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ABSTRACT

We propose a novel learning paradigm, Self-Imitation via Reduction (SIR), for
solving compositional reinforcement learning problems. SIR is based on two core
ideas: task reduction and self-imitation. Task reduction tackles a hard-to-solve
task by actively reducing it to an easier task whose solution is known by the
RL agent. Once the original hard task is successfully solved by task reduction,
the agent naturally obtains a self-generated solution trajectory to imitate. By
continuously collecting and imitating such demonstrations, the agent is able to
progressively expand the solved subspace in the entire task space. Experiment
results show that SIR can significantly accelerate and improve learning on a variety
of challenging sparse-reward continuous-control problems with compositional
structures. Code and videos are available at https://sites.google.com/
view/sir-compositional.

1 INTRODUCTION

A large part of everyday human activities involves sequential tasks that have compositional structure,
i.e., complex tasks which are built up in a systematic way from simpler tasks (Singh, 1991). Even in
some very simple scenarios such as lifting an object, opening a door, sitting down, or driving a car,
we usually decompose an activity into multiple steps and take multiple physical actions to finish each
of the steps in our mind. Building an intelligent agent that can solve a wide range of compositional
decision making problems as such remains a long-standing challenge in AI.

Deep reinforcement learning (RL) has recently shown promising capabilities for solving complex
decision making problems. But most approaches for these compositional challenges either rely on
carefully designed reward function (Warde-Farley et al., 2019; Yu et al., 2019; Li et al., 2020; OpenAI
et al., 2019), which is typically subtle to derive and requires strong domain knowledge, or utilize a
hierarchical policy structure (Kulkarni et al., 2016; Bacon et al., 2017; Nachum et al., 2018; Lynch
et al., 2019; Bagaria & Konidaris, 2020), which typically assumes a set of low-level policies for skills
and a high-level policy for choosing the next skill to use. Although the policy hierarchy introduces
structural inductive bias into RL, effective low-level skills can be non-trivial to obtain and the bi-level
policy structure often causes additional optimization difficulties in practice.

In this paper, we propose a novel RL paradigm, Self-Imitation via Reduction (SIR), which (1)
naturally works on sparse-reward problems with compositional structures, and (2) does not impose
any structural requirement on policy representation. SIR has two critical components, task reduction
and imitation learning. Task reduction leverages the compositionality in a parameterized task space
and tackles an unsolved hard task by actively “simplifying” it to an easier one whose solution is
known already. When a hard task is successfully accomplished via task reduction, we can further run
imitation learning on the obtained solution trajectories to significantly accelerate training.

Fig. 1 illustrates task reduction in a pushing scenario with an elongated box (brown) and a cubic box
(blue). Consider pushing the cubic box to the goal position (red). The difficulty comes with the wall
on the table which contains a small door in the middle. When the door is clear (Fig. 1a), the task is
easy and straightforward to solve. However, when the door is blocked by the elongated box (Fig. 1b),
the task becomes significantly harder: the robot needs to clear the door before it can start pushing the
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(a) An easy task, which can be completed by a straight-
forward push of the blue cubic box.

(b) A hard task, where a straightforward push fails
since the elongated box blocks the door.

(c) Task reduction: solve a hard task by reducing it to an easier one.

Figure 1: An example use case of task reduction, the key technique of our approach. The task is to
push the blue box to the red position.

cubic box. Such a compositional strategy is non-trivial to discover by directly running standard RL.
By contrast, this solution is much easier to derive via task reduction: starting from an initial state
with the door blocked (Fig. 1b), the agent can first imagine a simplified task that has the same goal
but starts from a different initial state with a clear door (Fig. 1a); then the agent can convert to this
simplified task by physically perturbing the elongate box to reach the desired initial state (Fig. 1c);
finally, a straightforward push completes the solution to the original hard task (Fig. 1b).

Notably, by running imitation learning on the composite reduction trajectories, we effectively incor-
porate the inductive bias of compositionality into the learned policy without the need of explicitly
specifying any low-level skills or options, which significantly simplifies policy optimization. More-
over, although task reduction only performs 1-step planning from a planning perspective, SIR still
retains the capability of learning an arbitrarily complex policy by alternating between imitation and
reduction: as more tasks are solved, these learned tasks can recursively further serve as new reduction
targets for unsolved ones in the task space, while the policy gradually generalizes to increasingly
harder tasks by imitating solution trajectories with growing complexity.

We implement SIR by jointly learning a goal-conditioned policy and a universal value function (Schaul
et al., 2015), so that task reduction can be accomplished via state search over the value function and
policy execution with different goals. Empirical results show that SIR can significantly accelerate
and improve policy learning on challenging sparse-reward continuous-control problems, including
robotics pushing, stacking and maze navigation, with both object-based and visual state space.

2 RELATED WORK

Hierarchical RL (HRL) (Barto & Mahadevan, 2003) is perhaps the most popular approach for
solving compositional RL problems, which assumes a low-level policy for primitive skills and a
high-level policy for sequentially proposing subgoals. Such a bi-level policy structure reduces
the planning horizon for each policy but raises optimization challenges. For example, many HRL
works require pretraining low-level skills (Singh, 1991; Kulkarni et al., 2016; Florensa et al., 2017;
Riedmiller et al., 2018; Haarnoja et al., 2018a) or non-trivial algorithmic modifications to learn both
modules jointly (Dayan & Hinton, 1993; Silver & Ciosek, 2012; Bacon et al., 2017; Vezhnevets
et al., 2017; Nachum et al., 2018). On the contrary, our paradigm works with any policy architecture
of enough representation power by imitating composite trajectories. Notably, such an idea of
exploiting regularities on behavior instead of constraints on policy structures can be traced back to
the “Hierarchies of Machines” model in 1998 (Parr & Russell, 1998).

Our approach is also related to the options framework (Sutton et al., 1999; Precup, 2000), which
explicitly decomposes a complex task into a sequence of temporal abstractions, i.e., options. The
options framework also assumes a hierarchical representation with an inter-option controller and a
discrete set of reusable intra-option policies, which are typically non-trivial to obtain (Konidaris &
Barto, 2009; Konidaris et al., 2012; Bagaria & Konidaris, 2020; Wulfmeier et al., 2020). SIR implicitly
reuses previously learned “skills” via task reduction and distills all the composite strategies into a
single policy. Besides, there are other works tackling different problems with conceptually similar
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composition techniques. Probabilistic policy reuse (Fernández-Rebollo & Veloso, 2006; Fernández-
Rebollo et al., 2010) executes a discrete set of previously learned policies for structural exploration.
Fang et al. (2019) consider a dynamic goal setting without manipulable objects and compose an agent
trajectory and a goal trajectory that collide as supervision. Dhiman et al. (2018) transfer previous
knowledge to new goals in tabular cases by constraining value functions. Task reduction produces an
expanding solved task space, which is conceptually related to life-long learning (Tessler et al., 2017)
and open-ended learning (Wang et al., 2019).

Evidently, many recent advances have shown that with generic architectures, e.g., convolution (Le-
Cun et al., 1995) and self-attention (Vaswani et al., 2017), simply training on massive data yields
surprisingly intelligent agents for image generation (Chen et al., 2020), language modeling (Brown
et al., 2020), dialogue (Adiwardana et al., 2020) and gaming (Schrittwieser et al., 2019; Baker et al.,
2020). Hence, we suggest building intelligent RL agents via a similar principle, i.e., design a diverse
task spectrum and then perform supervised learning on complex strategies.

The technical foundation of SIR is to use a universal value function and a goal conditioned pol-
icy (Kaelbling, 1993; Schaul et al., 2015), which has been successfully applied in various domains,
including tackling sparse rewards (Andrychowicz et al., 2017), visual navigation (Zhu et al., 2017),
planning (Srinivas et al., 2018), imitation learning (Ding et al., 2019) and continuous control (Nair
et al., 2018). Besides, task reduction requires state-space search/planning over an approximate value
function. Similar ideas of approximate state search have been also explored (Pathak et al., 2018;
Eysenbach et al., 2019; Nasiriany et al., 2019; Ren et al., 2019; Nair & Finn, 2020). SIR accelerates
learning by imitating its own behavior, which is typically called self-imitation (Oh et al., 2018; Ding
et al., 2019; Lynch et al., 2019) or self-supervision (Nair et al., 2018; 2019; Pong et al., 2019; Ghosh
et al., 2019). In this paper, we use techniques similar to Rajeswaran et al. (2018) and Oh et al. (2018),
but in general, SIR does not rely on any particular imitation learning algorithm.

There are also related works on compositional problems of orthogonal interests, such as learning to
smoothly compose skills (Lee et al., 2019), composing skills via embedding arithmetic (Sahni et al.,
2017; Devin et al., 2019), composing skills in real-time (Peng et al., 2019), following instructions (An-
dreas et al., 2017; Jiang et al., 2019) and manually constructing “iterative-refinement” strategies to
address supervised learning tasks (Nguyen et al., 2017; Hjelm et al., 2016; Chang et al., 2019).

Conceptually, our method is also related to curriculum learning (CL). Many automatic CL meth-
ods (Graves et al., 2017; Florensa et al., 2018; Matiisen et al., 2019; Portelas et al., 2019; Racaniere
et al., 2020) also assume a task space and explicitly construct task curricula from easy cases to hard
ones over the space. In our paradigm, task reduction reduces a hard task to a simpler solved task,
so the reduction trace over the solved tasks can be viewed as an implicit task curriculum. Such a
phenomenon of an implicitly ever-expanding solved subspace has been also reported in other works
for tackling goal-conditioned RL problems (Warde-Farley et al., 2019; Lynch et al., 2019). Despite
the conceptual similarity, there are major differences between SIR and CL. SIR assumes a given task
sampler and primarily focuses on efficiently finding a policy to a given task via task decomposition.
By contrast, CL focuses on task generation and typically treats policy learning as a black box. We also
show in the experiment section that SIR is complementary to CL training and can solve a challenging
sparse-reward stacking task (Sec. 5.2) that was unsolved by curriculum learning alone. We remark
that it is also possible to extend SIR to a full CL method and leave it as future work.

3 PRELIMINARY AND NOTATIONS

We consider a multi-task reinforcement learning setting over a parameterized task space T .
Each task T ∈ T is represented as a goal-conditioned Markov Decision Process (MDP),
T = (S,A, sT , gT , r(s, a; gT ), P (s′|s, a; gT )), where S is the state space, A is the action space,
sT , gT ∈ S are the initial state and the goal to reach, r(s, a; gT ) is the reward function of task T ,
and P (s′|s, a; gT ) is the transition probability. Particularly, we consider a sparse reward setting, i.e.,
r(s, a; gT ) = I [d(s, gT ) ≤ δ], where the agent only receives a non-zero reward when the goal is
achieved w.r.t. some distance metric d(·, ·). We assume that the state space and the action space are
shared across tasks, and different tasks share the same physical dynamics (i.e., gT only influences the
termination condition of the transition probability P ), so a task T is determined by its initial state
sT and goal gT . We also assume a task sampler C, which samples training tasks from T . C can be
simply a uniform sampler or something more intelligent. For evaluation, we are interested in the most
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challenging tasks in T . The learning agent is represented as a stochastic policy πθ(a|s, gT ) condition-
ing on state s and goal gT and parameterized by θ. We aim to find the optimal parameter θ? such that
policy πθ? maximizes the expected accumulative reward across every task T ∈ T with a discounted
factor γ, i.e., θ? = argmaxθ E [

∑
t γ

tr(st, at; gT )] where at ∼ πθ(a|st, gT ). Correspondingly, we
also learn a universal value function Vψ(st, gT ) for state st and goal gT parameterized by ψ w.r.t. πθ.
The subscript θ in πθ and ψ in Vψ will be omitted for simplicity in the following content.

4 METHOD

4.1 TASK REDUCTION

The core idea of task reduction is to convert a hard-to-solve task A ∈ T to some task B ∈ T that
the agent has learned to solve, so that the original task A can be accomplished via composing two
simpler tasks, i.e., (1) reducing task A to B and (2) solving the reduced task B. More formally, for
a task A with initial state sA and goal gA that the current policy π cannot solve, we want to find a
reduction target B with initial state sB and goal gB such that (1) the task to reach state sB from sA is
easy, and (2) B has the same goal as A (i.e., gB = gA) and solving task B is easy. A natural measure
of how easy a task is under π is to evaluate the universal value function V (·). Hence, task reduction
aims to find the best target state s?B , which is the initial state of some task B, such that

s?B = argmax
sB

V (sA, sB)⊕ V (sB , gA) := argmax
sB

V (sA, sB , gA), (1)

where ⊕ is some composition operator and V (sA, sB , gA) denotes the composite value w.r.t a
particular target state sB . There are multiple choices for ⊕, including minimum value, average or
product (due to 0/1 sparse rewards). Empirically, taking the product of two values leads to the best
practical performance. Thus, we assume V (sA, sB , gA) := V (sA, sB) · V (sB , gA) in this paper.

With the optimal target state s?B obtained, the agent can perform task reduction by executing the
policy π(a|sA, s?B) from the initial state sA. If this policy execution leads to some successful state s′B
(i.e., within a threshold to s?B), the agent can continue executing π(a|s′B , gA) from state s′B towards
the ultimate goal gA. Note that it may not always be possible to apply task reduction successfully
since either of these two policy executions can be a failure. There are two causes of failure: (i) the
approximation error of the value function; (ii) task A is merely too hard for the current policy. For
cause (i), the error is intrinsic and cannot be even realized until we actually execute the policy in the
environment; while for cause (ii), we are able to improve sample efficiency by only performing task
reduction when it is likely to succeed, e.g., when V (sA, s

?
B , gA) exceeds some threshold σ.

4.2 SELF-IMITATION

Once task reduction is successfully applied to a hard task A via a target state s?B , we obtain two
trajectories, one for reducing A to B with final state s′B , and the other for the reduced task B starting
at s′B . Concatenating these two trajectories yields a successful demonstration for the original task
A. Therefore, by continuously collecting successful trajectories produced by task reduction, we can
perform imitation learning on these self-demonstrations. Suppose demonstration dataset is denoted
by Dil = {(s, a, g)}. We utilize a weighted imitation learning objective (Oh et al., 2018) as follows:

Lil(θ;Dil) = E(s,a,g)∈Dil [log π(a|s, g)A(s, g)+] , (2)

where A(s, g)+ denotes the clipped advantage, i.e., max(0, R− V (s, g)). Self-imitation allows the
agent to more efficiently solve harder tasks by explicitly using past experiences on easy tasks.

4.3 SIR: SELF-IMITATION VIA REDUCTION

We present SIR by combining deep RL and self-imitation on reduction demonstrations. SIR is
compatible with both off-policy and on-policy RL. We use soft actor-critic (Haarnoja et al., 2018b)
with hindsight experience replay (Andrychowicz et al., 2017) (SAC) and proximal policy gradient
(PPO) (Schulman et al., 2017) respectively in this paper. In general, an RL algorithm trains an
actor and a critic with rollout data Drl from the environment or the replay buffer by optimizing
algorithm-specific actor loss Lactor(θ;Drl) and critic loss Lcritic(ψ;Drl).
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For policy learning, since our reduction demonstrationsDil are largely off-policy, it is straightforward
to incorporate Dil in the off-policy setting: we can simply aggregate the demonstrations into the
experience replay and jointly optimize the self-imitation loss and the policy learning loss by

LSIR(θ;Drl,Dil) = Lactor(θ;Drl ∪ Dil) + βLil(θ;Drl ∪ Dil).
While in the on-policy setting, we only perform imitation on demonstrations. Since the size of Dil is
typically much smaller than Drl, we utilize the following per-instance loss to prevent overfit on Dil:

LSIR(θ;Drl,Dil) = ‖D
rl‖Lactor(θ;Drl) + ‖Dil‖Lil(θ;Dil)

‖Drl ∪ Dil‖
.

For critic learning, since the objective is consistent with both data sources, we can simply optimize
Lcritic(ψ;Drl ∪ Dil). The proposed algorithm is summarized in Algo. 1.

4.4 IMPLEMENTATION AND EXTENSIONS

Algorithm 1: Self-Imitation via Reduction

initialize πθ, Vψ; Drl ← ∅, Dil ← ∅;
repeat

τ ← trajectory by πθ in task A from
C;
Drl ← Drl + {τ};
if τ is a failure then

find target state s?B w.r.t. Eq. (1);
if V (sA, s

?
B , gA) > σ then

τ ′ ← trajectory by reduction;
if τ ′ is a success then
Dil ← Dil + {τ ′};

if enough new data collected then
θ ← θ + α∇LSIR(θ;Drl,Dil);
ψ ← ψ+α∇Lcritic(ψ;Drl∪Dil);

until enough iterations;
return πθ, Vψ;

Task Space: We primarily consider object-based
state space, where a goal state is determined by
whether an object reaches some desired location.
We also extend our method to image input by learn-
ing a low-dimensional latent representation (Higgins
et al., 2017b) and then perform task reduction over
the latent states (see Sec. 5.3). We do not consider
strong partial-observability (Pinto et al., 2018) in
this paper and leave it as future work.

Reduction-Target Search: In our implementation,
we simply perform a random search to find the top-2
candidates for s?B in Eq. (1) and try both of them. We
also use the cross-entropy method (De Boer et al.,
2005) for efficient planning over the latent space
with image input (Sec. 5.3). Alternative planning
methods can be also applied, such as Bayesian opti-
mization (Snoek et al., 2012; Swersky et al., 2014),
gradient descent (Srinivas et al., 2018), or learn-
ing a neural planner (Wang et al., 2018; Nair et al.,
2019). We emphasize that the reduction search is
performed completely on the learned value function,
which does not require any environment interactions.

Particularly in the object-centric state space, an extremely effective strategy for reducing the search
space is to constrain the target sB to differ from the current state sA by just a few objects (e.g.,
1 object in our applications). Due to the compositionality over objects, the agent can still learn
arbitrarily complex behavior recursively throughout the training. When performing task reduction in
training, SIR explicitly resets the initial state and goal of the current task, which is a very common
setting in curriculum learning and goal-conditioned policy learning. It is possible to avoid resets by
archiving solutions to solved tasks to approximate a reduction trajectory. We leave it as future work.

Estimating σ: We use a static σ for SAC. For PPO, we empirically observe that, as training proceeds,
the output scale of the learned value function keeps increasing. Hence, we maintain an online estimate
for σ, i.e., a running average of the composite values over all the selected reduction targets.

Imitation Learning: Note that there can be multiple feasible reduction targets for a particular task.
Hence, the self-demonstrations can be highly multi-modal. This issue is out of the scope of this paper
but it can be possibly addressed through some recent advances in imitation learning (Ho & Ermon,
2016; Guo et al., 2019; Lynch et al., 2019).

5 EXPERIMENTS

We compare SIR with baselines without task reduction. Experiments are presented in 3 different
environments simulated in MuJoCo (Todorov et al., 2012) engine: a robotic-hand pushing scenario
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with a wall opening (denoted by “Push”), a robotic-gripper stacking scenario (denoted by “Stack”),
and a 2D particle-based maze scenario with a much larger environment space (denoted by “Maze”).
All of the scenarios allow random initial and goal states so as to form a continuously parameterized
task space. All of the problems are fully-observable with 0/1 sparse rewards and are able to restart
from a given state when performing task reduction. All the training results are repeated over 3
random seeds. We empirically notice that SAC has superior performance in robotics tasks but takes
significantly longer wall-clock time than PPO in the maze navigation tasks (see Fig. 17 in Appx. C).
Hence, we use SAC in Push and Stack while PPO in Maze for RL training in all the algorithms if not
otherwise stated. We remark that we also additionally report SAC results for a simplified Maze task
in Appx. C (see Fig. 18). We primarily consider state-based observations and additionally explore the
extension to image input in a Maze scenario. More details and results can be found in the appendices.

5.1 Push SCENARIO

(a) state (b) reduction (c) reduced task (d) composite

Figure 2: Heatmap of learned value function. (a) current state;
(b) value for moving the elongated box elsewhere; (c) value for
moving the cubic box to goal w.r.t. different elong. box pos.; (d)
composite value for different reduction targets: moving elong.
box away from door yields high values for task reduction.

Hard Rand.

SAC only 0.406 0.771
SAC + TR 0.764 0.772

Table 1: Task Reduction (TR)
as a test-time planner. We
evaluate the success rates on
test tasks when additional TR
steps are allowed in the execu-
tion of the SAC-trained policy.
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Figure 3: Avg. success rate w.r.t. samples over
current task distribution (left) and in hard cases
(right) in the Push scenario.

As shown in Fig. 1 (Sec. 1), there are two objects
on the table, a cubic box (blue) and an elongated
box (brown). The robot needs to push a specified
object to a goal location (red). The table is sep-
arated into two connected regions by a fixed wall
with an open door in the middle. The initial ob-
ject positions, goal location, robot hand location,
and which object to push are randomly reset per
episode.

Learned Value Function: We retrieve a par-
tially trained value function during learning and

illustrate how task reduction is performed over it in Fig. 2. Consider a hard task shown in Fig. 2a
where the door is blocked by the elongated box and the agent needs to move the cubic box to the
goal on the other side. A possible search space is the easier tasks with the position of the elongated
box perturbed. We demonstrate the learned values for moving the elongated box to different goal
positions in Fig. 2b, where we observe consistently lower values for faraway goals. Similarly, Fig. 2c
visualizes the values for all possible reduced tasks, i.e., moving the cubic box to the goal with the
elongated box placed in different places. We can observe higher values when the elongated box
is away from the door. Fig. 2d shows the composite values w.r.t. different target states, where the
reduction search is actually performed. We can clearly see two modes on both sides of the door.

Task Reduction as a Planner: Task reduction can serve as a test-time planner by searching for a
reduction target that possibly yields a higher composite value than direct policy execution. We use a
half-trained policy and value function by SAC and test in a fixed set of 1000 random tasks. Since
random sampling rarely produces hard cases, we also evaluate in 1000 hard tasks where the elongated
box blocks the door and separates the cubic box and goal. The results are in Table. 1, where task
reduction effectively boosts performances in hard cases, which require effective planning.

Performances: SIR is compared with three different baselines: SAC; SAC with self-imitation
learning (SIL), which does not run task reduction and only imitates past successful trajectories
directly generated by policy execution; SAC with a dense reward (DS), i.e., a potential-based distance
reward from object to the goal. We evaluate the average success rate over the entire task distribution
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Figure 4: SIR-learned strategy for stacking 3 boxes in the Stack scenario. The yellow spot in the air
is the goal, which requires a yellow box to be stacked to reach it.
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Figure 5: Training results in the Stack sce-
nario with at most 3 boxes. We evaluate suc-
cess rate across training curriculum (left) and
in hard cases, i.e., stacking 3 boxes (right).

# Box 1 2 3

SAC 0.96±0.01 0.94±0.03 0.25±0.03
SIL 0.89±0.06 0.96±0.03 0.28±0.02
DS 0.93±0.02 0.67±0.15 0.27±0.01
SIR 0.96±0.03 0.98±0.01 0.89±0.03

Table 2: Average success rate and standard devia-
tion of different algorithms for stacking different
number of boxes evaluated at the same training
samples.

as well as the hard-case success rate (i.e., with a blocked door) in Fig. 3, where SIR achieves the
best overall performances, particularly in hard cases. We emphasize that for SIR, we include all
the discarded samples due to failed task reductions in the plots. Since the only difference between
SIR and SIL is the use of task reduction, our improvement over SIL suggests that task reduction is
effective for those compositional challenges while burdened with minimal overall overhead.

5.2 Stack SCENARIO

Next, we consider a substantially more challenging task in a similar environment to Push: there is a
robotics gripper and at most 3 cubic boxes with different colors on the table. The goal is to stack a
tower using these boxes such that a specified cubic box remains stable at a desired goal position even
with gripper fingers left apart. Therefore, if the goal is in the air, the agent must learn to first stack
non-target boxes in the bottom, to which there are even multiple valid solutions, before it can finally
put the target box on the top. See Fig. 4 for an example of stacking the yellow box towards the goal
position (i.e, the yellow spot in the air). Each episode starts with a random number of boxes with
random initial locations and a colored goal that is viable to reach via stacking.

This task is extremely challenging, so we (1) introduce an auxiliary training task, pick-and-place,
whose goal is simply relocating a specified box to the goal position, and (2) carefully design a training
curriculum for all methods by gradually decreasing the ratio of pick-and-place tasks from 70% to
30% throughout the training. For evaluation, a task is considered as a hard case if all the 3 boxes are
required to be stacked together.

We show the training curves as well as the hard-case success rate for SIR and other methods in Fig. 5.
SIR significantly outperforms all the baselines, especially in the hard cases, i.e., stacking all the 3
boxes. Table. 2 illustrates the detailed success rate of different methods for stacking 1, 2 and 3 boxes.
SIR reliably solves all the cases while other methods without task reduction struggle to discover the
desired compositional strategy to solve the hardest cases. Fig. 4 visualizes a successful trajectory by
SIR for stacking 3 boxes from scratch, where the goal is to stack the yellow box to reach the goal
spot in the air. Interestingly, the agent even reliably discovers a non-trivial strategy: it first puts the
yellow box on the top of the green box to form a tower of two stories, and then picks these two boxes
jointly, and finally places this tower on top of the blue box to finish the task.

5.3 Maze SCENARIO

In this scenario, we focus on a navigation problem with a particle-based agent in a large 2D maze,
named “4-Room maze”. The maze is separated into 4 connected rooms by three fixed walls and each
wall has an open door in the middle. There are 4 objects in the maze, including 3 elongated boxes
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Figure 6: SIR-learned strategy for a hard case in the 4-Room maze scenario. The agent(green) is
tasked to move the blue box to the target(red). All three doors are blocked by elongated boxes, so the
agent needs to clear them before pushing the blue box towards the target.
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Figure 7: Results in 4-Room maze. Left: suc-
cess rate in the training task distribution; Right:
success rate evaluated only in the hard cases.
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Figure 8: Navigation in U-Wall maze with im-
age input. Left: task visualization; Right: avg.
training success rates w.r.t. samples.

(brown) and 1 cubic box (blue). The task for the agent (green) is to move a specified object to a goal
position (red). We consider a case hard when (i) the agent needs to move the cubic box to a different
room, and (ii) at least one door is blocked by the elongated boxes.

Figure 6 visualizes a particularly challenging situation: the agent needs to move the cubic box to the
goal but all three doors are precisely blocked by the elongated boxes. To solve this task, the agent
must perturb all the elongated boxes to clear the doors before moving the cubic box. As is shown in
Fig. 6, the agent trained by SIR successfully learns this non-trivial strategy and finishes the task.

We adopt PPO for training here and compare SIR to baselines in terms of average success rate over
both the training task distribution and the hard tasks only. The results are shown in Fig. 7. SIR
outperforms both PPO and SIL baselines with a clear margin, especially when evaluated on hard
cases. Note that although SIL learns slightly more efficiently at the beginning of training, it gets stuck
later and does not make sufficient progress towards the most challenging cases requiring complex
compositional strategies to solve.

Extension to visual domain: We consider extending SIR to the setting of image input by first pre-
training a β-VAE (Higgins et al., 2017a) to project the high-dimensional image to a low-dimensional
latent vector and then perform task reduction over the latent space. We train the β-VAE using random
samples from the environment and apply the cross-entropy method (CEM) (De Boer et al., 2005) to
search for the reduction targets. We experiment in a sparse-reward variant of the U-Wall maze task
adapted from Nasiriany et al. (2019), where the agent (blue) needs to navigate to the goal (green) by
turning around the wall (boundary plotted in black). Task visualization and training results are shown
in Fig. 8, where SIR still achieves the best performance compared with PPO and SIL.

Comparison with HRL: We also compare SIR with two baselines with hierarchical policy structures,
i.e., an off-policy HRL algorithm HIRO (Nachum et al., 2018) and an option discovery algorithm
DSC (Bagaria & Konidaris, 2020). Since these two HRL baselines are both based on off-policy
learning, we use SAC as our training algorithm in SIR for a fair comparison. In addition, since both
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Figure 9: Comparison of HRL baselines and SIR in the fixed-goal Maze scenarios.
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two baselines also assume a fixed goal position, we experiment in two fixed-goal Maze scenarios.
We first conduct a sanity check in a simple U-Shape maze without any boxes (Fig. 9a), where the
agent (yellow) is expected to propel itself towards the goal (red). Then we experiment in a 3-Room
maze (Fig. 9b), which is a simplified version of the previously described 4-Room maze. The results
are shown in Fig. 9. Although HIRO and DSC learn to solve the easy U-shape maze, they hardly
make any progress in the more difficult 3-Room maze, which requires a non-trivial compositional
strategy. Note that DSC is extremely slow in 3-Room maze, so we terminate it after 5 days of training.
In contrast, even without any policy hierarchies, SIR learns significantly faster in both two scenarios.
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Figure 10: Comparison with curriculum
learning methods in the U-Shape maze (fixed
goal). We consider SIR with a uniform task
sampler and standard PPO with GoalGAN
and a manually designed curriculum.

Comparison with automatic curriculum learning:
As discussed at the end of Sec. 2, SIR implicitly con-
structs a task curriculum by first solving easy tasks
and then reducing a hard task to a solved one. Hence,
we also conduct experiments with curriculum learn-
ing (CL) methods. We compare SIR using a uniform
task sampler with standard PPO learning with Goal-
GAN (Florensa et al., 2018), an automatic CL ap-
proach, as well as a manually designed training cur-
riculum, which gradually increases the distance be-
tween the goal and the start position. Since GoalGAN
assumes a fixed initial position for the agent while
only specifies the goal position, we consider the un-
modified navigation problem used in Florensa et al.
(2018) for a fair comparison. The results are shown in Fig. 10. Even with a uniform task sampler,
SIR significantly outperforms the CL baselines that do not leverage the task reduction technique.
We want to remark that GoalGAN eventually solves the task with 106 samples since it takes a large
number of samples to train an effective GAN for task sampling. By contrast, SIR directly works with
a uniform task sampler and implicitly learns from easy to hard in a much lightweight fashion. Finally,
we emphasize that SIR is also complementary to curriculum learning methods. As we previously
show in Sec. 5.2, combining SIR and a manually-designed training curriculum solves a challenging
stacking problem, which is unsolved by solely running curriculum learning.

6 CONCLUSION

This paper presents a novel learning paradigm SIR for solving complex RL problems. SIR utilizes
task reduction to leverage compositional structure in the task space and performs imitation learning to
effectively tackle successively more challenging tasks. We show that an RL agent trained by SIR can
efficiently learn sophisticated strategies in challenging sparse-reward continuous-control problems.
Task reduction suggests a simple but effective way, i.e., supervised learning on composite trajectories
with a generic policy representation, to incorporate inductive bias into policy learning, which, we
hope, could bring valuable insights to the community towards a wider range of challenges.
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A ENVIRONMENT DETAILS

A.1 PUSH SCENARIO

The robot is placed beside a 50cm × 70cm table with an elongated box and a cubic box on it. The
initial position of the two boxes, the projection of the initial gripper position onto the table plane, and
the goal position are sampled from a 30cm × 30cm square on the table. The gripper is initialized at a
fixed height above the table.

Observation space The observation vector is a concatenation of state, achieved goal and desired
goal. State consists of the position and velocity of the gripper, the cubic box and the elongated box,
as well as the state and velocity of the gripper fingers. Desired goal vector consists of a position
coordinate and a one-hot vector indicating the identity of the target object. Achieved goal contains
the current position of the target object and its corresponding one-hot index vector.

Action space The action is 4-dimensional, with the first 3 elements indicating the desired position
shift of the end-effector and the last element controlling the gripper fingers (locked in this scenario).

Hard case configuration Our training distribution is a mixture of easy and hard cases. In easy
cases, positions of the gripper, the boxes and the goal are all uniformly sampled. The index of the
target object is also uniformly sampled from total number of objects. In hard cases, the position of
the gripper, the position of the cubic box, and the target object index are still uniformly sampled, but
the elongated box is initialized at a fixed location that blocks the door open of the wall. The goal is
on the opposite side of the wall if the target object is the cubic box.

A.2 STACK SCENARIO

The physical setup of this scenario is much the same as that in Push scenario, except that there is
no wall on the table. At the beginning of each episode, the number of boxes on the table, the goal
position and the target object index are sampled from a designed task curriculum. As explained in the
main paper, there are two types of tasks, stacking and pick-and-place in the curriculum, and the type
of task is also reset in each episode.

The (x, y) coordinate of the goal is uniformly sampled from a 30cm× 30cm square on the table, while
goal height gz is initialized depending on the type of task of the current episode: for pick-and-place
tasks, gz ∼ table height + U(0, 0.45) and for stacking tasks, gz = table height + N · box height,
where N ∈ [1, Nmax] denotes the number of boxes.

Observation space The observation vector shares the same structure with Push scenario, but
includes another one-hot vector indicating the type of the task.

Action space The action vector is the same as that in Push scenario.

Hard case configuration The hard cases we are most interested in are stacking Nmax boxes so
that the target box reaches the goal position with the gripper fingers left apart.

A.3 MAZE SCENARIO

This scenario deals with a 2D maze. The agent (green) can only apply force to itself in the directions
parallel to the floor plane. The position of the agent and the goal are both uniformly sampled from
the collision-free space in the maze.

Observation space The structure of observation space is generally the same as the Push scenario
except that the state and velocity of gripper fingers are not included in the state vector since there is
no gripper in Maze scenarios. In U-Shape Maze, the one-hot target object indicator is omitted since
there is no object except the agent itself. For experiments in the visual domain, RGB images of shape
48× 48 are directly used as observations.
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(a) reduction (b) reduced task (c) ⊕ = product (d) ⊕ = min (e) ⊕ = avg

Figure 11: Heatmap of value function with different composition operators. (a) value for moving
elongated box elsewhere, (b) value for moving cubic box to goal w.r.t. different elongated box
position, (c) composite value with product operator, (d) composite value with min operator, (e)
composite value with average operator.

Action space The action is a 2-dimensional vector representing the force applied to the agent.

Hard case configuration There is no manually designed hard case for U-Shape Maze and U-Wall
Maze. In hard cases of 4-Room maze, a random number of elongated boxes block the doors on. The
goal is forced to initialize in a different room from that the cubic box is in. For hard cases of 3-Room
Maze, each elongated box blocks a door. More precisely, the rooms that elongated boxes are in are
determined by the agent’s position: if the agent is in the leftmost room, the elongated boxes are
placed to the left of each door; if the agent is in the middle room, the elongated boxes are also placed
in the middle room and each blocks a door; if the agent is in the rightmost room, the elongated boxes
are placed to the right of each door.

Fixed goal location In the fixed goal version of 3-Room maze, the goal is located at the same spot
in the rightmost room for each episode. In U-Shape Maze, the goal is always at the end of the maze.

B TRAINING DETAILS

Composition operator As is mentioned in Sec. 4.1, there are multiple choices for the composition
operator given two values (Eq. (1)). In addition to the one we used in SIR, i.e., product operator,
we also visualize the composite values derived by other operators, including minimum (i.e., “min”,
taking the smaller value of the two) and average (i.e., take the mean value) in Fig. 11.

Besides, note that due to value approximation error, even if the reward is 0/1, the output of a learned
value function may not perfectly lie between 0 and 1. So, in order to apply the “product” operator
well in practice, we normalize the value functions before they are actually composed. Specifically,
the composite values are computed as follow:

V (sA, sBi
; gA,⊕ = product) =

V (sA, sBi
)−minj V (sA, sBj

)

maxj V (sA, sBj )−minj V (sA, sBj )

V (sBi
, gA)−minj V (sBj

, gA)

maxj V (sBj , gA)−minj V (sBj , gA)

V (sA, sBi
; gA,⊕ = min) = min(V (sA, sBi

), V (sBi
, gA))

V (sA, sBi ; gA,⊕ = avg) =
V (sA, sBi

) + V (sBi
, gA)

2

Empirically, the “product” operator is the best among all candidates, since it most clearly demonstrates
two high-value modes on both sides of the door and low composite values at the door.

Estimating σ When combining SIR with SAC baseline, the output of value function converges
to a stable range after the initial warm-up phase (see Fig. 12a). Therefore it suffices to use a static
high threshold (set to 0.9 in Push scenario with mixed task sampler and 1 in all other cases) to
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(a) SIR + SAC (b) SIR + PPO

Figure 12: Values of all the reduction targets with different baseline algorithms. Green: successful
targets; Orange: failed targets; Red (in the right plot): running average of values.

discard reduction targets in the initial value overestimation phase and a static low threshold σ to
filter out reduction targets with low values that are not likely to succeed. When training SIR with
PPO baseline, We empirically observe that the scale of value function keeps increasing as training
proceeds, therefore a static filtering threshold is not appropriate here. Hence we maintain an online
estimation of the filtering threshold by keeping a running average of composite values of all the
selected reduction targets. As is shown in Fig. 12b, the successful reduction targets typically have
higher values than average.

Designed task curriculum in Stack scenario The initial positions of all the boxes are generated
as follows: select M (0 ≤ M ≤ N − 1) boxes from the total N boxes, and stack them under the
goal, then initialize other boxes randomly over a square on the table. The ratio of stacking and
pick-and-place tasks is adapted according to the agent’s learning progress. We keep 70% chance
of sampling pick-and-place tasks until the agent achieves a success rate of 0.8 when evaluating on
pick-and-place tasks, then gradually decrease the ratio to 30%. Note that such task curriculum is
applied for all the experimented algorithms in Stack scenario.

Baseline implementation We utilize prioritized experience replay when working with off-policy
RL algorithms. Two separate replay buffers Drl, Dil are prepared for rollouts generated by direct
policy execution and composite task reduction. We compute priority as p = |r + γV −Q| for each
instance when storing transitions into the buffers. When sampling from Drl ∪ Dil, each element can
be sampled with probability proportional to pα. The replay buffers maintain a fixed finite number of
samples and data are flushed following the first-in-first-out manner.

As for on-policy baselines, data in Drl are discarded after every iteration. Dil keeps track of a recent
history of task reduction demonstration. As the training proceeds, we get better policies and new
demonstrations with higher quality. Some stale demonstrations may not be beneficial anymore (e.g.,
early accidental successes by random exploration). However, the advantage clipping scheme in
Eq. (2) may not effectively eliminate undesired stale data: in the sparse reward setting, since all the
demonstrations are successful trajectories, the advantage will be hardly negative1. Thus, we maintain
the dataset Dil as a buffer which keeps every trajectory for a fixed number of iterations after it was
generated.

Network architecture In Push scenario, we simply use MLPs with 256 hidden units per layer to
map the input observations to actions or values.

In Stack and Maze scenario, since there are more objects in observations, we adopt an attention-based
feature extractor to get representation invariant to the number of objects. The original observation
vector can be rewritten as [oself , o1, o2, · · · , oN ], where oself contains the state of the agent (robot or
particle) and the position of the desired goal, oi(1 ≤ i ≤ N) represents the state of each object. We
then apply MLP to get observation embeddings f(oself ), g(oi, 1 ≤ i ≤ N). The attention embedding
e of objects is then computed by attending f(oself ) over g(oi):

e =
∑
i

wig(oi), wi = softmax(f(oself ) · g(oi)), 1 ≤ i ≤ N. (3)

1Though, it can be negative in theory due to discounted factor.
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Push Stack

#workers 32 32
replay buffer size 1e5 1e5
batch size 256 256
γ 0.98 0.98
learning rate 3e-4 3e-4
σ 0.7 0.5
total timesteps 1.5e7 1e8 (3 boxes)

2.5e7 (2 boxes)

Table 3: Hyperparameters for SAC-based experi-
ments in different scenarios.

Push Maze

#minibatches 32 32
γ 0.99 0.99
#opt epochs 10 10
learning rate 3e-4 3e-4
#workers 32 64
#steps per iter 2048 8192
demo reuse 8 4
total timesteps 5e7 3e8

Table 4: Hyperparameters for PPO-
based experiments in different scenarios.

Pure RL SIL DS SIR

Push Unif. 0.853 0.952 0.891 0.938
Push Mixed 30% 0.523 0.930 0.900 0.942
Stack (at most 2 boxes) 0.965 0.966 0.908 0.980
Stack (at most 3 boxes) 0.721 0.722 0.711 0.895
4-Room maze 0.649 0.576 0.645 0.695

Table 5: Final average success rate over the training task distribution.

Finally e is concatenated with f(oself ) and fed into another MLP to produce actions or values.

Hyperparameters We summarize hyperparameters of off-policy and on-policy algorithms in each
scenario in Table 3 and Table 4.

C MORE RESULTS

Success rate statistics The success rates over the training task distribution and on hard cases
evaluated at the end of training for all the experimented algorithms are listed in Table 5 and Table 6.
All the numbers are averaged over 3 random seeds. The proposed SIR generally achieves the best
result across the board.

Particularly in Stack scenario with 3 boxes, we provide more detailed hard-case success rates from
all kinds of initial configurations for stacking 3 boxes (explained in Sec. B ) in Table. 7. Although
all the algorithms succeed from the initial states with 2 boxes already stacked by simply stacking
the target box on top of the existing tower, only SIR can solve more compositional situations with 1
or no box stacked in the beginning, which require strategic manipulation of other non-target boxes
before finishing the tasks.

Additional results in Push scenario In addition to the results presented in the main paper, which
is trained on a mixture of 30% hard cases and 70% uniformly sampled cases, we also show the
training curves with a uniform task sampler in Fig. 13. Furthermore, we repeat these experiments

Pure RL SIL DS SIR

Push Unif. 0.449 0.816 0.598 0.939
Push Mixed 30% 0.568 0.979 0.975 0.983
Stack (at most 2 boxes) 0.927 0.954 0.759 0.988
Stack (at most 3 boxes) 0.270 0.294 0.275 0.846
4-Room maze 0.331 0.274 0.512 0.427

Table 6: Final hard-case success rate.
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Pure RL SIL DS SIR

2 boxes stacked 0.851 0.899 0.889 0.972
1 box stacked 0.000 0.000 0.000 0.911
From scratch 0.000 0.000 0.000 0.716

Table 7: Hard-case success rate in Stack scenario evaluated in all kinds of initial configurations for
stacking 3 boxes in the task curriculum.

0.5 1.0
samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

0.5 1.0
samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ha
rd

 su
cc

. r
at

e
SAC
SIR
SIL
DS

(a) Mixed sampler with 30% hard cases.
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(b) Uniform sampler.

Figure 13: Training results of SAC-based algorithms in the Push scenario with 2 different task
samplers. In each case, we show avg. success rate w.r.t. samples over current task distribution (left)
and in hard cases (right).

with PPO-based algorithms as shown in Fig. 14. SIR achieves generally the best result compared
with other baselines in all the settings, especially in hard cases which require compositional policies.
It also illustrates that SIR is agnostic to baseline RL algorithms.

Additional results in Stack scenario In Stack scenario, we also provide results trained with a
maximum of two boxes. SIR is compared with other three baselines in Fig. 16. Our method is
significantly more sample efficient especially when learning to stack.

Additional results in Maze scenario We empirically find that SAC runs a magnitude slower in
wall-clock time than PPO in n-Room maze as shown in Figure 17, therefore we use PPO-based
algorithms in 4-Room maze experiments in the main paper. The result with SAC-based algorithms in
3-Room maze scenario is shown in Figure 18. SIR still outperforms SAC and SIL baselines in terms
of average success rate over both the training task distribution and the hard tasks only.

We also include the DS reward explained in Push scenario as a baseline for comparison in Figure 19.
Interestingly, DS surpasses all other methods when evaluated in hard cases only in the later training
phase since it discovers how to navigate around the walls and push the blocking box away at the same
time and remembers this policy.

Episode length We are also interested in if SIR-learned policy can efficiently solve tasks besides
the success rate reported in the main paper. Hence we test trained policies with different algorithms
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(a) Mixed sampler with 30% hard cases.
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(b) Uniform sampler.

Figure 14: Training results of PPO-based algorithms in the Push scenario with 2 different task
samplers. In each case, we show avg. success rate w.r.t. samples over current task distribution (left)
and in hard cases (right).
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Figure 15: SIR-learned strategy for a hard case in the Stack scenario with 2 boxes. The agent aims to
stack the blue box towards the blue spot which is two-stories high.
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Figure 16: Training results in the Stack scenario with a maximum of 2 boxes. We evaluate success
rate across training curriculum (left) and in hard cases, i.e., stacking 2 boxes (right).

on a fixed set of 500 hard tasks in each scenario and report the average length of successful episodes
in Table 8. In Push and Maze scenarios, these hard tasks are directly sampled from corresponding
hard case configurations, while in Stack scenario, we only sample the most difficult subset of hard
case configurations, i.e. stacking from scratch. SIR achieves comparable mean successful episode
length with other algorithms in Push and Maze scenarios, and is significantly more effective in Stack
scenario where all other methods fail or struggle to solve.

Pure RL SIL DS SIR

Push Unif. 23.67 21.88 22.78 22.73
Push Mixed 30% 20.95 20.64 20.23 20.16
Stack (2 boxes from scratch) 24.21 27.00 30.54 19.16
Stack (3 boxes from scratch) N/A N/A N/A 39.72
4-Room maze 57.43 54.94 60.40 58.54

Table 8: Mean length of successful episodes of trained policy evaluated at the same training iterations.
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Figure 17: Comparison between SAC and
PPO in terms of wall-clock time in 3-Room
maze scenario. The x-axis is measured in
seconds.
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Figure 18: Results of SAC-based algorithms in
3-Room maze.

20



Published as a conference paper at ICLR 2021

0 1 2 3
samples 1e8

0.0

0.2

0.4

0.6

av
g.

 su
cc

. r
at

e

0 1 2 3
samples 1e8

0.0
0.1
0.2
0.3
0.4
0.5

ha
rd

 su
cc

. r
at

e

PPO
SIR
SIL
DS

Figure 19: Complete training results of PPO-based algorithms in 4-Room maze.
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