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ABSTRACT

Offline-to-Online Reinforcement Learning (O2O RL) presents a compelling
framework for deploying decision-making agents in domains where online data
collection is limited by practical constraints such as cost, risk, or latency. In
this paradigm, agents are initially trained on fixed datasets and subsequently re-
fined through limited online interaction. However, this transition exposes a funda-
mental challenge: the misestimation of state-action values associated with out-of-
distribution (OOD) actions, inherited from the offline phase. Such misestimations
can severely destabilize online adaptation, leading to suboptimal policy behav-
ior. To address this, we propose an algorithm-agnostic method that regularizes the
Q-function prior to fine-tuning by injecting structured noise into dataset actions.
This process explicitly bounds Q-value estimates across the entire action space,
not just in-distribution actions, mitigating both overestimation and underestima-
tion. We introduce a tunable parameter that governs the degree of conservatism
and optimism within the Q-value bounds during the online fine-tuning phase. Ex-
tensive empirical evaluations on standard O2O RL benchmarks demonstrate that
our method yields substantial improvements over strong baselines, both in terms
of stability and final performance. These results underscore the importance of
principled Q-function initialization and offer a practical path toward more robust
reinforcement learning under distributional shift.

1 INTRODUCTION

Offline Reinforcement Learning (RL) is a promising paradigm for training decision-making agents
in domains where real-world interaction is expensive, time-consuming, or potentially hazardous.
Applications such as robotic manipulation (Chebotar et al., 2021; Bhateja et al., 2023), autonomous
driving (Codevilla et al., 2019; Shi et al., 2021), and healthcare (Gottesman et al., 2019; Tang et al.,
2022) exemplify high-stakes environments where collecting interactive data is costly or risky, mak-
ing conventional online RL approaches impractical. By leveraging static datasets, offline RL elim-
inates the need for online data collection. In many real-world scenarios, agents retain the ability
to interact with the environment after initial training, enabling further policy improvement. This
motivates the Offline-to-Online RL (O2O RL) paradigm, which fine-tunes offline-trained policies
through online updates, combining sample efficiency with adaptability. Still, this transition intro-
duces several challenges that can hinder effective policy refinement.

A key challenge in O2O RL is the distributional mismatch between the offline dataset and the online
exploration policy. Since offline RL is limited to the support of a fixed dataset, it is particularly vul-
nerable to out-of-distribution (OOD) action misestimation, where the learned value function assigns
inaccurately high or low values to actions that are poorly represented in the offline data (Fujimoto
et al., 2019). These misestimated values can drive the agent toward suboptimal or unstable actions
during online fine-tuning, potentially degrading performance and necessitating additional recovery
steps. In particular, underestimated Q-values may propagate through bootstrapping, impeding ef-
fective learning (Kumar et al., 2019; Zhou et al., 2024). At the same time, extrapolation errors
introduced by evaluating poorly supported actions can lead to severe overestimation (Levine et al.,
2020), destabilizing the learning process.

To mitigate such problems, prior work has proposed calibration techniques that aim to reduce Q-
value underestimation and prevent sudden performance drops during the early stages of online adap-
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tation (Nakamoto et al., 2023; Zhang et al., 2024). However, these methods often rely on specific
offline RL algorithms or remain sensitive to the initialization of Q-values. Other approaches seek to
combine offline datasets with online rollouts to minimize distributional mismatch and improve sam-
ple efficiency (Shin et al., 2025). However, these algorithms typically require a substantial amount
of online sampling. Zhou et al. (2024) demonstrated that collecting online samples using a frozen
pretrained policy, without retaining the offline data during fine-tuning, can mitigate performance
degradation. Yet, this method also exhibits sensitivity to the initial Q-values, which can lead to
significant performance variability.

We approach this problem from a different perspective by answering the following question: How
can Q-values be initialized in an offline RL algorithm-agnostic manner that jointly mitigates both
underestimation and overestimation before online finetuning begins? To address this, we propose
a simple yet effective algorithm-agnostic method, Bounding Q-function Estimates for Offline to
Online RL (BOTO), which injects action noise during Q-learning prior to online finetuning. Cru-
cially, this process produces a bounded Q-function that explicitly regularizes value estimates across
the entire action space, covering not only in-distribution actions but also out-of-distribution ones.
By enabling control over the degree of conservatism and optimism within this bound, BOTO helps
prevent extreme estimation errors that commonly destabilize early online learning. We show that
this strategy enhances both the stability and final performance of O2O RL. Our main contributions
are as follows:

• We introduce a Q-value bounding method via action noise injection that explicitly regular-
izes OOD actions and balances underestimation and overestimation.

• We provide an analysis showing that our method corresponds to Q-learning in an α-Noisy
Action MDP, and derive bounds that characterize its impact on Q-value estimates across
the action space.

• We perform experiments on standard O2O RL benchmarks, demonstrating improvements
in policy performance over existing methods.

To support these contributions, we first revisit the foundations of offline and online reinforcement
learning to identify how Q-value misestimation emerges in the O2O RL setting. We then analyze
the mechanisms through which underestimation and overestimation affect policy learning during
fine-tuning. Building on this analysis, we introduce an approach to bounding Q-function estimation
based on action noise injection and provide a detailed examination of its properties. Finally, we
demonstrate the effectiveness of our method through empirical evaluations on standard O2O RL
benchmarks.

2 BACKGROUNDS AND RELATED WORK

Reinforcement learning (RL) aims to find an optimal policy for sequential decision-making tasks,
which are typically formalized as Markov Decision Processes (MDPs), defined by (S,A, R, P, γ)
(Sutton et al., 1998). Here, we focus on control settings, and accordingly assume that the state
space S ∈ Rn and the action space A ∈ Rm. R is the reward function, P represents the transition
dynamics and γ ∈ (0, 1) is the discount factor. The objective is to learn a policy π(a | s) that
maximizes the expected return η(π) = Eπ [

∑∞
t=0 γ

trt], where rt is the reward obtained at timestep
t. This is generally done by iteratively improving the policy to approach the optimal policy π∗ =
argmaxπ η(π). The action-value function (or Q-function) associated with a policy π is defined as
Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt | s0 = s, a0 = a] , which quantifies the expected discounted return from
state s, taking action a, and then following policy π thereafter.

Offline-to-Online RL. Offline RL aims to learn a policy exclusively from a fixed dataset, with-
out any additional interaction with the environment (Levine et al., 2020; Prudencio et al., 2023).
In contrast, online RL continuously updates the policy through active interaction with the environ-
ment. The concept of Offline-to-Online Reinforcement Learning (O2O RL), which leverages a pre-
trained offline policy and value function for subsequent online fine-tuning, is inspired by a common
paradigm in modern machine learning: models are first pre-trained on large-scale, general-purpose
datasets and then fine-tuned on smaller datasets to achieve optimal performance in the target domain
(Nakamoto et al., 2023).
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True Q-values Learned Q-function Pre-trained Q-function Dataset support Misleading point

Globally Underestimated Q-function Locally Underestimated Q-function Overestimated Q-function Bounded Q-function

Figure 1: Illustration of Q-value misestimation cases in O2O RL. Global underestimation favors
suboptimal actions. Local underestimation suppresses truly high-value actions. Overestimation
misleads the policy toward spurious actions. Bounding Q-values on OOD actions mitigates both
extremes, enabling stable estimates. Our method adjusts the level of optimism or conservatism
within this bound.

Despite its promise, O2O RL faces several challenges, primarily due to the distributional shift be-
tween offline and online data, as well as inaccuracies in the value function for OOD state-action
pairs, which arise from training the target policy using a limited offline dataset. Zhou et al. (2024)
identify two key issues arising from these challenges: unlearning, a temporary performance drop
at the onset of fine-tuning requiring several recovery steps, and forgetting, where early fine-tuning
erodes the pretrained initialization, making recovery through online learning nearly impossible.

To mitigate such problems, prior work has explored strategies. Calibration methods address Q-value
underestimation and reduce performance degradation during online adaptation. Nakamoto et al.
(2023) rescale conservative Q-values to balance caution and adaptability, while Guo et al. (2023)
use uncertainty-aware estimation to stabilize early updates. Zhang et al. (2024) employ ensemble
critics to suppress misestimation and ensure stable fine-tuning. Other methods reduce distributional
mismatch by combining offline and online data. Ji et al. (2023) blend data using a confidence-aware
schedule, and Shin et al. (2025) apply prioritized replay to focus on high-quality offline samples.
Zhang et al. (2024) also alternate updates to maintain distributional continuity, while Zhou et al.
(2024) stress a high update-to-data ratio and interleaving offline data to prevent forgetting.

However, since these methods rely on the initial Q-values before online fine-tuning, they either
suffer from unlearning at the early stage of fine-tuning or require a prolonged period to recover per-
formance. To address this limitation, we propose a simple yet effective algorithm-agnostic strategy
that improves the robustness of offline-to-online adaptation by mitigating Q-value misestimation
throughout fine-tuning.

3 Q-VALUE ERROR IN O2O RL

Q-value misestimation is one of the key challenges in Offline-to-Online Reinforcement Learning
(O2O RL). In standard deep RL frameworks, the policy network is trained to select actions that are
assigned high values by the learned Q-function. In purely online settings, even when the Q-function
is initially inaccurate, these errors can often be corrected over time: overestimated actions are exe-
cuted and revised through feedback, while underestimated actions may eventually be explored due
to the agent’s inherent exploration strategy. This iterative process enables value estimation errors to
diminish progressively.

In contrast, O2O RL relies on a Q-function pre-trained on static offline datasets with limited ac-
tion coverage. The restricted support of these datasets often leads to inaccurate value estimates,
particularly for out-of-distribution (OOD) actions. Consequently, during the early stages of online
fine-tuning, the policy may act suboptimally or even degrade in performance due to its reliance on
these misestimated Q-values, as observed by Nakamoto et al. (2023). To provide a deeper under-
standing of these failure modes, we now conduct a detailed analysis of Q-value underestimation and
overestimation in the O2O RL setting. In Figure 1, we illustrate the failure modes associated with
Q-value misestimation in O2O RL.

Q-value underestimation in O2O RL typically arises in two forms. Global underestimation is
characteristic of approaches such as Conservative Q-Learning (Kumar et al., 2020), which impose
conservative penalties to discourage the selection of OOD actions in offline settings. While this
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Figure 2: Comparison of Q-value distributions between BOTO and baseline offline RL algorithms
(bandit setting). The top row visualizes Q-value estimates for sampled actions, where circles denote
actions from the dataset and are colored according to their associated rewards. The bottom row
presents the corresponding kernel density estimates (KDEs), highlighting differences in Q-value
estimation behavior across methods.

promotes safety and stability during offline training, it can hinder policy improvement during online
fine-tuning. Nakamoto et al. (2023) demonstrate that global underestimation can cause the policy
to overlook optimal actions, instead favoring suboptimal alternatives due to suppressed Q-values.
This misguidance is especially detrimental during the early stages of online adaptation, when ac-
curate value estimates are critical for effective policy improvement. Local underestimation, on the
other hand, occurs when a small subset of promising actions are assigned disproportionately low
Q-values. As a result, the policy tends to avoid these underestimated actions, even if they are actu-
ally high quality. This leads it to repeatedly select suboptimal actions, which limits its capacity for
improvement during online adaptation.

Q-value overestimation has been widely recognized as a core issue in offline RL, particularly be-
cause Q-functions are trained only on actions present in the limited offline dataset, leading to unre-
liable estimates for OOD actions (Van Hasselt et al., 2016). However, this issue is often mitigated
during offline training through policy constraints or behavior regularization, which encourage the
learned policy to stay close to the data distribution (Wu et al., 2019; Fujimoto & Gu, 2021; Tarasov
et al., 2023). As a result, even if the Q-values for OOD actions are overestimated, the policy typically
avoids selecting them, reducing their impact in practice.

The situation changes during online finetuning. When strong behavior regularization is retained, the
policy may become overly conservative, limiting its ability to explore beyond the offline dataset. In
contrast, relaxing this regularization allows the policy to exploit overestimated Q-values, potentially
causing it to favor actions that appear optimal under the misestimated Q-function but are actually
suboptimal. This can lead to unstable policy updates until the Q-values are sufficiently corrected.
While moderate Q-value overestimation may encourage useful exploration, excessive overestima-
tion often demands many update steps to correct, slowing down adaptation and degrading perfor-
mance. Our approach addresses these issues by bounding the Q-function on OOD data, providing
a reliable initialization for subsequent fine-tuning. This mechanism helps prevent sudden drops in
policy performance during the early stages of adaptation.

4 BOUNDING Q-FUNCTION ESTIMATION

In the previous section, we discussed how Q-value underestimation and overestimation can substan-
tially degrade policy performance during the O2O adaptation process. This challenge raises a central
research question:

How can we initialize Q-values to support
stable and effective fine-tuning of a policy pretrained on offline data?

To address this, we introduce a simple yet effective approach that calibrates Q-values during the
transition from offline pretraining to online fine-tuning. Drawing inspiration from Oh & Lee (2025),
our approach, Bounding Q-function Estimates for O2O RL (BOTO), introduces Q-value bounds
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over the entire action space by dynamically adjusting target values, penalizing or rewarding them
based on the magnitude of action perturbations. Furthermore, a tunable bias controller is incorpo-
rated to adjust the degree of conservatism or optimism within these bounds, enabling more flexible
and robust Q-function initialization for fast adaptation during online fine-tuning.

To illustrate this effect, Figure 2 presents the estimated Q-values and corresponding kernel density
estimates (KDEs) produced by our method under varying bias control parameters, alongside those
from representative offline RL algorithms such as CQL (Kumar et al., 2020), CalQL (Nakamoto
et al., 2023) and IQL (Kostrikov et al., 2021), all of which are commonly employed during the pre-
training phase in prior works. These results are evaluated on action samples drawn from a Pinwheel
distribution. Baseline approaches often exhibit pronounced Q-value underestimation or overestima-
tion, which can significantly impair performance during subsequent fine-tuning. In contrast, our
method produces Q-values that are consistently bounded across the entire action space, reducing
both overestimation and underestimation, for out-of-distribution actions.

We begin by formalizing the bounding effect induced by injecting noise into the action space during
Q-learning. Specifically, we minimize a regression loss over perturbed actions ā ∼ qσ(· | a), where
qσ is a noise distribution parameterized by an action a ∈ A and a noise scale σ > 0, centered
at a with support satisfying A ⊆ supp(qσ). The target value consists of the original reward and
a regularization term weighted by the deviation between a and ā, encouraging the Q-function to
generalize smoothly over perturbed actions. Formally, we define the following objective:

J(θ) = E(s,a,s′)∼D
ā∼qσ(·|a)

[
(Qθ(s, ā)− ȳ(s, a, s′, ā))2

]
(1)

where the target ȳ is defined as:

ȳ(s, a, s′, ā) = y(s, a, s′)− α∥a− ā∥22 (2)

The variable y represents the Bellman target, which varies by algorithm. Injecting noise ensures all
actions have non-zero probability under the noise distribution. When α = 1, our objective aligns
with the Noisy Action MDP (NAMDP) from Oh & Lee (2025), where a penalty term in the reward
suppresses Q-value overestimation for OOD actions. In this case, Q-learning with noisy actions
effectively estimates the Q-function of a modified MDP.

We generalize this formulation by introducing α as a tunable parameter that modulates the degree
of regularization applied to the reward function. α serves as a bias-control mechanism, allowing the
learned Q-function to interpolate between conservative (underestimating) and optimistic (overesti-
mating) estimates for OOD actions. This extension yields the α-Noisy Action MDP (α-NAMDP),
a generalization of the original NAMDP framework. We further show that minimizing the objective
in Equation (1) is equivalent to performing Q-learning in the α-NAMDP setting.

Definition 1 (α-Noisy Action MDP). Given a noise distribution qσ , a finite dataset D =
{(si, ai, ri, s′i)}i and a dataset distribution pD, the NAMDP is defined as an MDP (S,A, Rσ, Pσ, γ),
where:

Pσ(s
′ | s, ā) =

∫
A
pD(s

′ | s, a) pD(ā | s, a, σ) da,

Rσ(s, ā) =

∫
A
pD(ā | s, a, σ)

(
R(s, a)− α∥a− ā∥22

)
da.

Here, pD denotes the empirical dataset distribution induced by the offline dataset D. The conditional
distribution pD(ā | s, a, σ) is defined as:

pD(ā | s, a, σ) = pD(a | s) qσ(ā | a)∫
A pD(ã | s) qσ(ā | ã) dã

.

We now establish that minimizing the proposed learning objective in Equation (1) is equivalent to
performing Q-learning under the dynamic of the α-NAMDP. The equivalence is formalized in the
following theorem:

Theorem 1 (α-NAMDP Objective). Given that the function Q minimizes the following objective:

J(Q) = Ea∼pD(·|s),s′∼pD(·|s,a),ā∼qσ(·|a)
[
(Q(s, ā)− ȳ(s, a, s′, ā))2

]
, (3)
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where the target value ȳ(s, a, ā) is defined as:

ȳ(s, a, s′, ā) = Eã∼π(·|s′)
[
R(s, a) + γQπ(s′, ã)− α∥a− ā∥22

]
,

Then, the function Q is the Q-value function of π in the α-NAMDP.

This theorem clarifies the role of the parameter α in shaping the learned Q-function. Specifically,
it establishes that the Q-function optimized under our objective corresponds to the value function
of a policy within the dynamics and reward structure defined by the α-NAMDP. Consequently, α
modulates the trade-off between conservative and optimistic value estimates for OOD actions.

3 2 1 0 1 2 3
Actions

2

1

0

1

Q-
va

lu
es

-NAMDP Q-values for different alpha values

 = -1.0
 = 0.0
 = 1.0

Theoretical bound
Dataset actions

Figure 3: Ground-truth Q-values and bounds
under different α values in the α-NAMDP
(badint setting). Each curve shows the learned
Q-values for a different α using qσ(· | a) =
N (a, 0.252). Red dots represent the ground-
truth Q-values of dataset actions under the orig-
inal MDP. Dashed lines indicate the bounds de-
rived in Theorem 2.

Building on this result, we examine how vary-
ing values of α influence the learned Q-values,
particularly in terms of their alignment with the
ground-truth Q-values under the α-NAMDP. As
shown in Figure 3, negative α values induce over-
estimation for OOD actions, while positive values
lead to underestimation. Furthermore, the magni-
tude of deviation grows with |α|, amplifying the
estimation bias in both directions. This behav-
ior highlights how our objective systematically
shapes the learned Q-function as a function of α.

We further show that the Q-function learned un-
der our objective is provably bounded over the en-
tire action space, including OOD actions. Stan-
dard offline RL algorithms are trained only on
dataset-supported actions and do not offer such
guarantees for OOD actions unless additional, of-
ten strong, assumptions are made about the value
function class. As a result, they may produce Q-
functions with severely misestimated values for
unseen actions. In contrast, our formulation enables controlled modulation of Q-value estimates
across the entire action space through α, contributing to more reliable online adaptation. The fol-
lowing theorem formalizes this boundedness:
Theorem 2 (Q-value bound in the α-NAMDP). Let θ∗ denote the parameters of Qθ that minimize
the functional objective defined in Equation (3), assuming a sufficiently expressive parameterization
of the Q-function. Let V π be the true state value function under policy π in the α-NAMDP. Then,
for any policy π, the learned Q-function Qθ∗ satisfies:

Lπ(s, a) ≤ Qθ∗(s, a) ≤ Uπ(s, a) ∀(s, a) ∈ S ×A
where

Lπ(s, a) = min(0,−α) · R(s, a) + inf
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]

Uπ(s, a) = max(0,−α) · R(s, a) + sup
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
.

Here, R(s, a) =
∫
A pD(ā | s, a, σ)∥a− ā∥22 da. We illustrate the Q-value bounds in the α-NAMDP

through an example in Figure 3, and provide the corresponding of the theorems proofs in the Sec-
tion A.

4.1 METHOD

We propose an algorithm-agnostic method, Bounding Q-function Estimates for Offline to Online
RL (BOTO), designed to mitigate both overestimation and underestimation in Q-value learning by
introducing a regulated optimism phase. This phase adjusts Q-values before online fine-tuning,
effectively managing out-of-distribution (OOD) actions. The level of optimism or conservatism is
modulated via a bias-control parameter α. This influences the Q-function’s behavior particularly on
actions not well-represented in the offline data. BOTO consists of three key stages.
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Offline + Warmup Online Buffer

Step1 : Offline Pre-training Step2 :  BOTO Training Step3 : Online Fine-tuning

Offline Dataset

Train

Rollout

Train

Train

Figure 4: Overview of the Bounding Q-function Estimates for O2O RL (BOTO) framework. Our
method comprises three sequential stages: (1) Offline Pre-training: An offline policy π and Q-
function Q are learned using a fixed offline dataset via an offline RL algorithm. (2) BOTO Train-
ing: The pretrained Q-function is further optimized using the BOTO objective with the bias-control
parameter α, leveraging both the offline dataset and the warmup samples collected by the frozen
pretrained policy. (3) Online Fine-tuning: Both the policy and the Q-function are fine-tuned using
an online RL algorithm to enable stable and sample-efficient adaptation during the online phase.

Offline Pre-training We first pretrain the policy and Q-function using a standard offline rein-
forcement learning algorithm on a fixed dataset Doffline. This initializes the networks for effective
warm-up and fine-tuning phases.

BOTO Training We further optimize the pretrained Q-function Qθ and policy πϕ using the objec-
tive defined in Equation (1). To reduce the distributional mismatch between offline and online data
distribution, we introduce a short warm-up phase during which additional data is collected using the
pretrained policy πϕ. The resulting dataset is denoted as Dwarmup. We then construct an augmented
dataset, DBOTO = Doffline ∪ Dwarmup, which serves to bridge the gap between offline pretraining and
online fine-tuning. Using DBOTO, we optimize the Q-function with the following:

J(θ) = E(s,a,s′)∼DBOTO,ā∼qσ(·|a)
[
(Qθ(s, ā)− ȳ(s, a, s′, ā))2

]
The target value ȳ incorporates the entropy term from Haarnoja et al. (2018) and is computed as:

ȳ(s, a,s′, ā) = r(s, a)− α∥a− ā∥22 + Eã∼πϕ
[γQθ′(s′, ā) + τ log πϕ(ã | s)]

where πϕ is the policy network pretrained in the offline phase, Qθ′ is the target Q-network and τ is
the entropy temperature.

Online Fine-Tuning Finally, we jointly fine-tune the Q-function Qθ and the policy πϕ using a
standard online RL algorithm, providing a strong initialization for subsequent learning. The entire
pipeline is visualized in Figure 4. Implementation details are provided in the Section B.

5 EXPERIMENTS

The goal of our experiments is to evaluate how effectively our method enables the Q-function
to interpolate between underestimation and overestimation for out-of-distribution (OOD) actions,
thereby improving overall policy performance.

5.1 BASELINES AND EXPERIMENTAL SETUP

We adopt the Warm Start RL (WSRL) framework (Zhou et al., 2024) as the backbone of our ex-
perimental setup. Specifically, we use CalQL (Nakamoto et al., 2023) for offline pretraining and
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) with an ensemble of 10 Q-networks for online fine-
tuning. We evaluate our method against several baselines: We compare against the following meth-
ods: WSRL (Zhou et al., 2024), which performs a warmup phase at the start of fine-tuning without
retaining the offline dataset; CalQL, which addresses excessive conservatism in CQL (Kumar et al.,
2020) through calibrated Q-learning; RLPD (Ball et al., 2023), which integrates offline datasets with
online rollouts; and two representative offline RL algorithms, CQL and IQL (Kostrikov et al., 2021).
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Figure 5: Performance comparison between our method and other baselines. Each plot shows the
success rate over environments during online fine-tuning, with shaded regions indicating standard
error across five random seeds. Ours achieves faster adaptation and higher final success rates than
others in most tasks.

We train CalQL, CQL, and IQL during the offline pretraining phase and continue training them dur-
ing the online phase while retaining access to the offline dataset. In contrast, the RLPD baseline is
trained from scratch solely during the fine-tuning phase.

RL tasks and offline datasets. We evaluate our method on several widely used benchmark tasks
and datasets, following prior work (Zhou et al., 2024; Shin et al., 2025). Specifically, we consider
the Antmaze, Kitchen, and Adroit domains from the D4RL benchmark suite (Fu et al., 2020). The
Antmaze domain includes long-horizon navigation tasks with sparse rewards, where an Ant robot
must reach designated goals (antmaze-large-diverse-v2, antmaze-large-play-v2).
The Kitchen environment involves executing a sequence of four subtasks using a Franka robotic
arm in a simulated kitchen setting (kitchen-partial, kitchen-mixed). The Adroit do-
main comprises two dexterous manipulation tasks performed by a five-fingered robotic hand: pen
reorientation (pen-binary) and door opening (door-binary). Further details on the imple-
mentation and environments are provided in the Section B.

5.2 EFFECTIVENESS OF Q-VALUE INITIALIZATION WITH BOTO

Figure 5 presents a comparison of our method, BOTO, against baseline approaches across six bench-
mark environments during online fine-tuning. In all tasks, BOTO outperforms the baselines by ef-
fectively mitigating unlearning, which typically causes a performance drop at the start of fine-tuning.
As discussed previously, CalQL, CQL, and IQL fail to perform in our setting due to misestimated Q-
values learned during offline pretraining. While CalQL and IQL demonstrate reduced sensitivity to
distributional mismatch between offline and online data by maintaining access to the offline dataset
during online training, their performance frequently plateaus and does not exhibit consistent asymp-
totic improvement across most environments. In contrast, CQL, which enforces a regularization
that constrains the Q-function to remain close to in-distribution actions, suffers from pronounced
unlearning despite retaining the offline data, indicating that overly conservative constraints can hin-
der effective policy refinement during online adaptation. We evaluated the performance using the
success rate, which is also used in existing baseline algorithms.

RLPD, which is trained exclusively from scratch during the online phase, requires substantially more
training steps to reach performance levels comparable to O2O RL methods. Despite the inherent
recovery capabilities of online RL algorithms, RLPD exhibits a notably slow learning curve in sparse

8
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Table 1: Comparison of different offline RL algorithms. The Initial step corresponds to t = 0,
the Unlearning step to t = 10, 000, and the Final step to t = 300, 000. The task name is suc-
cinctly stated: antmaze-large-diverse-v2 (A-d), kitchen-partial-v0 (K-p), and
kitchen-mixed-v0 (K-m). We average each score and get standard error across five random
seeds.

Task Initial step Unlearning step Final step

A-d BOTO+CalQL 0.29±0.08 0.21±0.25 0.98±0.02
BOTO+CQL 0.29±0.05 0.22±0.26 0.96±0.04

K-p BOTO+CalQL 0.70±0.05 0.14±0.10 0.97±0.08
BOTO+CQL 0.76±0.08 0.10±0.13 0.95±0.11

K-m BOTO+CalQL 0.56±0.08 0.18±0.11 0.86±0.15
BOTO+CQL 0.57±0.06 0.19±0.11 0.88±0.14

reward environments such as Antmaze and Kitchen. This underscores the critical importance of
initializing a well-trained Q-function to facilitate efficient and stable learning.

Although WSRL performs comparably to BOTO on Antmaze and Adroit-pen, its performance
degrades significantly in Kitchen and Adroit-door. In particular, WSRL exhibits high per-
formance variance across random seeds and fails to attain consistent asymptotic improvement in
Adroit-door. In contrast, BOTO demonstrates enhanced robustness to unlearning and achieves
faster recovery during the early stages of fine-tuning (around 10k steps) across most environments,
highlighting the effectiveness of its Q-function initialization learned during the prior pretraining
phase. Moreover, BOTO remains resilient to distributional mismatch, as the Q-function is trained to
provide bounded estimates across the entire action space through regularization, enabling effective
extrapolation beyond the support of the offline dataset and mitigating both excessive underestimation
and overestimation for OOD actions.

5.3 COMPATIBILITY WITH OFFLINE RL ALGORITHMS

To further validate the generality of our approach, we evaluate BOTO using an alternative offline
RL algorithm. This experiment demonstrates that BOTO effectively bounds the Q-function irre-
spective of the underlying pretrained policy and Q-function. As shown in Table 1, BOTO consis-
tently achieves strong performance across different offline RL initializations, including both CalQL
(BOTO+CalQL) and CQL (BOTO+CQL), underscoring its robustness and effectiveness indepen-
dent of the choice of offline algorithm. We compare performance on three tasks at three key points:
the onset of online fine-tuning (Initial step), the point at which unlearning occurs (Unlearning step),
and the end of online fine-tuning (Final step). Our method reduces the unlearning effects commonly
observed in both CalQL and CQL, resulting in more stable and higher overall performance. Specifi-
cally, in the Kitchen environments, BOTO offers a strong initialization that enables fast adaptation
and leads to superior asymptotic performance.

5.4 CONCLUSION

In this work, we address a key bottleneck in offline-to-online reinforcement learning (O2O RL):
the inaccurate estimation of state-action values for out-of-distribution actions inherited from the
offline phase. To mitigate this issue, we propose an algorithm-agnostic method that adjusts the
Q-function during online fine-tuning through a regularization scheme. Specifically, we introduce
structured noise into action samples to explicitly bound Q-value estimates across the action space.
This approach enables a flexible and principled initialization strategy that balances optimism and
conservatism in Q-value estimation, facilitating rapid online adaptation. While selecting an appro-
priate value for the bias controller may require tuning for specific environments, empirical results
across standard O2O RL benchmarks show that our method consistently improves both the stability
and final performance of online fine-tuning, outperforming strong baselines. These findings high-
light the critical role of Q-function initialization in O2O RL and point to promising future directions
for robust policy adaptation under distributional shift.
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A THEOREM

A.1 α-NAMDP OBJECTIVE

Proof. To derive the optimal Q-function for the α-NAMDP, we apply the Euler equation for func-
tionals (Gelfand et al., 2000). Consider a functional of the following form:

J [u] =

∫
· · ·
∫
R
F (x1, . . . , xn, u) dx1 · · · dxn (4)

which depends on n independent variables x1, . . . , xn and an unknown function u defined over these
variables. For the functional to attain an extremum, the following condition must be satisfied:

Fu(x) = 0 for all x (5)

The α-NAMDP objective Equation (3) can be cast in the same functional form:

J [Q] = Ea∼pD(·|s)
ā∼qσ(·|a)

∥∥∥∥∥Q(s, ā)− Es′∼pD(·|s,a)
ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]∥∥∥∥∥
2

2


=

∫
Rn

∫
A
pD(a|s)qσ(ā|a)

×

∥∥∥∥∥Q(s, ā)− Es′∼pD(·|s,a)
ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]∥∥∥∥∥
2

2

da dā

=

∫
Rn

F (ā1, . . . , ān, Q) dā

where

F (ā1, . . . , ān, Q) =

∫
A
pD(a|s)qσ(ā|a)

∥∥∥∥∥Q(s, ā)− Es′∼pD(·|s,a)
ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ā)

]∥∥∥∥∥
2

2

da

Suppose Q∗ minimizes the α-NAMDP objective equation 3. Then, by the Euler equation for func-
tionals, we have:

FQ∗(ā) = 2

∫
A
pD(a|s)qσ(ā|a)

(
Q∗(s, ā)− Es′∼pD(·|s,a)

ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

])
da = 0

(6)

Therefore, it follows that:∫
A
pD(a|s)qσ(ā|a)Q∗(s, ā) da

=

∫
A
pD(a|s)qσ(ā|a)Es′∼pD(·|s,a)

ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]
da (7)

This implies:

Q∗(s, ā) =

∫
A pD(a|s)qσ(ā|a)Es′∼pD(·|s,a)

ã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]
da∫

A pD(a|s)qσ(ā|a) da
(8)

=

∫
S
∫
A pD(a|s)qσ(ā|a)pD(s′|s, a)Eã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]
da ds′∫

A pD(a|s)qσ(ā|a) da
(9)

=

∫
S

∫
A
pD(s′|s, a)pD(ā|s, a, σ)Eã∼π(·|s′)

[
R(s, a)− α∥a− ā∥22 + γQπ(s′, ã)

]
da ds′

(10)
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We can separate this into two terms:

Q∗(s, ā) =

∫
A
pD(ā|s, a, σ)

(
R(s, a)− α∥a− ā∥22

)
da︸ ︷︷ ︸

Rσ(s,ā)

+ γ

∫
S

(
Eã∼π(·|s′)Q

π(s′, ã)
)(∫

A
pD(s′|s, a)pD(ā|s, a, σ) da

)
ds′︸ ︷︷ ︸

Es′∼Pσ(·|s,ā)[·]

(11)

Hence, Q∗ satisfies the Bellman equation in the α-NAMDP setting and represents the Q-value of
policy π under the α-NAMDP dynamics.

A.2 Q-VALUE BOUND IN THE α-NAMDP

Let θ∗ denote the parameters of Qθ that minimize the functional objective defined in Equation (3),
assuming a sufficiently expressive parameterization of the Q-function. Let V π be the true state
value function under policy π in the α-NAMDP. Then, for any policy π, the learned Q-function Qθ∗

satisfies:

Lπ(s, a) ≤ Qθ(s, a) ≤ Uπ(s, a) ∀(s, a) ∈ S ×A
where

Lπ(s, a) = min(0,−α) ·
∫
A
pD(ā | s, a, σ)∥a− ā∥22 da+ inf

a∈supp(pD(·|s)

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
,

Uπ(s, a) = max(0,−α) ·
∫
A
pD(ā | s, a, σ)∥a− ā∥22 da+ sup

a∈supp(pD(·|s)

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
.

Proof. Applying the Bellman equation for any state-action pair (s, a) ∈ S ×A, we have:

Qπ(s, a) = Rσ(s, a) + γ

∫
S
Pσ(s

′ | s, ā)V π(s′) ds′ (12)

=

∫
A
pD(a | s, ā, σ)

[
R(s, ā)− α∥a− ā∥22 + γ

∫
S
pD(s

′ | s, ā)V π(s′) ds′
]
dā (13)

=

∫
A
pD(a | s, ā, σ)

[
R(s, ā) + γ

∫
S
pD(s

′ | s, ā)V π(s′) ds′
]
dā− α

∫
A
pD(ā | s, a, σ)∥a− ā∥22 dā.

(14)

Since the dataset distribution pD(ā | s, ā, σ) is supported only on supp(pD(· | s)) and integrates to
1, we bound the first integral term as follows:

inf
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]

(15)

≤
∫
A
pD(a | s, ā, σ)

[
R(s, ā) + γ

∫
S
pD(s

′ | s, ā)V π(s′) ds′
]
dā (16)

≤ sup
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
. (17)

Similarly, we bound the second integral term as follows:

min(0,−α) ·
∫
A
pD(a | s, ā, σ)∥a− ā∥22 dā (18)

≤ −α

∫
A
pD(ā | s, a, σ)∥a− ā∥22 da (19)

≤ max(0,−α) ·
∫
A
pD(a | s, ā, σ)∥a− ā∥22 dā (20)
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Combining the two established inequalities, we finally derive:

inf
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
+min(0,−α) ·

∫
A
pD(a | s, ā, σ)∥a− ā∥22 dā

≤ Qπ(s, a) = Qθ(s, a) (by Theorem 1)

≤ sup
a∈supp(pD(·|s))

[
R(s, a) + γ

∫
S
pD(s

′ | s, a)V π(s′) ds′
]
+max(0,−α) ·

∫
A
pD(a | s, ā, σ)∥a− ā∥22 dā

This concludes the proof.
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B EXPERIMENTAL DETAILS

All experiments were conducted on a single NVIDIA RTX 3090 GPU and an Intel Xeon Gold 6330
CPU with 256 GB of RAM, running Ubuntu 22.04.4 LTS and JAX version 0.6.1.

Our code is available at: https://anonymous.4open.science/r/BOTO-5FF8/README.md

In all experiments, we selected the value of α from the range [−1, 1] with a discretization interval of
0.1.

Task α BOTO step
antmaze-large-diverse-v2 -1.0 100,000
antmaze-large-play-v2 -0.7 100,000
kitchen-partial-v0 0.8 250,000
kitchen-mixed-v0 1.0 250,000
door-binary-v0 0.0 100,000
pen-binary-v0 -0.9 100,000

Table 2: Hyperparameters: α and BOTO training step per task.

B.1 NOISE DISTRIBUTION

We also, to sample the perturbed action, follow the Hybrid Noise Distribution proposed by Oh &
Lee (2025):

qhyb
σ (ā | a) = Eλ∼U(log σ,0)

[
qAexp(λ)(ā | a)

]
,

where
qAt (ā | a) = α(t)U(ā | A) + (1− α(t))N (ā|a, t2I)

We set log σ = −30 for antmaze-large-diverse-v2, and log σ = −20 for all other envi-
ronments.

B.2 ENVIRONMENT DETAILS

We evaluate our method across several standard benchmark tasks and datasets widely adopted in
previous studies (Zhou et al., 2024; Shin et al., 2025). Our evaluation spans the Antmaze, Kitchen
and Adroit domains from the D4RL benchmark suite (Fu et al., 2020). (1) The Antmaze domain,
comprising long-horizon navigation challenges with sparse rewards, where an 8-DoF Ant robot
must reach predefined goals (antmaze-large-diverse-v2, antmaze-large-play-v2).
(2) The Kitchen environment, a long-horizon task where a 9-DoF Franka arm must exe-
cute a sequence of four subtasks in a simulated kitchen setting (kitchen-partial and
kitchen-mixed). (3) Two Adroit manipulation tasks involving a 28-DoF five-fingered robotic
hand: reorienting a pen to a target pose (pen-binary) and opening a door by manipulating a latch
(door-binary).

B.3 COMPUTE RESOURCE

Table 3 summarizes the wall-clock training time across different tasks.

Task Time
antmaze-large-diverse-v2 2h 48m
antmaze-large-play-v2 2h 40m
kitchen-partial-v0 5h 53m
kitchen-mixed-v0 4h 51m
door-binary-v0 5h 49m
pen-binary-v0 4h 45m

Table 3: Training Wall-Clock Time
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