
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO DRIVE WITH TWO MINDS: A COMPET-
ITIVE DUAL-POLICY APPROACH IN LATENT WORLD
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

End-to-end autonomous driving models trained solely with imitation learning (IL)
often suffer from poor generalization. In contrast, reinforcement learning (RL)
promotes exploration through reward maximization but faces challenges such as
sample inefficiency and unstable convergence. A natural solution is to combine
IL and RL. Moving beyond the conventional two-stage paradigm (IL pretrain-
ing followed by RL fine-tuning), we propose CoDrive, a competitive dual-policy
framework that enables IL and RL agents to interact during training. CoDrive
introduces a competition-based mechanism that facilitates knowledge exchange
while preventing gradient conflicts. Experiments on the nuScenes dataset show an
18% reduction in collision rate compared to baselines, along with stronger gener-
alization and improved performance on long-tail scenarios. Code is available at:
https://anonymous.4open.science/r/drive-with-two-minds.

1 INTRODUCTION

End-to-end learning has become the mainstream paradigm in autonomous driving (Hu et al., 2023;
Jiang et al., 2023; Weng et al., 2024). Unlike modular pipelines, end-to-end models allow gradients
to propagate across perception, prediction, and planning, enabling all components to be optimized
toward the final driving objective.

Most existing approaches rely on imitation learning (IL), where models are trained to mimic expert
demonstrations. In practice, these methods are essentially supervised learning (SL): the model’s
outputs are directly supervised to match expert trajectories. The effectiveness of SL relies on the
assumption that data are independent and identically distributed (IID). However, in embodied tasks
such as driving, this assumption fails—observations are temporally correlated, and small prediction
errors can accumulate, pushing the vehicle outside its “safety zone” and leading to cascading fail-
ures. As a result, IL (or more precisely, SL-based IL) agents often generalize poorly and struggle on
long-tail scenarios.

To mitigate these issues, prior work has attempted to expand the training distribution, for example
using generative world models (Wang et al., 2024; Wen et al., 2024; Gao et al., 2024). However,
generated data remain limited in realism and computationally costly. RL offers another solution by
encouraging exploration and learning from trial-and-error. Yet applying RL in simulators suffers
from two drawbacks: (1) high-fidelity expert demonstrations are often unavailable. In fact, many
“expert drivers” in simulators are themselves trained using RL rather than real-world data. Without
genuine expert demonstrations, IL cannot be applied, which also prevents combining IL and RL
in such settings. (2) Agents trained in simulators also face sim-to-real transfer challenges, where
policies that succeed in virtual environments may fail in the real world. So in this paper, we inves-
tigate offline RL directly on expert datasets. While appealingly simple, this setting introduces new
challenges: 1) Since experts already achieve near-optimal rewards, naively fitting expert transitions
reduces RL to IL, offering limited exposure to novel states; 2) Non-reactive simulation can provide
evaluation metrics (e.g., L2 error, collision rate) for hypothetical actions, but cannot yield new states
following those actions.

To solve the two problems above, we 1) inspired by GRPO (Shao et al., 2024), we use group sam-
pling, allowing the agent to generate multiple candidate action sequences and evaluate them through

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

P
er

ce
p

ti
o

n

Actor (IL)

Actor (RL)

Critic

Input @ t

Reward

Function

Latent

World Model

s

𝜏𝑎

env Exploration

Student Supervisor

𝜏𝑎
(𝑔)Imitation

Learning

Reinforcement

Learning

Both

Supervision

෡𝑠′

P
er

ce
p

ti
o

n

Input @ 𝑡 + 𝑇𝑓𝑢𝑡

𝑠′

Imagine

෣
𝑠′(𝑔)

s 𝑟

𝐴(𝑔) = 𝑟 + 𝑉
෣
𝑠′ 𝑔 − 𝑉(𝑠)

𝜏𝑎
𝑒

Expert demonstration

Actor (IL)

Actor (RL)

competitive learning

Experience

Knowledge

Exploration

Knowledge

Figure 1: Overview of CoDrive. CoDrive adopts a dual-policy architecture that integrates imitation
learning (IL) and reinforcement learning (RL) through a shared latent world model. In each iteration,
the IL actor and RL actor are trained in parallel. The latent world model is learned during the IL
phase and then used in the RL phase, where only the RL actor and critic are updated. For exploration,
the RL actor samples multiple action sequences, predicts future states via the latent world model,
and evaluates them with rule-based reward functions. The critic assigns advantages to each sequence
based on the imagined trajectories and rewards. To promote interaction, a competitive learning
mechanism exchanges knowledge between the IL and RL actors.

non-reactive simulation; 2) leverage a latent world model as a reactive simulator to predict future
states conditioned on sampled actions, enabling imagination-based training beyond ground-truth
data.

Finally, to integrate IL and RL without gradient interference (if simply add the loss of IL and RL),
we introduce a dual-policy architecture that decouples the two objectives into separate actors. A
competition-based learning mechanism fosters interaction and selective knowledge transfer between
the IL and RL agents.

Our contributions are summarized as follows:

• We integrate RL into an end-to-end driving framework by leveraging a latent world model
for imagination-based simulation, avoiding reliance on external simulators.

• We propose a dual-policy competitive learning framework that jointly trains IL and RL
while encouraging interaction through structured competition.

• We conduct extensive experiments on nuScenes and Navsim, showing that our method
improves generalization, reduces collisions, and achieves stronger performance on long-
tail scenarios compared to baselines.

2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING

End-to-end autonomous driving methods replaced traditional modular design by the end-to-end
manner. UniAD (Hu et al., 2023) first demonstrated the potential of end-to-end by unifying per-
ception and planning within a unified framework. VAD (Jiang et al., 2023) vectorized the scene
representation and improved the efficiency of inference. PARA-Drive (Weng et al., 2024) decom-
posed the traditional pipeline and searched for optimal architectures. Some works also integrated
world model. LAW (Li et al., 2025b) and World4Drive (Zheng et al., 2025) predicted future visual

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

latents via a world model, improving temporal understanding. SSR (Li & Cui, 2025) utilized sparse
tokens to represent dense BEV features and similarly employed a world model to predict the next
feature to enhance scene comprehension. WoTE (Li et al., 2025c) leverages a world model to pre-
dict future states, enabling online trajectory evaluation and selection. Our approach leverages world
model as an offline simulator. Specifically, the RL policy iteratively interacts with world model to
imagine future scene transitions, enabling reward-driven policy optimization.

2.2 RL IN AUTONOMOUS DRIVING

Reinforcement learning plays an important role in autonomous driving. Roach (Zhang et al., 2021)
trained an RL expert to map BEV input to actions, subsequently served as teacher for the student
model. VLM-RL (Huang et al., 2024) leveraged a Vision-Language-Model (VLM) to generate re-
wards signals for RL. Think2Drive (Li et al., 2024a) integrated DreamV3 to train an expert model,
becoming the first agent to finish CARLA v2. AdaWM (Wang et al., 2025) analyzed performance
degradation of driving agents, proposing a strategy that selectively updates actor or world model.
Imagine2Drive (Garg & Krishna, 2025) proposed a novel framework by integrating a video world
model (Gao et al., 2024) with a diffusion-based policy, achieving impressive performance in the
CARLA. Our fully end-to-end model conducts RL in the latent space with a world model and inte-
grates with IL to achieve more stable training.

2.3 COMBINE IL AND RL IN AUTONOMOUS DRIVING

The combination of RL and IL is an important problem in autonomous driving. AutoVLA (Zhou
et al., 2025) conducted supervised fine-tuning to learn how to reason and later applied GRPO (Shao
et al., 2024) to achieve faster reasoning. RAD (Gao et al., 2025) constructed a large 3D environment
and mixed IL and RL during training. TrajHF (Li et al., 2025a) used IL fine-tuning and RLHF
on a large collected preference data and achieve impressive performance. ReCogDrive (Li et al.,
2025d) incorporated expert imitation loss and RL-loss in simulator to explore safer trajectories. Our
approach performed a competitive framework that optimize IL and RL simultaneously, allowing
them to share information for safer action.

3 METHOD

3.1 ACTOR MODELING

Given current observation o (usually images captured by cameras), the perception module encodes
it into latent state s. For planning, a way point query Qw is employed to extract the waypoint
features sw = {sw,1, sw,2, ..., sw,n} through cross-attention, and the planning head then decodes
the waypoint features into an action sequence τa = {a1, a2, ..., an}. Using the provided expert
action demonstrations τea as labels, imitation learning applies an L1 loss Limi to supervise output.

sw = {sw,1, sw,2, ..., sw,n} = CrossAttn(q = Qw, k = s, v = s). (1)

τa = {a1, a2, ..., an} = PlanningHead(sw). (2)

Limi = ||τa − τea || (3)

To further endow the model with the predictive ability, a world model is used to predict future states.
Unlike pixel-level generative world models, we operate in latent space to reduce task complexity.
Specifically, given the current state st and action τa, the world model predicts future state ŝ′:

ŝ′ = LatentWorldModel(st, τa). (4)

Meanwhile, the perception module encodes next observation o′ into ground-truth state s′. The latent
world model is trained in a self-supervise manner using mean square error (MSE). The overall
imitation learning loss LIL combines Lwm and Limi, where α is a hyperparameter:

Lwm = MSELoss(s′, ŝ′), (5)

LIL = Limi + α · Lwm. (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 BACKWARD PLANNING

In practice, the planning head predicts τa in a single forward. Such design overlooks dependencies
among each step in τa. A natural extension adopts a self-attention layer with causal mask to intro-
duce temporal causality. The policy for ai is formulated as πi(ai|sw,1, ..., sw,i) = π(ai|sw,j≤i).
While this forward-causal design appears intuitive, human driving behavior suggests an alternative
perspective. Drivers typically decide where to go before committing to low-level actions. Moreover,
in real-world deployment, only the first action is executed before replanning, making earlier actions
matter more.

𝑎1

𝑎2

𝑎3

𝑎1 ∼ 𝜋(𝑎1|𝑠𝑤,1)

𝑎2 ∼ 𝜋(𝑎1|𝑠𝑤,1, 𝑠𝑤,2)

𝑎3 ∼ 𝜋(𝑎1|𝑠𝑤,1, 𝑠𝑤,2, 𝑠𝑤,3)

𝑠𝑤,2

𝑠𝑤,1

𝑠𝑤,3

𝑠𝑤,1 𝑠𝑤,2 𝑠𝑤,3

𝑎1

𝑎2

𝑎1 ∼ 𝜋(𝑎1|𝑠𝑤,1, 𝑠𝑤,2, 𝑠𝑤,3)

𝑎2 ∼ 𝜋(𝑎1|𝑠𝑤,2, 𝑠𝑤,3)

𝑎3 ∼ 𝜋(𝑎1| 𝑠𝑤,3)

𝑠𝑤,2

𝑠𝑤,1

𝑠𝑤,3

𝑠𝑤,1 𝑠𝑤,2 𝑠𝑤,3

𝑎3

(a) Forward Planning (b) Backward Planning

unmasked masked

Figure 2: The comparison of forward planning (using causal mask) and backward attention (use
inverse causal mask)

Motivated by these insights, as shown in Fig. 2, we explore a counterintuitive alternative– backward
planning (inverse causality)–where the i-th action is conditioned on the current and future waypoint
features:

πi(ai|sw,i, ..., sw,n) = πi(ai|sw,j≥i) (7)

This formulation incorporates early actions with richer contextual information while leaving later
actions less constrained, aligning better with how humans plan. Plus, inverse causality changes only
the conditioning order, without affecting the smoothness of the final trajectory. Prior evidence (Liu
et al., 2025) from embodied AI further supports this “goal-to-action” reasoning paradigm, and our
experiments in Tab. 3 confirm that it consistently outperforms both forward-causal and non-causal
baselines.

3.3 REINFORCEMENT LEARNING

RL needs rewards to evaluate the quality of explored trajectories. Given a predicted action sequence
τa, the corresponding position sequence is obtained via cumulative summation: τpos = {a1, a1 +
a2, ...,

∑
i ai}. On nuScenes, we use two components to define the reward: imitation reward rimi

and collision reward rcol:

r
(i)
imi = e−||ai−aei ||2 , r

(i)
col = 1− CollisionDetection(τpos, env). (8)

Here, the env denotes static map information and dynamic agents’ moving trajectories. The final
reward for step i is defined as:

ri = r
(i)
col · r

(i)
imi. (9)

On Navsim (Dauner et al., 2024) benchmark, the reward is computed similarly and utilize the PDMS
score to evaluate the quality of trajectories.

The deterministic action sequence produced by our model cannot be directly optimize with RL,
which typically requires probabilistic policies. To address this, we need to model the uncertainty of
the action sequence. Similar with the planning head output the mean value µi for each action, we
use a stochastic head to output uncertainty for each action:

τσ = {σ1, σ2, ..., σn} = StochasticHead(sw), (10)
where σi is the standard deviation for ai. Here we simply use Gaussian distribution to model each
action and use the diagonal matrix to serve as the covariance matrix. Then the policy for action ai
can formulated with:

πi(ai|sw,j≥i) = N (µi, σ
2
i I). (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Given the offline imitation dataset {(s, τea , τer , s′), ...}, using Gaussian Log Likelihood loss can eas-
ily fitting the behavior of experts’: Lbc = −

∑n
i=1 log

πi(a
e
i |sw,j≥i). But we wish the RL Actor can

explore and learn from both good examples but also bad examples. Inspired by GRPO (Shao et al.,
2024), we introduce exploration by sampling G trajectories from the policy and use the rule-based
reward function to calculate its corresponding reward sequences. Each action sequence in the group,
together with its corresponding reward sequence, can be formally expressed as:

τ
(g)
i = {a(g)1 ∼ π1(a

(g)
1 |sw,j≥1), ..., a

(g)
n ∼ πn(a

(g)
n |sw,j≥n)}, τ (g)r = {r(g)1 , r

(g)
2 , ..., r(g)n }. (12)

For each trajectory, we compute its total reward and normalize within the group using Z-score nor-
malization to obtain the advantage and the naive policy gradient loss with group sampling (naive
PGGS) is computed by:

Lactor = −
1

G

G∑
g=1

A(g) · (
n∑
i=1

log πi(a
(g)
i |sw,j≥i)), A

(g) =
Σr(g) −mean(Σr(1), ...,Σr(G))

std(Σr(1), ...,Σr(G))
. (13)

To extend the advantage estimation to long-term rewards, we train a critic model V to output the
value of both current state s and the next state s′. Since the offline dataset does not provide next
states for sampled trajectories, we leverage the latent world model to generate rollouts:

ˆs′(g) = LatentWorldModel(s, τ (g)a). (14)

The long-term advantage A
(g)
long is computed by:

A
(g)
long = (

∑
r(g) + V (ˆs′(g)))− V (s). (15)

We further apply Z-score normalization to A
(g)
long within each group and denote the normalized

advantage as the critic advantage A
(g)
critic. During training, the actor and critic are then jointly opti-

mized, and this is the method of actor + dreaming critic with group sampling (ADCGS):

Lactor = −
1

G

G∑
g=1

A
(g)
critic·(

n∑
i=1

log πi(a
(g)
i |sw,j≥i)), Lcritic =

1

G

G∑
g=1

[V (s)−(
∑

τ (g)r +V (ˆs′(g)))]2.

(16)
Since pure RL with our sparse reward is hard to converge (see results in Tab. 4), we add a small
imitation term to stabilize training, with a small coefficient β = 0.005:

LRL = Lactor + Lcritic + β · Lbc. (17)

In practice, since actions in a sampled sequence are drawn independently from different policies, the
resulting position trajectory τpos may lack smoothness. To address this, we adopt a step-aware mech-
anism: within each sampled sequence, only one action is stochastic, while the remaining actions are
set to the mode of their respective policies, ensuring a smoother τpos. The detailed algorithm and
visualizations are provided in Appendix A.1. To further stabilize critic learning, we employ the two-
critic trick, where a reference critic maintains an exponential moving average (EMA) of the learning
critic.

3.4 DUAL-POLICY LEARNING FRAMEWORK

During training, the model’s planning module is decoupled into IL actor and RL actor, optimized
by LIL and LRL respectively. To encourage the two actor interact with each other, two actor can
compete and share information with each other (see Fig. 3).

To balance the contributions of the imitation learning (IL) actor and the reinforcement learning (RL)
actor, we periodically compare their performance every k iterations. The comparison is based on the
cumulative reward scores achieved by each actor.

Depending on the score difference, we apply different merging strategies: 1) Comparable: If the
scores are close, we keep both unchanged. 2) Moderate Superiority: If one actor slightly outper-
form the other, we perform a soft weight merging to gradually transfer knowledge from the winner

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

endstart

IL Actor and RL
Actor propose

their action
sequence

accumulating
reward scores
respectively

iterate k
times?

score different
> smallest
threshold

score different
> largest

threshold

hard weight
covering

soft weight
merging

clear reward
score record

Y

N

Y

N N

Y

Figure 3: The flow chart of our rule-based competitive learning mechanism

to loser: loser.weight = p · loser.weight+(1−p) ·winner.weight. 3) Significant Superiority: If one
actor’s score is substantially higher, we apply a hard weight replacement to copy knowledge from
the winner to loser: loser.weight = winner.weight. This adaptive mechanism enables stable coop-
eration between IL and RL actors, preventing premature dominance of either side while ensuring
faster convergence once one actor demonstrates clear superiority.

4 EXPERIMENT

4.1 BENCHMARKS

nuScenes (Caesar et al., 2020) is a large-scale autonomous driving benchmark featuring 1,000 20-
second urban driving scenes with 1.4M annotated 3D boxes across 23 object classes. It provides
360° imagery from six cameras and 2Hz keyframe annotations. Following prior works (Hu et al.,
2023; Jiang et al., 2023), we evaluate planning using L2 placement error and Collision Rate.

Navsim (Dauner et al., 2024) is a compact, filtered version of OpenScenes (Contributors, 2023),
itself derived from nuPlan (Karnchanachari et al., 2024). It emphasizes challenging scenarios and
contains 120 hours of driving at 2Hz. It includes navtrain and navtest splits for training and testing.
To better reflect closed-loop safety and behavior, Navsim evaluates agents with six metrics: No at-
fault Collisions (NC), Drivable Area Compliance (DAC), Time to Collision (TTC), Ego Progress
(EP), Comfort (C), and Driving Direction Compliance (DDC). These are combined into a weighted
Driving Score (PDMS).

4.2 IMPLEMENTATION DETAILS

For experiments on nuScenes, our method builds upon the LAW framework (Li et al., 2025b) and
SSR framework (Li & Cui, 2025). We train our models using 8 NVIDIA A800-SXM4-80GB GPUs
and perform evaluation on the same A800 GPU. The training is conducted with a batch size of 1
using the AdamW optimizer, with a learning rate set to 5× 10−5, we use cosine annealing learning
rate with linear warm up. All other training settings follow the original LAW configuration. The
training process takes approximately 20 hours to complete.

For experiments on Navsim, we adopt the Transfuser (Prakash et al., 2021) model as backbone.
Transfuser employs a Transformer-based architecture to fuse front-view camera image and LIDAR
data across multiple stages. We train our model on navtrain split and evaluate it on test split, using
the same hardware configuration as in nuScenes experiments. The training is performed with a batch
size of 16 using the AdamW optimizer, with a learning rate set to 1× 10−4.

4.3 MAIN RESULTS

The results on nuScenes are presented in Tab. 1. For nuScenes, We follow the evaluation protocol
of (Jiang et al., 2023), which reports average L2 distance and collision rate over 1s, 2s, and 3s
prediction horizons. We tried our method on both SSR (Li & Cui, 2025) and LAW (Li et al., 2025b),
and we found that SSR is unstable, even using the same random seed. So in ablation studies, we
only use LAW.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of state-of-the-art methods on the nuScenes dataset. Gray rows indicate
methods that do not use additional supervision. *Models are trained and evaluated on 8 A800 GPUs.
†We found that SSR is unstable on our machine, here we only use random seed 0. The overall best
results are highlighted in bold, while the best results among methods without additional supervision
are underlined.

Method Auxiliary Task L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 Det&Map&Depth 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD Det&Track&Map&Motion&Occ 0.44 0.67 0.96 0.69 0.04 0.08 0.23 0.12
VAD-Tiny Det&Map&Motion 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38
VAD-Base Det&Map&Motion 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
BEV-Planner None 0.28 0.42 0.68 0.46 0.04 0.37 1.07 0.49
PARA-Drive Det&Track&Map&Motion&Occ 0.25 0.46 0.74 0.48 0.14 0.23 0.39 0.25
GenAD Det&Map&Motion 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19
SparseDrive Det&Track&Map&Motion 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08
UAD Det 0.28 0.41 0.65 0.45 0.01 0.03 0.14 0.06
World4Drive Segmentation 0.23 0.47 0.81 0.50 0.02 0.12 0.33 0.16
SSR*† None 0.18 0.35 0.62 0.38 0.48 0.45 0.51 0.48
SSR+CoDrive*† None 0.21 0.40 0.69 0.43 0.09 0.11 0.23 0.15
LAW* None 0.32 0.62 1.03 0.66 0.08 0.13 0.46 0.22
LAW+CoDrive (PGGS)* None 0.31 0.61 1.01 0.65 0 0.10 0.51 0.20
LAW+CoDrive (ADCGS)* None 0.29 0.59 1.00 0.63 0.06 0.10 0.37 0.18

On nuScenes, compared to the recent world model-based autonomous driving models like SSR (Li
& Cui, 2025) and LAW (Li et al., 2025b), after using our method, both model achieve lower collision
rate. And LAW with our method also achieve lower L2 distance. Although UAD (Guo et al., 2024)
achieves the lowest collision rate overall (0.06%), it relies heavily on extensive supervision signals
such as detection and tracking. In contrast, SSR with our method achieves the best collision rate
(0.15%) among methods that do not use any auxiliary supervision beyond expert trajectories.

Long-tail scenario performance and generalization ability on nuScenes We evaluate gener-
alization by training on nuScenes-Singapore and testing on nuScenes-Boston (Fig. 4a). To assess
long-tail performance, we construct two subsets from the evaluation set: one with high L2 error and
one with high collision rate, identified using the baseline model. Results (Fig. 4b) show that our
method improves both generalization and long-tail robustness. Details on subset construction and
full results are in Appendix A.2.2.

1s 2s 3s
Time Horizon

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

L2
 D

ist
an

ce

Generalization Ability Comparison (L2)
LAW
LAW + our method

1s 2s 3s
Time Horizon

0.5

1.0

1.5

2.0

Co
llis

io
n

Ra
te

(%
)

Generalization Ability Comparison (Collision)
LAW
LAW + our method

(a) Generalization Ability

1s 2s 3s
Time Horizon

0.4

0.6

0.8

1.0

1.2

L2
 D

ist
an

ce

L2 Long-tail Dataset Comparison (L2)
LAW
LAW + our method

1s 2s 3s
Time Horizon

0

1

2

3

4

Co
llis

io
n

Ra
te

(%
)

Collision Rate Long-tail Dataset Comparison (Collision)
LAW
LAW + our method

(b) L2 And Collision Rate Long-tail

Figure 4: Comparision of Generalization and Performance on Long-tail Dataset (L2 and Collision).

The results on Navsim are shown in Tab. 2. For Navsim, we adopt the close-loop metrics provided in
Navsim. Specifically, we use the test split rather than navtest split for evaluation, as the former con-
tains much more scenarios (5044) than the latter (885), making it more suitable for comprehensively
assessing the model’s overall driving performance.

On navsim, our model obtains a PDMS of 88.2, outperforming recent state-of-the-art methods,
showing notable improvements across multiple sub-metrics, including NC (+0.4), DAC (+0.4) and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of state-of-art methods on Navsim test set. *reproduced by us. † test on
navtest set.

Method NC ↑ DAC ↑ TTC ↑ Comf.↑ EP ↑ PDMS↑
Human 100.0 100.0 100.0 99.9 87.5 94.8

Ego Status MLP 93.0 77.3 83.6 100.0 62.8 65.6
VADv2 (Chen et al., 2024) 97.2 89.1 91.6 100.0 76.0 80.9
UniAD (Hu et al., 2023) 97.8 91.9 92.9 100.0 78.8 83.4
PARA-Drive (Weng et al., 2024) 97.9 92.4 93.0 99.8 79.3 84.0
Transfuser (Prakash et al., 2021) 97.7 92.8 92.8 100.0 79.2 84.0
LAW (Li et al., 2025b) 96.5 95.4 88.7 99.9 81.7 84.6
Hydra-MDP (Li et al., 2024b) 98.3 96.0 94.6 100.0 78.7 86.5
WoTE* (Li et al., 2025c) 98.6 96.4 95.3 100.0 81.1 87.9

WoTE+CoDrive 98.6 96.8 95.5 100.0 81.0 88.2

TTC (+0.8). Compared to WoTE (Li et al., 2025c), which leverages a world model to evaluate
candidate trajectories during testing, our approach achieves a higher overall score.

4.4 ABLATION STUDY

Causality To verify the effect of inverse causality, we conduct three experiments on LAW +
CoDrive naive PGGS model, and change the mask we use in the self attention layer to sw in three
different ways: 1) no causal mask; 2) causal mask1; 3) inverse causal mask2. We set β in LRL equals
to 0. The results is shown in Tab. 3.

Table 3: The Effect of Causality to the Performance

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.32 0.63 1.03 0.66 0.09 0.12 0.46 0.22
no mask 0.30 0.60 1.04 0.64 0.09 0.15 0.43 0.22

causal mask 0.35 0.67 1.10 0.71 0.08 0.16 0.57 0.27
causal mask (inv) 0.31 0.61 1.01 0.65 0.04 0.08 0.48 0.20

From the results, the naive causal mask increases both L2 error and collision rate. In contrast,
removing the mask or using the inverse causal mask outperforms the baseline. The no-mask setting
reduces L2 error, while the inverse causal mask improves both L2 and collision rate, highlighting
the effectiveness of backward planning (inverse causality).

Integration of IL and RL. We compare several integration strategies: (i) loss merging, jointly
optimizing with LIL +LRL; (ii) IL–RL interval, alternating between LIL and LRL; (iii) two-stage,
pre-training with LIL then fine-tuning with LRL; and (iv) decoupled actors, where IL and RL actors
are optimized separately, optionally with competition (“comp”). Results are shown in Tab. 4.

From Tab. 4, only the decouple, w/ comp variant improves both L2 and collision rates over the base-
line. This is notable since two-stage IL–RL transfer is effective in other domains (e.g., Deepseek’s
R1 (Guo et al., 2025)). We attribute the limited gains to: (1) overly simple rewards (imitation and
collision only), (2) use of a basic actor–critic method instead of more stable algorithms like PPO,
and (3) non-reactive simulation, where both states and rewards are generated by the world model,
introducing bias. These factors explain the poor “pure RL” results and the degradation in most
RL-augmented variants. Nevertheless, the competitive decoupled design demonstrates that effective
IL–RL interaction can still yield measurable improvements.

1causal mask: torch.triu(torch.ones(n,n), diagonal=1)
2inverse causal mask: torch.tril(torch.ones(n,n), diagonal=-1)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: The Performance of Different Ways to Integrate IL and RL.

Description L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

pure IL 0.32 0.63 1.03 0.66 0.09 0.12 0.46 0.22
pure RL 3.92 6.55 9.18 6.55 2.75 4.87 7.72 4.93

loss merging 0.38 0.73 1.17 0.76 0.03 0.12 0.54 0.23
IL-RL interval 0.31 0.63 1.07 0.68 0.12 0.17 0.54 0.28

two-stage 2.43 4.21 6.03 4.22 2.29 4.13 6.53 4.32
decouple, w/o comp 0.32 0.64 1.07 0.68 0.09 0.13 0.53 0.25
decouple, w/ comp 0.31 0.61 1.01 0.65 0.04 0.08 0.48 0.20

5 ANALYSIS

5.1 COMPETITION

The last two lines of result in Tab. 4 show that the competitive learning mechanism can help the IL
Actor and RL Actor interact and finally learn a better model, but how?

0

80

160

240

320

400

480

560

Cu
m

ul
at

iv
e

W
in

s

Cumulative Wins Comparison
IL Actor Cumulative Wins
RL Actor Cumulative Wins

0 20000 40000 60000 80000
Iteration Number

3

2

1

0

1

2

3

Sc
or

e
Di

ffe
re

nc
e

Score Difference Over Iterations
Score Difference

IL is leading the learning process

Figure 5: Accumulated wins (top) and score difference
(bottom) across training iterations.

By tracking metrics such as accumulated
wins and score differences (IL score – RL
score) over iterations, we observe the fol-
lowing: (1) In the early stage (<20k it-
erations), the IL actor achieves more wins
and higher scores, indicating that IL initially
leads the learning process. (2) Afterward,
the RL actor acquires basic driving knowl-
edge, and its exploration via group sam-
pling becomes more effective than simply
imitating expert trajectories. Consequently,
RL achieves higher scores and dominates in
later training. This progression resembles the
two-stage paradigm (IL pretraining followed
by RL fine-tuning), but with a key difference:
IL and RL are trained jointly. Even though IL
loses more frequently in later stages, its gra-
dients continue to benefit shared components
such as the perception module.

6 CONCLUSION

We presented a competitive dual-policy framework that integrates IL and RL for end-to-end au-
tonomous driving. Motivated by IL’s limitations in generalization and long-tail performance, we
exploit RL’s exploration capability within an offline setting. By combining group sampling with
non-reactive simulation and augmenting it with imagination via a latent world model, we train an RL
actor capable of capturing long-term advantages beyond immediate rewards. A competition-based
mechanism further enables effective interaction between IL and RL actors to promoting knowledge
sharing. Experiments on nuScenes and Navsim demonstrate that our approach significantly reduces
collisions, improves generalization, and enhances long-tail performance. We believe this framework
provides a promising direction for combining imitation and reinforcement learning in embodied AI,
and we hope it inspires future research in autonomous driving and beyond.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Shaoyu Chen, Bo Jiang, Hao Gao, Bencheng Liao, Qing Xu, Qian Zhang, Chang Huang, Wenyu
Liu, and Xinggang Wang. Vadv2: End-to-end vectorized autonomous driving via probabilistic
planning, 2024. URL https://arxiv.org/abs/2402.13243.

OpenScene Contributors. Openscene: The largest up-to-date 3d occupancy prediction benchmark
in autonomous driving. https://github.com/OpenDriveLab/OpenScene, 2023.

Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap
Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking,
2024. URL https://arxiv.org/abs/2406.15349.

Hao Gao, Shaoyu Chen, Bo Jiang, Bencheng Liao, Yiang Shi, Xiaoyang Guo, Yuechuan Pu, Haoran
Yin, Xiangyu Li, Xinbang Zhang, Ying Zhang, Wenyu Liu, Qian Zhang, and Xinggang Wang.
Rad: Training an end-to-end driving policy via large-scale 3dgs-based reinforcement learning,
2025. URL https://arxiv.org/abs/2502.13144.

Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang,
and Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile
controllability. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Anant Garg and K Madhava Krishna. Imagine-2-drive: Leveraging high-fidelity world models via
multi-modal diffusion policies, 2025. URL https://arxiv.org/abs/2411.10171.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Mingzhe Guo, Zhipeng Zhang, Yuan He, Ke Wang, and Liping Jing. End-to-end autonomous driving
without costly modularization and 3d manual annotation. arXiv preprint arXiv:2406.17680, 2024.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tian-
wei Lin, Wenhai Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang
Li. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023.

Zilin Huang, Zihao Sheng, Yansong Qu, Junwei You, and Sikai Chen. Vlm-rl: A unified vision
language models and reinforcement learning framework for safe autonomous driving, 2024. URL
https://arxiv.org/abs/2412.15544.

Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
tonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, pp. 8340–8350, 2023.

Napat Karnchanachari, Dimitris Geromichalos, Kok Seang Tan, Nanxiang Li, Christopher Eriksen,
Shakiba Yaghoubi, Noushin Mehdipour, Gianmarco Bernasconi, Whye Kit Fong, Yiluan Guo,
and Holger Caesar. Towards learning-based planning: The nuplan benchmark for real-world au-
tonomous driving. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pp. 629–636, 2024. doi: 10.1109/ICRA57147.2024.10610077.

Derun Li, Jianwei Ren, Yue Wang, Xin Wen, Pengxiang Li, Leimeng Xu, Kun Zhan, Zhongpu
Xia, Peng Jia, Xianpeng Lang, et al. Finetuning generative trajectory model with reinforcement
learning from human feedback. arXiv preprint arXiv:2503.10434, 2025a.

Peidong Li and Dixiao Cui. Navigation-guided sparse scene representation for end-to-end au-
tonomous driving, 2025. URL https://arxiv.org/abs/2409.18341.

10

https://arxiv.org/abs/2402.13243
https://github.com/OpenDriveLab/OpenScene
https://arxiv.org/abs/2406.15349
https://arxiv.org/abs/2502.13144
https://arxiv.org/abs/2411.10171
https://arxiv.org/abs/2412.15544
https://arxiv.org/abs/2409.18341

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qifeng Li, Xiaosong Jia, Shaobo Wang, and Junchi Yan. Think2drive: Efficient reinforcement
learning by thinking with latent world model for autonomous driving (in carla-v2). In European
Conference on Computer Vision, pp. 142–158. Springer, 2024a.

Yingyan Li, Lue Fan, Jiawei He, Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang, and Tieniu Tan.
Enhancing end-to-end autonomous driving with latent world model, 2025b. URL https://
arxiv.org/abs/2406.08481.

Yingyan Li, Yuqi Wang, Yang Liu, Jiawei He, Lue Fan, and Zhaoxiang Zhang. End-to-end driving
with online trajectory evaluation via bev world model, 2025c. URL https://arxiv.org/
abs/2504.01941.

Yongkang Li, Kaixin Xiong, Xiangyu Guo, Fang Li, Sixu Yan, Gangwei Xu, Lijun Zhou, Long
Chen, Haiyang Sun, Bing Wang, et al. Recogdrive: A reinforced cognitive framework for end-to-
end autonomous driving. arXiv preprint arXiv:2506.08052, 2025d.

Zhenxin Li, Kailin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Yishen Ji, Zhiqi Li, Ziyue Zhu,
Jan Kautz, Zuxuan Wu, Yu-Gang Jiang, and Jose M. Alvarez. Hydra-mdp: End-to-end mul-
timodal planning with multi-target hydra-distillation, 2024b. URL https://arxiv.org/
abs/2406.06978.

Dongxiu Liu, Haoyi Niu, Zhihao Wang, Jinliang Zheng, Yinan Zheng, zhonghong Ou, Jianming
Hu, Jianxiong Li, and Xianyuan Zhan. Efficient robotic policy learning via latent space backward
planning. In International Conference on Machine Learning, 2025.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-
end autonomous driving. In Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024. URL https://arxiv.org/abs/2402.03300.

Hang Wang, Xin Ye, Feng Tao, Chenbin Pan, Abhirup Mallik, Burhaneddin Yaman, Liu Ren, and
Junshan Zhang. AdaWM: Adaptive world model based planning for autonomous driving. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=NEu8wgPctU.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into the
future: Multiview visual forecasting and planning with world model for autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 14749–14759, June 2024.

Yuqing Wen, Yucheng Zhao, Yingfei Liu, Fan Jia, Yanhui Wang, Chong Luo, Chi Zhang, Tiancai
Wang, Xiaoyan Sun, and Xiangyu Zhang. Panacea: Panoramic and controllable video generation
for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6902–6912, June 2024.

Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
architecture for real-time autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15449–15458, 2024.

Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. End-to-end urban
driving by imitating a reinforcement learning coach. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021.

Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei
Li, Teng Zhang, Zhongpu Xia, Peng Jia, et al. World4drive: End-to-end autonomous driving via
intention-aware physical latent world model. arXiv preprint arXiv:2507.00603, 2025.

Zewei Zhou, Tianhui Cai, Yun Zhao, Seth Z.and Zhang, Zhiyu Huang, Bolei Zhou, and Jiaqi Ma.
Autovla: A vision-language-action model for end-to-end autonomous driving with adaptive rea-
soning and reinforcement fine-tuning. arXiv preprint arXiv:2506.13757, 2025.

11

https://arxiv.org/abs/2406.08481
https://arxiv.org/abs/2406.08481
https://arxiv.org/abs/2504.01941
https://arxiv.org/abs/2504.01941
https://arxiv.org/abs/2406.06978
https://arxiv.org/abs/2406.06978
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=NEu8wgPctU
https://openreview.net/forum?id=NEu8wgPctU

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 STEP-AWARE REINFORCEMENT LEARNING

When the RL Actor explore, it samples action sequence from n policies (see Eq. 12). The problem
is, as we model each action in the action sequence separately, when sample an action sequence, the
actions are actually sampled independently from different Gaussian distribution. When we use the
sampled action sequence τ

(g)
a to calculate the position sequence τ

(g)
pos, the trajectory is unstable and

not smooth. That means in exploration, the RL Actor’s driving trajectories is possibly do not satisfy
some kinematic characteristics. Below we visualize the comparison of naive group sampling and
our step aware method: Fig. 6 (straight), Fig. 7 (left turn), Fig. 8 (right turn). Our goal is to let the
RL Actor output reasonable driving trajectories, and simply use group sampling here is inefficient
(there is no need to explore some unreasonable trajectories), so in implementation we use step aware
mechanism.

More specifically, via group sampling, we actually get G samples for each action in the action
sequence. The idea is, we decoupled the exploration in to each step, i.e. we do not sample n actions
from different policies, we ensure that only one action will be sampled in each exploration, and for
the resting n − 1 actions in the same exploration, we simply use the mode action (the expectation
E[πi] in gaussian actually). The process is visualized in Fig below. We formulate our methods in
Alo 1.

Algorithm 1 Step Aware RL with Group Sampling

Input: {π1, π2, ..., πn}, s, sw, Vψ (Critic Model), (i, g, Lactor, Lcritic ← 0)
1: repeat
2: i← i+ 1
3: repeat
4: g ← g + 1

5: τ
(g)
a ← {E[π1], ..., a

(g)
i ∼ πi(a

(g)
i |sw,j≥i), ..., E[πn]}

6: Calculating reward τ
(g)
r based on Eq.8, 9

7: Predict future state ˆs′(g) based on Eq. 14
8: Computing “long-term” advantage A

(g)
long based on Eq. 15

9: until g = G

10: Computing critic advantage for step i, Acritic = Z-Score-Norm({A(1)
long, ..., A

(G)
long})

11: Lactor ← Lactor − 1
G

∑G
g=1 A

(g)
critic ·

(∑n
j=1 log

π(τg
a [j]|sw,k≥j)

)
12: Lcritic ← Lcritic +

1
G

∑G
g=1

[
Vψ(s)−

(∑
τ
(g)
r + Vψ(

ˆs′(g))
)]2

13: until i = n
14: Lactor ← 1

n · Lactor
15: Lcritic ← 1

n · Lcritic
Output: Loss of actor Lactor and dreaming critic Lcritic

A.2 MORE EXPERIMENT RESULTS

A.2.1 INFERENCE TIME

During inference time, our method don’t introduce extra inference time cost. Specifically, the knowl-
edge of RL actor had shard with IL actor and they can forward at the inference time. We tested the
inference metrics of LAW and our method on a single A100, and the results is shown in Tab. 5

A.2.2 GENERALIZATION AND PERFORMANCE ON LONG-TAIL SCENARIOS

Details on Long-tail Subset Construction We define long-tail scenarios according to two
criteria: high L2 prediction errors and high collision rates, and accordingly construct two spe-
cialized long-tail datasets. The L2 Long-Tail Dataset is built by first selecting scenes with

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Naive Group Sampling Approach
Ground Truth
Policy Mode (Mean)

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Gaussian Distributions with Sampled Points
Ground Truth
Policy Mode (Mean)

(a) Naive sampling

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Step 1 Sampling
Ground Truth
Sampled Step
Mode (Mean) Value

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 2 Sampling

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 3 Sampling

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Y

Po
sit

io
n

Step 4 Sampling

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 5 Sampling

2 0 2
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 6 Sampling

(b) Step-aware group sampling

Figure 6: Comparison between naive group sampling method and our step-aware group sampling
method in straight driving situation (in training process)

Table 5: Inference Time

Method fps latency (ms)
LAW 26.99 37.1
LAW+CoDrive 27.1 37.0

fut valid flag=TRUE, and then filtering for scenes with L2 distance greater than 0.3 at 1s,
greater than 0.5 at 2s, and simultaneously greater than 1.0 at 3s. This results in a total of 984
scenes for testing. The Collision Rate Long-Tail Dataset is obtained by selecting scenes with
fut valid flag=TRUE and excluding all scenes with a zero collision rate at the 3s horizon,
yielding 91 test scenes.

Detailed Results The detailed results of generalization performance of LAW and LAW+CoDrive
are shown in Tab. 6. The detailed results of performance on two long-tail subset are shown in Tab.
7 and Tab. 8.

Table 6: Generalization Performance

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.6070 1.2012 1.9067 1.2393 0.133 0.923 2.220 1.092
LAW+CoDrive 0.3883 0.7819 1.3203 0.8302 0.133 0.209 0.539 0.294

A.3 MORE QUALITATIVE RESULTS

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0

5

10

15

20

Y
Po

sit
io

n
Naive Group Sampling Approach

Ground Truth
Policy Mode (Mean)

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Y
Po

sit
io

n

Gaussian Distributions with Sampled Points
Ground Truth
Policy Mode (Mean)

(a) Naive sampling

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Y
Po

sit
io

n

Step 1 Sampling

Ground Truth
Sampled Step
Mode (Mean) Value

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Step 2 Sampling

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Step 3 Sampling

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Y
Po

sit
io

n

Step 4 Sampling

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Step 5 Sampling

12.5 10.0 7.5 5.0 2.5 0.0
X Position

0

5

10

15

20

Step 6 Sampling

(b) Step-aware group sampling

Figure 7: Comparison between naive group sampling method and our step-aware group sampling
method in left turn driving situation (in training process)

Table 7: Long-tail dataset (L2) comparision results

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.3753 0.7388 1.2117 0.7753 0.0000 0.0795 0.4590 0.1795
LAW+CoDrive 0.3172 0.6518 1.1143 0.6944 0.0000 0.0794 0.3531 0.1441

Table 8: Long-tail dataset (Collision) comparison results

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.3360 0.6692 1.1837 0.7296 0.0000 0.8523 4.3561 1.7361
LAW+CoDrive 0.2996 0.6410 1.1126 0.6844 0.0000 0.2841 3.2197 1.1679

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Naive Group Sampling Approach
Ground Truth
Policy Mode (Mean)

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Gaussian Distributions with Sampled Points
Ground Truth
Policy Mode (Mean)

(a) Naive sampling

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Step 1 Sampling
Ground Truth
Sampled Step
Mode (Mean) Value

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 2 Sampling

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 3 Sampling

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
Po

sit
io

n

Step 4 Sampling

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 5 Sampling

0 2 4 6
X Position

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Step 6 Sampling

(b) Step-aware group sampling

Figure 8: Comparison between naive group sampling method and our step-aware group sampling
method in right turn driving situation (in training process)

15

	Introduction
	Related Work
	End-to-end Autonomous Driving
	RL in Autonomous Driving
	Combine IL and RL in autonomous driving

	Method
	Actor Modeling
	Backward Planning
	Reinforcement Learning
	Dual-policy Learning Framework

	Experiment
	Benchmarks
	Implementation Details
	Main Results
	Ablation Study

	Analysis
	Competition

	Conclusion
	Appendix
	Step-aware Reinforcement Learning
	More Experiment Results
	Inference Time
	Generalization and Performance on Long-tail Scenarios

	More Qualitative Results

