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ABSTRACT

End-to-end autonomous driving models trained solely with imitation learning (IL)
often suffer from poor generalization. In contrast, reinforcement learning (RL)
promotes exploration through reward maximization but faces challenges such as
sample inefficiency and unstable convergence. A natural solution is to combine
IL and RL. Moving beyond the conventional two-stage paradigm (IL pretrain-
ing followed by RL fine-tuning), we propose CoDrive, a competitive dual-policy
framework that enables IL and RL agents to interact during training. CoDrive
introduces a competition-based mechanism that facilitates knowledge exchange
while preventing gradient conflicts. Experiments on the nuScenes dataset show an
18% reduction in collision rate compared to baselines, along with stronger gener-
alization and improved performance on long-tail scenarios. Code is available at:
https://anonymous.4open.science/r/drive-with-two-minds.

1 INTRODUCTION

End-to-end learning has become the mainstream paradigm in autonomous driving (Hu et al., 2023;
Jiang et al., 2023; Weng et al., 2024). Unlike modular pipelines, end-to-end models allow gradients
to propagate across perception, prediction, and planning, enabling all components to be optimized
toward the final driving objective.

Most existing approaches rely on imitation learning (IL), where models are trained to mimic expert
demonstrations. In practice, these methods are essentially supervised learning (SL): the model’s
outputs are directly supervised to match expert trajectories. The effectiveness of SL relies on the
assumption that data are independent and identically distributed (IID). However, in embodied tasks
such as driving, this assumption fails—observations are temporally correlated, and small prediction
errors can accumulate, pushing the vehicle outside its “safety zone” and leading to cascading fail-
ures. As a result, IL (or more precisely, SL-based IL) agents often generalize poorly and struggle on
long-tail scenarios.

To mitigate these issues, prior work has attempted to expand the training distribution, for example
using generative world models (Wang et al., 2024; Wen et al., 2024; Gao et al., 2024). However,
generated data remain limited in realism and computationally costly. RL offers another solution by
encouraging exploration and learning from trial-and-error. Yet applying RL in simulators suffers
from two drawbacks: (1) high-fidelity expert demonstrations are often unavailable. In fact, many
“expert drivers” in simulators are themselves trained using RL rather than real-world data. Without
genuine expert demonstrations, IL cannot be applied, which also prevents combining IL and RL
in such settings. (2) Agents trained in simulators also face sim-to-real transfer challenges, where
policies that succeed in virtual environments may fail in the real world. So in this paper, we inves-
tigate offline RL directly on expert datasets. While appealingly simple, this setting introduces new
challenges: 1) Since experts already achieve near-optimal rewards, naively fitting expert transitions
reduces RL to IL, offering limited exposure to novel states; 2) Non-reactive simulation can provide
evaluation metrics (e.g., L2 error, collision rate) for hypothetical actions, but cannot yield new states
following those actions.

To solve the two problems above, we 1) inspired by GRPO (Shao et al., 2024), we use group sam-
pling, allowing the agent to generate multiple candidate action sequences and evaluate them through
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Figure 1: Overview of CoDrive. CoDrive adopts a dual-policy architecture that integrates imitation
learning (IL) and reinforcement learning (RL) through a shared latent world model. In each iteration,
the IL actor and RL actor are trained in parallel. The latent world model is learned during the IL
phase and then used in the RL phase, where only the RL actor and critic are updated. For exploration,
the RL actor samples multiple action sequences, predicts future states via the latent world model,
and evaluates them with rule-based reward functions. The critic assigns advantages to each sequence
based on the imagined trajectories and rewards. To promote interaction, a competitive learning
mechanism exchanges knowledge between the IL and RL actors.

non-reactive simulation; 2) leverage a latent world model as a reactive simulator to predict future
states conditioned on sampled actions, enabling imagination-based training beyond ground-truth
data.

Finally, to integrate IL and RL without gradient interference (if simply add the loss of IL and RL),
we introduce a dual-policy architecture that decouples the two objectives into separate actors. A
competition-based learning mechanism fosters interaction and selective knowledge transfer between
the IL and RL agents.

Our contributions are summarized as follows:

• We integrate RL into an end-to-end driving framework by leveraging a latent world model
for imagination-based simulation, avoiding reliance on external simulators.

• We propose a dual-policy competitive learning framework that jointly trains IL and RL
while encouraging interaction through structured competition.

• We conduct extensive experiments on nuScenes and Navsim, showing that our method
improves generalization, reduces collisions, and achieves stronger performance on long-
tail scenarios compared to baselines.

2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING

End-to-end autonomous driving methods replaced traditional modular design by the end-to-end
manner. UniAD (Hu et al., 2023) first demonstrated the potential of end-to-end by unifying per-
ception and planning within a unified framework. VAD (Jiang et al., 2023) vectorized the scene
representation and improved the efficiency of inference. PARA-Drive (Weng et al., 2024) decom-
posed the traditional pipeline and searched for optimal architectures. Some works also integrated
world model. LAW (Li et al., 2025b) and World4Drive (Zheng et al., 2025) predicted future visual
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latents via a world model, improving temporal understanding. SSR (Li & Cui, 2025) utilized sparse
tokens to represent dense BEV features and similarly employed a world model to predict the next
feature to enhance scene comprehension. WoTE (Li et al., 2025c) leverages a world model to pre-
dict future states, enabling online trajectory evaluation and selection. Our approach leverages world
model as an offline simulator. Specifically, the RL policy iteratively interacts with world model to
imagine future scene transitions, enabling reward-driven policy optimization.

2.2 RL IN AUTONOMOUS DRIVING

Reinforcement learning plays an important role in autonomous driving. Roach (Zhang et al., 2021)
trained an RL expert to map BEV input to actions, subsequently served as teacher for the student
model. VLM-RL (Huang et al., 2024) leveraged a Vision-Language-Model (VLM) to generate re-
wards signals for RL. Think2Drive (Li et al., 2024a) integrated DreamV3 to train an expert model,
becoming the first agent to finish CARLA v2. AdaWM (Wang et al., 2025) analyzed performance
degradation of driving agents, proposing a strategy that selectively updates actor or world model.
Imagine2Drive (Garg & Krishna, 2025) proposed a novel framework by integrating a video world
model (Gao et al., 2024) with a diffusion-based policy, achieving impressive performance in the
CARLA. Our fully end-to-end model conducts RL in the latent space with a world model and inte-
grates with IL to achieve more stable training.

2.3 COMBINE IL AND RL IN AUTONOMOUS DRIVING

The combination of RL and IL is an important problem in autonomous driving. AutoVLA (Zhou
et al., 2025) conducted supervised fine-tuning to learn how to reason and later applied GRPO (Shao
et al., 2024) to achieve faster reasoning. RAD (Gao et al., 2025) constructed a large 3D environment
and mixed IL and RL during training. TrajHF (Li et al., 2025a) used IL fine-tuning and RLHF
on a large collected preference data and achieve impressive performance. ReCogDrive (Li et al.,
2025d) incorporated expert imitation loss and RL-loss in simulator to explore safer trajectories. Our
approach performed a competitive framework that optimize IL and RL simultaneously, allowing
them to share information for safer action.

3 METHOD

3.1 ACTOR MODELING

Given current observation o (usually images captured by cameras), the perception module encodes
it into latent state s. For planning, a way point query Qw is employed to extract the waypoint
features sw = {sw,1, sw,2, ..., sw,n} through cross-attention, and the planning head then decodes
the waypoint features into an action sequence τa = {a1, a2, ..., an}. Using the provided expert
action demonstrations τea as labels, imitation learning applies an L1 loss Limi to supervise output.

sw = {sw,1, sw,2, ..., sw,n} = CrossAttn(q = Qw, k = s, v = s). (1)

τa = {a1, a2, ..., an} = PlanningHead(sw). (2)

Limi = ||τa − τea || (3)

To further endow the model with the predictive ability, a world model is used to predict future states.
Unlike pixel-level generative world models, we operate in latent space to reduce task complexity.
Specifically, given the current state st and action τa, the world model predicts future state ŝ′:

ŝ′ = LatentWorldModel(st, τa). (4)

Meanwhile, the perception module encodes next observation o′ into ground-truth state s′. The latent
world model is trained in a self-supervise manner using mean square error (MSE). The overall
imitation learning loss LIL combines Lwm and Limi, where α is a hyperparameter:

Lwm = MSELoss(s′, ŝ′), (5)

LIL = Limi + α · Lwm. (6)
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3.2 BACKWARD PLANNING

In practice, the planning head predicts τa in a single forward. Such design overlooks dependencies
among each step in τa. A natural extension adopts a self-attention layer with causal mask to intro-
duce temporal causality. The policy for ai is formulated as πi(ai|sw,1, ..., sw,i) = π(ai|sw,j≤i).
While this forward-causal design appears intuitive, human driving behavior suggests an alternative
perspective. Drivers typically decide where to go before committing to low-level actions. Moreover,
in real-world deployment, only the first action is executed before replanning, making earlier actions
matter more.
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Figure 2: The comparison of forward planning (using causal mask) and backward attention (use
inverse causal mask)

Motivated by these insights, as shown in Fig. 2, we explore a counterintuitive alternative– backward
planning (inverse causality)–where the i-th action is conditioned on the current and future waypoint
features:

πi(ai|sw,i, ..., sw,n) = πi(ai|sw,j≥i) (7)

This formulation incorporates early actions with richer contextual information while leaving later
actions less constrained, aligning better with how humans plan. Plus, inverse causality changes only
the conditioning order, without affecting the smoothness of the final trajectory. Prior evidence (Liu
et al., 2025) from embodied AI further supports this “goal-to-action” reasoning paradigm, and our
experiments in Tab. 3 confirm that it consistently outperforms both forward-causal and non-causal
baselines.

3.3 REINFORCEMENT LEARNING

RL needs rewards to evaluate the quality of explored trajectories. Given a predicted action sequence
τa, the corresponding position sequence is obtained via cumulative summation: τpos = {a1, a1 +
a2, ...,

∑
i ai}. On nuScenes, we use two components to define the reward: imitation reward rimi

and collision reward rcol:

r
(i)
imi = e−||ai−aei ||2 , r

(i)
col = 1− CollisionDetection(τpos, env). (8)

Here, the env denotes static map information and dynamic agents’ moving trajectories. The final
reward for step i is defined as:

ri = r
(i)
col · r

(i)
imi. (9)

On Navsim (Dauner et al., 2024) benchmark, the reward is computed similarly and utilize the PDMS
score to evaluate the quality of trajectories.

The deterministic action sequence produced by our model cannot be directly optimize with RL,
which typically requires probabilistic policies. To address this, we need to model the uncertainty of
the action sequence. Similar with the planning head output the mean value µi for each action, we
use a stochastic head to output uncertainty for each action:

τσ = {σ1, σ2, ..., σn} = StochasticHead(sw), (10)
where σi is the standard deviation for ai. Here we simply use Gaussian distribution to model each
action and use the diagonal matrix to serve as the covariance matrix. Then the policy for action ai
can formulated with:

πi(ai|sw,j≥i) = N (µi, σ
2
i I). (11)
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Given the offline imitation dataset {(s, τea , τer , s′), ...}, using Gaussian Log Likelihood loss can eas-
ily fitting the behavior of experts’: Lbc = −

∑n
i=1 log

πi(a
e
i |sw,j≥i). But we wish the RL Actor can

explore and learn from both good examples but also bad examples. Inspired by GRPO (Shao et al.,
2024), we introduce exploration by sampling G trajectories from the policy and use the rule-based
reward function to calculate its corresponding reward sequences. Each action sequence in the group,
together with its corresponding reward sequence, can be formally expressed as:

τ
(g)
i = {a(g)1 ∼ π1(a

(g)
1 |sw,j≥1), ..., a

(g)
n ∼ πn(a

(g)
n |sw,j≥n)}, τ (g)r = {r(g)1 , r

(g)
2 , ..., r(g)n }. (12)

For each trajectory, we compute its total reward and normalize within the group using Z-score nor-
malization to obtain the advantage and the naive policy gradient loss with group sampling (naive
PGGS) is computed by:

Lactor = −
1

G

G∑
g=1

A(g) · (
n∑
i=1

log πi(a
(g)
i |sw,j≥i)), A

(g) =
Σr(g) −mean(Σr(1), ...,Σr(G))

std(Σr(1), ...,Σr(G))
. (13)

To extend the advantage estimation to long-term rewards, we train a critic model V to output the
value of both current state s and the next state s′. Since the offline dataset does not provide next
states for sampled trajectories, we leverage the latent world model to generate rollouts:

ˆs′(g) = LatentWorldModel(s, τ (g)a ). (14)

The long-term advantage A
(g)
long is computed by:

A
(g)
long = (

∑
r(g) + V ( ˆs′(g)))− V (s). (15)

We further apply Z-score normalization to A
(g)
long within each group and denote the normalized

advantage as the critic advantage A
(g)
critic. During training, the actor and critic are then jointly opti-

mized, and this is the method of actor + dreaming critic with group sampling (ADCGS):

Lactor = −
1

G

G∑
g=1

A
(g)
critic·(

n∑
i=1

log πi(a
(g)
i |sw,j≥i)), Lcritic =

1

G

G∑
g=1

[V (s)−(
∑

τ (g)r +V ( ˆs′(g)))]2.

(16)
Since pure RL with our sparse reward is hard to converge (see results in Tab. 4), we add a small
imitation term to stabilize training, with a small coefficient β = 0.005:

LRL = Lactor + Lcritic + β · Lbc. (17)

In practice, since actions in a sampled sequence are drawn independently from different policies, the
resulting position trajectory τpos may lack smoothness. To address this, we adopt a step-aware mech-
anism: within each sampled sequence, only one action is stochastic, while the remaining actions are
set to the mode of their respective policies, ensuring a smoother τpos. The detailed algorithm and
visualizations are provided in Appendix A.1. To further stabilize critic learning, we employ the two-
critic trick, where a reference critic maintains an exponential moving average (EMA) of the learning
critic.

3.4 DUAL-POLICY LEARNING FRAMEWORK

During training, the model’s planning module is decoupled into IL actor and RL actor, optimized
by LIL and LRL respectively. To encourage the two actor interact with each other, two actor can
compete and share information with each other (see Fig. 3).

To balance the contributions of the imitation learning (IL) actor and the reinforcement learning (RL)
actor, we periodically compare their performance every k iterations. The comparison is based on the
cumulative reward scores achieved by each actor.

Depending on the score difference, we apply different merging strategies: 1) Comparable: If the
scores are close, we keep both unchanged. 2) Moderate Superiority: If one actor slightly outper-
form the other, we perform a soft weight merging to gradually transfer knowledge from the winner

5
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Figure 3: The flow chart of our rule-based competitive learning mechanism

to loser: loser.weight = p · loser.weight+(1−p) ·winner.weight. 3) Significant Superiority: If one
actor’s score is substantially higher, we apply a hard weight replacement to copy knowledge from
the winner to loser: loser.weight = winner.weight. This adaptive mechanism enables stable coop-
eration between IL and RL actors, preventing premature dominance of either side while ensuring
faster convergence once one actor demonstrates clear superiority.

4 EXPERIMENT

4.1 BENCHMARKS

nuScenes (Caesar et al., 2020) is a large-scale autonomous driving benchmark featuring 1,000 20-
second urban driving scenes with 1.4M annotated 3D boxes across 23 object classes. It provides
360° imagery from six cameras and 2Hz keyframe annotations. Following prior works (Hu et al.,
2023; Jiang et al., 2023), we evaluate planning using L2 placement error and Collision Rate.

Navsim (Dauner et al., 2024) is a compact, filtered version of OpenScenes (Contributors, 2023),
itself derived from nuPlan (Karnchanachari et al., 2024). It emphasizes challenging scenarios and
contains 120 hours of driving at 2Hz. It includes navtrain and navtest splits for training and testing.
To better reflect closed-loop safety and behavior, Navsim evaluates agents with six metrics: No at-
fault Collisions (NC), Drivable Area Compliance (DAC), Time to Collision (TTC), Ego Progress
(EP), Comfort (C), and Driving Direction Compliance (DDC). These are combined into a weighted
Driving Score (PDMS).

4.2 IMPLEMENTATION DETAILS

For experiments on nuScenes, our method builds upon the LAW framework (Li et al., 2025b) and
SSR framework (Li & Cui, 2025). We train our models using 8 NVIDIA A800-SXM4-80GB GPUs
and perform evaluation on the same A800 GPU. The training is conducted with a batch size of 1
using the AdamW optimizer, with a learning rate set to 5× 10−5, we use cosine annealing learning
rate with linear warm up. All other training settings follow the original LAW configuration. The
training process takes approximately 20 hours to complete.

For experiments on Navsim, we adopt the Transfuser (Prakash et al., 2021) model as backbone.
Transfuser employs a Transformer-based architecture to fuse front-view camera image and LIDAR
data across multiple stages. We train our model on navtrain split and evaluate it on test split, using
the same hardware configuration as in nuScenes experiments. The training is performed with a batch
size of 16 using the AdamW optimizer, with a learning rate set to 1× 10−4.

4.3 MAIN RESULTS

The results on nuScenes are presented in Tab. 1. For nuScenes, We follow the evaluation protocol
of (Jiang et al., 2023), which reports average L2 distance and collision rate over 1s, 2s, and 3s
prediction horizons. We tried our method on both SSR (Li & Cui, 2025) and LAW (Li et al., 2025b),
and we found that SSR is unstable, even using the same random seed. So in ablation studies, we
only use LAW.

6
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Table 1: Comparison of state-of-the-art methods on the nuScenes dataset. Gray rows indicate
methods that do not use additional supervision. *Models are trained and evaluated on 8 A800 GPUs.
†We found that SSR is unstable on our machine, here we only use random seed 0. The overall best
results are highlighted in bold, while the best results among methods without additional supervision
are underlined.

Method Auxiliary Task L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 Det&Map&Depth 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD Det&Track&Map&Motion&Occ 0.44 0.67 0.96 0.69 0.04 0.08 0.23 0.12
VAD-Tiny Det&Map&Motion 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38
VAD-Base Det&Map&Motion 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
BEV-Planner None 0.28 0.42 0.68 0.46 0.04 0.37 1.07 0.49
PARA-Drive Det&Track&Map&Motion&Occ 0.25 0.46 0.74 0.48 0.14 0.23 0.39 0.25
GenAD Det&Map&Motion 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19
SparseDrive Det&Track&Map&Motion 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08
UAD Det 0.28 0.41 0.65 0.45 0.01 0.03 0.14 0.06
World4Drive Segmentation 0.23 0.47 0.81 0.50 0.02 0.12 0.33 0.16
SSR*† None 0.18 0.35 0.62 0.38 0.48 0.45 0.51 0.48
SSR+CoDrive*† None 0.21 0.40 0.69 0.43 0.09 0.11 0.23 0.15
LAW* None 0.32 0.62 1.03 0.66 0.08 0.13 0.46 0.22
LAW+CoDrive (PGGS)* None 0.31 0.61 1.01 0.65 0 0.10 0.51 0.20
LAW+CoDrive (ADCGS)* None 0.29 0.59 1.00 0.63 0.06 0.10 0.37 0.18

On nuScenes, compared to the recent world model-based autonomous driving models like SSR (Li
& Cui, 2025) and LAW (Li et al., 2025b), after using our method, both model achieve lower collision
rate. And LAW with our method also achieve lower L2 distance. Although UAD (Guo et al., 2024)
achieves the lowest collision rate overall (0.06%), it relies heavily on extensive supervision signals
such as detection and tracking. In contrast, SSR with our method achieves the best collision rate
(0.15%) among methods that do not use any auxiliary supervision beyond expert trajectories.

Long-tail scenario performance and generalization ability on nuScenes We evaluate gener-
alization by training on nuScenes-Singapore and testing on nuScenes-Boston (Fig. 4a). To assess
long-tail performance, we construct two subsets from the evaluation set: one with high L2 error and
one with high collision rate, identified using the baseline model. Results (Fig. 4b) show that our
method improves both generalization and long-tail robustness. Details on subset construction and
full results are in Appendix A.2.2.
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Figure 4: Comparision of Generalization and Performance on Long-tail Dataset (L2 and Collision).

The results on Navsim are shown in Tab. 2. For Navsim, we adopt the close-loop metrics provided in
Navsim. Specifically, we use the test split rather than navtest split for evaluation, as the former con-
tains much more scenarios (5044) than the latter (885), making it more suitable for comprehensively
assessing the model’s overall driving performance.

On navsim, our model obtains a PDMS of 88.2, outperforming recent state-of-the-art methods,
showing notable improvements across multiple sub-metrics, including NC (+0.4), DAC (+0.4) and
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Table 2: Comparison of state-of-art methods on Navsim test set. *reproduced by us. † test on
navtest set.

Method NC ↑ DAC ↑ TTC ↑ Comf.↑ EP ↑ PDMS↑
Human 100.0 100.0 100.0 99.9 87.5 94.8

Ego Status MLP 93.0 77.3 83.6 100.0 62.8 65.6
VADv2 (Chen et al., 2024) 97.2 89.1 91.6 100.0 76.0 80.9
UniAD (Hu et al., 2023) 97.8 91.9 92.9 100.0 78.8 83.4
PARA-Drive (Weng et al., 2024) 97.9 92.4 93.0 99.8 79.3 84.0
Transfuser (Prakash et al., 2021) 97.7 92.8 92.8 100.0 79.2 84.0
LAW (Li et al., 2025b) 96.5 95.4 88.7 99.9 81.7 84.6
Hydra-MDP (Li et al., 2024b) 98.3 96.0 94.6 100.0 78.7 86.5
WoTE* (Li et al., 2025c) 98.6 96.4 95.3 100.0 81.1 87.9

WoTE+CoDrive 98.6 96.8 95.5 100.0 81.0 88.2

TTC (+0.8). Compared to WoTE (Li et al., 2025c), which leverages a world model to evaluate
candidate trajectories during testing, our approach achieves a higher overall score.

4.4 ABLATION STUDY

Causality To verify the effect of inverse causality, we conduct three experiments on LAW +
CoDrive naive PGGS model, and change the mask we use in the self attention layer to sw in three
different ways: 1) no causal mask; 2) causal mask1; 3) inverse causal mask2. We set β in LRL equals
to 0. The results is shown in Tab. 3.

Table 3: The Effect of Causality to the Performance

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.32 0.63 1.03 0.66 0.09 0.12 0.46 0.22
no mask 0.30 0.60 1.04 0.64 0.09 0.15 0.43 0.22

causal mask 0.35 0.67 1.10 0.71 0.08 0.16 0.57 0.27
causal mask (inv) 0.31 0.61 1.01 0.65 0.04 0.08 0.48 0.20

From the results, the naive causal mask increases both L2 error and collision rate. In contrast,
removing the mask or using the inverse causal mask outperforms the baseline. The no-mask setting
reduces L2 error, while the inverse causal mask improves both L2 and collision rate, highlighting
the effectiveness of backward planning (inverse causality).

Integration of IL and RL. We compare several integration strategies: (i) loss merging, jointly
optimizing with LIL +LRL; (ii) IL–RL interval, alternating between LIL and LRL; (iii) two-stage,
pre-training with LIL then fine-tuning with LRL; and (iv) decoupled actors, where IL and RL actors
are optimized separately, optionally with competition (“comp”). Results are shown in Tab. 4.

From Tab. 4, only the decouple, w/ comp variant improves both L2 and collision rates over the base-
line. This is notable since two-stage IL–RL transfer is effective in other domains (e.g., Deepseek’s
R1 (Guo et al., 2025)). We attribute the limited gains to: (1) overly simple rewards (imitation and
collision only), (2) use of a basic actor–critic method instead of more stable algorithms like PPO,
and (3) non-reactive simulation, where both states and rewards are generated by the world model,
introducing bias. These factors explain the poor “pure RL” results and the degradation in most
RL-augmented variants. Nevertheless, the competitive decoupled design demonstrates that effective
IL–RL interaction can still yield measurable improvements.

1causal mask: torch.triu(torch.ones(n,n), diagonal=1)
2inverse causal mask: torch.tril(torch.ones(n,n), diagonal=-1)
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Table 4: The Performance of Different Ways to Integrate IL and RL.

Description L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

pure IL 0.32 0.63 1.03 0.66 0.09 0.12 0.46 0.22
pure RL 3.92 6.55 9.18 6.55 2.75 4.87 7.72 4.93

loss merging 0.38 0.73 1.17 0.76 0.03 0.12 0.54 0.23
IL-RL interval 0.31 0.63 1.07 0.68 0.12 0.17 0.54 0.28

two-stage 2.43 4.21 6.03 4.22 2.29 4.13 6.53 4.32
decouple, w/o comp 0.32 0.64 1.07 0.68 0.09 0.13 0.53 0.25
decouple, w/ comp 0.31 0.61 1.01 0.65 0.04 0.08 0.48 0.20

5 ANALYSIS

5.1 COMPETITION

The last two lines of result in Tab. 4 show that the competitive learning mechanism can help the IL
Actor and RL Actor interact and finally learn a better model, but how?
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Figure 5: Accumulated wins (top) and score difference
(bottom) across training iterations.

By tracking metrics such as accumulated
wins and score differences (IL score – RL
score) over iterations, we observe the fol-
lowing: (1) In the early stage (<20k it-
erations), the IL actor achieves more wins
and higher scores, indicating that IL initially
leads the learning process. (2) Afterward,
the RL actor acquires basic driving knowl-
edge, and its exploration via group sam-
pling becomes more effective than simply
imitating expert trajectories. Consequently,
RL achieves higher scores and dominates in
later training. This progression resembles the
two-stage paradigm (IL pretraining followed
by RL fine-tuning), but with a key difference:
IL and RL are trained jointly. Even though IL
loses more frequently in later stages, its gra-
dients continue to benefit shared components
such as the perception module.

6 CONCLUSION

We presented a competitive dual-policy framework that integrates IL and RL for end-to-end au-
tonomous driving. Motivated by IL’s limitations in generalization and long-tail performance, we
exploit RL’s exploration capability within an offline setting. By combining group sampling with
non-reactive simulation and augmenting it with imagination via a latent world model, we train an RL
actor capable of capturing long-term advantages beyond immediate rewards. A competition-based
mechanism further enables effective interaction between IL and RL actors to promoting knowledge
sharing. Experiments on nuScenes and Navsim demonstrate that our approach significantly reduces
collisions, improves generalization, and enhances long-tail performance. We believe this framework
provides a promising direction for combining imitation and reinforcement learning in embodied AI,
and we hope it inspires future research in autonomous driving and beyond.
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A APPENDIX

A.1 STEP-AWARE REINFORCEMENT LEARNING

When the RL Actor explore, it samples action sequence from n policies (see Eq. 12). The problem
is, as we model each action in the action sequence separately, when sample an action sequence, the
actions are actually sampled independently from different Gaussian distribution. When we use the
sampled action sequence τ

(g)
a to calculate the position sequence τ

(g)
pos, the trajectory is unstable and

not smooth. That means in exploration, the RL Actor’s driving trajectories is possibly do not satisfy
some kinematic characteristics. Below we visualize the comparison of naive group sampling and
our step aware method: Fig. 6 (straight), Fig. 7 (left turn), Fig. 8 (right turn). Our goal is to let the
RL Actor output reasonable driving trajectories, and simply use group sampling here is inefficient
(there is no need to explore some unreasonable trajectories), so in implementation we use step aware
mechanism.

More specifically, via group sampling, we actually get G samples for each action in the action
sequence. The idea is, we decoupled the exploration in to each step, i.e. we do not sample n actions
from different policies, we ensure that only one action will be sampled in each exploration, and for
the resting n − 1 actions in the same exploration, we simply use the mode action (the expectation
E[πi] in gaussian actually). The process is visualized in Fig below. We formulate our methods in
Alo 1.

Algorithm 1 Step Aware RL with Group Sampling

Input: {π1, π2, ..., πn}, s, sw, Vψ (Critic Model), (i, g, Lactor, Lcritic ← 0)
1: repeat
2: i← i+ 1
3: repeat
4: g ← g + 1

5: τ
(g)
a ← {E[π1], ..., a

(g)
i ∼ πi(a

(g)
i |sw,j≥i), ..., E[πn]}

6: Calculating reward τ
(g)
r based on Eq.8, 9

7: Predict future state ˆs′(g) based on Eq. 14
8: Computing “long-term” advantage A

(g)
long based on Eq. 15

9: until g = G

10: Computing critic advantage for step i, Acritic = Z-Score-Norm({A(1)
long, ..., A

(G)
long})

11: Lactor ← Lactor − 1
G

∑G
g=1 A

(g)
critic ·

(∑n
j=1 log

π(τg
a [j]|sw,k≥j)

)
12: Lcritic ← Lcritic +

1
G

∑G
g=1

[
Vψ(s)−

(∑
τ
(g)
r + Vψ(

ˆs′(g))
)]2

13: until i = n
14: Lactor ← 1

n · Lactor
15: Lcritic ← 1

n · Lcritic
Output: Loss of actor Lactor and dreaming critic Lcritic

A.2 MORE EXPERIMENT RESULTS

A.2.1 INFERENCE TIME

During inference time, our method don’t introduce extra inference time cost. Specifically, the knowl-
edge of RL actor had shard with IL actor and they can forward at the inference time. We tested the
inference metrics of LAW and our method on a single A100, and the results is shown in Tab. 5

A.2.2 GENERALIZATION AND PERFORMANCE ON LONG-TAIL SCENARIOS

Details on Long-tail Subset Construction We define long-tail scenarios according to two
criteria: high L2 prediction errors and high collision rates, and accordingly construct two spe-
cialized long-tail datasets. The L2 Long-Tail Dataset is built by first selecting scenes with
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Figure 6: Comparison between naive group sampling method and our step-aware group sampling
method in straight driving situation (in training process)

Table 5: Inference Time

Method fps latency (ms)
LAW 26.99 37.1
LAW+CoDrive 27.1 37.0

fut valid flag=TRUE, and then filtering for scenes with L2 distance greater than 0.3 at 1s,
greater than 0.5 at 2s, and simultaneously greater than 1.0 at 3s. This results in a total of 984
scenes for testing. The Collision Rate Long-Tail Dataset is obtained by selecting scenes with
fut valid flag=TRUE and excluding all scenes with a zero collision rate at the 3s horizon,
yielding 91 test scenes.

Detailed Results The detailed results of generalization performance of LAW and LAW+CoDrive
are shown in Tab. 6. The detailed results of performance on two long-tail subset are shown in Tab.
7 and Tab. 8.

Table 6: Generalization Performance

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.6070 1.2012 1.9067 1.2393 0.133 0.923 2.220 1.092
LAW+CoDrive 0.3883 0.7819 1.3203 0.8302 0.133 0.209 0.539 0.294

A.3 MORE QUALITATIVE RESULTS
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Figure 7: Comparison between naive group sampling method and our step-aware group sampling
method in left turn driving situation (in training process)

Table 7: Long-tail dataset (L2) comparision results

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.3753 0.7388 1.2117 0.7753 0.0000 0.0795 0.4590 0.1795
LAW+CoDrive 0.3172 0.6518 1.1143 0.6944 0.0000 0.0794 0.3531 0.1441

Table 8: Long-tail dataset (Collision) comparison results

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

LAW 0.3360 0.6692 1.1837 0.7296 0.0000 0.8523 4.3561 1.7361
LAW+CoDrive 0.2996 0.6410 1.1126 0.6844 0.0000 0.2841 3.2197 1.1679
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Figure 8: Comparison between naive group sampling method and our step-aware group sampling
method in right turn driving situation (in training process)
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