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Abstract

The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the
Langevin dynamics that incorporates a distribution-dependent drift, and it naturally
arises from the optimization of two-layer neural networks via (noisy) gradient
descent. Recent works have shown that MFLD globally minimizes an entropy-
regularized convex functional in the space of measures. However, all prior analyses
assumed the infinite-particle or continuous-time limit, and cannot handle stochastic
gradient updates. We provide a general framework to prove a uniform-in-time
propagation of chaos for MFLD that takes into account the errors due to finite-
particle approximation, time-discretization, and stochastic gradient. To demonstrate
the wide applicability of our framework, we establish quantitative convergence
rate guarantees to the regularized global optimal solution for (i) a wide range of
learning problems such as mean-field neural network and MMD minimization, and
(ii) different gradient estimators including SGD and SVRG. Despite the generality
of our results, we achieve an improved convergence rate in both the SGD and
SVRG settings when specialized to the standard Langevin dynamics.

1 Introduction

In this work we consider the mean-field Langevin dynamics (MFLD) given by the following McKean-
Vlasov stochastic differential equation:

dXt = −∇δF (µt)

δµ
(Xt)dt+

√
2λdWt, (1)

where µt = Law(Xt), F : P2(Rd) → R is a convex functional, Wt is the d-dimensional standard
Brownian motion, and δF

δµ denotes the first-variation of F . Importantly, MFLD is the Wasserstein
gradient flow that minimizes an entropy-regularized convex functional as follows:

min
µ∈P2

{F (µ) + λEnt(µ)}. (2)

While the above objective can also be solved using other methods such as double-loop algorithms
based on iterative linearization (Nitanda et al., 2020, 2023; Oko et al., 2022), MFLD remains attractive
due to its simple structure and connection to neural network optimization. Specifically, the learning
of two-layer neural networks can be lifted into an infinite-dimensional optimization problem in the
space of measures (i.e., the mean-field limit), for which the convexity of loss function can be exploited
to show the global convergence of gradient-based optimization (Nitanda and Suzuki, 2017; Mei et al.,
2018; Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020).
Under this viewpoint, MFLD Eq. (1) corresponds to the continuous-time limit of the noisy gradient
descent update on an infinite-width neural network, where the injected Gaussian noise encourages
“exploration” and facilities global convergence (Mei et al., 2018; Hu et al., 2019).
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Quantitative analysis of MFLD. Most existing convergence results of neural networks in the
mean-field regime are qualitative in nature, that is, they do not characterize the rate of convergence
nor the discretization error. A noticeable exception is the recent analysis of MFLD by Nitanda et al.
(2022); Chizat (2022), where the authors proved exponential convergence to the optimal solution of
Eq. (2) under a logarithmic Sobolev inequality (LSI) that can be verified in various settings including
regularized empirical risk minimization using neural networks. This being said, there is still a large
gap between the ideal MFLD analyzed in prior works and a feasible algorithm. In practice, we
parameterize µ as a mixture of N particles (Xi)Ni=1 — this corresponds to a neural network with N
neurons, and perform a discrete-time update: at time step k, the update to the i-th particle is given as

Xi
k+1 = Xi

k − ηk∇̃
δF (µk)

δµ
(Xi

k) +
√
2ληkξ

i
k, (3)

where ηk is the step size at the k-th iteration, ξik is an i.i.d. standard Gaussian vector, and ∇̃ δF (µ)
δµ

represents a potentially inexact (e.g., stochastic) gradient.

Comparing Eq. (1) and Eq. (3), we observe the following discrepancies between the ideal MFLD and
the implementable noisy particle gradient descent algorithm.

(i) Particle approximation. µ is entirely represented by a finite set of particles: µk = 1
N

∑N
i=1 δXi

k
.

(ii) Time discretization. We employ discrete gradient descent update as opposed to gradient flow.
(iii) Stochastic gradient. In many practical settings, it is computationally prohibitive to obtain the

exact gradient update, and hence it is preferable to adopt a stochastic estimate of the gradient.

The control of finite-particle error (point (i)) is referred to as propagation of chaos (Sznitman,
1991) (see also Lacker (2021) and references therein). In the context of mean-field neural networks,
discretization error bounds in prior works usually grow exponentially in time (Mei et al., 2018;
Javanmard et al., 2019; De Bortoli et al., 2020), unless one introduces additional assumptions on the
dynamics that are difficult to verify (Chen et al., 2020). Consequently, convergence guarantee in the
continuous limit cannot be transferred to the finite-particle setting unless the time horizon is very
short (e.g., Abbe et al. (2022)), which limits the applicability of the theory.

Very recently, Chen et al. (2022); Suzuki et al. (2023) established a uniform-in-time propagation of
chaos for MFLD, i.e., the “distance” between the N -particle system and the infinite-particle limit
is of order O(1/N) for all t > 0. While this represents a significant step towards an optimization
theory for practical finite-width neural networks in the mean-field regime, these results assumed the
continuous-time limit and access to exact gradient, thus cannot cover points (ii) and (iii).
In contrast, for the standard gradient Langevin dynamics (LD) without the mean-field interactions
(which is a special case of MFLD Eq. (1) by setting F to be a linear functional), the time discretization
is well-understood (see e.g. Dalalyan (2014); Vempala and Wibisono (2019); Chewi et al. (2021)),
and its stochastic gradient variant (Welling and Teh, 2011; Ma et al., 2015), including ones that
employ variance-reduced gradient estimators (Dubey et al., 2016; Zou et al., 2018; Kinoshita and
Suzuki, 2022), have also been extensively studied.

The gap between convergence analyses of LD and MFLD motivates us to ask the following question.

Can we develop a complete non-asymptotic convergence theory for MFLD that takes into account
points (i) - (iii), and provide further refinement over existing results when specialized to LD?

1.1 Our Contributions

We present a unifying framework to establish uniform-in-time convergence guarantees for the mean-
field Langevin dynamics under time and space discretization, simultaneously addressing points
(i)-(iii). The convergence rate is exponential up to an error that vanishes when the step size and
stochastic gradient variance tend to 0, and the number of particles N tends to infinity. Moreover,
our proof is based on an LSI condition analogous to Nitanda et al. (2022); Chizat (2022), which is
satisfied in a wide range of regularized risk minimization problems. The advantages of our analysis is
summarized as follows.

• Our framework provides a unified treatment of different gradient estimators. Concretely, we estab-
lish convergence rate of MFLD with stochastic gradient and stochastic variance reduced gradient
(Johnson and Zhang, 2013). While it is far from trivial to derive a tight bound on the stochastic
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Method (authors) # of particles Total complexity Single loop Mean-field
PDA*

(Nitanda et al., 2021) ϵ−2 log(n) Gϵϵ
−1 × ✓

P-SDCA
(Oko et al., 2022) ϵ−1 log(n) Gϵ(n+

1
λ ) log(

n
ϵ ) × ✓

GLD
(Vempala and Wibisono, 2019) — n

ϵ
log(ϵ−1)
(λα)2 ✓ ×

SVRG-LD
(Kinoshita and Suzuki, 2022) —

(
n+

√
n
ϵ

)
log(ϵ−1)
(λα)2 ✓ ×

F-MFLD (ours) ϵ−1 nE∗
log(ϵ−1)
(λα) ✓ ✓

SGD-MFLD* (ours) ϵ−1 ϵ−1E∗
log(ϵ−1)
(λα) ✓ ✓

SGD-MFLD* (ii) (ours) ϵ−1 ϵ−1(1 +
√
λE∗)

log(ϵ−1)
(λα)2 ✓ ✓

SVRG-MFLD (ours) ϵ−1
√
nE∗

log(ϵ−1)
(λα) + n ✓ ✓

SVRG-MFLD (ii) (ours) ϵ−1 (n1/3E∗+
√
nλ1/4E

3/4
∗ ) log(ϵ

−1)
(λα) +n ✓ ✓

Table 1: Comparison of computational complexity to optimize an entropy-regularized finite-sum objective up to
excess objective value ϵ, in terms of dataset size n, entropy regularization λ, and LSI constant α. Label * indicates
the online setting, and the unlabeled methods are tailored to the finite-sum setting. “Mean-field” indicates the
presence of particle interactions. “Single loop” indicates whether the algorithm requires an inner-loop MCMC
sampling sub-routine at every step. “(ii)” indicates convergence rate under additional smoothness condition
(Assumption 4), where E∗ = L̄2

αϵ
+ L̄√

λαϵ
. For double-loop algorithms (PDA and P-SDCA), G∗ is the number

of gradient evaluations required for MCMC sampling; for example, for MALA (Metropolis-adjusted Langevin
algorithm) Gϵ = O(nα−5/2 log(1/ϵ)3/2), and for LMC (Langevin Monte Carlo) Gϵ = O(n(αϵ)−2 log(ϵ)).

gradient approximation error because it requires evaluating the correlation between the randomness
of each gradient and the updated parameter distribution, we are able to show that a stochastic
gradient effectively improves the computational complexity.
Noticeably, despite the fact that our theorem simultaneously handles a wider class of F , when
specialized to standard Langevin dynamics (i.e., when F is linear), we recover state-of-the-art con-
vergence rates for LD; moreover, by introducing an additional mild assumption on the smoothness
of the objective, our analysis can significantly improve upon existing convergence guarantees.

• Our analysis greatly extends the recent works of Chen et al. (2022); Suzuki et al. (2023), in that
our propagation of chaos result covers the discrete time setting while the discretization error can
still be controlled uniformly over time, i.e., the finite particle approximation error does not blow
up as t increases. Noticeably, we do not impose weak interaction / large noise conditions that are
common in the literature (e.g., Delarue and Tse (2021); Lacker and Flem (2022)); instead, our
theorem remains valid for any regularization strength.

2 Problem Setting

Consider the set of probability measure P on Rd where the Borel σ-algebra is equipped. Our goal is
to find a probability measure µ ∈ P that approximately minimizes the objective given by

F (µ) = U(µ) + Eµ[r],

where U : P → R is a (convex) loss function, and r : Rd → R is a regularization term. Let P2 be the
set of probability measures with the finite second moment. In the following, we consider the setting
where F (µ) ≤ C(1 + Eµ[∥X∥2]), and focus on P2 so that F is well-defined.

As previously mentioned, an important application of this minimization problem is the learning of
two-layer neural network in the mean-field regime. Suppose that hx(·) is a neuron with a parameter
x ∈ Rd, e.g., hx(z) = σ(w⊤z+ b), where w ∈ Rd−1, b ∈ R, and x = (w, v). The mean-field neural
network corresponding to a probability measure µ ∈ P can be written as fµ(·) =

∫
hx(·)µ(dx).

Given training data (zi, yi)
n
i=1 ∈ Rd−1 × R, we may define the empirical risk of fµ as U(µ) =

1
n

∑n
i=1 ℓ(fµ(zi), yi) for a loss function ℓ : R× R → R. Then, the objective F becomes

F (µ) =
1

n

n∑
i=1

ℓ(fµ(zi), yi) + λ1

∫
∥x∥2dµ(x),
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where the regularization term is r(x) = λ1∥x∥2. Note that the same objective can be defined for
expected risk minimization. We defer additional examples to the last of this section.

One effective way to solve the above objective is the mean-field Langevin dynamics (MFLD), which
optimizes F via a noisy gradient descent update. To define MFLD, we need to introduce the
first-variation of the functional F .
Definition 1. Let G : P2 → R. The first-variation δG

δµ of a functional G : P2 → R at µ ∈
P2 is defined as a continuous functional P2 × Rd → R that satisfies limϵ→0

G(ϵν+(1−ϵ)µ)
ϵ =∫

δG
δµ (µ)(x)d(ν − µ) for any ν ∈ P2. If there exists such a functional δG

δµ , we say G admits a
first-variation at µ, or simply G is differentiable at µ.

To avoid the ambiguity of δG
δµ up to constant shift, we follow the convention of imposing

∫
δG
δµ (µ)dµ =

0. Using the first-variation of F , the MFLD is given by the following stochastic differential equation:

dXt = −∇δF (µt)

δµ
(Xt)dt+

√
2λdWt, µt = Law(Xt), (4)

where X0 ∼ µ0, Law(X) denotes the distribution of the random variable X and (Wt)t≥0 is the
d-dimensional standard Brownian motion. Readers may refer to Huang et al. (2021) for the existence
and uniqueness of the solution. MFLD is an instance of distribution-dependent SDE because the
drift term δF (µt)

δµ (·) depends on the distribution µt of the current solution Xt (Kahn and Harris, 1951;
Kac, 1956; McKean, 1966). It is known that the MFLD is a Wasserstein gradient flow to minimize
the following entropy-regularized objective (Mei et al., 2018; Hu et al., 2019; Nitanda et al., 2022;
Chizat, 2022):

F (µ) = F (µ) + λEnt(µ), (5)

where Ent(µ) = −
∫
log(dµ(z)/dz)dµ(z) is the negative entropy of µ.

Reduction to standard Langevin dynamics. Note that the MFLD reduces to the standard gradient
Langevin dynamics (LD) when F is a linear functional, that is, there exists V such that F (µ) =∫
V (x)dµ(x). In this case, δF

δµ = V for any µ and the MFLD Eq. (4) simplifies to

dXt = −∇V (Xt)dt+
√
2λdWt.

This is exactly the gradient Langevin dynamics for optimizing V or sampling from µ ∝ exp(−V/λ).

2.1 Some Applications of MFLD

Here, we introduce a few examples that can be approximately solved via MFLD.

Example 1 (Two-layer neural network in mean-field regime.). Let hx(z) be a neuron with a parameter
x ∈ Rd, e.g., hx(z) = tanh(rσ(w⊤x)), hx(z) = tanh(r)σ(w⊤x) for x = (r, w), or simply
hx(z) = σ(x⊤z). Then the learning of mean-field neural network fµ(·) =

∫
hx(·)µ(dx) via

minimizing the empirical risk U(µ) = 1
n

∑n
i=1 ℓ(fµ(zi), yi) with a convex loss (e.g., the logistic

loss ℓ(f, y) = log(1 + exp(−yf)), or the squared loss ℓ(f, y) = (f − y)2) falls into our framework.

Example 2 (Density estimation via MMD minimization). For a positive definite kernel k, the
Maximum Mean Discrepancy (MMD) (Gretton et al., 2006) between two probability measures µ
and ν is defined as MMD2(µ, ν) :=

∫ ∫
(k(x, x) − 2k(x, y) + k(y, y))dµ(x)dν(y). We perform

nonparametric density estimation by fitting a Gaussian mixture model fµ(z) =
∫
gx(z)dµ(x), where

gx is the Gaussian density with mean x and a given variance σ2 > 0. The mixture model is learned
by minimizing MMD2(fµ, p

∗) where p∗ is the target distribution. If we observe a set of training data
(zi)

n
i=1 from p∗, then the empirical version of MMD is one suitable loss function U(µ) given as

M̂MD
2
(µ) :=

∫ [∫∫
gx(z)gx′(z′)k(z, z′)dzdz′

]
d(µ×µ)(x, x′)−2

∫ (
1
n

n∑
i=1

∫
gx(z)k(z, zi)dz

)
dµ(x),

Note that we may also choose to directly fit the particles to the data (instead of a Gaussian mixture
model), that is, we use a Dirac measure for each particle, as in Chizat (2022, Section 5.2) and Arbel
et al. (2019). Here we state the Gaussian parameterization for the purpose of density estimation.
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Example 3 (Kernel Stein discrepancy minimization). In settings where we have access to the target
distribution through the score function (e.g., sampling from a posterior distribution in Bayesian infer-
ence), we may employ the kernel Stein discrepancy (KSD) as the discrepancy measure (Chwialkowski
et al., 2016; Liu et al., 2016). Suppose that we can compute s(z) = ∇ log(µ∗)(z), then for a positive
definite kernel k, we define the Stein kernel as

Wµ∗(z, z′) := s(z)⊤s(z′)k(z, z′) + s(z)⊤∇z′k(z, z′) +∇⊤
z k(z, z

′)s(z′) +∇⊤
z′∇zk(z, z

′).

We take U(µ) as the KSD between µ and µ∗ defined as KSD(µ) =
∫ ∫

Wµ∗(z, z′)dµ(z)dµ(z′). By
minimizing this objective via MFLD, we attain kernel Stein variational inference with convergence
guarantees. This can be seen as a “Langevin” version of KSD descent in Korba et al. (2021).
Remark 1. In the above examples, we introduce additional regularization terms in the objective
Eq. (5) to establish the convergence rate of MFLD, in exchange for a slight optimization bias. Note
that these added regularizations often have a statistical benefit due to the smoothing effect.

2.2 Practical implementations of MFLD

Although the convergence of MFLD (Eq. (4)) has been studied in prior works (Hu et al., 2019;
Nitanda et al., 2022; Chizat, 2022), there is a large gap between the ideal dynamics and a practical
implementable algorithm. Specifically, we need to consider (i) the finite-particle approximation, (ii)
the time discretization, and (iii) stochastic gradient.

To this end, we consider the following space- and time-discretized version of the MFLD with stochas-
tic gradient update. For a finite set of particles X = (Xi)Ni=1 ⊂ Rd, we define its corresponding
empirical distribution as µX = 1

N

∑N
i=1 δXi

. Let Xk = (Xi
k)

N
i=1 ⊂ Rd be N particles at the k-th

update, and define µk = µXk
as a finite particle approximation of the population counterpart. Starting

from Xi
0 ∼ µ0, we update Xk as,

Xi
k+1 = Xi

k − ηkv
i
k +

√
2ληkξ

i
k, (6)

where ηk > 0 is the step size, ξik is an i.i.d. standard normal random variable ξik ∼ N(0, I),
and vik = vik(X0:k, ω

i
k) is a stochastic approximation of ∇ δF (µk)

δµ (Xi
k) where ωk = (ωi

k)
N
i=1 is a

random variable generating the randomness of stochastic gradient. vik can depend on the history
X0:k = (X0, . . . ,Xk), and Eωi

k
[vik|X0:k] = ∇ δF (µk)

δµ (Xi
k). We analyze three versions of vik.

(1) Full gradient: F-MFLD. If we have access to the exact gradient, we may compute

vik = ∇δF (µk)

δµ
(Xi

k).

(2) Stochastic gradient: SGD-MFLD. Suppose the loss function U is given by an expectation
as U(µ) = EZ∼PZ

[ℓ(µ,Z)], where Z ∈ Z is a random observation obeying a distribution PZ and
ℓ : P × Z → R is a loss function. In this setting, we construct the stochastic gradient as

vik =
1

B

B∑
j=1

∇
δℓ(µk, z

(j)
k )

δµ
(Xi

k) +∇r(Xi
k),

where (z
(j)
k )Bj=1 is a mini-batch of size B generated from PZ in an i.i.d. manner.

(3) Stochastic variance reduced gradient: SVRG-MFLD. Suppose that the loss function U is
given by a finite sum of loss functions ℓi: U(µ) = 1

n

∑n
i=1 ℓi(µ), which corresponds to the empirical

risk in a usual machine learning setting. Then, the variance reduced stochastic gradient (SVRG)
(Johnson and Zhang, 2013) is defined as follows:

(i) When k ≡ 0 mod m, where m is the update frequency, we set Ẋ = (Ẋi)ni=1 = (Xi
k)

n
i=1 as the

anchor point and refresh the stochastic gradient as vik = ∇ δF (µk)
δµ (Xi

k).
(ii) When k ̸≡ 0 mod m, we use the anchor point to construct a control variate and compute

vik =
1

B

∑
j∈Ik

∇
(
δℓj(µXk

)

δµ
(Xi

k) + r(Xi
k)−

δℓj(µẊ )

δµ
(Ẋi) +

δU(µẊ )

δµ
(Ẋi)

)
,

where Ik is a uniformly drawn random subset of {1, . . . , n} with size B without duplication.
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3 Main Assumptions and Theoretical Tools

For our convergence analysis, we make the following assumptions which are inherited from prior
works in the literature (Nitanda et al., 2020, 2022; Chizat, 2022; Oko et al., 2022; Chen et al., 2022).
Assumption 1. The loss function U and the regularization term r are convex. Specifically,

1. U : P → R is a convex functional on P , that is, U(θµ+ (1− θ)ν) ≤ θU(µ) + (1− θ)U(ν) for
any θ ∈ [0, 1] and µ, ν ∈ P . Moreover, U admits a first-variation at any µ ∈ P2.

2. r(·) is twice differentiable and convex, and there exist constants λ1, λ2 > 0 and cr > 0 such that
λ1I ⪯ ∇∇⊤r(x) ⪯ λ2I , x⊤∇r(x) ≥ λ1∥x∥2, and 0 ≤ r(x) ≤ λ2(cr + ∥x∥2) for any x ∈ Rd,
and ∇r(0) = 0.

Assumption 2. There exists L > 0 such that
∥∥∥∇ δU(µ)

δµ (x)−∇ δU(µ′)
δµ (x′)

∥∥∥ ≤ L(W2(µ, µ
′) + ∥x−

x′∥) and
∣∣∣ δ2U(µ)

δµ2 (x, x′)
∣∣∣ ≤ L(1+ cL(∥x∥2+∥x′∥2)) for any µ, µ′ ∈ P2 and x, x′ ∈ Rd. Also, there

exists R > 0 such that ∥∇ δU(µ)
δµ (x)∥ ≤ R for any µ ∈ P and x ∈ Rd.

Verification of this assumption in the three examples (Examples 1, 2 and 3) is given in Appendix A in
the supplementary material. We remark that the assumption on the second order variation is only
required to derive the discretization error corresponding to the uniform-in-time propagation of chaos
(Lemma 8 in Appendix E.4). Under these assumptions, Proposition 2.5 of Hu et al. (2019) yields
that F has a unique minimizer µ∗ in P and µ∗ is absolutely continuous with respect to the Lebesgue
measure. Moreover, µ∗ satisfies the self-consistent condition: µ∗(X) ∝ exp

(
− 1

λ
δF (µ∗)

δµ (X)
)
.

3.1 Proximal Gibbs Measure & Logarithmic Sobolev inequality

The aforementioned self-consistent relation motivates us to introduce the proximal Gibbs distribution
(Nitanda et al., 2022; Chizat, 2022) whose density is given by

pX (X) ∝ exp

(
− 1

λ

δF (µX )

δµ
(X)

)
,

where X = (Xi)Ni=1 ⊂ Rd is a set of N particles and X ∈ Rd. As we will see, the convergence of
MFLD heavily depends on a logarithmic Sobolev inequality (LSI) on the proximal Gibbs measure.
Definition 2 (Logarithmic Sobolev inequality). Let µ be a probability measure on (Rd,B(Rd)). µ
satisfies the LSI with constant α > 0 if for any smooth function ϕ : Rd → R with Eµ[ϕ

2] < ∞, we
have Eµ[ϕ

2 log(ϕ2)]− Eµ[ϕ
2] log(Eµ[ϕ

2]) ≤ 2
αEµ[∥∇ϕ∥22].

This is equivalent to the condition that the KL divergence from µ is bounded by the Fisher divergence:∫
log(dν/dµ)dν ≤ 1

2α

∫
∥∇ log(dν/dµ)∥2dν, for any ν ∈ P which is absolutely continuous with

respect to µ. Our analysis requires that the proximal Gibbs distribution satisfies the LSI as follows.
Assumption 3. µ∗ and pX satisfy the LSI with α > 0 for any set of particles X = (Xi)Ni=1 ⊂ Rd.

Verification of LSI. The LSI of proximal Gibbs measure can be established via standard perturba-
tion criteria. For U(µ) with bounded first-variation, we may apply the classical Bakry-Emery and
Holley-Stroock arguments (Bakry and Émery, 1985a; Holley and Stroock, 1987) (see also Corollary
5.7.2 and 5.1.7 of Bakry et al. (2014)). Whereas for Lipschitz perturbations, we employ Miclo’s trick
(Bardet et al., 2018) or the more recent perturbation results in Cattiaux and Guillin (2022).
Theorem 1. Under Assumptions 1 and 2, µ∗ and pX satisfy the log-Sobolev inequality with

α ≥ λ1

2λ
exp

(
−4R2

λ1λ

√
2d/π

)
∨

{
4λ

λ1
+ e

R2

2λ1λ

(
R
λ1

+
√

2λ
λ1

)2 [
2+d+ d

2 log
(

λ2

λ1

)
+4

R2

λ1λ

]}−1

.

Furthermore, if ∥ δU(µ)
δµ ∥∞ ≤ R is satisfied for any µ ∈ P2, then µ∗ and pX satisfy the LSI with

α ≥ λ1

λ exp
(
− 4R

λ

)
.

See Lemma 5 for the proof of the first assertion, and Section A.1 of Nitanda et al. (2022) or Proposition
5.1 of Chizat (2022) for the proof of the second assertion.
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4 Main Result: Convergence Analysis

In this section, we present our the convergence rate analysis of the discretized dynamics Eq. (6). To
derive the convergence rate, we need to evaluate the errors induced by three approximations: (i) time
discretization, (ii) particle approximation, and (iii) stochastic gradient.

4.1 General Recipe for Discretization Error Control

Note that for the finite-particle setting, the entropy term does not make sense because the negative
entropy is not well-defined for a discrete empirical measure. Instead, we consider the distribution
of N particles, that is, let µ(N) ∈ P(N) be a distribution of N particles X = (Xi)Ni=1 where P(N)

is the set of probability measures on (Rd×N ,B(Rd×N )). Similarly, we introduce the following
objective on P(N):

FN (µ(N)) = NEX ∼µ(N) [F (µX )] + λEnt(µ(N)).

One can easily verify that if µ(N) is a product measure of µ ∈ P , then FN (µ(N)) ≥ NF (µ) by the
convexity of F . Propagation of chaos (Sznitman, 1991) refers to the phenomenon that, as the number
of particles N increases, the particles behave as if they are independent; in other words, the joint
distribution of the N particles becomes “close” to the product measure. Consequently, the minimum
of FN (µ(N)) (which can be obtained by the particle-approximated MFLD) is close to NF (µ∗).
Specifically, it has been shown in Chen et al. (2022) that

0 ≤ inf
µ(N)∈P(N)

1

N
FN (µ(N))− F (µ∗) ≤ Cλ

N
, (7)

for some constant Cλ > 0 (see Section E for more details). Importantly, if we consider the
Wasserstein gradient flow on P(N), the convergence rate of which depends on the logarithmic
Sobolev inequality (Assumption 3), we need to ensure that the LSI constant does not deteriorate
as N increases. Fortunately, the propagation of chaos and the tensorization of LSI entail that the
LSI constant with respect to the objective FN can be uniformly bounded over all choices of N (see
Eq. (11) in the appendix).

To deal with the time discretization error, we build upon the one-step interpolation argument from
Vempala and Wibisono (2019) which analyzed the vanilla gradient Langevin dynamics (see also
Nitanda et al. (2022) for its application to the infinite-particle MFLD).

Bounding the error induced by the stochastic gradient approximation is also challenging because the
objective is defined on the space of probability measures, and thus techniques in finite-dimensional
settings cannot be utilized in a straightforward manner. Roughly speaking, this error is characterized
by the variance of vik: σ2

v,k := Eωk,X0:k
[∥vik − ∇ δF (µk)

δµ ∥2] 1. In addition, to obtain a refined
evaluation, we also incorporate the following smoothness assumption.

Assumption 4. vik(X0:k, ω
i
k) and Di

mF (Xk) = ∇ δF (µXk
)

δµ (Xi
k) are differentiable w.r.t. (Xj

k)
N
j=1

and, for either G(Xk) = vik(X0:k, ω
i
k) or G(Xk) = Di

mF (Xk) as a function of Xk, it is satisfied

that ∥G(X ′
k)−G(Xk)−

∑N
j=1 ∇⊤

Xj
k

G(Xk) · (X ′j
k −Xj

k)∥ ≤ Q
∑

j ̸=i ∥X
′j
k −Xj

k∥
2+N∥X′i

k −Xi
k∥

2

2N for

some Q > 0 and Xk = (Xj
k)

N
j=1 and X ′

k = (X ′j
k )Nj=1. We also assume Eωk

[∥∥∇Xj
k
vik(X0:k, ω

i
k)

⊤−

∇Xj
k
Di

mF (Xk)
⊤
∥∥2
op

]
≤ 1+δi,jN

2

N2 σ̃2
v,k, and ∥vik((Xk,X0:k−1), ω

i
k) − vik((X

′
k ,X0:k−1), ω

i
k)∥ ≤

L(W2(µXk
, µX ′

k
) + ∥Xi

k −X ′i
k ∥).

Note that this assumption is satisfied if the gradient is twice differentiable and the second derivative
is bounded. The factor N appears because the contribution of each particle is O(1/N) unless i = j.
In the following, we present both the basic convergence result under Assumption 2, and the improved
rate under the additional Assumption 4.

1After the acceptance of this manuscript, we noticed that by replacing σ2
v,k with the square of a conditional

expectation EX0:k+1
[∥Eωk|X0:k+1

[vik −∇ δF (µk)
δµ

]∥2], we can obtain a refined bound as in Das et al. (2023)
suggested by anonymous reviewer Y8on. We defer such refined analysis to future work.
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Taking these factors into consideration, we can evaluate the decrease in the objective value after
one-step update. Let µ(N)

k ∈ P(N) be the distribution of Xk conditioned on the sequence ω0:k =

(ωk′)kk′=0. Define

R̄2 := E[∥Xi
0∥2]+

1

λ1

[(
λ1

4λ2
+

1

λ1

)
(R2 + λ2cr)+λd

]
, δη := C1L̄

2(η2 + λη),

where C1 = 8[R2 + λ2(cr + R̄2) + d] and L̄ = L+ λ2.2

Theorem 2. Under Assumptions 1, 2 and 3, if ηk ≤ λ1/(4λ2), we have
1
NE

[
FN (µ

(N)
k+1)

]
−F (µ∗)≤exp

(
−λαηk

2

)(
1
NE

[
FN (µ

(N)
k )

]
−F (µ∗)

)
+ηk

(
δηk

+ Cλ

N

)
+Υk,

where Υk = 4ηkδηk
+
(
R+ λ2R̄

)
(1 +

√
λ/ηk)

(
η2kσ̃v,kσv,k +Qη3kσ

2
v,k

)
+ η2k(L + λ2)

2σ2
v,k

with Assumption 4, and Υk = σ2
v,kηk without this additional assumption; the expectation is taken

with respect to the randomness (ωk′)kk′=1 = ((ωi
k′)Ni=1)

k
k′=1 of the stochastic gradient; and Cλ =

2λLα(1 + 2cLR̄
2) + 2λ2L2R̄2.

The proof can be found in Appendix B. We remark that to derive the bound for Υk = σ2
v,kηk is

relatively straightforward, but to derive a tighter bound with Assumption 4 is technically challenging,
because we need to evaluate how the next-step distribution µ

(N)
k+1 is correlated with the stochastic

gradient vik. Evaluating such correlations is non-trivial because the randomness is induced not only
by ωk but also by the Gaussian noise. Thanks to this general result, we only need to evaluate the
variance σv,k and σ̃v,k for each method to obtain the specific convergence rate.

Conversion to a Wasserstein distance bound. As a consequence of the bound on 1
N FN (µ

(N)
k )−

F (µ∗), we can control the Wasserstein distance between µ
(N)
k and µ∗N , where µ∗N ∈ P(N) is the

(N -times) product measure of µ∗. Let W2(µ, ν) be the 2-Wasserstein distance between µ and ν, then

W 2
2 (µ

(N)
k , µ∗N ) ≤ 2

λα
(FN (µ

(N)
k )−NF (µ∗)),

under Assumptions 1 and 3 (see Lemma 3 in the Appendix). Hence, if 1
N FN (µ

(N)
k ) − F (µ∗)

is small, the particles (Xi
k)

N
i=1 behaves like an i.i.d. sample from µ∗. As an example, for the

mean-field neural network setting, if |hx(z) − hx′(z)| ≤ L∥x − x′∥ (∀x, x′ ∈ Rd) and Vµ∗ =∫
(fµ∗(z)− hx(z))

2dµ∗(x) < ∞ for a fixed z, then Lemma 4 in the appendix yields that

E
Xk∼µ

(N)
k

[(fµXk
(z)− fµ∗(z))2] ≤ 2L2

N
W 2

2 (µ
(N)
k , µ∗N ) +

2

N
Vµ∗ ,

which also gives E
Xk∼µ

(N)
k

[(fµXk
(z) − fµ∗(z))2] ≤ 4L2

λα

(
N−1FN (µ

(N)
k )− F (µ∗)

)
+ 2

N Vµ∗ .
This allows us to monitor the convergence of the finite-width neural network to the optimal solution
µ∗ in terms of the model output (up to 1/N error).

4.2 F-MFLD and SGD-MFLD

Here, we present the convergence rate for F-MFLD and SGD-MFLD simultaneously. F-MFLD can
be seen as a special case of SGD-MFLD where the variance σ2

v,k = 0. We specialize the previous
assumptions to the stochastic gradient setting as follows.
Assumption 5.

(i) supx∈Rd ∥∇ δℓ(µ,z)
δµ (x)∥ ≤ R for all µ ∈ P and z ∈ Z .

(ii) supx ∥∇x∇⊤
x

δℓ(µ,z)
δµ (x)∥op, supx,x′ ∥∇x∇⊤

x′
δ2ℓ(µ,z)

δ2µ (x, x′)∥op ≤ R.

Note that point (i) is required to bound the variance σ2
v,k (i.e., σ2

v,k ≤ R2/B), whereas point
(ii) corresponds to the additional Assumption 4 required for the improved convergence rate. Let
∆0 := 1

NE[FN (µ
(N)
0 )]− F (µ∗). We have the following evaluation of the objective. Note that we

can recover the evaluation for F-MFLD by formally setting B = ∞ so that σ2
v,k = 0 and σ̃2

v,k = 0.

2The constants are not optimized (e.g., O( 1
λ1

) in R̄ can be improved) since we prioritize for clean presentation.
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Theorem 3. Suppose that ηk = η (∀k ∈ N0) and λαη ≤ 1/4 and η ≤ λ1/(4λ2). Under
Assumptions 1, 2, 3 and 5, it holds that
1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ exp (−λαηk/2)∆0 +

4

λα
L̄2C1

(
λη + η2

)
+

4

λαη
Ῡ +

4Cλ

λαN
, (8)

where Ῡ = 4ηδη +
[
R+ λ2R̄+ (L+ λ2)

2
]
(1+

√
λ
η )η

2R2

B +
(
R+ λ2R̄

)
R(1+

√
λ
η )η

3R2

B under

Assumption 5-(ii), and Ῡ = R2

B η without this additional assumption.

The proof is given in Appendix C. This can be seen as a mean-field generalization of Vempala and
Wibisono (2019) which provides a convergence rate of discrete time vanilla GLD with respect to
the KL divergence. Indeed, their derived rate O(exp(−λαηk)∆0 +

η
αλ ) is consistent to ours, since

Eq. (26) in the Appendix implies that the objective 1
λ (

1
NE[FN (µ

(N)
k )]− F (µ∗)) upper bounds the

KL divergence between µ(N)
k and µ∗N . Moreover, our result also handles the stochastic approximation

which can give better total computational complexity even in the vanilla GLD setting as shown below.

For a given ϵ > 0, if we take

η ≤ αϵ

40L̄2C1
∧ 1

L̄

√
λαϵ

40C1
∧ 1, k ≥ 2

λαη
log(2∆0/ϵ),

with B ≥ 4
[
(1 +R)(R+ λ2R̄) + (L+ λ2)

2
]
R2(η +

√
ηλ)/(λαϵ) under Assumption 5-(ii) and

B ≥ 4R2/(λαϵ) without such assumption, then the right hand side of (8) can be bounded as
1
NE[FN (µ

(N)
k )]−F (µ∗) = ϵ+ 4Cλ

λαN . Hence we achieve ϵ+O(1/N) error with iteration complexity:

k = O

(
L̄2

αϵ
+

L̄√
λαϵ

)
1

λα
log(ϵ−1). (9)

If we neglect O(1/
√
λαϵ) as a second order term, then the above can be simplified as O

(
L̄2

λα2

log(ϵ−1)
ϵ

)
.

Noticeably, the mini-batch size B can be significantly reduced under the additional smoothness
condition Assumption 5-(ii) (indeed, we have O(η +

√
ηλ) factor reduction). Recall that when the

objective is an empirical risk, the gradient complexity per iteration required by F-MFLD is O(n).
Hence, the total complexity of F-MFLD is O(nk) where k is given in Eq. (9). Comparing this
with SGD-MFLD with mini-batch size B, we see that SGD-MFLD has better total computational
complexity (Bk) when n > B. In particular, if B = Ω((η +

√
ηλ)/(λαϵ)) ≥ Ω(λ−1 +

√
(ϵλα)−1)

which yields the objective value of order O(ϵ), SGD-MFLD achieves O(n/B) = O(n(λ ∧
√
ϵλα))

times smaller total complexity. For example, when λ = αϵ = 1/
√
n, a O(

√
n)-factor reduction of

total complexity can be achieved by SGD-MFLD, which is a significant improvement.

4.3 SVRG-MFLD

Now we present the convergence rate of SVRG-MFLD in the fixed step size setting where ηk = η (∀k).
Instead of Assumption 5, we introduce the following two assumptions.
Assumption 6.

(i) For any i ∈ [n], it holds that
∥∥∥∇ δℓi(µ)

δµ (x)−∇ δℓi(µ
′)

δµ (x′)
∥∥∥ ≤ L(W2(µ, µ

′)+ ∥x−x′∥) for

any µ, µ′ ∈ P2 and x, x′ ∈ Rd, and supx∈Rd ∥∇ δℓi(µ)
δµ (x)∥ ≤ R for any µ ∈ P .

(ii) Additionally, we have supx ∥∇x∇⊤
x

δℓi(µ)
δµ (x)∥op, supx,x′ ∥∇x∇⊤

x′
δ2ℓi(µ)
δ2µ (x, x′)∥op ≤ R.

Here again, point (i) is required to bound σ2
v,k and point (ii) yields Assumption 4. We have the

following computational complexity bound for SVRG-MFLD.
Theorem 4. Suppose that λαη ≤ 1/4 and η ≤ λ1/(4λ2). Let Ξ = n−B

B(n−1) . Then, under Assump-
tions 1, 2, 3 and 6, we have the same error bound as Eq. (8) with different Ῡ:

Ῡ = 4ηδη+
(
1+
√

λ
η

){(
R+λ2R̄

)
η2
√
C1ΞL2m(η2 + ηλ)R2Ξ +

[(
R+λ2R̄

)
Rη3+(L+λ2)

2η2
]}

,

under Assumption 6-(ii), and Ῡ = C1ΞL
2mη2(η + λ) without Assumption 6-(ii).
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The proof is given in Appendix D. Therefore, to achieve 1
NE[FN (µ

(N)
k )]− F (µ∗) ≤ O(ϵ) + 4Cλ

λαN
for a given ϵ > 0, it suffices to set

η =
αϵ

40L̄2C1
∧

√
λαϵ

40L̄
√
C1

, k =
2 log(2∆0/ϵ)

λαη
= O

(
L̄2

αϵ
+

L̄√
λαϵ

)
log(ϵ−1)

(λα)
,

with B ≥
[
√
m

(η+
√

η/λ)2

ηλ ∨m
(η+

√
η/λ)3

ηλ

]
∧ n. In this setting, the total gradient complexity can

be bounded as

Bk+
nk

m
+n ≲ max

{
n

1
3

(
1 +

√
η

λ

) 4
3

,
√
n(ηλ)

1
4

(
1 +

√
η

λ

) 3
2

}
1

η

log(ϵ−1)

λα
+ n,

where m = Ω(n/B) = Ω([n2/3(1 +
√

η/λ)−4/3 ∧
√
n(1 +

√
η/λ)−3/2(

√
ηλ)−1/2)] ∨ 1) and

B = O
([

n
1
3

(
1 +

√
η
λ

) 4
3 ∨

√
n(ηλ)

1
4

(
1 +

√
η
λ

) 3
2

]
∧ n
)

. When ϵ is small, the first term in

the right hand side becomes the main term which is max{n1/3,
√
n(αϵλ)1/4} log(ϵ−1)

λα2ϵ . There-
fore, comparing with the full batch gradient method (F-MFLD), SVRG-MFLD achieves at least
min

{
n

2
3 ,
√
n(αϵλ)−

1
4

}
times better total computational complexity when η ≤ λ. Note that even

without the additional Assumption 6-(ii), we still obtain a
√
n-factor improvement (see Appendix D).

This indicates that variance reduction is indeed effective to improve the computational complexity,
especially in a large sample size setting.

Finally, we compare the convergence rate in Theorem 4 (setting F to be linear) against prior
analysis of standard gradient Langevin dynamics (LD) under LSI. To our knowledge, the current
best convergence rate of LD in terms of KL divergence was given in Kinoshita and Suzuki (2022),
which yields a O

((
n+

√
n
ϵ

)
log(ϵ−1)
(λα)2

)
iteration complexity to achieve ϵ error. This corresponds to

our analysis under Assumption 6-(i) (without (ii)) (see Appendix D). Note that in this setting, our
bound recovers their rate even though our analysis is generalized to nonlinear mean-field functionals
(the O(λ)-factor discrepancy is due to the difference in the objective – their bound considers the KL
divergence while our objective corresponds to λ times the KL divergence). Furthermore, our analysis
gives an even faster convergence rate under an additional mild assumption (Assumption 6-(ii)).

5 Conclusion

We gave a unified theoretical framework to bound the optimization error of the single-loop mean-field
Langevin dynamics (MFLD) that is applicable to the finite-particle, discrete-time, and stochastic
gradient algorithm. Our analysis is general enough to cover several important learning problems
such as the optimization of mean-field neural networks, density estimation via MMD minimization,
and variational inference via KSD minimization. We considered three versions of the algorithms (F-
MFLD, SGD-MFLD, SGLD-MFLD); and despite the fact that our analysis deals with a more general
setting (mean-field interactions), we are able to recover and even improve existing convergence
guarantees when specialized to the standard gradient Langevin dynamics.
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—————————– Appendix —————————–

A Verification of Assumptions

Assumption 2 can be satisfied in the following settings for the three examples presented in Section 2.1.

(i) mean-field neural network. The neurons hx(·) and their gradients are bounded (e.g., tanh
activation), and the first derivative of the loss is Lipschitz continuous (e.g., squared loss, logistic
loss). That is, there exists C > 0 such that supz supx |hx(z)| ≤ C, supz supx ∥∇xhx(z)∥ ≤ C
and ∥∇h(x)−∇h(x′)∥ ≤ C∥x−x′∥ for all x, x′ ∈ Rd, and supy,z supµ∈P |∂f ℓ(fµ(z), y)| ≤ C,
|∂f ℓ(fµ(z), y) − ∂f ℓ(fµ′(z), y)| ≤ C|fµ(z) − fµ′(z)| and |∂2

f ℓ(fµ(z), y)| ≤ C for all (y, z)
and µ, µ′ ∈ P .

(ii) MMD minimization. The kernel k is smooth and has light tail, e.g., the Gaussian RBF kernel.
(iii) KSD minimization. The kernel k has a light tail such that supz,z′ max{|Wµ∗(z, z′)|,

∥∇zWµ∗(z, z′)∥, ∥∇z∇⊤
z Wµ∗(z, z′)∥op} ≤ C; for example, k(z, z′) = exp

(
− ∥z∥2

2σ2
1

−
∥z′∥2

2σ2
1

− ∥z−z′∥2

2σ2
2

)
, and max{∥∇ log(µ∗(z))∥, ∥∇⊗2 log(µ∗(z))∥op, ∥∇⊗3 log(µ∗(z))∥op} ≤

C(1 + ∥z∥).

B Proof of Theorem 2

This section gives the proof of Theorem 2. For notation simplicity, we write η to indicate ηk. Recall
that for X = (Xi)Ni=1, the proximal Gibbs distribution µX is defined by

pX ′(X) ∝ exp

(
− 1

λ

δF (µX ′)

δµ
(X)

)
.

We also define another version of the proximal Gibbs distribution corresponding to FN as

p(N)(X ) ∝ exp

(
−N

λ
F (µX )

)
.

B.1 Evaluation of Objective Decrease

By the same argument as Chen et al. (2022), we have that

− 1

λ
∇δF (µX )

δµ
(Xi) = ∇ log(pX (Xi)) = ∇i log(p

(N)(X )) = −N

λ
∇iF (µX ),

where ∇i is the partial derivative with respect to Xi. Therefore, we have

∇i
δFN (µ(N))

δµ
(X ) = N∇iF (µX ) + λ∇i log(µ

(N)(X ))

= ∇δF (µX )

δµ
(Xi) + λ∇i log(µ

(N)(X ))

= −λ∇i log(p
(N)(X )) + λ∇i log(µ

(N)(X )). (10)

Remembering that Xk = (Xi
k)

N
i=1 is updated by Xi

k+1 = Xi
k − ηvik +

√
2ληξik, the solutions Xi

k

and Xi
k+1 can be interpolated by the following continuous time dynamics:

X̃0 = Xk,

dX̃i
t = −vikdt+

√
2λdW i

t ,

for 0 ≤ t ≤ η. Then, X̃η obeys the same distribution as Xk+1. Let µ̃(N)
t be the law of X̃t. The

Fokker-Planck equation of the dynamics yields that

dµ̃
(N)
t

dt
(X |X0:k, ω0:k) =

N∑
i=1

∇i ·
(
µ̃
(N)
t (X |X0:k, ω0:k)v

i
k

)
+ λ

n∑
i=1

∆iµ̃
(N)
t (X |X0:k, ω0:k).
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Hence, by taking expectation with respect to X0:k, it holds that

dµ̃
(N)
t

dt
(X )

=

N∑
i=1

λ∇i ·

(
µ̃
(N)
t (X )

(
∇i log

(
µ̃
(N)
t

p(N)
(X )

)))

+

N∑
i=1

∇i ·

{
µ̃
(N)
t (X )

(
E

X0:k|X̃t

[
vik(X0:k, ω

i
k)
∣∣∣ X̃t = X , ωk

]
−∇

δF (µ
X̃t

)

δµ
(Xi)

)}
,

where we omitted the influence of ω0:k to µ̃
(N)
t , which should be written as µ̃(N)

t (X |ω0:k) in a more
precise manner. Combining this and Eq. (10) yields the following decomposition,

dFN (µ̃
(N)
t )

dt

≤− 3λ2

4

N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2


︸ ︷︷ ︸
=:A

+

N∑
i=1

E
X̃t,X̃0

∥∥∥∥∥∇i
δF (µ̃

(N)
0 )

δµ
(X̃i

0)−∇i
δF (µ̃

(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
2


︸ ︷︷ ︸
=:B

−
N∑
i=1

λE
X̃t,X̃0

[〈
∇i log

(
µ̃
(N)
t

p(N)
(X̃t)

)
, vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]
︸ ︷︷ ︸

=:C

.

Evaluation of term A: By the leave-one-out argument in the proof of Theorem 2.1 of Chen et al.
(2022), the first term of the right hand side can be upper bounded by

− 3λ2

4N

N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2


≤ − λ2

4N

N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2


− λα

2

(
1

N
FN (µ̃

(N)
t )− F (µ∗)

)
+

Cλ

N
, (11)

with a constant Cλ. The proof is given in Lemma 7 for completeness, where we see that the inequality
holds with Cλ = 2λLα(1 + 2cLR̄

2) + 2λ2L2R̄2.

Evaluation of term B: By Lemma 2, we have

E
X̃t,X̃0

∥∥∥∥∥∇δF (µ̃
(N)
0 )

δµ
(X̃i

0)−∇δF (µ̃
(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
2
 ≤ δηk

,

for δηk
= C1L

2(η2k + ληk) = O(L2(η2k + ηkλ)).

B.2 Stochastic Gradient Error (Term C)

Now we evaluate the final term C. First, we derive a bound without Assumption 4. By the Cauchy-
Schwarz inequality, we have that

λE
X̃t,X̃0

[〈
∇i log

(
µ̃
(N)
t

p(N)
(X̃t)

)
, vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]
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≤λ2

4
E

X̃t,X̃0

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X̃t)

)∥∥∥∥∥
2
+ E

X̃t,X̃0

∥∥∥∥∥vik(X0:k, ω
i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

∥∥∥∥∥
2


≤λ2

4
E

X̃t,X̃0

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X̃t)

)∥∥∥∥∥
2
+ σ2

v,k.

B.2.1 Analysis under Assumption 4

Next, we derive a tighter result under the additional Assumption 4. We decompose term C as follows:

E
X̃t,X̃0

[〈
∇i log

(
µ̃
(N)
t

p(N)
(X̃t)

)
, vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]

=E
X̃t,X̃0

[〈
∇i log

(
µ̃
(N)
t (X̃t)

)
, vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]

− E
X̃t,X̃0

[〈
∇i log

(
p(N)(X̃t)

)
, vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]
.

Since ∇i log(µ̃
(N)
t ) = ∇iµ̃

(N)
t /µ̃

(N)
t , this is equivalent to

E
X̃t,X̃0

[〈(
µ̃
(N)
t (X̃t)

−1∇iµ̃
(N)
t (X̃t)−∇i log(p

(N))(X̃t)
)
,vik(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]

=

∫
E

X̃0|X̃t

[〈∫
∇iµ̃

(N)
t (X̃t|X ′

0:k)µ
(N)(dX ′

0:k), v
i
k(X0:k, ω

i
k)−∇δF (µXk

)

δµ
(Xi

k)

〉]
dX̃t︸ ︷︷ ︸

C-(I)

− E
X̃0,X̃t

[〈
∇i log(p

(N))(X̃t), v
i
k(X0:k, ω

i
k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]
︸ ︷︷ ︸

C-(II)

, (12)

where X ′
0:k is an independent copy of X0:k.

Evaluation of C-(I):
(1) The first term (C-(I)) of the right hand side of Eq. (12) can be evaluated as∫

E
X̃0|X̃t

[〈∫
∇iµ̃

(N)
t (X̃t|X ′

0:k)µ
(N)(dX ′

0:k), v
i
k(X0:k, ω

i
k)−∇δF (µXk

)

δµ
(Xi

k)

〉]
dX̃t

=

∫
E

X̃0|X̃t

[〈∫
∇iµ̃

(N)
t (X̃t|X ′

0:k)µ
(N)(dX ′

0:k), v
i
k((X̃t,X0:k−1), ω

i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
dX̃t

+

∫
E

X̃0|X̃t

[〈∫
∇iµ̃

(N)
t (X̃t|X ′

0:k)dµ
(N)(X ′

0:k),

vik(X0:k, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik((X̃t,X0:k−1), ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
dX̃t,

(13)

where (X̃t,X0:k−1) = (X0,X1, . . . ,Xk−1, X̃t) which is obtained by replacing Xk of X0:k to X̃t.
First, we evaluate the first term in the right hand side of Eq. (13). Let

Di
mF (X ) :=

δF (µX )

δµ
(Xi),

for X = (Xi)Ni=1, and let DmF (X ) = (Di
mF (X ))Ni=1. Let

∆vi := vik(X
′
0:k, ω

i
k)−Di

mF (X ′
k),
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and let ∆v = (∆vi)Ni=1. We also define

Zi = (
√
2λt)−1[X̃i

t − (X ′i
k − tvik(X

′
0:k, ω

i
k))].

Then Zi ∼ N(0, 1) conditioned by X ′
0:k and is independent of ωi

k. We also define

vik(X̂ , ωi
k) := EX0:k−1|X̂ ,ω1:k

[vik((X̂ ,X0:k−1), ω
i
k)],

where the expectation is taken conditioned by ω1:k but we omit ω1:k−1 from the left hand side for the
simplicity of notation. Since the density of the conditional distribution µ̃

(N)
t (X̃t|X ′

0:k) is proportional

to exp
(
−
∑N

i=1
∥X̃i

t−(X′i
k −tvi

k(X
′
0:k,ω

i
k))∥

2

2(2λt)

)
, it holds that, under second order differentiability of vik

and DmF ,∫ 〈∫
−X̃i

t − (X ′i
k − tvik(X

′
0:k, ω

i
k))

2λt
µ̃
(N)
t (X̃t|X ′

0:k)µ
(N)(dX ′

0:k),

vik(X̃t, ω
i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉
dX̃t

=EZ,X ′
0:k

[〈
− Zi√

2λt
, vik(X

′
k − tDmF (X ′

k) +
√
2λtZ − t∆v, ωi

k)−

Di
mF (X ′

k − tDmF (X ′
k) +

√
2λtZ − t∆v)

〉]
=EZ,X ′

0:k

[〈
− Zi√

2λt
,

vik(X
′
k − tDmF (X ′

k) +
√
2λtZ, ωi

k)−Di
mF (X ′

k − tDmF (X ′
k) +

√
2λtZ)

+vik(X
′
k − tvk(X

′
0:k, ωk) +

√
2λtZ, ωi

k)− vik(X
′
k − tDmF (X ′

k) +
√
2λtZ, ωi

k)

−Di
mF (X ′

k − tvk(X
′
0:k, ωk) +

√
2λtZ) +Di

mF (X ′
k − tDmF (X ′

k) +
√
2λtZ)

〉]
. (14)

By Assumption 4, we can evaluate

Eωk

[∥∥∥vik(X ′
k − tvk(X

′
0:k, ωk) +

√
2λtZ, ωi

k)− vik(X
′
k − tDmF (X ′

k) +
√
2λtZ, ωi

k)

−Di
mF (X ′

k − tvk(X
′
0:k, ωk) +

√
2λtZ) +Di

mF (X ′
k − tDmF (X ′

k) +
√
2λtZ)

∥∥∥]
≤EX ′′

0:k−1,ωk

[∥∥∥vik((X ′
k − tvk(X

′
0:k, ωk) +

√
2λtZ,X ′′

0:k−1), ω
i
k)

− vik((X
′
k − tDmF (X ′

k) +
√
2λtZ,X ′′

0:k−1), ω
i
k)

−Di
mF (X ′

k − tvk(X
′
0:k, ωk) +

√
2λtZ) +Di

mF (X ′
k − tDmF (X ′

k) +
√
2λtZ)

∥∥∥]
≤EX ′′

0:k−1,ωk

 N∑
j=1

∥∥∥∇⊤
j v

i
k((X

′
k − tDmF (X ′

k) +
√
2λtZ,X ′′

0:k−1), ω
i
k)

−∇⊤
j D

i
mF ((X ′

k − tDmF (X ′
k) +

√
2λtZ,X ′′

0:k−1))
∥∥∥
op
∥t∆vj∥

+Qt2

 1

N

N∑
j=1

∥∆vj∥2 + ∥∆vi∥2
 ,

where Jensen’s inequality is used in the first inequality. By using Assumption 4 again, the first term
in the right hand side can be evaluated as

N∑
j=1

EX ′′
0:k−1,ωk

[aj
2
∥∇⊤

j v
i
k((X

′
k − tDmF (X ′

k) +
√
2λtZ,X ′′

0:k−1), ω
i
k)

−∇⊤
j D

i
mF ((X ′

k − tDmF (X ′
k) +

√
2λtZ,X ′′

0:k−1))∥2op +
1

2aj
∥t∆vj∥2

]

18



≤ (N − 1)

(
a−i

2N2
σ̃2
v,k +

1

2a−i
t2σ2

v,k

)
+

(
ai
2
σ̃2
v,k +

1

2ai
t2σ2

v,k

)
,

for aj > 0 (j = 1, . . . , N) where aj = a−i (j ̸= i) for some a−i > 0. By taking a−i =
Ntσv,k/σ̃v,k and ai = tσv,k/σ̃v,k, the right hand side can be bounded as

2tσ̃v,kσv,k. (15)

Then, we return to the right hand side of Eq. (14). First, we note that

Eωk

[〈
− Zi√

2λt
, vik(X

′
k − tDmF (X ′

k)+
√
2λtZ, ωi

k)−Di
mF (X ′

k− tDmF (X ′
k) +

√
2λtZ)

〉]
= 0,

for fixed Z and X ′
k . Hence, by taking this and Eq. (15) into account, the expectation of the right

hand side Eq. (14) with respect to ωk can be further bounded as√
2
t

λ
σ̃v,kσv,k +

√
2Qt3/2λ−1/2σ2

v,k. (16)

(2) Next, we evaluate the second term of the right hand side of Eq. (13). We have∫
E

X̃0|X̃t

[〈∫
∇iµ̃

(N)
t (X̃t|X ′

0:k)dµ
(N)(X ′

0:k),

vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
dX̃t

=E
X̃0,X̃t

[〈
∇i log

(
µ̃
(N)
t (X̃t)/p

(N)(X̃t)
)
,

vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
+ E

X̃0,X̃t

[〈
∇i log

(
p(N)(X̃t)

)
,

vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
. (17)

The first term in the right hand side of this inequality (Eq. (17)) can be upper bounded by

λ

4
E
[∥∥∥∇i log

(
µ̃
(N)
t (X̃t)/p

(N)(X̃t

)∥∥∥2]

+
1

λ

∫
E

X̃0,X̃t

∥∥∥∥∥vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

∥∥∥∥∥
2


≤λ

4
E
[∥∥∥∇i log

(
µ̃
(N)
t (X̃t)/p

(N)(X̃t

)∥∥∥2]

+
1

λ

∫
E

X̃0,X̃t

∥∥∥∥∥vik((Xk,X0:k−1), ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)−vik((X̃t,X0:k−1), ω
i
k)+∇

δF (µ
X̃t

)

δµ
(X̃i

t)

∥∥∥∥∥
2
 ,

where we used Jensen’s inequality. By Lemma 2 (the same bound applies to vik by the same proof),
we see that the second term in the right hand side is bounded by

2

λ
δηk

. (18)

Finally, we evaluate the second term in the right hand side of Eq. (17). Note that

E
X̃0,X̃t

[〈
∇i log

(
p(N)(X̃t)

)
,
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vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
=E

X̃0,X̃t

[〈
∇i log

(
p(N)(X̃t)

)
−∇i log

(
p(N)(X̃0)

)
+∇i log

(
p(N)(X̃0)

)
,

vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]

≤2δηk

λ
+ E

X̃0,X̃t

[〈
∇i log

(
p(N)(X̃0)

)
,

vik(Xk, ω
i
k)−∇δF (µXk

)

δµ
(Xi

k)− vik(X̃t, ω
i
k) +∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
,

where we used Lemma 2 with the same argument as Eq. (18) and Young’s inequality. Taking the
expectation with respect to ωi

k, it holds that

Eωi
k

{
E

X̃0,X̃t

[〈
∇i log

(
p(N)(X̃0)

)
, vik(Xk, ω

i
k)−∇δF (µXk

)

δµ
(Xi

k)

〉]}
= 0.

Hence, it suffices to evaluate the term

− E
X̃0,X̃t

[〈
∇i log

(
p(N)(X̃0)

)
, vik(X̃t, ω

i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]
.

Here, let X̂t = (X̂i
t)

n
i=1 be the following stochastic process:

X̂0 = Xk,

dX̂i
t = −∇δF (µk)

δµ
(Xi

k)dt+
√
2λdW i

t ,

for 0 ≤ t ≤ η, where (W i
t )t is the same Brownian motion as that drives X̃i

t . Then, the term we are
interested in can be evaluated as

− E
X̃0,X̃t,ωk

[〈
∇i log

(
p(N)(X̃0)

)
, vik(X̃t, ω

i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

〉]

=− E
X̃0,X̃t,X̂t,ωk

[〈
∇i log

(
p(N)(X̃0)

)
, vik(X̃t, ω

i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

−vik(X̂t, ω
i
k)−∇

δF (µX̂t
)

δµ
(X̂i

t) + vik(X̂t, ω
i
k)−∇

δF (µX̂t
)

δµ
(X̂i

t)

〉]
=− E

X̃0,X̃t,X̂t,ωk

[〈
∇i log

(
p(N)(X̃0)

)
, vik(X̃t, ω

i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)

− vik(X̂t, ω
i
k)−∇

δF (µX̂t
)

δµ
(X̂i

t)

〉]
≤E

X̃0,X̃t,X̂t

{∥∥∥∇i log
(
p(N)(X̃0)

)∥∥∥ ·
Eωk

[∥∥∥∥∥vik(X̃t, ω
i
k)−∇

δF (µ
X̃t

)

δµ
(X̃i

t)− vik(X̂t, ω
i
k)−∇

δF (µX̂t
)

δµ
(X̂i

t)

∥∥∥∥∥
]}

. (19)

With the same reasoning as in Eq. (16), it holds that

Eωk

[∥∥∥∥∥vik(X̃t, ω
i
k)−∇

δF (µ
X̃t

)

δµ
(X̂i

t)− vik(X̂t, ω
i
k)−∇

δF (µX̂t
)

δµ
(X̃i

t)

∥∥∥∥∥
]

≤ 2tσ̃v,kσv,k + 2Qt2σ2
v,k.
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Moreover, Assumption 2 and Lemm 1 yield that

E
[∥∥∥∇i log

(
p(N)(X̃0)

)∥∥∥] ≤ 1

λ

(
sup

µ∈P,x∈Rd

∥∥∥∥∇δU(µ)

δµ
(x)

∥∥∥∥+ E[∥∇r(X̃i
0)∥]

)

≤ 1

λ

(
R+ E[∥∇r(X̃i

0)− r(0) + r(0)∥]
)

≤ 1

λ

(
R+ λ2E[∥X̃i

0∥]
)

≤ 1

λ

(
R+ λ2

√
E[∥X̃i

0∥2]
)

≤ 1

λ

(
R+ λ2R̄

)
,

where the second and third inequalities are due to Assumption 2 and the last inequality is by Lemma
1. Then, the right hand side of Eq. (19) can be bounded by

1

λ

(
R+ λ2R̄

) (
2tσ̃v,kσv,k + 2Qt2σ2

v,k

)
.

where we used Assumption 2 and Lemm 1. Hence, the second term of the right hand side of Eq. (13)
(which is same as Eq. (17)) can be bounded by

4

λ
δηk

+
1

λ

(
R+ λ2R̄

) (
2tσ̃v,kσv,k + 2Qt2σ2

v,k

)
.

(3) By summing up the results in (1) and (2), we have that

C-(I) ≤λ

4
E
[∥∥∥∇i log

(
µ̃
(N)
t (X̃t)/p

(N)(X̃t

)∥∥∥2]
+ 4δηk

+
(
R+ λ2R̄

)(
1 +

√
λ

t

)(
2
t

λ
σ̃v,kσv,k + 2

Qt2

λ
σ2
v,k

)
.

Evaluation of C-(II):

Next, we evaluate the term C-(II). Here, let X̂t = (X̂i
t)

n
i=1 be the following stochastic process:

X̂0 = Xk,

dX̂i
t = −∇δF (µk)

δµ
(Xi

k)dt+
√
2λdW i

t ,

for 0 ≤ t ≤ η, where (W i
t )t is the same Brownian motion as that drives X̃i

t . By definition, we notice
that

d(X̃i
t − X̂i

t) =

(
∇δF (µk)

δµ
(Xi

k)− vik

)
dt,

which yields that

X̃i
t − X̂i

t = t

(
∇δF (µk)

δµ
(Xi

k)− vik

)
. (20)

By subtracting and adding the derivative at X̂t from ∇i log(p
(N)(X̃t)), we have

∇i log
(
p(N)(X̃t)

)
=− 1

λ
∇
δF (µ

X̃t
)

δµ
(X̃i

t)

=− 1

λ

(
∇
δF (µ

X̃t
)

δµ
(X̃i

t)−∇
δF (µX̂t

)

δµ
(X̂i

t)

)
− 1

λ
∇
δF (µX̂t

)

δµ
(X̂i

t).

By Assumptions 1 and 2, the first two terms in the right hand side can be bounded as∥∥∥∥∥∇δF (µ
X̃t

)

δµ
(X̃i

t)−∇
δF (µX̂t

)

δµ
(X̂i

t)

∥∥∥∥∥
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=

∥∥∥∥∥∇δU(µ
X̃t

)

δµ
(X̃i

t) +∇r(X̃i
t)−∇

δU(µX̂t
)

δµ
(X̂i

t)−∇r(X̂i
t)

∥∥∥∥∥
≤L(W2(µX̃t

, µX̂t
) + ∥X̃i

t − X̂i
t∥) + λ2∥X̃i

t − X̂i
t∥

≤t(L+ λ2)


√√√√ 1

N

N∑
i=1

∥∥∥∥vik −∇δF (µk)

δµ
(Xi

k)

∥∥∥∥2 + ∥∥∥∥vik −∇δF (µk)

δµ
(Xi

k)

∥∥∥∥
 , (21)

where the first inequality follows from

∥∇r(x)−∇r(x′)∥ =

∥∥∥∥∫ 1

0

[∇∇⊤r(θx+ (1− t)x)](x− x′)dθ

∥∥∥∥
≤ λ2

∫ 1

0

∥x− x′∥dθ = λ2∥x− x′∥ (22)

by Assumption 1 and we used Eq. (20) in the last inequality. Therefore, by noticing X̃0 = Xk, we
can obtain the following evaluation:

N∑
i=1

C-(II)

=

N∑
i=1

∣∣∣∣∣Evi
k

[
E

X̃t,X0:k

[〈
∇i log

(
p(N)(X̃t)

)
, vik(X0:k)−∇

δF (µ
X̃0

)

δµ
(X̃i

0)

〉]]∣∣∣∣∣
≤2(L+ λ2)

2

λ
t

N∑
i=1

E(vi
k)

N
i=1,X0:k

∥∥∥∥∥vik(X0:k)−∇
δF (µ

X̃0
)

δµ
(X̃i

0)

∥∥∥∥∥
2


≤tN
2(L+ λ2)

2

λ
σ2
v,k.

Combining the bounds on C-(I) and C-(II):
N∑
i=1

λC ≤λ

N∑
i=1

(C-(I) + C-(II))

≤λ2

4

N∑
i=1

E
[∥∥∥∇i log

(
µ̃
(N)
t (X̃t)/p

(N)(X̃t

)∥∥∥2]

+N

{
4δηk

+
(
R+ λ2R̄

)(
1 +

√
λ

t

)(
2tσ̃v,kσv,k + 2Qt2σ2

v,k

)
+ t[2(L+ λ2)

2σ2
v,k]

}
.

B.3 Putting Things Together

By Gronwall lemma (see Mischler (2019), for example), we arrive at
1

N
Eω0:k

[FN (µ
(N)
k+1)]− F (µ∗)

≤ exp(−λαηk/2)

(
1

N
Eω0:k−1

[FN (µ
(N)
k )]− F (µ∗)

)
+ ηk

(
δηk

+
Cλ

N

)
+ σ2

v,kηk.

In addition, if Assumption 4 is satisfied, we have
1

N
Eω0:k

[FN (µ
(N)
k+1)]− F (µ∗)

≤ exp(−λαηk/2)

(
1

N
Eω0:k−1

[FN (µ
(N)
k )]− F (µ∗)

)
+ ηk

(
δηk

+
Cλ

N

)
+

[
4ηkδηk

+
(
R+ λ2R̄

)(
1 +

√
λ

ηk

)(
η2kσ̃v,kσv,k +Qη3kσ

2
v,k

)
+ η2k(L+ λ2)

2σ2
v,k

]
.
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C Proof of Theorem 3: F-MFLD and SGD-MFLD

Applying the Gronwall lemma (Mischler, 2019) with Theorem 2, we have that

1

N
Eω0:k−1

[FN (µ
(N)
k )]− F (µ∗)

≤ exp

−λα

k−1∑
j=0

ηj/2

∆0 +

k−1∑
i=0

exp

−λα

k−1∑
j=i

ηj/2

[Υi + ηi

(
δηi

+
Cλ

N

)]
. (23)

Here, remember that Assumption 5 yields that

σ2
v,k ≤ R2

B
, σ̃2

v,k ≤ R2

B
.

Under Assumption 5, we can easily check that Assumption 4 holds with Q = R. When ηk = η for
all k ≥ 0, we have a uniform upper bound of Υk as

Υk ≤


4ηδη +

[
R+ λ2R̄+ (L+ λ2)

2
] (

1 +
√

λ
η

)
η2R2

B

+
(
R+ λ2R̄

)
R
(
1 +

√
λ
η

)
η3R2

B , with Assumption 5-(ii),
R2

B η, without Assumption 5-(ii).

We denote the right hand side as Ῡ. Then we have

1

N
Eω0:k−1

[FN (µ
(N)
k )]− F (µ∗)

≤ exp (−λαηk/2)∆0 +

k−1∑
i=0

exp (−λα(k − 1− i)η/2)

[
Ῡ + η

(
δη +

Cλ

N

)]
≤ exp (−λαηk/2)∆0 +

1− exp(−λαkη/2)

1− exp(−λαη/2)

[
Ῡ + η

(
δη +

Cλ

N

)]
≤ exp (−λαηk/2)∆0 +

4

λαη

[
Ῡ + η

(
δη +

Cλ

N

)]
(∵ λαη/2 ≤ 1/2)

= exp (−λαηk/2)∆0 +
4

λα
L̄2C1

(
λη + η2

)
+

4

λαη
Ῡ +

4Cλ

λαN
.

Then, by taking

k ≥ 2

λαη
log(∆0/ϵ),

then the right hand side can be bounded as

1

N
E[FN (µ

(N)
k )]− F (µ∗)

≤ ϵ+
4

λα
L̄2C1

(
λη + η2

)
+

4

λαη
Ῡ +

4Cλ

λαN
.

(1) Hence, without Assumption 5-(ii), if we take

η ≤ λαϵ

8L̄2
(C1λ)

−1 ∧ 1

8L̄

√
2λαϵ

C1
, B ≥ 4R2/(λαϵ)

then the right hand side can be bounded as

1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ 3ϵ+

4Cλ

λαN
.

We can easily check that the number of iteration k satisfies

k = O

(
L̄2

λαϵ
λ+

L̄√
λαϵ

)
1

λα
log(ϵ−1),
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in this setting.

(2) On the other hand, under Assumption 5-(ii), if we take

η ≤ λαϵ

40L̄2
(C1λ)

−1 ∧ 1

L̄

√
λαϵ

40C1
∧ 1,

B ≥ 4
[
(1 +R)(R+ λ2R̄) + (L+ λ2)

2
]
R2(η +

√
ηλ)/(λαϵ),

then the right hand side can be bounded as

1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ 3ϵ+

4Cλ

λαN
.

We can again check that it suffices to take the number of iteration k as

k = O

(
L̄2

λαϵ
λ+

L̄√
λαϵ

)
1

λα
log(ϵ−1),

to achieve the targe accuracy.

D Proof of Theorem 4: SVRG-MFLD

The standard argument of variance yields

σ2
v,k ≤ max

1≤i≤N

n−B

B(n− 1)

1

n

n∑
j=1

E[∥∆i,j
k ∥2],

where ∆i,j
k = ∇ δℓj(µ

(N)
k )

δµ (Xi
k) − ∇ δU(µ

(N)
k )

δµ (Xi
k) − ∇ δℓi(µ

(N)
s )

δµ (Xi
s) + ∇ δU(µ(N)

s )
δµ (Xi

s). Here,
Assumption 2 and 6 give that

∥∆i,j
k ∥2 ≤ 4(L2W 2

2 (µ
(N)
k , µ(N)

s )+L2∥Xi
k−Xi

s∥2) ≤ 4L2

 1

N

N∑
j′=1

∥Xj′

k −Xj′

s ∥2 + ∥Xi
k −Xi

s∥2
 .

Taking the expectation, we have

1

n

n∑
j=1

E[∥∆i,j
k ∥2] ≤ 4L2 1

n

n∑
j=1

k−1∑
l=s

(η2E[∥vil∥2] + 2ηλd)

≤ C1L
2 (k − s)︸ ︷︷ ︸

≤m

(η2 + ηλ),

where we used that E[∥vik∥2] ≤ 2(R2 + λ2(cr + R̄2)) ≤ C1 by Eq. (24) with Lemma 1. Hence, we
have that

σ2
v,k ≤ C1ΞL

2m(η2 + ηλ),

where Ξ = n−B
B(n−1) .

On the other hand, we have

σ̃2
v,k ≤ n−B

B(n− 1)
R2 = ΞR2,

by the same argument with SGD-MFLD. We have a uniform upper bound of Υk as

Υk ≤


4ηδη +

(
R+ λ2R̄

) (
1 +

√
λ
η

)
η2
√
C1ΞL2m(η2 + ηλ)

√
R2Ξ

+ [(R+ λ2R̄)Rη3 + (L+ λ2)
2η2]

(
1 +

√
λ
η

)
C1ΞL

2m(η2 + ηλ), with Assumption 6-(ii),

ηC1ΞL
2m(η2 + ηλ), without Assumption 6-(ii).

We again let the right hand side be Ῡ. Then, we have that

1

N
E[FN (µ

(N)
k )]− F (µ∗)
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≤ exp(−λαη/2)

(
1

N
E[FN (µ

(N)
k−1)]− F (µ∗)

)
+ Ῡ + η

(
δη +

Cλ

N

)
.

Then, by the Gronwall’s lemma yields that

1

N
E[FN (µ

(N)
k )]− F (µ∗)

≤ exp(−λαηk/2)

(
1

N
E[FN (µ

(N)
0 )]− F (µ∗)

)
+

k∑
l=1

exp(−λαη(k − l)/2)

[
Ῡ + η

(
δη +

Cλ

N

)]
≤ exp(−λαηk/2)

(
1

N
E[FN (µ

(N)
0 )]− F (µ∗)

)
+

1− exp(−λαηk/2)

1− exp(−λαη/2)

[
Ῡ + η

(
δη +

Cλ

N

)]
≤ exp(−λαηk/2)

(
1

N
E[FN (µ

(N)
0 )]− F (µ∗)

)
+

4

λαη
Ῡ +

4

αλ

(
δη +

Cλ

N

)
,

where we used λαη/2 ≤ 1/2 in the last inequality.

(1) Without Assumption 6-(ii), we have

1

λαη
Ῡ =

C1

λαη
ΞL2mη2(η + λ) =

C1

λα
L2mη(η + λ)

(n−B)

B(n− 1)
,

we obtain that

1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ ϵ+

4C1L̄
2(η2 + λη) + 4Cλ/N

λα
+

4C1

λα
L2mη(η + λ)

(n−B)

B(n− 1)

= ϵ+
4C1L̄

2(η2 + λη)(1 + (n−B)
B(n−1)m)

λα
+

4Cλ

λαN

when
k ≳

1

λαη
log(ϵ−1),

and λαη/2 ≤ 1/2. In particular, if we set B ≥ m and

η =
αϵ

4L̄2C1
∧

√
λαϵ

4L̄
√
C1

,

we have
1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ ϵ+

4Cλ

αλN
,

with the iteration complexity and the total gradient computation complexity:

k ≲

(
L̄2

αϵ
+

L̄√
λαϵ

)
1

(λα)
log(ϵ−1),

Bk +
nk

m
+ n ≲

√
nk + n ≲

√
n

(
L̄2

αϵ
+

L̄√
λαϵ

)
1

(λα)
log(ϵ−1) + n,

where m = B =
√
n.

(2) With Assumption 6-(ii), we have

1

λαη
Ῡ =

4

λα
δη +

1

λα
O
(
η
√
m(η2 + λη) + ηm(η2 + λη)

)(
1 +

√
λ

η

)
(n−B)

B(n− 1)
.

Then, we obtain that

1

N
E[FN (µ

(N)
k )]− F (µ∗)

≤ ϵ+
20C1L̄

2(η2 + λη) + 4Cλ/N

λα
+

1

λα
O
(
η
√
m(η2 + λη) + ηm(η2 + λη)

)(
1 +

√
λ

η

)
(n−B)

B(n− 1)
,
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when
k ≳

1

λαη
log(ϵ−1),

and λαη/2 ≤ 1/2. In particular, if we set B ≥
[
√
m

(η+
√

η/λ)2

ηλ ∨m
(η+

√
η/λ)3

ηλ

]
∧ n and

η =
αϵ

40L̄2C1
∧

√
λαϵ

L̄
√
40C1

,

we have
1

N
E[FN (µ

(N)
k )]− F (µ∗) ≤ O(ϵ) +

4Cλ

αλN
,

with the iteration complexity and the total gradient computation complexity:

k ≲

(
L̄2

αϵ
+

L̄√
λαϵ

)
1

(λα)
log(ϵ−1),

Bk +
nk

m
+ n ≲ max

{
n1/3

(
1 +

√
η/λ

)4/3
,
√
n
(
1 +

√
η/λ

)3/2
(
√
ηλ)1/2

}
k + n

≲ max

{
n1/3

(
1 +

√
η/λ

)4/3
,
√
n
(
1 +

√
η/λ

)3/2
(
√
ηλ)1/2

}
η−1 1

(λα)
log(ϵ−1) + n,

where m = Ω(n/B) = Ω([n2/3(1 +
√

η/λ)−4/3 ∧
√
n(1 +

√
η/λ)−3/2(

√
ηλ)−1/2)] ∨ 1) and

B ≥
[
n

1
3

(
1 +

√
η
λ

) 4
3 ∨

√
n(ηλ)

1
4

(
1 +

√
η
λ

) 3
2

]
∧ n.

E Auxiliary lemmas

E.1 Properties of the MFLD Iterates

Under Assumption 2 with Assumption 5 for SGD-MFLD or 6 for SVRG-MFLD, we can easily verify
that ∥∥∥∥∇δU(µk)

δµ
(Xi

k)

∥∥∥∥ ≤ R, Eωi
k|X0:k

[∥vik∥2] ≤ 2(R2 + λ2(cr + ∥Xi
k∥2)). (24)

Lemma 1. Under Assumption 2 with Assumption 5 for SGD-MFLD or Assumption 6 for SVRG-
MFLD, if η ≤ λ1/(4λ2), we have the following uniform bound of the second moment of Xi

k:

E[∥Xi
k∥2] ≤ E[∥Xi

0∥2] +
2

λ1

[(
λ1

8λ2
+

1

2λ1

)
(R2 + λ2cr) + λd

]
,

for any k ≥ 1.

Proof. By the update rule of Xi
k and Assumption 1, we have

E[∥Xi
k+1∥2] = E[∥Xi

k∥2]− 2E[⟨Xi
k, ηv

i
k +

√
2ηλξik⟩] + E[∥ηvik +

√
2ηλξik∥2]

= E[∥Xi
k∥2]− 2ηE

[〈
Xi

k,∇
δU(µk)

δµ
(Xi

k) +∇r(Xi
k)

〉]
+ E[η2∥vik∥2] + 2ηλd

≤ E[∥Xi
k∥2] + 2ηRE[∥Xi

k∥]− 2ηλ1E[∥Xi
k∥2] + 2η2(R2 + λ2(cr + ∥Xi

k∥2)) + 2ηλd

≤ (1− 2ηλ1 + 2η2λ2)E[∥Xi
k∥2] + 2ηRE[∥Xi

k∥] + 2η(η(R2 + λ2cr) + λd)

≤ (1− ηλ1)E[∥Xi
k∥2] + 2η(η(R2 + λ2cr) + λd+R2/λ1)

(∵ 2RE[∥Xi
k∥] ≤ λ1E[∥Xi

k∥2]/2 + 2R2/λ1).

where we used the assumption η ≤ λ1/(4λ2). Then, by the Gronwall lemma, it holds that

E[∥Xi
k∥2] ≤ (1− ηλ1)

kE[∥Xi
0∥2] +

1− (1− ηλ1)
k

ηλ1
η[η(R2 + λ2cr) + λd+R2/λ1]

≤ E[∥Xi
0∥2] +

1

λ1
[η(R2 + λ2cr) + λd+R2/(λ1)].

This with the assumption η ≤ λ1/(4λ2) yields the assertion.
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Lemma 2. Let R̄2 := E[∥Xi
0∥2] + 1

λ1

[(
λ1

4λ2
+ 1

λ1

)
(R2 + λ2cr) + λd

]
. Under Assumptions 1 and

2, if η ≤ λ1/(4λ2) and we define

δη = 8[R2 + λ2(cr + R̄2) + d]L̄2(η2 + λη),

then it holds that

E
X̃t,X̃0

∥∥∥∥∥∇δF (µ̃
(N)
0 )

δµ
(X̃i

0)−∇δF (µ̃
(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
2
 ≤ δη.

Proof. The proof is basically a mean field generalization of Nitanda et al. (2022). By Assumptions 1
and 2, the first two terms in the right hand side can be bounded as∥∥∥∥∥∇δF (µ̃

(N)
0 )

δµ
(X̃i

0)−∇δF (µ̃
(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
=

∥∥∥∥∥∇δU(µ̃
(N)
0 )

δµ
(X̃i

0) +∇r(X̃i
0)−∇δU(µ̃

(N)
t )

δµ
(X̃i

t)−∇r(X̃i
t)

∥∥∥∥∥
≤L(W2(µ̃

(N)
0 , µ̃

(N)
t ) + ∥X̃i

0 − X̃i
t∥) + λ2∥X̃i

t − X̂i
t∥. (25)

Therefore, the right hand side can be further bounded as∥∥∥∥∥∇δF (µ̃
(N)
0 )

δµ
(X̃i

0)−∇δF (µ̃
(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
2

≤(L+ λ2)
2(W2(µ̃

(N)
0 , µ̃

(N)
t ) + ∥X̃i

0 − X̃i
t∥)2

≤2L̄2 1

N

N∑
i=1

∥X̃i
0 − X̃i

t∥2 + 2L̄2∥X̃i
0 − X̃i

t∥2

≤2L̄2 1

N

N∑
i=1

∥∥∥tvik −
√
2tλξik

∥∥∥2 + 2L̄2∥tvik −
√
2tλξik∥2.

Then, by taking the expectation, it holds that

E
X̃t,X̃0

∥∥∥∥∥∇δF (µ̃
(N)
0 )

δµ
(X̃i

0)−∇δF (µ̃
(N)
t )

δµ
(X̃i

t)

∥∥∥∥∥
2


≤2L̄2 1

N

N∑
i=1

(t2E[∥vik∥2] + 2tλd) + 2L̄2(t2E[∥vik∥2] + 2tλd)

≤4L̄2[t22(R2 + λ2(cr + R̄2)) + 2tλd] (∵ Lemma 1)

=8L̄2[t2(R2 + λ2(cr + R̄2)) + tλd]

≤8[R2 + λ2(cr + R̄2) + d]L̄2(t2 + tλ).

Then, by noticing t ≤ η, we obtain the assertion.

E.2 Wasserstein Distance Bound

Recall that W2(µ, ν) is the 2-Wasserstein distance between µ and ν. We let D(µ, ν) =
∫
log
(

ν
µ

)
dν

be the KL-divergence between µ and ν.

Lemma 3. Under Assumptions 1 and 3, it holds that

W 2
2 (µ

(N), µ∗N ) ≤ 2

λα
(FN (µ(N))−NF (µ∗)).
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Proof. By Assumption 3, µ∗ satisfies the LSI condition with a constant α > 0. Then, it is known that
its tensor product µ∗N also satisfies the LSI condition with the same constant α (see, for example,
Proposition 5.2.7 of Bakry et al. (2014)). Then, Otto-Villani theorem Otto and Villani (2000) yields
the Talagrand’s inequality of the tensorized measure µ∗N :

W 2
2 (µ

(N), µ∗N ) ≤ 2

α
D(µ(N), µ∗N ).

Moreover, the proof of Theorem 2.11 of Chen et al. (2022) yields that, under Assumption 1, it holds
that

D(µ(N), µ∗N ) ≤ 1

λ
(FN (µ(N))−NF (µ∗)). (26)

Lemma 4. Suppose that |hx(z)−hx′(z)| ≤ L∥x−x′∥ (∀x, x′ ∈ Rd) and let Vµ∗ := Varµ∗(fµ∗) =∫
(fµ∗(z)− hx(z))

2dµ∗(x), then it holds that

E
Xk∼µ

(N)
k

[(fµXk
(z)− fµ∗(z))2] ≤ 2L2

N
W 2

2 (µ
(N)
k , µ∗N ) +

2

N
Vµ∗ .

Proof. Consider a coupling γ of µ
(N)
Xk

and µ∗N and let (Xk,X∗) = ((Xi
k)

N
i=1, (X

i
∗)

N
i=1) be a

random variable obeying the law γ. Then,

(fµXk
(z)− fµ∗(z))2 =

(
1

N

N∑
i=1

hXi
k
(z)−

∫
hx(z)dµ

∗(x)

)2

=

(
1

N

N∑
i=1

(hXi
k
(z)− hXi

∗
(z)) +

1

N

N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(x)

)2

≤ 2

(
1

N

N∑
i=1

(hXi
k
(z)− hXi

∗
(z))

)2

+ 2

(
1

N

N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(x)

)2

≤ 2

(
1

N

N∑
i=1

L∥Xi
k −Xi

∗∥

)2

+ 2

(
1

N

N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(x)

)2

≤ 2L2 1

N

N∑
i=1

∥Xi
k −Xi

∗∥2 + 2

(
1

N

N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(x)

)2

.

Then, by taking the expectation of the both side with respect to (Xk,X∗), we have that

E
Xk∼µ

(N)
k

[(fµXk
(z)− fµ∗(z))2]

≤ 2L2Eγ

[
1

N

N∑
i=1

∥Xi
k −Xi

∗∥2
]
+

2

N
Vµ∗ .

Hence, taking the infimum of the coupling γ yields that

E
Xk∼µ

(N)
k

[(fµXk
(z)− fµ∗(z))2] ≤ 2L2

N
W 2

2 (µ
(N)
k , µ∗N ) +

2

N
Vµ∗ .

Remark 2. By the self-consistent condition of µ∗, we can see that µ∗ is sub-Gaussian. Therefore,
Vµ∗ < ∞ is always satisfied.
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E.3 Logarithmic Sobolev Inequality

Lemma 5. Under Assumptions 1 and 2, µ∗ and pX satisfy the LSI condition with a constant

α ≥ λ1

2λ
exp

(
−4

R2

λ1λ

√
2d/π

)
∨

4λ

λ1
+

(
R

λ1
+

√
2λ

λ1

)2

e
R2

2λ1λ

[
2 + d+

d

2
log

(
λ2

λ1

)
+ 4

R2

λ1λ

]
−1

.

Proof. In the following, we give two lower bounds of α. By taking the maximum of the two, we
obtain the assertion.

(1) By Assumption 2, δU(µ)
δµ is Lipschitz continuous with the Lipschitz constant R, which implies

that 1
λ

δU(µ)
δµ is R/λ-Lipschitz continuous. Hence, µ∗ and pX is a Lipshitz perturbation of ν(x) ∝

exp(−λ−1r(x)). Since λ−1∇∇⊤r(x) ⪰ λ1

λ I by Assumption 1, Miclo’s trick (Lemma 2.1 of Bardet
et al. (2018)) yields that µ∗ and pX satisfy the LSI with a constant

α ≥ λ1

2λ
exp

(
−4

λ

λ1

(
R

λ

)2√
2d/π

)
=

λ1

2λ
exp

(
−4

R2

λ1λ

√
2d/π

)
.

(2) We can easily check that V (x) = r(x)
λ and H(x) = 1

λ
δU(µ̃)
δµ (x), for appropriately chosen µ̃,

satisfies the conditions in Lemma 6 with c1 = λ1

λ , c2 = λ2

λ , cV = cr, and L̄ = R
λ . Hence, µ∗ and

pX satisfy the LSI with a constant α such that

α ≥

4λ

λ1
+

(
L

λ1
+

√
2λ

λ1

)2

e
R2

2λ1λ

[
2 + d+

d

2
log

(
λ2

λ1

)
+ 4

R2

λ1λ

]
−1

.

Lemma 6 (Log Sobolev inequality with Lipschitz perturbation). Let ν(x) ∝ exp(−V (x)) where
∇∇⊤V (x) ⪰ c1I , x⊤∇V (x) ≥ c1∥x∥2 and 0 ≤ V (x) ≤ c2(cV + ∥x∥2) with c1, c2, cV > 0, and
let H : Rd → R is a Lipschitz continuous function with the Lipschitz constant L̄. Suppose that µ ∈ P
is given by µ(x) ∝ exp(−H(x))ν(x). Then, µ satisfies the LSI with a constanat α such that

α ≥

{
4

c1
+

(
L̄

c1
+

√
2

c1

)2

e
L̄2

2c1

[
2 + d+

d

2
log

(
c2
c1

)
+ 4

L̄2

c1

]}−1

.

Proof. Since ν is a strongly log-concave distribution, the Bakry–Emery argument (Bakry and
Émery, 1985b) yields that it satisfies the LSI condition with a constant α′ = c1 by the assump-
tion ∇∇⊤V (x) ⪰ c1I .

Next, we evaluate the second moment of ν because it is required in the following analysis. Since we
know that ν is the stationary distribution of the SDE dXt = −∇V (Xt)d+

√
2dWt, its corresponding

infinitesimal generator gives that

d

dt
E[∥Xt∥2] = E[−2X⊤

t ∇V (Xt)] + 2d ≤ −2c1E[∥Xt∥2] + 2d.

Then, by the Gronwall lemma, we have

E[∥Xt∥2] ≤ exp(−2c1t)E[∥X0∥2] +
∫ t

0

exp(−2c1(t− s)))ds2d

= exp(−2c1t)E[∥X0∥2] + (1− exp(−2c1t))
d

c1
.

Hence, by taking X0 = 0 (a.s.), we see that lim supt E[∥Xt∥2] ≤ d/c1 that yields Eν [∥X2∥] ≤ d/c1.

A distribution µ̃ satisfies the Poincaré inequality with a constant α̃ if it holds that

Eµ̃[(f − Eµ̃[f ])
2] ≤ 1

α̃
Eµ̃[∥∇f∥2],
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for all bounded f with bounded derivatives. By Example (3) in Section 7.1 of Cattiaux and Guillin
(2014), µ satisfies the Poincaré inequality with a constant α̃ such that

1

α̃
≤ 1

2

(
2L̄

c1
+

√
8

c1

)2

e
L̄2

2cc1 .

Here, let G(x) = H(x)−H(0). We can see that µ(x) can be expressed as µ(x) = exp(−G(x))ν(x)
ZG

with a normalizing constant ZG > 0. Note that, by the Lipschitz continuity assumption of H , we
have

|G(x)| ≤ L̄∥x∥.
Hence, we have the following evaluation of the normalizing constant ZG:

ZG =

∫
exp(−G(x))ν(x)dx

≥
∫

exp
(
−L̄∥x∥ − c2(cV + ∥x∥2)

) 1√
(2π(1/c1))d

dx

≥
∫

exp

(
−3c2

2
∥x∥2 − L̄2

2c2
− c2cV

)
1√

(2π(1/c1))d
dx

=

(
c1
3c2

)d/2

exp

(
− L̄2

2c2
− c2cV

)
.

Theorem 2.7 of Cattiaux and Guillin (2022) claims that µ satisfies the LSI with a constant α such that

2

α
≤ (β + 1)(1 + θ−1)

β

2

α′ +
1

α̃
(2 + Eν [G− log(ZG)]) + L̄2 2

α̃α′

(
(1 + θ)(1 + β)

4β
+

β2

2

)
,

for any β > 0 and θ > 0. The right hand side can be bounded by

(β + 1)(1 + θ−1)

β

2

c1
+

1

α̃

(
2 + L̄Eν [∥X∥] + L̄2

2c2
+

d

2
log(3c2/c1)

)
+ L̄2 2

α̃c1

(
(1 + θ)(1 + β)

4β
+

β2

2

)
≤ (β + 1)(1 + θ−1)

β

2

c1
+

1

α̃

(
2 + L̄

√
d

c1
+

L̄2

2c1
+

d

2
log(3c2/c1)

)
+ L̄2 2

α̃c1

(
(1 + θ)(1 + β)

4β
+

β2

2

)
≤ (β + 1)(1 + θ−1)

β

2

c1
+

1

α̃

(
2 +

L̄2

c1
+

d

2
(log(3c2/c1) + 1)

)
+ L̄2 2

α̃c1

(
(1 + θ)(1 + β)

4β
+

β2

2

)
≤ (β + 1)(1 + θ−1)

β

2

c1
+

1

α̃

[
2 +

d

2
(log(c2/c1) + 2) +

L̄2

c1

(
1 +

(1 + θ)(1 + β)

2β
+ β2

)]
.

Hence, if we set β = 1 and θ = 1, we have

1

α
≤ 2

2

c1
+

1

2α̃

[
2 +

d

2
(log(c2/c1) + 2) +

L̄2

c1
(1 + 2 + 1)

]
,

≤ 4

c1
+

(
L̄

c1
+

√
2

c1

)2

e
L̄2

2c1

[
2 + d+

d

2
log

(
c2
c1

)
+ 4

L̄2

c1

]
.

E.4 Uniform Log-Sobolev Inequality

Lemma 7 (Uniform log-Sobolev inequality). Under the same condition as Theorem 2, it holds that

− λ2

2N

N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2
 ≤ −λα

2

(
1

N
FN (µ̃

(N)
t )− F (µ∗)

)
+

Cλ

N
,

(27)

with a constant Cλ = 2λLα(1 + 2cLR̄
2) + 2λ2L2R̄2.
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Proof. The derivation is analogous to Chen et al. (2022), but we present the full proof for the sake of
the completeness. For X = (Xi)

N
i=1, let X −i := (Xj)j ̸=i. Then, it holds that

−
N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2


=−
N∑
i=1

E
X ∼µ̃

(N)
t

[∥∥∥∥∇i log
(
µ̃
(N)
t (X )

)
− 1

λ
∇δF (µX )

δµ
(Xi)

∥∥∥∥2
]

=−
N∑
i=1

E
X ∼µ̃

(N)
t

[∥∥∥∥∇i log
(
µ̃
(N)
t (X )

)
− 1

λ
∇δF (µX −i)

δµ
(Xi) +

1

λ
∇δF (µX −i)

δµ
(Xi)

− 1

λ
∇δF (µX )

δµ
(Xi)

∥∥∥∥2
]

≤− 1

2

N∑
i=1

E
X ∼µ̃

(N)
t

[∥∥∥∥∇i log
(
µ̃
(N)
t (X )

)
− 1

λ
∇δF (µX −i)

δµ
(Xi)

∥∥∥∥2
]

+

N∑
i=1

E
X ∼µ̃

(N)
t

[∥∥∥∥ 1λ∇δF (µX −i)

δµ
(Xi)−

1

λ
∇δF (µX )

δµ
(Xi)

∥∥∥∥2
]

≤− 1

2

N∑
i=1

E
X ∼µ̃

(N)
t

[∥∥∥∥∇i log
(
µ̃
(N)
t (X )

)
− 1

λ
∇δF (µX −i)

δµ
(Xi)

∥∥∥∥2
]

+

N∑
i=1

L2E
X ∼µ̃

(N)
t

[W 2
2 (µX , µX −i)]

=− 1

2

N∑
i=1

E
X ∼µ̃

(N)
t

[
E

X ∼µ̃
(N)
t

[∥∥∥∥∇i log
(
µ̃
(N)
t (X )

)
− 1

λ
∇δF (µX −i)

δµ
(Xi)

∥∥∥∥2 |X −i

]]

+

N∑
i=1

L2E
X ∼µ̃

(N)
t

[W 2
2 (µX , µX −i)],

where the second inequality is due to the Lipschitz continuity of ∇ δU
δµ in terms of the Wasserstein

distance (Assumption 2). Here, the term corresponding to the Wasserstein distance can be upper
bounded as

E
X ∼µ̃

(N)
t

[W 2
2 (µX , µX −i)] ≤ E

X ∼µ̃
(N)
t

 1

N(N − 1)

∑
j ̸=i

∥Xj −Xi∥2


≤ E
X ∼µ̃

(N)
t

 2

N(N − 1)

∑
j ̸=i

∥Xj∥2 +
2

N
∥Xi∥2


≤ 4

N
R̄2.

Denote by PXi|X −i the conditional law of Xi conditioned by X −i and denote by PX −i the marginal

law of X −i where the joint law of X is µ̃(N)
t . Then, it holds that

∇i log(µ̃
(N)
t (X )) =

∇i(PXi|X −i(Xi)PX −i(X −i))

PXi|X −i(Xi)PX −i(X −i)
=

∇iPXi|X −i(Xi)

PXi|X −i(Xi)
= ∇i log(PXi|X −i(Xi)).

−
N∑
i=1

EX −i∼PX −i

[
EXi∼PXi|X −i

[∥∥∥∥∇i log
(
PXi|X −i(Xi)

)
− 1

λ
∇δF (µX −i)

δµ
(Xi)

∥∥∥∥2 |X −i

]]

≤− 2α

N∑
i=1

E
X ∼µ̃

(N)
t

[
D(pX −i , PXi|X −i)

]
,
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by the LSI condition of the proximal Gibbs measure (Assumption 3). Let νr be the distribution with
the density νr ∝ exp(−r(x)/λ). Note that the proximal Gibbs measure is the minimizer of the
linearized objective:

pX −i = argmin
µ∈P

{∫
δU(µX −i)

δµ
(Xi)dµ+ Eµ[r] + λEnt(µ)

}
= argmin

µ∈P

{∫
δU(µX −i)

δµ
(Xi)dµ+ λD(νr, µ)

}
.

Then, by the optimality of the proximal Gibbs measure, it holds that

λD(pX −i , PXi|X −i)

=

∫
δU(µX −i)

δµ
(xi)(PXi|X −i − pX −i)(dxi) + λD(νr, PXi|X −i)− λD(νr, pX −i)

≥
∫

δU(µX −i)

δµ
(xi)(PXi|X −i − µ∗)(dxi) + λD(νr, PXi|X −i)− λD(νr, µ

∗). (28)

The expectation of the first term of the right hand side can be further evaluated as

N∑
i=1

E
X ∼µ̃

(N)
t

[∫
δU(µX −i)

δµ
(xi)(PXi|X −i − µ∗)(dxi)

]

=

N∑
i=1

E
X ∼µ̃

(N)
t

[∫
δU(µX −i)

δµ
(xi)δXi

(dxi)−
∫

δU(µX −i)

δµ
(xi)µ

∗(dxi)

]

≥
N∑
i=1

E
X ∼µ̃

(N)
t

{∫
δU(µX )

δµ
(xi)δXi

(dxi)−
∫

δU(µX )

δµ
(xi)µ

∗(dxi)

−2L

N

2 + cL(∥Xi∥2 + EX∼µ∗ [∥X∥2] + ∥Xi∥2 +
1

N − 1

∑
j ̸=i

∥Xj∥2)


≥NE

X ∼µ̃
(N)
t

[∫
δU(µX )

δµ
(x)µX (dx)−

∫
δU(µX )

δµ
(x)µ∗(dx)

]
− 2L

(
2 + 4cLR̄

2
)

≥NE
X ∼µ̃

(N)
t

[
U(µX )− U(µ∗)− 2L

(
2 + 4cLR̄

2
)]

≥NE
X ∼µ̃

(N)
t

[U(µX )− U(µ∗)]− 2L
(
2 + 4cLR̄

2
)

≥NE
X ∼µ̃

(N)
t

[U(µX )− U(µ∗)]− 4L
(
1 + 2cLR̄

2
)
,

where the first inequality is due to Lemma 8 and the second inequality is due to Lemma 1 (we also
notice that EX∼µ∗ [∥X∥2] ≤ R̄2). The second term in the right hand side of Eq. (28) can be evaluated
as

N∑
i=1

E
µ̃
(N)
t

[D(νr, PXi|X −i)] =

N∑
i=1

E
µ̃
(N)
t

[Ent(PXi|X −i)]− E
µ̃
(N)
t

[
N∑
i=1

log(νr(Xi))

]

≥ Ent(µ̃
(N)
t )− E

µ̃
(N)
t

[
N∑
i=1

log(νr(Xi))

]
= D(νNr , µ̃

(N)
t ),

where we used Lemma 3.6 of Chen et al. (2022) in the first inequality. Combining all of them, we
arrive at

−
N∑
i=1

E
X ∼µ̃

(N)
t

∥∥∥∥∥∇i log

(
µ̃
(N)
t

p(N)
(X )

)∥∥∥∥∥
2


≤− α

λ

[
NE

X ∼µ̃
(N)
t

[U(µX )] + λD(νNr , µ̃
(N)
t )−N(U(µ∗) + λD(νr, µ

∗))− 4L
(
1 + 2cLR̄

2
)]

+ 4L2R̄2
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=− α

λ

[
NE

X ∼µ̃
(N)
t

[F (µX )] + λEnt(µ̃
(N)
t )−N(F (µ∗) + λEnt(µ∗))− 4L

(
1 + 2cLR̄

2
)]

+ 4L2R̄2

=− α

λ

(
FN (µ̃

(N)
t )−NF (µ∗)

)
+

4Lα

λ

(
1 + 2cLR̄

2
)
+ 4L2R̄2.

Then, we have the assertion with

Cλ = 2λLα(1 + 2cLR̄
2) + 2λ2L2R̄2.

Lemma 8. With the same setting as Lemma 7, it holds that∣∣∣∣δU(µX )

δµ
(x)− δU(µX −i)

δµ
(x)

∣∣∣∣ ≤ L

N

2 + cL

(
2∥x∥2 + ∥Xi∥2 +

1

N − 1

∑
j ̸=i

∥Xj∥2
)

Proof. Let µX ,θ := θµX + (1− θ)µX −i . Then, we see that∣∣∣∣δU(µX )

δµ
(x)− δU(µX −i)

δµ
(x)

∣∣∣∣ =∫ 1

0

∣∣∣∣∣∣− 1

N

δ2U(µX ,θ)

δµ2
(x,Xi) +

1

N(N − 1)

∑
j ̸=i

δ2U(µX ,θ)

δµ2
(x,Xj)

∣∣∣∣∣∣dθ
≤ L

N

2 + cL

(
2∥x∥2 + ∥Xi∥2 +

1

N − 1

∑
j ̸=i

∥Xj∥2
) ,

where we used Assumption 2 (this is the only place where the boundedness of the second order
variation of U is used). Hence, we obtain the assertion.
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