsize αk,Sk
of SGN, (9), is inversely proportional to Lest∥∇Sk

f(x)∥∗x. Increasing Lest decreases the convergence
neighborhood arbitrarily. We just need to express this in terms of Lest.
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• From regularized Newton method perspective (4), we have

x+ = x+ S argmin
h∈Rτ(S)

(
f(x) + ⟨∇Sf(x), h⟩+ 1

2

(
1 + Lest

3 ∥h∥x,S
)
∥h∥2x,S

)
,

hence if 1 + Lest
3 ∥h∥x,S ≥ L̂S, then (8) upperbounds on RHS of (13), and hence next iterate of SGN really minimizes

function upperbound. Denote αx,S SGN stepsize in point x in range of S. We express Lest as

1 + Lest
3 ∥h∥x,S ≥ L̂S ⇔ Lest ≥ 3(L̂S−1)

αk,Sk
∥∇Sf(x)∥∗

x,S
⇔ 1 ≥ 3(L̂S−1)

−1+
√

1+2Lest∥∇Sf(x)∥∗
x,S

(33)

⇔ Lest ≥ 3
2
(L̂S−1)(3L̂S−1)
∥∇Sf(x)∥∗

x,S
. (34)

And for Lest ≥ supS
9
8LSL̂

2
S > supS

3
8LS(L̂S − 1)(3L̂S − 1) it holds while ∥∇Sf(x)∥∗x,S ≥

4
LS

.

B.5. Algorithm comparisons

For readers convenience, we include pseudocodes of the most relevant baseline algorithms: Exact Newton Descent
(Algorithm 2), RSN (Algorithm 3), SSCN (Algorithm 4), AICN (Algorithm 5).

We include extended version of Table 1 in Table 5.

Algorithm 2 Exact Newton Descent (Karimireddy et al.,
2018)

Requires: Initial point x0 ∈ Rd, c-stability bound
σ > c > 0
for k = 0, 1, 2 . . . do
xk+1 = xk − 1

σ

[
∇2f(xk)

]†∇f(xk)
end for

Algorithm 3 Randomized Subspace Newton (Gower et al., 2019)

Requires: Initial point x0 ∈ Rd, distribution of sketches D,
relative smoothness constant Lrel > 0
for k = 0, 1, 2 . . . do

Sample Sk ∼ D
xk+1 = xk − 1

Lrel
Sk

[
∇2

Sk
f(xk)

]†∇Sk
f(xk)

end for

Algorithm 4 SSCN: Stochastic Subspace Cubic Newton (Hanzely
et al., 2020)

Requires: Initial point x0 ∈ Rd, distribution of random
matrices D, Lipschitzness of Hessian constant LS > 0
for k = 0, 1, 2 . . . do

Sample Sk ∼ D
xk+1 = xk − Sk argminh∈Rd T̂Sk

(xk, h)
a

end for

afor T̂S(x, h) = ⟨∇f(x),Sh⟩+ 1
2
∥Sh∥2x + LS

6
∥Sh∥32

Algorithm 5 Affine-Invariant Cubic Newton (Hanzely et al.,
2022)

Requires: Initial point x0 ∈ Rd, estimate of semi-strong
self-concordance Lest ≥ Lsemi > 0
for k = 0, 1, 2 . . . do

αk =
−1+
√

1+2Lest∥∇f(xk)∥∗
xk

Lest∥∇f(xk)∥∗
xk

xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk)
a

end for

aEquival., xk+1 = xk − argminh∈Rd T (xk, h),

for T (x, h) def
= ⟨∇f(x), h⟩+ 1

2
∥h∥2x + Lest

6
∥h∥3x

C. Experiments
We support our theory by comparing SGN to SSCN on logistic regression empirical risk minimization,

min
x∈Rd

{
f(x)

def
= 1

m

m∑
i=1

log
(
1− e−bia

⊤
i x
)
+ µ

2 ∥x∥
2
2

}
,

for data from LIBSVM (Chang and Lin, 2011), with features {(ai, bi)}mi=1 and labels bi ∈ {−1, 1}.

To match practical considerations of SSCN and for the sake of simplicity, we adjust SGN in unfavorable way: i) we choose
sketching matrices S to be unbiased in l2 norms (instead of local hessian norms ∥·∥x from Assumption 1). ii) To disregard
implementation specifics, we report iterations on the x-axis. Note that SSCN needs to use a subsolver (extra line-search) to
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Table 5. Global convergence rate of low-rank Newton methods for convex and Lipschitz smooth functions.
We use fastest full-dimensional algorithms as the baseline (for extended version, see Section 4). For
simplicity, we disregard differences between various notions of smoothness.

Update
direction

Update
oracle Full-dimensional

(direction is deterministic)
Low-rank

(direction in expectation)

Non-Newton
direction

O(k−2)
Cubic Newton (Nesterov and Polyak, 2006)

Glob. Regularized Newton (Mishchenko, 2021)
(Doikov and Nesterov, 2021)

O(k− 1
4 )

Globally Regularized Newton (Polyak, 2009)

O(k−1)
Stoch. Subspace Cubic Newton (Hanzely et al., 2020)

Newton
direction

O(k−2)
Affine-Invariant Cubic Newton (Hanzely et al., 2022)

O(k−1)
Exact Newton Descent (Karimireddy et al., 2018)

O(k− 1
2 )

Damped Newton B (Nesterov and Nemirovski, 1994)

O(k−2)
Sketchy Global Newton (this work)

O(k−1)
Randomized Subspace Newton (Gower et al., 2019)

solve implicit step in each iteration. If naively implemented using matrix inverses, iterations of SSCN are × log 1
ε slower.

We chose to didn’t report time as this would naturally ask for optimized implementations and experiments on a larger scale –
this was out of the scope of the paper. Figure 1 shows that despite simplicity of SGN and unfavourable adjustments, SGN
performs comparably to SSCN.

In Figure 2 we include comparison of SGN and Accelerated Coordinate Descent on small-scale experiments.

C.1. Implementation

We use comparison framework from (Hanzely et al., 2020), including implementations of SSCN, Coordinate Descent and
Accelerated Coordinate Descent.

Experiments are implemented in Python 3.6.9 and run on workstation with 48 CPUs Intel(R) Xeon(R) Gold 6246 CPU @
3.30GHz. Total training time was less than 10 hours. Source code and instructions are included in supplementary materials.
As we fixed random seed, experiments should be fully reproducible.

C.2. Insights from other papers contributions

We would also like to point out other properties of SGN based on experiments in related literature:

• Rank of S and first-order methods: Gower et al. (2019) showed a detailed comparison of the effect of various ranks
of S. Also, Gower et al. (2019) showed that RSN (fixed-stepsize Newton) is much faster than first-order Accelerated
Gradient Descent for highly dense problems. For extremely sparse problems, Accelerated Gradient Descent has competitive
performance. As the stepsize of SGN is increasing while getting close to the solution, we expect similar, if not better results.

• Various sketch distributions: Hanzely et al. (2020) considered various distributions of sketch matrices S ∼ D. In all
of their examples, SSCN outperformed CD with uniform or importance sampling and was competitive with Accelerated
Gradient Descent. As SGN is competitive to SSCN, similar results should hold for SGN as well.

• Local norms vs l2 norms: Hanzely et al. (2022) shows that the optimized implementation of AICN saves time in each
iteration over the optimized implementation of Cubic Newton. As SGN and SSCN use the same updates (but in subspaces),
it indicates that SGN saves time over SSCN.
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Figure 1. Comparison of SSCN, SGN and Coordinate Descent on logistic regression on LIBVSM datasets for sketch matrices S of rank
one. We fine-tune all algorithms for smoothness parameters.
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Figure 2. Comparison of SSCN, SGN, Coordinate Descent and Accelerated Coordinate Descent on logistic regression on LIBVSM
datasets for sketch matrices S of rank one. We fine-tune all algorithms for smoothness parameters.
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D. Proofs
For easier reference, we split proofs into four sections, based on the result category:

• Proofs explaining general properties of SGN (Appendix D.1)

• Proofs of global rate O
(
k−2

)
in convex setup (Appendix D.2)

• Proofs of local linear rate (Appendix D.3)

• Proofs of global linear rate (Appendix D.4)

D.1. General properties

Proof of Theorem 1. (Three viewpoints of SGN)
Because∇f(xk) ∈ Range(∇2f(xk)), it holds∇2f(x)[∇2f(xk)]

†∇f(xk) = ∇f(xk). Updates (5) and (6) are equivalent
as

PSk
xk
[∇2f(xk)]

†∇f(xk) = Sk

(
S⊤
k∇2f(xk)Sk

)†
S⊤
k∇2f(xk)[∇2f(xk)]

†∇f(xk)

= Sk

(
S⊤
k∇2f(xk)Sk

)†
S⊤
k∇f(xk)

= Sk[∇2
Sk
f(xk)]

†∇Sk
f(xk)

Taking gradient of TSk
(xk, h) w.r.t. h and setting it to 0 yields that for solution h∗ holds

∇Sk
f(xk) +∇2

Sk
f(xk)h

∗ +
Lest

2
∥h∗∥xk,Sk

∇2
Sk
f(xk)h

∗ = 0 (35)

which after rearranging is

h∗ = −
(
1 +

Lest

2
∥h∗∥xk,Sk

)−1 [
∇2

Sk
f(xk)

]†∇Sk
f(xk), (36)

thus solution of cubical regulaziration in local norms (8) has form of Newton method with stepsize αk,Sk
=(

1 + Lest
2 ∥h

∗∥xk,Sk

)−1

. We are left to show that this αk,Sk
is equivalent to (9).

Substitute h∗ from (36) to (35) and αk,Sk
=
(
1 + Lest

2 ∥h
∗∥xk,Sk

)−1

and then use∇2f(x)[∇2f(xk)]
†∇f(xk) = ∇f(xk),

to get

0 = ∇Sk
f(xk) +∇2

Sk
f(xk)

(
−αk,Sk

[
∇2

Sk
f(xk)

]†∇Sk
f(xk)

)
(37)

+
Lest

2

(
αk,Sk

∥∇Sk
f(xk)∥∗xk,Sk

)
∇2

Sk
f(xk)

(
−αk,Sk

[
∇2

Sk
f(xk)

]†∇Sk
f(xk)

)
(38)

=

(
1− αk,Sk

− Lest

2
α2
k,Sk
∥∇Sk

f(xk)∥∗xk,Sk

)
∇Sk

f(xk). (39)

Finally, αk,Sk
from (9) is a positive root of polynomial 1− αk,Sk

− Lest
2 α2

k,Sk
= 0, which concludes the equivalence of (5),

(6) and (4).

Lemma 7 (Stepsize bound). Stepsize αk,Sk
can be bounded as

αk,Sk
≤

√
2√

Lest∥∇Sk
f(xk)∥∗xk,Sk

, (40)

and for xk far from solution, ∥∇Sk
f(xk)∥∗xk,Sk

≥ 4
LSk

and Lest =
9
8 supS LSL̂

2
S holds αk,Sk

L̂Sk
≤ 2

3 .

Lemma 8 ((Gower et al., 2020)). Matrix PS
x is a projection matrix on Range(S) w.r.t. norm ∥·∥x.
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Proof of Lemma 8. (Matrix PS
x is a projection matrix)

For arbitrary square matrix M pseudoinverse guarantee M†MM† = M†. Applying this to M ←
(
S⊤∇2f(x)S

)
yields〈

PS
xy,P

S
xz
〉
∇2f(x)

=
〈
PS

xy, z
〉
∇2f(x)

y, z ∈ Rd. Thus, PS
x is really projection matrix w.r.t. ∥·∥x.

Proof of Lemma 1. (Unbiased PS
x implies E [τ(S)] = τ , as in Lemma 5.2 of (Hanzely et al., 2020)) We use definitions and

cyclic property of the matrix trace,

E [τ(S)] = E
[
Tr
(
Iτ(S)

)]
= E

[
Tr
(
S⊤∇2f(x)S

(
S⊤∇2f(x)S

)†)]
= E

[
Tr
(
PS

x

)]
(41)

= Tr
(τ
d
Id
)
= τ. (42)

Proof of Lemma 2. (Construction of unbiased sketch matrices in local norms from ones in l2 norms)
We have

ES∼D
[
PS

x

]
=
[
∇2f(x)

]−1/2 EM∼D̃

[
M⊤ (M⊤M

)†
M
] [
∇2f(x)

]1/2
(43)

=
[
∇2f(x)

]−1/2 τ

d
I
[
∇2f(x)

]1/2
=

τ

d
I. (44)

Note that
hk

(5)
= −αk,Sk

Sk[∇2
Sk
f(xk)]

†∇Sk
f(xk), ∥hk∥xk

= αk,Sk
∥∇Sk

f(xk)∥∗xk,Sk
. (45)

Proof of Lemma 4. (One step functional value decrease in terms of norms of gradients)
For hk = xk+1 − xk, we can follow proof of Lemma 10 in Hanzely et al. (2022),

f(xk)− f(xk+1)
(28)
≥ −⟨∇Sf(xk), hk⟩ −

1

2
∥hk∥2xk,Sk

− Lest

6
∥h∥3xk,Sk

(46)

(45)
= αk,Sk

∥∇Sk
f(xk)∥∗2xk,Sk

− 1

2
α2
k,Sk
∥∇Sk

f(xk)∥∗2xk,Sk
(47)

− Lest

6
α3
k,Sk
∥∇Sk

f(xk)∥∗3xk,Sk,S
(48)

=

(
1− 1

2
αk,Sk

− Lest

6
α2
k,Sk
∥∇Sk

f(xk)∥∗xk,Sk

)
αk,Sk

∥∇Sk
f(xk)∥∗2xk,Sk

(49)

≥ 1

2
αk,Sk

∥∇Sk
f(xk)∥∗2xk,Sk

(50)

≥ 1

2max
{√

Lest∥∇Sk
f(xk)∥∗xk,Sk

, 2
}∥∇Sk

f(xk)∥∗2xk,Sk
. (51)

Proof of Lemma 6. (Quadratic local decrease in subspaces).
We bound norm of ∇Sf(xk+1) using basic norm manipulation and triangle inequality as

∥∇Sk
f(xk+1)∥∗xk,Sk

=
∥∥∇Sk

f(xk+1)−∇2
Sk
f(xk)(xk+1 − xk)− αk,Sk

∇Sk
f(xk)

∥∥∗
xk,Sk

=
∥∥∇Sk

f(xk+1)−∇Sk
f(xk)−∇2

Sk
f(xk)(xk+1 − xk) + (1− αk,Sk

)∇Sk
f(xk)

∥∥∗
xk,Sk

≤
∥∥∇Sk

f(xk+1)−∇Sk
f(xk)−∇2

Sk
f(xk)(xk+1 − xk)

∥∥∗
xk,Sk

+ (1− αk,Sk
)∥∇f(xk)∥∗xk,Sk
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Using Lsemi-semi-strong self-concordance, we can continue

≤
∥∥∇Sk

f(xk+1)−∇Sk
f(xk)−∇2

Sk
f(xk)(xk+1 − xk)

∥∥∗
xk,Sk

+ (1− αk,Sk
)∥∇Sf(xk)∥∗xk,Sk

≤ Lsemi

2
∥xk+1 − xk∥2xk,Sk

+ (1− αk,Sk
)∥∇Sk

f(xk)∥∗xk,Sk

=
Lsemiα

2
k,Sk

2
∥∇Sk

f(xk)∥∗2xk,Sk
+ (1− αk,Sk

)∥∇Sk
f(xk)∥∗xk,S

≤
Lestα

2
k,Sk

2
∥∇Sk

f(xk)∥∗2xk,Sk
+ (1− αk,Sk

)∥∇Sk
f(xk)∥∗xk,Sk

=

(
Lestα

2
k,Sk

2
∥∇Sk

f(xk)∥∗xk,S
− αk,Sk

+ 1

)
∥∇Sk

f(xk)∥∗xk,Sk

(9)
= Lestα

2
k,Sk
∥∇Sk

f(xk)∥∗2xk,Sk
.

Last equality holds because of the choice of αk,Sk
.

D.1.1. TECHNICAL LEMMAS

Lemma 9 (Arithmetic mean – Geometric mean inequality). For c ≥ 0 we have

1 + c =
1 + (1 + 2c)

2

AG
≥
√
1 + 2c. (52)

Lemma 10 (Jensen for square root). Function f(x) =
√
x is concave, hence for c ≥ 0 we have

1√
2
(
√
c+ 1) ≤

√
c+ 1 ≤

√
c+ 1. (53)

Proof of Lemma 7. Denote Gk
def
= Lest∥∇Sk

f(xk)∥∗xk,Sk
. Using (53) with c← 2G > 0 and

αk,Sk
=
−1 +

√
1 + 2G

G
≤
√
2G

G
=

√
2√
G

=

√
2√

Lest∥∇Sk
f(xk)∥∗xk,Sk

(54)

and

αk,Sk
L̂Sk
≤

√
2L̂Sk√

Lest∥∇Sk
f(xk)∥∗xk,Sk

(55)

≤
√
2L̂Sk√

9
8LSk

L̂2
Sk
∥∇Sk

f(xk)∥∗xk,Sk

(56)

≤ 4

3

1√
LSk
∥∇Sk

f(xk)∥∗xk,Sk

≤ 2

3
for ∥∇Sk

f(xk)∥∗xk,Sk
≥ 4

L̂Sk

. (57)

D.2. Global convex rate

Proof of Lemma 5. (Key lemma for global convex convergence). Denote

ΩS(x, h
′)

def
= f(x)

〈
∇f(x),PS

xh
′〉+ 1

2

∥∥PS
xh

′∥∥2
x
+

Lest

6

∥∥PS
xh

′∥∥3
x
, (58)

so that
min
h′∈Rd

ΩS(x, h
′) = min

h∈Rτ(S)
TS(x, h). (59)
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For arbitrary y ∈ Rd denote h
def
= y − xk. We can calculate

f(xk+1) ≤ min
h′∈Rτ(S)

TS(xk, h
′) = min

h′′∈Rd
ΩS(xk, h

′′) (60)

E [f(xk+1)] ≤ E [ΩS(xk, h]) (61)

= f(xk) +
τ

d
⟨∇f(xk), h⟩+

1

2
E
[∥∥PS

xh
∥∥2
xk

]
+ E

[
Lest

6

∥∥PS
xh
∥∥3
xk

]
(62)

(21)
≤ f(xk) +

τ

d
⟨∇f(xk), h⟩+

τ

2d
∥h∥2xk

+
Lest

6

τ

d
∥h∥3xk

(63)

(28)
≤ f(xk) +

τ

d

(
f(y)− f(xk) +

Lsemi

6
∥y − xk∥3xk

)
+

Lest

6

τ

d
∥h∥3xk

, (64)

In second to last inequality depends on unbiasedness of projection PS
x , Assumption 1. In last inequality we used semi-strong

self-concordance, Proposition 3 with S = I.

Proof of Theorem 2. (Global convex rate). Denote

A0
def
=

4

3

(
d

τ

)3

, (65)

Ak
def
= A0 +

k∑
t=1

t2 = A0 − 1 +
k(k + 1)(2k + 1)

6
≥ A0 +

k3

3
, (66)

...consequently
k∑

t=1

t6

A2
t

≤ 9k, (67)

ηt
def
=

d

τ

(t+ 1)2

At+1
implying 1− d

τ
ηt =

At

At+1
. (68)

Note that this choice of A0 implies (Hanzely et al., 2020)

ηt−1 ≤
d

τ

t2

A0 +
t3

3

≤ d

τ
sup
t∈N

t2

A0 +
t3

3

≤ d

τ
sup
ζ>0

ζ2

A0 +
ζ3

3

,= 1 (69)

and ηt ∈ [0, 1]. Set y def
= ηtx∗ + (1− ηt)xt in Lemma 5. From convexity of f ,

E [f(xt+1|xt] ≤
(
1− τ

d

)
f(xt) +

τ

d
f∗ηt +

τ

d
f(xt)(1− ηt) +

τ

d

(
maxLS + Lsemi

6
∥xt − x∗∥3xt

η3t

)
. (70)

Denote δt
def
= E [f(xt)− f∗]. Subtracting f∗ from both sides and substituting ηk yields

δt+1 ≤
At

At+1
δt +

maxLS + Lsemi

6
∥xt − x∗∥3xt

(
d

τ

)2(
(t+ 1)2

At+1

)3

. (71)

Multiplying by At+1 and summing from from t = 0, . . . , k − 1 yields

Akδk ≤ A0δ0 +
maxLS + Lsemi

6

d2

τ2

k−1∑
t=0

∥xt − x∗∥3xt

(t+ 1)6

A2
t+1

, (72)

Using supx∈Q(x0) ∥x− x∗∥x ≤ R we can simplify and shift summation indices,

Akδk ≤ A0δ0 +
maxLS + Lsemi

6

d2

τ2
D3

k∑
t=1

t6

A2
t

(73)

≤ A0δ0 +
maxLS + Lsemi

6

d2

τ2
D39k (74)
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and

δk ≤
A0δ0
Ak

+
3(maxLS + Lsemi)d

2D3k

2τ2Ak
(75)

≤ 3A0δ0
k3

+
9(maxLS + Lsemi)d

2D3

2τ2k2
(76)

which concludes the proof.

D.3. Local linear rate

Proposition 4 (Lemma E.3 in Hanzely et al. (2020)). For γ > 0 and xk in neighborhood xk ∈{
x : ∥∇f(x)∥∗x < 2

(1+γ−1)Lsc

}
for Lsc-self-concordant function f , we can bound

f(xk)− f∗ ≤
1

2
(1 + γ)∥∇f(xk)∥∗2xk

. (77)

Proof of Theorem 3. (Fast local linear rate theorem).
Proposition 4 with γ = 2 implies that in neighborhood ∥∇f(xk)∥∗2xk,S

≤ 4
LS

,

f(xk)− f(xk+1)
(30)
≥ 1

4
∥∇Sk

f(xk)∥∗2xk,Sk

and with identity ∥∇Sf(x)∥∗2x,Sk
=
∥∥PS

x∇f(x)
∥∥∗2
x

, we can continue

E [f(xk)− f(xk+1)]
(30)
≥ E

[
1

4
∥∇Sk

f(xk)∥∗2xk,S

]
= E

[
1

4

∥∥PSk
xk
∇f(xk)

∥∥∗2
xk

]
(78)

(22)
=

τ

4d
∥∇f(xk)∥∗2xk

(77)
≥ τ

2d(1 + γ)
(f(xk)− f∗). (79)

Hence

E [f(xk+1)− f∗)] ≤
(
1− τ

2d(1 + γ)

)
(f(xk)− f∗),

and to finish the proof, we use tower property across iterates x0, x1, . . . , xk.

D.4. Global linear rate

Proposition 5 ((47) in Gower et al. (2019)). Relative convexity (14) implies following bound

f∗ ≤ f(xk)−
1

2µ̂
∥∇f(xk)∥∗2xk

. (80)

Proof of Theorem 4. (Global linear convergence under relative convexity)
Replacing x← xk and h← αk,Sk

PSk
xk
[∇2f(xk)]

†∇f(xk) so that xk+1 = xk + Sh in (13) yields

f(xk+1) ≤ f(xk)− αk,Sk

(
1− 1

2
L̂Sk

αk,Sk

)
∥∇Sk

f(xk)∥∗2xk,Sk
(81)

≤ f(xk)−
2

3
αk,Sk

∥∇Sk
f(xk)∥∗2xk,Sk

. (82)

In last step, we used that L̂Sk
αk,Sk

≤ 2
3 holds for ∥∇Sk

f(xk)∥∗xk,Sk
≥ 4

L̂Sk

(Lemma 7). Next, we take expectation on xk

and use definition of ρ(xk).

E [f(xk+1)] ≤ f(xk)−
2

3
∥∇f(xk)∥2

E
[
αk,Sk

S
[
∇2

Sk
f(xk)

]†
S⊤

] (83)

≤ f(xk)−
2

3
ρ(xk)∥∇f(xk)∥∗2xk

(84)

(80)
≤ f(xk)−

4

3
ρ(xk)µ̂ (f(xk)− f∗) . (85)
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Now ρ(x) ≥ ρ, and ρ is bounded in Proposition 2. Rearranging and subtracting f∗ gives

E [f(xk+1)− f∗] ≤
(
1− 4

3
ρµ̂

)
(f(xk)− f∗), (86)

Which after towering across all iterates yields the statement.
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