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ABSTRACT

Numerous biological and physical processes can be modeled as systems of interact-
ing entities evolving continuously over time, e.g. the dynamics of communicating
cells or physical particles. Learning the dynamics of such systems is essential
for predicting the temporal evolution of populations across novel samples and
unseen environments. Flow-based models allow for learning these dynamics at the
population level — they model the evolution of the entire distribution of samples.
However, current flow-based models are limited to a single initial population and
a set of predefined conditions which describe different dynamics. We argue that
multiple processes in natural sciences have to be represented as vector fields on the
Wasserstein manifold of probability densities. That is, the change of the population
at any moment in time depends on the population itself due to the interactions
between samples. In particular, this is crucial for personalized medicine where the
development of diseases and their respective treatment response depend on the mi-
croenvironment of cells specific to each patient. We propose Meta Flow Matching
(MFM), a practical approach to integrate along these vector fields on the Wasser-
stein manifold by amortizing the flow model over the initial populations. Namely,
we embed the population of samples using a Graph Neural Network (GNN) and
use these embeddings to train a Flow Matching model. This gives MFM the ability
to generalize over the initial distributions, unlike previously proposed methods. We
demonstrate the ability of MFM to improve the prediction of individual treatment
responses on a large-scale multi-patient single-cell drug screen dataset.

1 INTRODUCTION

Understanding the dynamics of many-body problems is a focal challenge across the natural sciences.
In the field of cell biology, a central focus is the understanding of the dynamic processes that cells
undergo in response to their environment, and in particular their response and interaction with other
cells. Cells communicate with one other in close proximity using cell signaling, exerting influence
over each other’s trajectories (Armingol et al., 2020; Goodenough and Paul, 2009). This signaling
presents an obstacle for modeling due to the complex nature of intercellular regulation, but is essential
for understanding and eventually controlling cell dynamics during development (Gulati et al., 2020;
Rizvi et al., 2017), in diseased states (Molè et al., 2021; Binnewies et al., 2018; Zeng and Dai, 2019;
Chung et al., 2017), and in response to perturbations (Ji et al., 2021; Peidli et al., 2024).
The exponential decrease of sequencing costs and advances in microfluidics has enabled the rapid
advancement of single-cell sequencing and related technologies over the past decade (Svensson et al.,
2018). While single-cell sequencing has been used to great effect to understand the heterogeneity in
cell systems, it is also destructive, making longitudinal measurements extremely difficult. Hence,
learning dynamical system models of cells while also capturing their inherent heterogeneity and
stochasticity of cellular systems remains a central challenge in biology.
Instead, most existing approaches model cell dynamics at the population level (Hashimoto et al.,
2016; Weinreb et al., 2018; Schiebinger et al., 2019; Tong et al., 2020; Neklyudov et al., 2022; Bunne
et al., 2023). These approaches involve the formalisms of optimal transport (Villani, 2009; Peyré and
Cuturi, 2019), diffusion (De Bortoli et al., 2021), or normalizing flows (Lipman et al., 2022), which
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Figure 1: Illustration of Meta Flow Matching (MFM, Eq. (17)). (a) Comparison between Flow Matching (FM,
Eq. (6)) and MFM. (b) Depiction of differences between MFM and FM generated predictions. Given a point xt,
a vector field (flow) model trained with MFM can generate different points x̂1 for different initial distributions
p0 (represented by red, green, and purple). FM trained models can only predict an aggregate response over
populations (shown in gray). FM at best can incorporate known (seen) conditional information available in the
training data, denoted as Conditional Generative Flow Matching (CGFM, Eq. (9)). In contrast, MFM jointly
learns a population embedding model φ(p0) and a vector field vt, allowing generalization to unseen populations.

learn a map between empirical measures. While these methods are able to model the dynamics of the
population, they are fundamentally limited in that they model the evolution of cells as independent
particles evolving according to the learned model of a global vector field. Furthermore, these models
can be trained to match any given set of measures, but they are restricted to modeling of a single
population and can at best condition on a number of different dynamics that are in the training data.
We propose Meta Flow Matching (MFM) — the amortization of the Flow Matching generative
modeling framework (Lipman et al., 2022) over the input measures, which (i) takes into account
the interaction of particles (instead of modelling them independently) and (ii) allows for generalization
of the learned model to previously unseen input populations. In practice, our method can be used to
predict the time-evolution of distributions from a given dataset of the time-evolved examples. Namely,
we assume that the collected data undergoes a universal developmental process, which depends only
on the population itself as in the setting of the interacting particles or communicating cells. Under
this assumption, we learn the vector field model that takes samples from the initial distribution as
input and defines the push-forward map on the sample-space that maps the initial distribution to the
final distribution (see Fig. 1).
We showcase the utility of our approach on two applications. To illustrate the intuition of the proposed
method, we first test MFM on a synthetic task of “letter denoising”. We show that MFM is able
to generalize the denoising process to unseen letter silhouettes, whereas the standard FM approach
cannot. Next, we explore how MFM can be applied to model single-cell perturbation data (Ji et al.,
2021; Peidli et al., 2024). We evaluate MFM on predicting the response of patient-derived cells
to chemotherapy treatments in a recently published large scale single-cell drug screening dataset
where there are known to be patient-specific responses (Ramos Zapatero et al., 2023).1 This is a
challenging task due to the inherent variation that exist across patients, the variability induced by
different treatments, and variation due to local cell compositions. Addressing this problem can lead to
better prediction of tumor growth and therapeutic response to cancer treatment. We demonstrate that
MFM can successfully predict the development of cell populations on replicated experiments, and
most importantly, that it generalizes to previously unseen patients, thus, capturing the patient-specific
response to the treatment.

2 BACKGROUND

2.1 GENERATIVE MODELING VIA FLOW MATCHING

Flow Matching is an approach to generative modeling recently proposed independently in different
works: Rectified Flows (Liu et al., 2022b), Flow Matching (Lipman et al., 2022), Stochastic Inter-
polants (Albergo and Vanden-Eijnden, 2022). A flow is a continuous interpolation between densities
p0(x0) and p1(x1) in the sample space. That is, the sample from the intermediate density pt(x) is
produced as follows

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1) , (1)

where
∫

dx1 π(x0, x1) = p0(x0) ,

∫
dx0 π(x0, x1) = p1(x1) , (2)

1This dataset includes more than 25 million cells collected for ten patients over 2500 different experimen-
tal/treatment conditions.
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where ft is the time-continuous interpolating function such that ft=0(x0, x1) = x0 and
ft=1(x0, x1) = x1 (e.g. linearly between x0 and x1 with ft(x0, x1) = (1 − t) · x0 + t · x1);
π(x0, x1) is the density of the joint distribution, which is usually taken as a distribution of inde-
pendent random variables π(x0, x1) = p0(x0)p1(x1), but can also be generalized to formulate the
optimal transport problems (Pooladian et al., 2023; Tong et al., 2024a). The corresponding density
can be defined then as the following expectation over the interpolating samples

pt(x) =

∫
dx0dx1 π(x0, x1)δ(x− ft(x0, x1)) . (3)

The essential part of Flow Matching is the continuity equation that describes the change of this
density through the vector field on the state space, which admits vector field v∗t (x) as a solution

∂pt(x)

∂t
= −⟨∇x, pt(x)v

∗
t (x)⟩ , v∗t (ξ) =

1

pt(ξ)
Eπ(x0,x1)

[
δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t

]
. (4)

The expectation for v∗t is intractable, but we can model vt(x;ω) to approximate v∗t so that we can
efficiently generate new samples. Relying on Eq. (4), one can derive the tractable objective for
learning v∗t (x), i.e.

LFM(ω) =

∫ 1

0

dt Ept(x)∥v
∗
t (x)− vt(x;ω)∥2 (5)

= Eπ(x0,x1)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1);ω)

∥∥∥∥2 + constant . (6)

Finally, the vector field vt(ξ, ω) ≈ v∗t (ξ) defines the push-forward density that approximately matches
pt=1, i.e. T#p0 ≈ pt=1, where T is the flow corresponding to vector field vt(·, ω) with parameters ω.

2.2 CONDITIONAL GENERATIVE MODELING VIA FLOW MATCHING

Conditional image generation is one of the most common applications of generative models nowadays;
it includes conditioning on the text prompts (Saharia et al., 2022b; Rombach et al., 2022) as well
as conditioning on other images (Saharia et al., 2022a). To learn the conditional generative process
with diffusion models, one merely has to pass the conditional variable (sampled jointly with the data
point) as an additional input to the parametric model of the vector field. The same applies for the
Flow Matching framework.
Conditional Generative Modeling via Flow Matching is independently introduced in several works
(Zheng et al., 2023; Dao et al., 2023; Isobe et al., 2024) and it operates as follows. Consider a family
of time-continuous densities pt(xt | c), which corresponds to the distribution of the following random
variable

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1 | c) . (7)
For every c, the density pt(xt | c) follows the continuity equation with the following vector field

v∗t (ξ | c) =
1

pt(ξ | c)
Eπ(x0,x1)δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t
, (8)

which depends on c. Thus, the training objective of the conditional model becomes

LCGFM (ω) = Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) | c;ω)

∥∥∥∥2 , (9)

where, compared to the original Flow Matching formulation, we first have to sample c, then produce
the samples from pt(xt | c) and pass c as input to the parametric model of the vector field.

2.3 MODELING PROCESS IN NATURAL SCIENCES AS VECTOR FIELDS ON THE WASSERSTEIN
MANIFOLD

We argue that numerous biological and physical processes cannot be modeled via the vector field
propagating the population samples independently. Thus, we propose to model these processes as
families of conditional vector fields where we amortize the conditional variable by embedding the
population via a Graph Neural Network (GNN).
To provide the reader with the necessary intuition, we are going to use the geometric formalism
developed by Otto (2001) (see the complete discussion in Appendix A). That is, time-dependent
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Flow Matching Conditional Flow Matching Vector Field on P2(X )

Figure 2: Illustration of flow matching methods on the 2-Wasserstein manifold, P2(X ), depicted as a two-
dimensional sphere. Flow Matching learns the tangent vectors to a single curve on the manifold. Conditional
generation corresponds to learning a finite set of curves on the manifold, e.g. classes c1 and c2 on the plot. Meta
Flow Matching learns to integrate a vector field on P2(X ), i.e. for every starting density p0, MFM defines a
push-forward measure that integrates along the underlying vector field.

densities pt(xt) define absolutely-continuous curves on the 2-Wasserstein space of distributions
P2(X ) (see (Ambrosio et al., 2008), Chapter 8). The tangent space of this manifold is defined by the
gradient flows St = {∇st | st : X → R} on the state space X , to be precise, its L2(µ;X ) closure
∀µ ∈ P2(X ) (see (Ambrosio et al., 2008), eq. (8.0.2)). In the Flow Matching context, we are going
to refer to the tangent vectors as vector fields since one can always project the vector field onto the
tangent space by parameterizing it as a gradient flow (Neklyudov et al., 2022).
Under the geometric formalism of the 2-Wasserstein manifold, Flow Matching can be considered
as learning the tangent vectors vt(·) along the density curve pt(xt) defined by the sampling process
in Eq. (2) (see the left panel in Fig. 2). Furthermore, the conditional generation processes pt(xt | c)
would be represented as a finite set of curves if c is discrete (e.g. class-conditional generation of
images) or as a family of curves if c is continuous (see the middle panel in Fig. 2).
Finally, one can define a vector field on the 2-Wasserstein manifold via the continuity equation with
the vector field vt(x, pt(x)) on the state space X that depends on the current density pt(x) or its
derivatives. Below we give two examples of processes defined as vector fields on the 2-Wasserstein
manifold.

Example 1 (Mean-field limit of interacting particles). Consider a system of interacting par-
ticles, where the velocity of the particle at point x interacting with the particle at point y
is defined as k(x, y) : Rd × Rd → Rd. In the limit of the infinite number of particles one
can describe their state using the density function pt(x). Then the change of the density is
described by the following continuity equation

dx

dt
= Ept(y)k(x, y),

∂pt(x)

∂t
= −

〈
∇x, pt(x)Ept(y)k(x, y)

〉
, (10)

which is the first-order analog of the Vlasov equation (Jabin and Wang, 2016).

Example 2 (Diffusion). Even when the physical particles evolve independently in nature, the
deterministic vector field model might be dependent on the current density of the population.
For instance, for the diffusion process, the change of the density is described by the Fokker-
Planck equation, which results in the density-dependent vector field when written as a continuity
equation, i.e.
∂pt(x)

∂t
=

1

2
∆xpt(x) = −

〈
∇x, pt(x)

(
−1

2
∇x log pt(x)

)〉
=⇒ dx

dt
= −1

2
∇x log pt(x) .

(11)

Motivated by the examples above, we argue that using the information about the current or the initial
density is crucial for the modeling of time-evolution of densities in natural processes, to capture this
type of dependency one can model the change of the density as the following Cauchy problem

∂pt(x)

∂t
= −⟨∇x, pt(x)vt(x, pt)⟩ , pt=0(x) = p0(x) , (12)
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where the state-space vector field vt(x, pt) depends on the density pt.
The dependency might vary across models, e.g. in Example 1 the vector field can be modeled as an
application of a kernel to the density function, while in Example 2 the vector field depends only on
the local value of the density and its derivative.

3 META FLOW MATCHING

In this paper, we propose the amortization of the Flow Matching framework over the marginal
distributions. Our model is based on the outstanding ability of the Flow Matching framework to
learn the push-forward map for any joint distribution π(x0, x1) given empirically. For the given joint
π(x0, x1), we denote the solution of the Flow Matching optimization problem as follows

v∗t (·, π) = argmin
vt

LGFM (vt(·), π(x0, x1)) . (13)

Analogous to amortized optimization (Chen et al., 2022; Amos et al., 2023), we aim to learn the
model that outputs the solution of Eq. (13) based on the input data sampled from π, i.e.

vt(·, φ(π)) = v∗t (·, π) , (14)
where φ(π) is the embedding model of π and the joint density π(· | c) is generated using some
unknown measure of the conditional variables c ∼ p(c).

3.1 INTEGRATING VECTOR FIELDS ON THE WASSERSTEIN MANIFOLD VIA META FLOW
MATCHING

Consider the dataset of joint populations D = {(π(x0, x1 | i))}i, where, to simplify the notation,
we associate every i-th population with its density π(· | i) and the conditioning variable here is the
index of this population in the dataset. We make the following assumptions regarding the ground
truth sampling process (i) we assume that the starting marginals p0(x0 | i) =

∫
dx1 π(x0, x1 | i) are

sampled from some unknown distribution that can be parameterized with a large enough number of
parameters (ii) the endpoint marginals p1(x1 | i) =

∫
dx0 π(x0, x1 | i) are obtained as push-forward

densities solving the Cauchy problem in Eq. (12), (iii) there exists unique solution to this Cauchy
problem.
One can learn a joint model of all the processes from the dataset D using the conditional version of
the Flow Matching algorithm (see Section 2.2) where the population index i plays the role of the
conditional variable. However, obviously, such a model will not generalize beyond the considered
data D and unseen indices i. We illustrate this empirically in Section 5.
To be able to generalize to previously unseen populations, we propose learning the density-dependent
vector field motivated by Eq. (12). That is, we propose to use an embedding function φ : P2(X )→
Rm to embed the starting marginal density p0, which we then input into the vector field model and
minimize the following objective over ω

LMFM(ω;φ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0);ω)

∥∥∥∥2 . (15)

Note that the initial density p0 is enough to predict the push-forward density p1 since the Cauchy
problem for Eq. (12) has a unique solution. The embedding function φ(p0) can take different forms,
e.g. it can be the density value φ(p0) = p0(·), which is then used inside the vector field model to
evaluate at the current point (analogous to Example 2); a kernel density estimator (analogous to
Example 1); or a parametric model taking the samples from this density as an input.

Proposition 1. Meta Flow Matching recovers the Conditional Generation via Flow Match-
ing when the conditional dependence of the marginals p0(x0 | c) =

∫
dx1π(x0, x1 | c)

and p1(x1 | c) =
∫
dx0π(x0, x1 | c) and the distribution p(c) are known, i.e. there exist

φ : P2(X )→ Rm such that LMFM (ω) = LCGFM (ω).

Proof. Indeed, sampling from the dataset i ∼ D becomes sampling of the conditional variable
c ∼ p(c) and the embedding function becomes φ(p0(· | c)) = c.

Furthermore, for the parametric family of the embedding models φ(pt, θ), we show that the parameters
θ can be estimated by minimizing the objective in Eq. (15) in the joint optimization with the vector
field parameters ω. We formalize this statement in the following theorem.
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Algorithm 1: Meta Flow Matching (training)

Input :dataset of populations {(π(x0, x1 | i), ci)}Ni=1 and treatments ci, and parametric models
for the velocity, vt(·;ω), and population embedding φ(·; θ).

for training iterations do
i ∼ U{1,N}(i) // sample batch of n populations ids

(xj
0, x

j
1, t

j) ∼ π(x0, x1 | i)U[0,1](t) // sample Ni particles for every population i

ft(x
j
0, x

j
1)← (1− tj)xj

0 + tjxj
1

hi(θ)← φ
(
{xj

0}
Ni
j=1; θ

)
// embed population {xj

0}
Ni
j=1. For CGFM h← i, FM h← ∅.

LMFM(ω, θ)← 1
n

∑
i

1
ni

∑
j

∥∥∥ d
dtft(x

j
0, x

j
1)− vtj

(
ft(x

j
0, x

j
1) | hi(θ), ci;ω

)∥∥∥2
ω′ ← Update(ω,∇ωLMFM(ω, θ)) // evaluate new parameters of the flow model

θ′ ← Update(θ,∇θLMFM(ω, θ)) // evaluate new parameters of the embedding model

ω ← ω′, θ ← θ′ // update both models

return vt(·;ω∗), φ(·; θ∗)

Theorem 1. Consider a dataset of populations D = {(π(x0, x1 | i))}i generated from some
unknown conditional model π(x0, x1 | c)p(c). Then the following objective

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(p0, θ), ω)∥2 (16)

is equivalent to the Meta Flow Matching objective

LMFM(ω, θ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2 (17)

up to an additive constant.

Proof. We postpone the proof to Appendix B.

3.2 LEARNING POPULATION EMBEDDINGS VIA GRAPH NEURAL NETWORKS (GNNS)

Algorithm 2: Meta Flow Matching (sampling)

Input : initial population {xj
0}N

′

j=1, treatment
condition ci, models vt(·;ω∗) and φ(·; θ∗).

h = φ
(
{xj

0}N
′

j=1; θ
)

// embed the population

xj
1 =

∫ 1

0
vt(x

j
t | h, ci;ω)dt+ xj

0 // ODE solver

return predicted population {xj
1}N

′

j=1

In many applications, the populations D =
{(π(x0, x1 | i))}Ni=1 are given as empirical
distributions, i.e. they are represented as
samples from some unknown density π

{(xj
0, x

j
1)}

Ni
j=1 , (xj

0, x
j
1) ∼ π(x0, x1 | i) ,

(18)
where Ni is the size of the i-th population.
For instance, for the diffusion process con-
sidered in Example 2, the samples from
π(x0, x1 | i) can be generated by generating some marginal p1(x1 | i) and then adding the Gaussian
random variable to the samples xj

1. We use this model in our synthetic experiments in Section 5.1.
Since the only available information about the populations is samples, we propose learning the
embedding of populations via a parametric model φ(p0, θ), i.e.

φ(p0, θ) = φ
(
{xj

0}
Ni
j=1, θ

)
, (xj

0, x
j
1) ∼ π(x0, x1 | i) . (19)

For this purpose, we employ GNNs, which recently have been successfully applied for simulation of
complicated many-body problems in physics (Sanchez-Gonzalez et al., 2020). To embed a population
{xj

0}
Ni
j=1, we create a k-nearest neighbour graph Gi based on the metric in the state-space X , input it

into a GNN, which consists of several message-passing iterations (Gilmer et al., 2017) and the final
average-pooling across nodes to produce the embedding vector. Finally, we update the parameters of
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the GNN jointly with the parameters of the vector field to minimize the loss function in Eq. (17). We
show pseudo-code for training in Algorithm 1 and sampling in Algorithm 2.

4 RELATED WORK

Meta – amortizing learning over distributions The meta-learning of probability measures was
previously studied by Amos et al. (2022) where they demonstrated that the prediction of the optimal
transport paths can be efficiently amortized over the input marginal measures. The main difference
with our approach is that we are trying to learn the push-forward map without embedding the second
marginal and without restricting ourselves to Input-Convex Neural Network (ICNN) by Amos et al.
(2017) and optimal transport maps. MFM is meta in the same sense of amortizing optimal transport
(or in our case flow) problems over multiple input distributions. Hence, we follow the naming
convention of Meta Optimal Transport (Amos et al., 2022). This is different but related to how meta
is used in the meta learning setting, which amortizes over learning problems (Hospedales et al., 2021;
Achille et al., 2019).

Generative modeling for single cells Single cell data has expanded to encompass multiple modali-
ties of data profiling cell state and activities (Frangieh et al., 2021; Bunne et al., 2023). Single-cell
data presents multiple challenges in terms of noise, non-time resolved, and high dimension, and
generative models have been used to counter those problems. Autoencoder has been used to embed
and extrapolate data Out Of Distribution (OOD) with its latent state dimension (Lotfollahi et al., 2019;
Lopez et al., 2018; Hetzel et al., 2022). Orthogonal non-negative matrix factorization (oNMF) has
also been used for dimensionality reduction combined with mixture models for cell state prediction
(Chen et al., 2020). Other approaches have tried to use Flow Matching (FM) (Tong et al., 2024b;a;
Neklyudov et al., 2023) or similar approaches such as the Monge gap (Uscidda and Cuturi, 2023) to
predict cell trajectories. Currently, the state of the art method uses the principle of Optimal Transport
(OT) to predict cell trajectories (Makkuva et al., 2020; Bunne et al., 2023). These methods are based
on input convex neural network (ICNN) architectures and can generalize out of distribution to a new
cells. As of this time, our method is the only method that takes inter-cellular interactions into account
and learns embeddings of entire cell populations to generalize across unseen distributions.

Generative modeling for physical processes The closest approach to ours is the prediction of the
many-body interactions in physics (Sanchez-Gonzalez et al., 2020) via GNNs. However, the problem
there is very different since these models use the information about the individual trajectories of
samples, which are not available for the single-cell prediction. Liu et al. (2022a; 2024) consider
a generalized form of Schrödinger bridges also with interacting terms, but do not consider the
generalization to unseen distributions. Neklyudov et al. (2022) consider learning the vector field
for any continuous time-evolution of a probability measure, however, their method is restricted to
single curves and do not consider generalization to unseen data. Campbell et al. (2024) use input and
space independent conditions for applications in co-protein design, but similarly, their method cannot
generalize to novel distributions. Finally, the weather/climate forecast models generating the next
state conditioned on the previous one (Price et al., 2023; Verma et al., 2024) are similar approaches
to ours but operating on a much finer time resolution.

5 EXPERIMENTS

To show the effectiveness of MFM to generalize under previously unseen populations for the pop-
ulation prediction task, we consider two experimental settings. (i) A synthetic experiment with
well defined coupled populations, and (ii) experiments on a publicly available single-cell dataset
consisting of populations from patient dependent treatment response trials. We parameterize all
vector field models vt(· |φ(p0);ω) using a Multi-Layer Perceptron (MLP). For MFM, we additionally
parameterize φ(pt; θ, k) using a Graph Convolutional Network (GCN) with a k-nearest neighbor
graph edge pooling layer. We include details regarding model hyperparameters, training/optimization,
and implementation in Appendix D and Appendix D.2. We report results over 3 random seeds.

5.1 SYNTHETIC EXPERIMENT

Synthetic data. We curate a synthetic dataset of the joint distributions {(p0(x0, | i), p1(x1 | i))}Ni=1
by simulating a diffusion process applied to a set of pre-defined target distributions p1(x1 | i) for
i = 1, . . . , N . To get a paired population p0(x0 | i) we simulate the forward diffusion process without
drift x0 ∼ N (x1, σ). After this setup, for reasonable values of σ, we assume that one can reverse the

7



Published as a conference paper at ICLR 2025

source t=0.50 t=1.00 target

Tr
ai

n
Te

st

FM

source t=0.50 t=1.00 target
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source t=0.50 t=1.00 target

MFM
Figure 3: Synthetic letters experiment visualizations. Examples of model-generated samples from the source
distribution (t = 0) to predicted target distribution (t = 1). See Fig. 6 Appendix F for further examples.

Table 1: Results of the synthetic letters experiment for population prediction on seen train populations
and unseen test populations. We report the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-
discrepancy (MMD) distributional distances. We consider 4 settings for MFM with varying k. We use w/N to
denote models that use Gaussian source distributions sampled via x0 ∼ N (0,1), but maintains the noisy letters
source populations p0 as input to the population embedding model φ(p0; θ, k). Populations that comprise test
sets (X and Y) are entirely unseen during training. We include an ablation on the effect of changing the number
of training populations (Fig. 5) and results when using OT couplings between samples (Table 4) in Appendix F.

Train Test (X’s) Test (Y’s)

W1(↓) W2(↓) MMD (×10−3) (↓) W1(↓) W2(↓) MMD (×10−3) (↓) W1(↓) W2(↓) MMD (×10−3) (↓)
FM 0.209± 0.000 0.277± 0.000 2.54± 0.00 0.234± 0.000 0.309± 0.000 2.45± 0.00 0.238± 0.000 0.316± 0.000 3.32± 0.01
FMw/N 0.806± 0.000 0.960± 0.000 31.68± 0.00 0.764± 0.000 0.931± 0.000 25.04± 0.00 1.030± 0.000 1.228± 0.000 45.36± 0.00
CGFM 0.090± 0.000 0.113± 0.000 0.25± 0.00 0.334± 0.000 0.407± 0.000 5.55± 0.00 0.327± 0.000 0.405± 0.000 6.85± 0.00
CGFMw/N 0.156± 0.025 0.201± 0.027 1.02± 0.39 0.849± 0.004 0.993± 0.003 35.08± 0.75 1.062± 0.011 1.229± 0.010 55.66± 0.76

MFMk=0
w/N (ours) 0.148± 0.003 0.195± 0.010 0.94± 0.11 0.347± 0.011 0.431± 0.012 6.47± 0.44 0.402± 0.011 0.485± 0.010 10.92± 0.18

MFMk=1
w/N (ours) 0.154± 0.004 0.208± 0.010 0.91± 0.01 0.349± 0.023 0.433± 0.023 6.53± 0.52 0.391± 0.035 0.477± 0.041 10.71± 1.86

MFMk=10
w/N (ours) 0.151± 0.013 0.197± 0.015 0.94± 0.15 0.343± 0.020 0.427± 0.019 6.38± 0.67 0.413± 0.018 0.502± 0.024 11.93± 1.14

MFMk=50
w/N (ours) 0.174± 0.005 0.232± 0.006 1.40± 0.13 0.363± 0.010 0.449± 0.013 7.46± 0.44 0.446± 0.021 0.536± 0.028 13.40± 0.23

MFMk=0 (ours) 0.081± 0.003 0.100± 0.004 0.16± 0.06 0.202± 0.002 0.249± 0.003 2.29± 0.05 0.218± 0.001 0.262± 0.002 3.79± 0.11
MFMk=1 (ours) 0.082± 0.001 0.101± 0.002 0.16± 0.01 0.205± 0.008 0.251± 0.008 2.38± 0.22 0.215± 0.006 0.258± 0.007 3.78± 0.25
MFMk=10 (ours) 0.088± 0.002 0.109± 0.003 0.21± 0.01 0.201± 0.006 0.248± 0.006 2.20± 0.15 0.208± 0.003 0.252± 0.002 3.55± 0.06
MFMk=50 (ours) 0.092± 0.004 0.116± 0.004 0.25± 0.06 0.206± 0.008 0.257± 0.008 2.18± 0.25 0.204± 0.005 0.249± 0.006 3.14± 0.18

diffusion process and learn the push-forward map from p0(x0 | i) to p1(x1 | i) for every index i. For
this task, given the i-th population index we denote p0(x0 | i) as the source population p1(x1 | i) as
the i-th target population.
To construct p1(x1 | i), we discretize samples from a defined silhouette; e.g. an image of a character,
where i indexes the respective character. We use upper case letters as the silhouette and generate
the corresponding samples x1 ∼ p1(x1 | i) from the uniform distribution over the silhouette and run
the diffusion process for samples x1 to acquire x0. We construct the training data using 10 random
orientations of 24 letters. We construct the test data by using 10 random orientations of “X” and “Y”.
Test data populations of “X” and “Y” are entirely unseen during training.
We train FM, CGFM and 4 variants of MFM of varying k for the GCN population embedding model
φ(p0; θ, k). When k = 0, φ(pt; θ, k) becomes identical to the DeepSets model (Zaheer et al., 2017).
We compare MFM to FM and CGFM. We repeat this experiment for models trained with source
distributions sampled from a standard normal x0 ∼ N (0,1). We label these models as FMw/N ,
CGFMw/N , and MFMw/N . Here, MFMw/N still takes the original p0 as input to the population
embedding model φ(p0; θ, k), while vt(·;ω) uses x0 ∼ N (0,1) as the source distribution.
MFM generalizes to populations from unseen letter silhouettes. FM does not have access to
conditional information; hence will only learn an aggregated lens of the distribution dynamics and
will not be able to fit the training data, and consequently won’t generalize to the test conditions.
For the training data, the CGFM vector field model takes in the distribution index i as a one-hot
input condition. On the test set, since none of these indices is present, we input the normalized
constant vector, which averages the learned embeddings of the indices. Because of this, CGFM
will fit the training data, however, will not be able to generalize to the unseen condition in the test
dataset. CGFM indicates when the model can fit the training data and demonstrates that the test data
is substantially different and cannot be generated by the same model. For MFM, we expect to both fit
the training data and generalize to unseen distributional conditions.
We report results for the synthetic experiment in Fig. 3 and Table 1. We observe that indeed FM
struggles to adequately learn to sample from p1(x1 | i) in the training set, while CGFM is able to
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effectively sample from p1(x1 | i) in the training set. As expected, CGFM fits the training data, but
struggles to generalize beyond its set of training conditions. In contrast, we see that MFM is able to
both fit the training data while also generalizing to the unseen test distributions. Interestingly, although
MFM performs better for certain values of k versus others, performance does not vary significantly
for the range considered. In Fig. 7 (Appendix F.1) we plot the letter population embeddings.

5.2 EXPERIMENTS ON ORGANOID DRUG-SCREEN DATA

Train TestCell samples

Replica split
In-Distribution

cell microenvironment

Treatment Conditioning

Patient split
Out-Of-Distribution
cell microenvironment

Figure 4: Organoid drug-screen dataset overview. (Left)
a given replica consists of a control distribution p0 and cor-
responding treatment response distribution p1 for treatment
condition ci. (Right) train and test data splits for replicates
(top) and patients (bottom). Experiments are conducted for
11 treatments, 10 patients, 3 culture conditions, and repeated
(replicated) numerous times, resulting in a dataset of many
control and treated population pairs.

Organoid drug-screen data. For ex-
periments on biological data, we use
the organoid drug-screen dataset from
Ramos Zapatero et al. (2023). This dataset
is a single-cell mass-cytometry dataset
collected over 10 patients. Somewhat
unique to this dataset, unlike many prior
perturbation-screen datasets which have
a single control population, this dataset
has matched controls to each experimen-
tal condition. Populations from each pa-
tient are treated with 11 different drug treat-
ments of varying dose concentrations.2 We
use the term replicate to define control-
treatment population pairs, p0(x0 | ci) and
p1(x1 | ci), respectively (see Fig. 4-left).
After pre-processing, we acquire a total of 927 population pairs. In each patient, cell popula-
tion are categorized into 3 cell cultures: (i) cancer associated Fibroblasts, (ii) patient-derived organoid
cancer cells (PDO), and (iii) patient-derived organoid cancer cells co-cultured fibroblasts (PDOF).
We report results for the individual cultures, i.e. Fibroblast, PDO, and PDOF cultures, in Appendix F.

Table 2: Experimental results on the organoid drug-screen
dataset for population prediction of treatment response over
replicates. We use w/OT to denote models that incorporate
OT couplings between source and target distributions. Note,
the ICNN model operates in the OT regime. We use w/N to
denote models that use Gaussian source distributions sampled
via x0 ∼ N (0,1), but maintain the control populations p0
as input to the population embedding model φ(p0; θ, k). We
denote the best non-OT method with bold and the best OT-
based method with underline.

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
d(p0, p1) 4.513 4.695 19.14 0.876
d(p0 − µ0 + µ̃1, p1) 6.222 6.346 74.90 0.876

FM 4.340± 0.078 4.564± 0.111 13.00± 0.67 0.865± 0.034
CGFM 4.443± 0.033 4.621± 0.041 17.00± 1.03 0.899± 0.008
MFMk=0 (ours) 4.209± 0.007 4.380± 0.012 12.34± 0.50 0.918± 0.002
MFMk=10 (ours) 4.216± 0.090 4.395± 0.098 11.99± 2.36 0.917± 0.005
MFMk=50 (ours) 4.214± 0.017 4.396± 0.020 12.09± 0.75 0.916± 0.002
MFMk=100 (ours) 4.100± 0.093 4.269± 0.104 8.96± 1.88 0.917± 0.004

FMw/N 7.114± 0.100 7.404± 0.086 64.97± 3.79 0.613± 0.008
CGFMw/N 7.135± 0.045 7.390± 0.037 79.78± 4.67 0.637± 0.010
MFMk=0

w/N (ours) 4.177± 0.042 4.355± 0.048 10.53± 0.59 0.911± 0.001
MFMk=10

w/N (ours) 4.156± 0.065 4.324± 0.067 9.58± 1.63 0.912± 0.003
MFMk=50

w/N (ours) 4.153± 0.069 4.324± 0.070 9.63± 1.45 0.912± 0.002
MFMk=100

w/N (ours) 4.166± 0.001 4.341± 0.003 9.52± 0.33 0.915± 0.005

FMw/OT 4.210± 0.006 4.397± 0.001 12.16± 0.72 0.910± 0.005
CGFMw/OT 4.356± 0.027 4.531± 0.025 15.82± 0.19 0.909± 0.003
ICNN 4.488± 0.035 4.665± 0.038 17.60± 0.55 0.884± 0.002

Pre-processing and data splits. We fil-
ter each cell population to contain at least
1000 cells and use 43 bio-markers. We con-
struct two data splits for the organoid drug-
screen dataset (see Fig. 4-right). Replicate
split; here we consider 2 settings, (i) leave-
out replicates evenly across all patients for
testing (replica-1, depicted in Fig. 4 see
Table 5 for results on this split), and (ii)
leaving out a batch of replicates from a sin-
gle patient while including the remaining
replicas from the same patient for training
(replica-2, results in Table 2). The second
setting is the Patients split (results in Ta-
ble 3); here we leave-out replicates fully in
one patients – in this setting, we are testing
the ability of the model to generalize popu-
lation prediction of treatment response for
unseen patients. We do this for 3 different
patients and report results across these in-
dependent splits. Further details regarding
the organoid drug-screen dataset, data pre-processing, and data splits are provided in Appendix D.2.
Baselines. For the organoid drug-screen experiments, we also consider an ICNN model as a baseline
as well as the OT variations of FM and CGFM. The ICNN is equivalent to the architecture used in
CellOT (Bunne et al., 2023); a method for learning cell specific response to treatments. The ICNN
(and likewise CellOT) counterparts our FMw/OT model in that it does not take the population index i
as a condition. CGFM takes in the population identity index i as a one-hot input condition. Unlike
CGFM, MFM does not require knowledge of population identities. We additionally include two
model-agnostic baselines: (i) the distributional distances between the target and source distributions

2We consider only the highest dosage and leave exploration of dose-dependent response to future work.
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d(p0, p1), and (ii) the distributional distances between the target and the source distributions shifted
by the average mean of target distributions (µ̃1) of the training data d(p0 − µ0 + µ̃1, p1).
Predicting treatment response across replicates. We show results for generalization across
replicates for the replica-2 split in Table 2. In Appendix F, we include an extended evaluation
as well as report results for separate cell cultures in Table 8 and Table 9. We observe that MFM
outperforms all baselines on left-out replicas. Although this is in general a simpler generalization
problem compared to the left-out patient populations setting, this result suggests that there is arguably
sufficient biological heterogeneity across replicas for MFM to learn meaningful embeddings.

Table 3: Experimental results on the organoid drug-screen
dataset for population prediction of treatment response across
left-out patient populations. We report the mean and standard
deviations across metrics computed over 3 different patient splits.
We denote the best non-OT method with bold and the best OT-
based method with underline.

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
d(p0, p1) 4.175± 0.135 4.303± 0.174 12.11± 2.07 0.902± 0.006
d(p0 − µ0 + µ̃1, p1) 6.158± 0.239 6.235± 0.229 77.74± 10.72 0.902± 0.006

FM 4.171± 0.107 4.315± 0.142 10.95± 1.98 0.897± 0.023
CGFM 4.189± 0.088 4.321± 0.119 11.57± 0.96 0.914± 0.008
MFMk=0 (ours) 4.135± 0.094 4.268± 0.128 10.18± 1.28 0.918± 0.007
MFMk=10 (ours) 4.112± 0.086 4.243± 0.121 9.90± 0.99 0.925± 0.008
MFMk=50 (ours) 4.087± 0.122 4.218± 0.160 9.26± 1.56 0.926± 0.007
MFMk=100 (ours) 4.112± 0.148 4.244± 0.186 9.63± 2.08 0.931± 0.002

FMw/OT 4.064± 0.152 4.189± 0.194 9.44± 2.49 0.932± 0.005
CGFMw/OT 4.087± 0.129 4.217± 0.165 9.83± 2.03 0.924± 0.009
ICNN 4.157± 0.168 4.282± 0.213 11.18± 2.51 0.904± 0.005

Predicting treatment response across
patients. We show results for general-
ization across patients in Table 3. We ob-
serve that MFM (w/o OT) outperforms
all non-OT baseline methods as well as
the ICNN (which learns OT couplings),
while yielding competitive performance
to the FMw/OT and CGFMw/OT. All
methods yield generally equal degrees
of variation across 3 patient splits, with
comparable variation relative to the triv-
ial baseline. See Appendix F.1 for an
analysis of population embeddings.
Through the biological and synthetic ex-
periments, we have shown that MFM is able to generalize to unseen distributions. The implication of
our results suggest that MFM can learn population dynamics in unseen environments. In biological
contexts, like the one we have shown in this work, this result indicates that we can improve learning
of population dynamics, of treatment response or any arbitrary perturbation, in new/unseen patients.
This works towards a model where it is possible to predict and design an individualized treatment
regimen for each patient based on their individual characteristics and tumor microenvironment.

6 CONCLUSION
Our paper highlights the significance of modeling dynamics based on the entire distribution. While
flow-based models offer a promising avenue for learning dynamics at the population level, they were
previously restricted to a single initial population and predefined (known) conditions. In this paper,
we introduce Meta Flow Matching (MFM) as a practical solution to address these limitations. By
integrating along vector fields of the Wasserstein manifold, MFM allows for a more comprehensive
model of dynamical systems with interacting particles. Crucially, MFM leverages graph neural
networks to embed the initial population, enabling the model to generalize over various initial
distributions. MFM opens up new possibilities for understanding complex phenomena that emerge
from interacting systems in biological and physical systems. In practice, we demonstrate that MFM
learns meaningful embeddings of single-cell populations along with the developmental model of these
populations. Moreover, our empirical study demonstrates the possibility of modeling patient-specific
response to treatments via the meta-learning. We discuss broader impacts of this work in Appendix C.
Limitations & Future work. In this work, we focused on exploring the amortization of learning
over the space of distributions using flow matching. We argue this is a more natural model for many
biological systems. However, there are many other aspects of modeling biological systems that we
did not consider. In particular we did not consider extensions to the manifold setting (Huguet et al.,
2022; 2023), unbalanced optimal transport (Benamou, 2003; Yang and Uhler, 2019; Chizat et al.,
2018), aligned (Somnath et al., 2023; Liu et al., 2023), or stochastic settings (Bunne et al., 2023;
Koshizuka and Sato, 2022) in this work. We observed that OT improves performance of FM and
CGFM in the biological settings which we considered. As such, we view investigating the use of OT
in MFM as a natural future direction. Since the focus of this work was to investigate the effect of
conditioning flow models on initial distributions, we leave this exploration for future work. We also
note that our framework can be extended beyond flow matching. One of the central innovations in
this work is conditioning vector fields on representations of entire distributions. Hence, this can be
easily extended to other training regimes. Furthermore, we proposed the joint training of parameters
ω and θ for the vector field vt(·;ω) and population embedding model φ(·; θ) using the loss defined in
Eq. (17). Although this is a novel approach to vt(·|φ(·; θ);ω) training, there remains room to explore
the pre-training and/or use of different losses for the population embedding model.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our findings and results we submitted our source code as supplementary
materials. In addition, we describe the mathematical details of our method throughout Section 3 and
provide pseudo-code to reproduce training and inference in Algorithm 1 and Algorithm 2. We provide
details regarding parameterization of models, optimization, and implementation in Appendix D.4 and
Appendix E. For our datasets, we include details regarding the synthetic letters dataset and how to
construct in it Section 5.1 and Appendix D.1, and details for data download and data processing for
the Organoid drug-screen data in Section 5.2 and Appendix D.2. Information regarding the datasets
that we consider in this work can also be found in the source code. For our theoretical contributions,
we state our assumptions throughout the text in Section 2 and Section 3 and provide detailed proofs
for Proposition 1 (in the main text) and Theorem 1 (in Appendix B).
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A DEFINITIONS

All the densities we consider are the densities of the probability measures from the following set

P2(X ) :=
{
µ ∈ P(X ) :

∫
X
dµ(x) d(x, x̄)2 < +∞ for some x̄ ∈ X

}
, (20)

where P(X ) is the family of all Borel probability measures on X .
Thus, one can introduce 2-Wasserstein distance between measures in P2(X ), i.e.

W 2
2 (µ0, µ1) := min

{∫ 1

0

dt ∥vt∥2L2(pt;X ) :
∂pt
∂t

+ ⟨∇, ptvt⟩ = 0

}
, (21)

where we used the Benamou-Brenier formulation of optimal transport (Benamou, 2003). That is, the
possible changes of the density are restricted by the continuity equation

∂pt(x)

∂t
+ ⟨∇x, pt(x)vt(x)⟩ = 0 , (22)

where the define the divergence as

⟨∇x, v(x)⟩ =
d∑

i=1

∂vi(x)

∂xi
. (23)

Note that W 2
2 (·, ·) define a metric on P2(X ), which allows to introduce absolutely-continuous curves

and the following tangent space

TanµP2(X ) := {∇s : s ∈ C∞(X )}
L2(µ;X )

∀µ ∈ P2(X ) . (24)
These developments lead to the celebrated Riemannian interpretation of the 2-Wasserstein distance
W 2

2 (·, ·) on P2(X ) proposed by (Otto, 2001) and rigorously studied and presented in (Ambrosio
et al., 2008).

B PROOF OF THEOREM 1

Theorem 1. Consider a dataset of populationsD = {(π(x0, x1 | i))}i generated from some unknown
conditional model π(x0, x1 | c)p(c). Then the following objective

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(p0, θ), ω)∥2 (16)

is equivalent to the Meta Flow Matching objective

LMFM(ω, θ) = Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2 (17)

up to an additive constant.

Proof. The loss function

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(pt, θ);ω)∥2 (25)

= − 2Ep(c)

∫
dtdx ⟨pt(x | c)v∗t (x | c), vt(x |φ(pt, θ);ω)⟩+ (26)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥vt(xt |φ(pt, θ), ω)∥2+ (27)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)∥2 . (28)

The last term does not depend on θ, the second term we can estimate, for the first term, we use the
formula for the (from Eq. (8))

pt(ξ | c)v∗t (ξ | c) = Eπ(x0,x1)δ(ft(x0, x1)− ξ)
∂ft(x0, x1)

∂t
. (29)
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Thus, the loss is equivalent (up to a constant) to

L(ω, θ) = − 2Ep(c)Eπ(x0,x1 | c)

∫
dt

〈
∂ft(x0, x1)

∂t
, vt(ft(x0, x1) |φ(pt, θ);ω)

〉
+ (30)

+ Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt ∥vt(ft(x0, x1) |φ(pt, θ), ω)∥2± (31)

± Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥∂ft(x0, x1)

∂t

∥∥∥∥2 (32)

= Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 . (33)

Note that in the final expression we do not need access to the probabilistic model of p(c) if the joints
π(x0, x1 | c) are already sampled in the data D. Thus, we have

L(ω, θ) = Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (34)

= Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (35)

= LMFM(ω, θ) . (36)

C BROADER IMPACTS

This paper is primarily a theoretical and methodological contribution with little societal impact. MFM
can be used to better model dynamical systems of interacting particles and in particular cellular
systems. Better modeling of cellular systems can potentially be used for the development of malicious
biological agents. However, we do not see this as a significant risk at this time.

D EXPERIMENTAL DETAILS

D.1 SYNTHETIC LETTERS DATA

The synthetic letters dataset (used for Fig. 3 and Table 1) contains 240 train populations a 10 test
populations. Each population contains roughly between 750 and 2700 samples in this dataset.

D.2 ORGANOID DRUG-SCREEN DATA

The organoid drug-screen dataset consists of patient derived organoids (PDOs) from 10 different
patients (Ramos Zapatero et al., 2023).3 For each patient, experiments are replicated and per-
formed over varrying conditions. This results in a significant amount of coupled populations pairs
(p0(x0|ci), p1(x1|ci)), where we use ci to denote the treatment condition corresponding to respective
population pair. After pre-processing, we acquire a total of 927 replicates (or coupled population
pairs). In the replica-1 split, we use 713 populations for training, 111 left-out population for vali-
dation, and 103 left-out populations for testing. In the replica-2 split, we use 861 populations for
training, 33 left-out populations for validation, and 33 left-out populations for testing. We use the
replica splits to set and select reasonable hyperparameters for MFM and the baseline models.
For the patients split, we consider 3 different patient splits where we independently leave out all
populations from either patient 21, patient 27, and patients 75. Organoid PDO-21 was found to
present an interesting chemoprotective response (High CAF Protection) to cancer treatments, and
hence was selected by Ramos Zapatero et al. (2023) for further study and data collection. For the same
reason we select PDO-21 as the unseen test patient for the patients split experiments. We additionally
consider populations from PDO-75 as a third left-out patient split. In the patients splits, we only
split data into train and test sets, resulting in 839 population pairs for training and 88 population
pairs for test evaluation for PDO-21 and PDO-27 splits. For PDO-75, the train split contain 830 train
population pairs and 97 test population pairs.

3PDOs are cultures of cell populations which are derived from patient cells.
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D.3 METRICS

We use four metrics to evaluate the quality of a generated empirical distribution p̂ as compared to an
empirical ground truth distribution p. In this section we detail the calculation and interpretation of
each metric. For letters, we evaluate over all samples, while for the orgranoid drug-screen dataset
we evaluate over 5000 cells. If a target population contains less than 5000 cells, we evaluate using
sample size corresponding to the size of the entire target population.

1-Wasserstein (W1) and 2-Wasserstein (W2). We evaluate the Wasserstein distance for α = 1
and α = 2. Specifically for {x̂i}ni=0 = p̂ and {xi}ni=0 = p we calculate the α-Wasserstein distance
with respect to the Euclidean distance as

Wα =

(
inf

π∈Π(p̂,p)

∫
∥x− y∥α2 dπ(x, y)

)1/α

(37)

where Π(p̂, p) denotes the set of all joint probability measures with marginals p̂, p.

Maximum mean discrepancy (MMD). We evaluate an estimate for MMD between empirical
distributions {x̂i}ni=0 = p̂ and {xi}ni=0 = p using the radial basis function (RBF) kernel k(·, ·; γ) as:

MMD(p, p̂) =
1

n2

n∑
i

n∑
j

k(x̂i, x̂j ; γ) +
1

n2

n∑
i

n∑
j

k(xi, xj ; γ)−
2

n2

n∑
i

n∑
j

k(x̂i, xj ; γ). (38)

We estimate MMD for γ = 2, 1, 0.5, 0.1, 0.01, 0.005 and report the average.

Coefficient of determination (r2). We adopt the r2 metric, overall average correlation coefficient,
from Bunne et al. (2023) used to compare predictions and observations. This metric is computed as
follows. First, given two arrays X ∈ Rn×d and Y ∈ Rn×d, where n is the number of samples and d
is the number of features, we can compute the correlation as

corr(X,Y ) =

∑n
i=1(Xi − µX)T(Yi − µY )√∑n

i=1(Xi − µX)T(Xi − µX)
√∑n

i=1(Yi − µY )T(Yi − µY )
, (39)

where µX and µY are the empirical means of X and Y . We compute correlation across all points for
X (predicted samples) and Y (target samples) individually

ΣX
ij = corr(Xi, Xj), ΣY

ij = corr(Yi, Yj). (40)
Then, we consider the two arrays

SX = ΣX
ij∀i < j, SY = ΣY

ij∀i < j. (41)
The overall average correlation coefficient is reported as

r2 = corr(SX , SY ). (42)
We compute a r2 for every population in the evaluation sets and report the average r2 over this set.
We take this evaluation directly from Bunne et al. (2023), which is a typical evaluation of single-cell
prediction methods.

D.4 MODEL ARCHITECTURES AND HYPERPARAMETERS

ICNN The ICNN baseline was constructed with two networks ICNN network f(x) and g(x), with
non-negative leaky ReLU activation layers. f(x) is used to minimize the transport distance and g(x)
is used to transport from source to target. It has four hidden units with width of 64, and a latent
dimension of 50. Both networks uses Adam optimizer (lr = 10−4, β1 = 0.5, β2 = 0.9). g(x) is
trained with an inner iteration of 10 for every iteration f(x) is trained.

Vector Field Models All vector field models vt are parameterized with linear layers of 512 hidden
units and SELU activation functions. For the synthetic experiments, we use 4 hidden layers. For the
biological experiments, we use 7 hidden layers and skip connections across every layer. We found
that this setup worked well for the biological experiments. The FM vector field model additionally
takes a conditional input for the one-hot treatment encoding. CGFM takes the conditional input for
the one-hot treatment conditions as well as a one-hot encoding for the population index condition
i. The MFM vector field model takes population embedding conditions, that is output from the
GCN, as input, as well as the treatment one-hot encoding. All vector field models use temporal
embeddings for time and positional embeddings for the input samples. We did not sweep the size of
this embeddings space and found that a temporal embedding and positional embeddings sizes of 128
worked sufficiently well.
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Figure 5: Synthetic letters ablation over number of training populations. Here we fix the test sets (X’s and
Y’s) with 10 random rotations (same across each experiment). We then ablate the number of populations used for
training FM (red), CGFM (green), and MFM (blue), by changing the number of random rotations/orientations
used for each letter silhouette. We observe that for MFM the distributional errors on the test sets consistently
decrease as we increase the number of training populations. In contrast, since FM and CGFM cannot generalize
across novel populations, this increase in training populations does not lead to an overall improved performance
on the test populations. For a large number of training populations, CGFM exhibits exhaustive memory
requirements since it requires one-hot encodings as input conditions to denote the population index.

Graph Neural Network We considered a GCN model that consists of a k-nearest neighbour graph
edge pooling layer and graph convolution layers with 512 hidden units. For the synthetic experiment
we found that 3 GCN layers to work well, while for the biological experiments we found 2 GCN
layers to perform well. The final GCN model layer outputs an embedding representation e ∈ Rd. For
the Synthetic experiment, we found that d = 64 performed well, and d = 128 performed well for the
biological experiments. We normalize and project embeddings onto a hyper-sphere, and find that
this normalization helps improve training. Additionally, the GCN takes a one-hot cell-type encoding
(encoding for Fibroblast cells or PDO cells) for the control populations p0. This may be beneficial for
PDOF populations where both Fibroblast cells and PDO cells are present. However, it is important to
note that labeling which cells are Fibroblasts versus PDOs withing the PDOF cultures is difficult and
noisy in itself, hence such a cell-type condition may yield no additive information/performance gain.

Optimization We use the Adam optimizer with a learning rate of 0.0001 for all Flow-matching
models (FM, CGFM, MFM). We also used the Adam optimizer with a learning rate of 0.0001 for the
GCN model. To train the MFM (FM+GCN) models, we alternate between updating the vector field
model parameters ω and the GCN model parameters θ. We alternate between updating the respective
model parameters every gradient step. For the syntehtic experiment, FM and CGFM model were
trained for 12000 epochs, while MFM models were trained for 24000 epochs, with a population
batch size of 10 and a sample batch size of 700. Due to the alternating optimization, the MFM vector
field model receives half as many updates compared to its counterparts (FM and CGFM). Therefore,
training for the double the epochs is necessary for fair comparison.
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Influence of GCN parameter k on performance. We observe that no clear single selection for k
yields the best performance across all tasks on the single-cell experiments. For the replicates split,
k = 0 on average performs better than k > 0, whereas on the patients split, the opposite is true,
k = 100 performs best on average. This is possibly since the patients split forms a more difficult
generalization problem (more diversity between training populations and test populations), and hence
it is more difficult to over-fit during training with higher k.
The hyperparameters stated in this section were selected from brief and small grid search sweeps. We
did not conduct any thorough hyperparameter optimization.

E IMPLEMENTATION DETAILS

We implement all our experiments using PyTorch and PyTorch Geometric. All experiments were
conducted on a HPC cluster primarily on NVIDIA Tesla T4 16GB and A40 48GB GPUs. Each
individual seed experiment run required only 1 GPU. Depending on the model (FM vs CGFM vs
MFM) Each synthetic experiment ran between 6-24 hours and each real-data experiment ran between
12-36 hours. All experiments took approximately 500 GPU hours in aggregate.
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F EXTENDED RESULTS

source t=0.50 t=1.00 target

Tr
ai

n

source t=0.50 t=1.00 target source t=0.50 t=1.00 target

source t=0.50 t=1.00 target

Te
st

(X
’s

)

source t=0.50 t=1.00 target source t=0.50 t=1.00 target

source t=0.50 t=1.00 target

Te
st

(Y
’s

)

FM

source t=0.50 t=1.00 target

CGFM

source t=0.50 t=1.00 target

MFM

Figure 6: Model-generated samples for synthetic letters from the source (t = 0) to target (t = 1) distributions.
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Table 4: Comparison of models trained using independent coupling versus OT couplings on the synthetic
letters setting. We report the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy
(MMD) distributional distances. We use w/OT to denote models that incorporate OT couplings between source
and target distributions (Tong et al., 2024a; Pooladian et al., 2023). We report results for MFM (k = 50). Here
we report results for models trained with a population batch size of 1 and sample batch size of 700. We observe
using OT couplings in this setting does not provide a significant change in performance.

Train Test (X’s) Test (Y’s)

W1(↓) W2(↓) MMD (×10−3) (↓) W1(↓) W2(↓) MMD (×10−3) (↓) W1(↓) W2(↓) MMD (×10−3) (↓)
FM 0.210± 0.000 0.279± 0.000 2.548± 0.000 0.231± 0.000 0.307± 0.000 2.422± 0.000 0.236± 0.000 0.315± 0.000 3.305± 0.000
FMw/OT 0.210± 0.001 0.277± 0.001 2.555± 0.034 0.234± 0.001 0.309± 0.001 2.458± 0.030 0.239± 0.001 0.316± 0.001 3.368± 0.057
CGFM 0.093± 0.000 0.118± 0.000 0.229± 0.000 0.321± 0.000 0.395± 0.000 5.125± 0.000 0.309± 0.000 0.388± 0.000 6.184± 0.000
CGFMw/OT 0.093± 0.000 0.119± 0.000 0.215± 0.036 0.314± 0.002 0.390± 0.002 4.871± 0.040 0.307± 0.001 0.388± 0.002 6.021± 0.084

MFM 0.100± 0.002 0.127± 0.002 0.322± 0.032 0.189± 0.003 0.238± 0.005 1.742± 0.086 0.190± 0.002 0.237± 0.003 2.473± 0.120
MFMw/OT 0.103± 0.007 0.133± 0.010 0.450± 0.234 0.189± 0.006 0.239± 0.007 1.706± 0.139 0.193± 0.006 0.240± 0.006 2.522± 0.220

Table 5: Experimental results on the organoid drug-screen dataset for population prediction of treatment
response across replica-1 populations. Results shown in this table are for dim = 43. We use w/N to denote
models that use Gaussian source distributions sampled via x0 ∼ N (0,1), but maintain the control populations
p0 as input to the population embedding model φ(p0; θ, k). We further report d(p0 − µ0 + µ1, p1), a baseline
that uses the means from each true treated populations p1.

Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
d(p0, p1) 4.182 4.294 10.84 0.925 4.100 4.222 10.21 0.931
d(p0 − µ0 + µ̃1, p1) 6.009 6.074 68.70 0.925 5.985 6.058 68.00 0.931
d(p0 − µ0 + µ1, p1) 3.913 3.992 1.97 0.925 − − − −
FM 3.925± 0.019 4.041± 0.023 3.76± 0.26 0.952± 0.007 3.961± 0.036 4.089± 0.042 5.90± 0.25 0.941± 0.010
CGFM 3.864± 0.064 3.975± 0.069 3.16± 0.89 0.964± 0.006 4.087± 0.063 4.211± 0.066 8.84± 0.75 0.938± 0.006
MFM (k = 0) 3.874± 0.015 3.973± 0.020 3.37± 0.14 0.967± 0.003 3.880± 0.009 3.990± 0.011 4.68± 0.16 0.955± 0.002
MFM (k = 10) 3.896± 0.021 4.000± 0.021 3.82± 0.12 0.964± 0.001 3.899± 0.013 4.012± 0.011 5.13± 0.48 0.955± 0.001
MFM (k = 50) 3.888± 0.038 3.991± 0.030 3.59± 0.41 0.963± 0.001 3.900± 0.038 4.013± 0.034 5.06± 0.22 0.954± 0.003
MFM (k = 100) 3.906± 0.010 4.008± 0.005 4.05± 0.38 0.964± 0.002 3.898± 0.008 4.009± 0.009 5.19± 0.05 0.957± 0.000

FMw/N 6.908± 0.037 7.181± 0.033 57.70± 0.75 0.639± 0.005 6.972± 0.022 7.244± 0.022 60.39± 0.98 0.642± 0.007
CGFMw/N 4.187± 0.008 4.340± 0.009 8.69± 0.50 0.936± 0.002 6.852± 0.045 7.114± 0.044 71.24± 3.71 0.666± 0.016
MFMw/N (k = 0) 3.940± 0.022 4.047± 0.023 3.91± 0.18 0.959± 0.006 3.896± 0.026 4.002± 0.030 4.35± 0.18 0.950± 0.005
MFMw/N (k = 10) 3.976± 0.044 4.086± 0.049 4.52± 0.42 0.961± 0.002 3.943± 0.032 4.051± 0.034 5.28± 0.25 0.952± 0.001
MFMw/N (k = 50) 3.968± 0.013 4.075± 0.014 4.36± 0.44 0.961± 0.002 3.934± 0.007 4.041± 0.008 4.99± 0.35 0.954± 0.000
MFMw/N (k = 100) 3.937± 0.014 4.040± 0.015 3.94± 0.00 0.963± 0.001 3.908± 0.030 4.011± 0.033 4.68± 0.52 0.953± 0.002

ICNN 4.286± 0.018 4.313± 0.112 38.60± 0.21 0.897± 0.031 4.194± 0.110 4.313± 0.112 37.90± 2.84 0.897± 0.008

Table 6: Experimental results on the organoid drug-screen dataset for population prediction of treatment
response across replica-2 populations. Results shown in this table are for dim = 43.

Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
d(p0, p1) 4.096 4.213 8.66 0.923 4.513 4.695 19.14 0.876
d(p0 − µ0 + µ̃1, p1) 6.002 6.083 68.50 0.929 6.222 6.346 74.90 0.876
d(p0 − µ0 + µ1, p1) 3.887 3.962 1.76 0.929 − − − −
FM 3.985± 0.054 4.115± 0.067 4.64± 0.43 0.938± 0.014 4.340± 0.078 4.564± 0.111 13.00± 0.67 0.865± 0.034
CGFM 3.882± 0.019 3.999± 0.020 3.16± 0.59 0.952± 0.004 4.443± 0.033 4.621± 0.041 17.00± 1.03 0.899± 0.008
MFM (k = 0) 3.905± 0.005 4.012± 0.006 4.18± 0.25 0.958± 0.001 4.209± 0.007 4.380± 0.012 12.34± 0.50 0.918± 0.002
MFM (k = 10) 3.896± 0.033 4.005± 0.036 3.89± 0.44 0.957± 0.005 4.216± 0.090 4.395± 0.098 11.99± 2.36 0.917± 0.005
MFM (k = 50) 3.902± 0.018 4.008± 0.022 4.20± 0.17 0.958± 0.000 4.214± 0.017 4.396± 0.020 12.09± 0.75 0.916± 0.002
MFM (k = 100) 3.884± 0.039 3.986± 0.044 3.77± 0.49 0.955± 0.001 4.100± 0.093 4.269± 0.104 8.96± 1.88 0.917± 0.004

FMw/N 6.892± 0.027 7.164± 0.033 57.03± 1.00 0.655± 0.003 7.114± 0.100 7.404± 0.086 64.97± 3.79 0.613± 0.008
CGFMw/N 4.313± 0.077 4.480± 0.081 11.51± 1.96 0.918± 0.004 7.135± 0.045 7.390± 0.037 79.78± 4.67 0.637± 0.010
MFMw/N (k = 0) 3.982± 0.014 4.095± 0.015 5.04± 0.36 0.951± 0.002 4.177± 0.042 4.355± 0.048 10.53± 0.59 0.911± 0.001
MFMw/N (k = 10) 4.006± 0.008 4.119± 0.012 5.13± 0.30 0.948± 0.001 4.156± 0.065 4.324± 0.067 9.58± 1.63 0.912± 0.003
MFMw/N (k = 50) 3.982± 0.018 4.095± 0.016 4.74± 0.21 0.951± 0.002 4.153± 0.069 4.324± 0.070 9.63± 1.45 0.912± 0.002
MFMw/N (k = 100) 4.004± 0.012 4.119± 0.014 5.19± 0.43 0.949± 0.002 4.166± 0.001 4.341± 0.003 9.52± 0.33 0.915± 0.005

ICNN 4.308± 0.034 4.413± 0.036 7.07± 0.13 0.929± 0.006 4.488± 0.035 4.665± 0.038 17.60± 0.55 0.884± 0.002

Table 7: Experimental results on the organoid drug-screen dataset for population prediction of treatment
response across left-out patient populations. Results shown in this table are for dim = 43. We report the mean
and standard deviations across metrics computed over 3 patient splits. We denote the best non-OT method with
bold and the best OT-based method with underline.

Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
d(p0, p1) 4.128± 0.069 4.254± 0.076 9.44± 1.21 0.937± 0.007 4.175± 0.135 4.303± 0.174 12.11± 2.07 0.902± 0.006
d(p0 − µ0 + µ̃1, p1) 6.007± 0.027 6.085± 0.034 68.39± 0.99 0.937± 0.007 6.158± 0.239 6.235± 0.229 77.74± 10.72 0.902± 0.006
d(p0 − µ0 + µ1, p1) 3.905± 0.042 3.987± 0.042 2.01± 0.22 0.937± 0.007 − − − −
FM 3.950± 0.055 4.087± 0.056 4.62± 1.44 0.936± 0.006 4.171± 0.107 4.315± 0.142 10.95± 1.98 0.897± 0.023
CGFM 3.868± 0.034 3.994± 0.037 3.61± 0.40 0.955± 0.009 4.189± 0.088 4.321± 0.119 11.57± 0.96 0.914± 0.008
MFM (k = 0) 3.860± 0.064 3.973± 0.076 3.50± 0.87 0.966± 0.005 4.135± 0.094 4.268± 0.128 10.18± 1.28 0.918± 0.007
MFM (k = 10) 3.853± 0.062 3.963± 0.067 3.55± 0.92 0.968± 0.005 4.112± 0.086 4.243± 0.121 9.90± 0.99 0.925± 0.008
MFM (k = 50) 3.863± 0.042 3.980± 0.053 3.64± 0.64 0.966± 0.006 4.087± 0.122 4.218± 0.160 9.26± 1.56 0.926± 0.007
MFM (k = 100) 3.876± 0.055 3.990± 0.062 3.65± 0.91 0.965± 0.004 4.112± 0.148 4.244± 0.186 9.63± 2.08 0.931± 0.002

FMw/OT 3.866± 0.056 3.981± 0.064 3.76± 1.02 0.963± 0.007 4.064± 0.152 4.189± 0.194 9.44± 2.49 0.932± 0.005
CGFMw/OT 3.763± 0.049 3.866± 0.057 2.38± 0.59 0.974± 0.004 4.087± 0.129 4.217± 0.165 9.83± 2.03 0.924± 0.009
ICNN 4.394± 0.477 4.508± 0.518 7.80± 3.37 0.914± 0.092 4.157± 0.168 4.282± 0.213 11.18± 2.51 0.904± 0.005
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Table 8: Extended experimental results on the organoid drug-screen dataset for population prediction
of treatment response across replicas-1 populations. Results shown in this table are for dim = 43. Here
we show results for the individual cell cultures: Fibroblasts, patient derived organoids (PDOs), and patient
derived organoids with Fibroblasts (PDOFs), respectively. We consider 4 settings for MFM with varying
nearest-neighbours parameter (k = 0, 10, 50, 100).

Fibroblasts
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 3.748± 0.030 3.838± 0.047 2.17± 0.19 0.937± 0.020 3.730± 0.018 3.816± 0.031 2.29± 0.11 0.948± 0.014
FMw/N 6.701± 0.093 7.045± 0.094 51.55± 3.16 0.621± 0.007 6.548± 0.115 6.885± 0.113 48.95± 3.69 0.647± 0.007
CGFM 3.620± 0.004 3.674± 0.004 0.86± 0.07 0.979± 0.001 3.732± 0.014 3.797± 0.015 3.26± 0.07 0.959± 0.004
CGFMw/N 3.671± 0.011 3.725± 0.011 0.96± 0.07 0.980± 0.001 5.844± 0.192 6.148± 0.204 39.80± 3.07 0.695± 0.007
ICNN 4.075± 0.009 4.145± 0.008 4.47± 0.04 0.925± 0.006 3.784± 0.007 3.848± 0.007 3.95± 0.07 0.952± 0.005

MFMw/N (k = 0) 3.745± 0.034 3.808± 0.045 1.73± 0.27 0.968± 0.010 3.730± 0.036 3.792± 0.045 2.02± 0.29 0.967± 0.011
MFMw/N (k = 10) 3.718± 0.023 3.774± 0.023 1.48± 0.22 0.976± 0.002 3.719± 0.023 3.777± 0.023 2.15± 0.25 0.973± 0.000
MFMw/N (k = 50) 3.716± 0.027 3.771± 0.027 1.55± 0.32 0.976± 0.001 3.717± 0.032 3.773± 0.031 2.13± 0.45 0.976± 0.001
MFMw/N (k = 100) 3.712± 0.013 3.767± 0.012 1.37± 0.17 0.977± 0.002 3.708± 0.011 3.764± 0.011 1.81± 0.29 0.975± 0.002

MFM (k = 0) 3.667± 0.027 3.722± 0.028 1.43± 0.18 0.975± 0.002 3.661± 0.027 3.719± 0.027 1.74± 0.08 0.976± 0.001
MFM (k = 10) 3.679± 0.032 3.734± 0.032 1.69± 0.34 0.974± 0.001 3.680± 0.030 3.738± 0.030 2.04± 0.28 0.975± 0.001
MFM (k = 50) 3.664± 0.042 3.720± 0.043 1.46± 0.25 0.974± 0.002 3.664± 0.039 3.722± 0.041 1.84± 0.23 0.975± 0.001
MFM (k = 100) 3.676± 0.005 3.732± 0.006 1.56± 0.27 0.972± 0.003 3.674± 0.001 3.731± 0.002 2.05± 0.20 0.976± 0.001

PDOs
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 3.910± 0.037 3.998± 0.042 3.37± 0.25 0.964± 0.009 3.825± 0.062 3.937± 0.072 3.31± 0.34 0.965± 0.012
FMw/N 7.334± 0.101 7.578± 0.103 69.40± 3.18 0.585± 0.009 7.461± 0.091 7.692± 0.094 72.49± 3.39 0.592± 0.009
CGFM 3.792± 0.061 3.866± 0.063 2.27± 0.59 0.979± 0.003 4.062± 0.096 4.181± 0.103 7.75± 1.45 0.950± 0.011
CGFMw/N 3.746± 0.032 3.807± 0.037 1.19± 0.29 0.986± 0.002 7.672± 0.149 7.909± 0.144 94.96± 7.33 0.602± 0.022
ICNN 4.533± 0.008 4.635± 0.007 11.53± 0.11 0.901± 0.005 4.152± 0.014 4.261± 0.013 8.66± 0.27 0.928± 0.004

MFMw/N (k = 0) 3.788± 0.047 3.851± 0.053 1.59± 0.20 0.982± 0.002 3.741± 0.042 3.829± 0.047 2.39± 0.23 0.978± 0.002
MFMw/N (k = 10) 3.822± 0.063 3.891± 0.071 1.76± 0.54 0.983± 0.001 3.785± 0.028 3.875± 0.029 2.82± 0.49 0.979± 0.002
MFMw/N (k = 50) 3.794± 0.033 3.858± 0.034 1.71± 0.50 0.985± 0.001 3.775± 0.022 3.868± 0.020 2.92± 0.41 0.980± 0.002
MFMw/N (k = 100) 3.783± 0.018 3.845± 0.018 1.53± 0.19 0.984± 0.002 3.749± 0.027 3.835± 0.028 2.59± 0.24 0.981± 0.002
MFM (k = 0) 3.843± 0.056 3.916± 0.066 2.65± 0.81 0.971± 0.002 3.794± 0.065 3.891± 0.074 3.34± 1.03 0.974± 0.002
MFM (k = 10) 3.852± 0.039 3.932± 0.045 2.80± 0.19 0.972± 0.003 3.781± 0.013 3.879± 0.015 3.45± 0.52 0.978± 0.002
MFM (k = 50) 3.844± 0.036 3.924± 0.033 2.51± 0.01 0.973± 0.006 3.791± 0.029 3.889± 0.026 3.33± 0.14 0.974± 0.006
MFM (k = 100) 3.905± 0.082 3.988± 0.088 3.87± 1.81 0.974± 0.001 3.783± 0.025 3.882± 0.029 3.33± 0.45 0.976± 0.003

PDOFs
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 4.117± 0.006 4.287± 0.007 5.75± 0.63 0.953± 0.007 4.328± 0.057 4.514± 0.064 12.11± 0.76 0.911± 0.017
FMw/N 6.686± 0.093 6.921± 0.095 52.12± 2.39 0.722± 0.006 6.906± 0.073 7.154± 0.073 59.73± 3.16 0.686± 0.009
CGFM 4.180± 0.130 4.385± 0.145 6.35± 2.13 0.933± 0.020 4.467± 0.080 4.653± 0.083 15.51± 0.93 0.906± 0.004
CGFMw/N 5.150± 0.046 5.499± 0.049 23.79± 1.21 0.843± 0.005 7.039± 0.147 7.285± 0.153 78.96± 6.83 0.700± 0.020
ICNN 4.434± 0.006 4.582± 0.006 5.69± 0.05 0.954± 0.002 4.552± 0.005 4.735± 0.006 17.02± 0.22 0.898± 0.005

MFMw/N (k = 0) 4.287± 0.019 4.482± 0.015 8.41± 0.93 0.928± 0.011 4.218± 0.016 4.385± 0.016 8.62± 0.24 0.905± 0.002
MFMw/N (k = 10) 4.372± 0.045 4.582± 0.048 9.70± 1.33 0.923± 0.007 4.326± 0.052 4.501± 0.057 10.86± 0.60 0.904± 0.004
MFMw/N (k = 50) 4.356± 0.036 4.566± 0.040 9.72± 0.68 0.922± 0.006 4.291± 0.014 4.469± 0.018 10.14± 0.60 0.905± 0.001
MFMw/N (k = 100) 4.295± 0.026 4.495± 0.033 8.55± 0.56 0.932± 0.007 4.251± 0.071 4.423± 0.080 9.44± 1.51 0.905± 0.003

MFM (k = 0) 4.111± 0.016 4.281± 0.023 6.04± 0.26 0.954± 0.009 4.184± 0.022 4.359± 0.022 8.96± 0.64 0.915± 0.003
MFM (k = 10) 4.158± 0.028 4.332± 0.029 6.97± 0.80 0.946± 0.006 4.235± 0.019 4.418± 0.022 9.89± 0.81 0.914± 0.002
MFM (k = 50) 4.155± 0.035 4.330± 0.015 6.80± 0.98 0.943± 0.002 4.245± 0.044 4.429± 0.035 10.00± 0.28 0.912± 0.001
MFM (k = 100) 4.137± 0.048 4.305± 0.068 6.73± 0.42 0.945± 0.002 4.236± 0.001 4.412± 0.004 10.18± 0.10 0.918± 0.005
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Table 9: Extended experimental results on the organoid drug-screen dataset for population prediction
of treatment response across replicas-2 populations. Results shown in this table are for dim = 43. Here
we show results for the individual cell cultures: Fibroblasts, patient derived organoids (PDOs), and patient
derived organoids with Fibroblasts (PDOFs), respectively. We consider 4 settings for MFM with varying
nearest-neighbours parameter (k = 0, 10, 50, 100).

Fibroblasts
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 3.694± 0.018 3.775± 0.023 1.74± 0.20 0.951± 0.007 3.646± 0.163 3.805± 0.231 3.67± 1.46 0.867± 0.070
FMw/N 6.790± 0.109 7.124± 0.120 54.97± 1.68 0.661± 0.005 6.905± 0.092 7.252± 0.100 64.40± 1.31 0.607± 0.012
CGFM 3.616± 0.031 3.671± 0.032 0.90± 0.13 0.980± 0.003 3.530± 0.011 3.584± 0.010 4.37± 0.55 0.975± 0.003
CGFMw/N 3.663± 0.011 3.718± 0.011 0.93± 0.13 0.982± 0.001 5.813± 0.372 6.136± 0.398 44.44± 8.18 0.688± 0.026
ICNN 4.054± 0.03 4.124± 0.033 4.43± 0.14 0.925± 0.007 3.477± 0.031 3.534± 0.033 3.67± 0.17 0.969± 0.004

MFMw/N (k = 0) 3.671± 0.021 3.726± 0.022 1.17± 0.17 0.979± 0.001 3.503± 0.030 3.555± 0.031 1.68± 0.11 0.975± 0.001
MFMw/N (k = 10) 3.691± 0.015 3.748± 0.014 1.18± 0.14 0.978± 0.000 3.526± 0.024 3.582± 0.022 1.86± 0.36 0.972± 0.001
MFMw/N (k = 50) 3.678± 0.017 3.733± 0.017 1.15± 0.12 0.979± 0.001 3.515± 0.029 3.567± 0.029 2.07± 0.63 0.977± 0.002
MFMw/N (k = 100) 3.706± 0.020 3.764± 0.022 1.44± 0.08 0.977± 0.001 3.536± 0.036 3.590± 0.037 1.90± 0.23 0.975± 0.003

MFM (k = 0) 3.626± 0.012 3.682± 0.013 1.20± 0.04 0.979± 0.000 3.451± 0.020 3.505± 0.021 2.55± 0.42 0.981± 0.002
MFM (k = 10) 3.624± 0.025 3.678± 0.026 1.04± 0.17 0.981± 0.000 3.451± 0.037 3.504± 0.038 2.47± 0.56 0.982± 0.001
MFM (k = 50) 3.639± 0.016 3.694± 0.016 1.71± 0.20 0.979± 0.001 3.443± 0.035 3.497± 0.037 2.89± 1.85 0.981± 0.001
MFM (k = 100) 3.654± 0.005 3.712± 0.005 1.56± 0.20 0.978± 0.000 3.480± 0.027 3.534± 0.029 3.32± 0.49 0.980± 0.001

PDOs
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 3.948± 0.092 4.050± 0.116 3.96± 0.68 0.942± 0.023 4.043± 0.100 4.174± 0.131 4.90± 0.50 0.931± 0.033
FMw/N 7.109± 0.028 7.351± 0.030 63.42± 1.97 0.626± 0.008 7.697± 0.212 7.976± 0.182 77.52± 7.33 0.519± 0.002
CGFM 3.750± 0.013 3.815± 0.017 1.77± 0.71 0.977± 0.004 4.225± 0.146 4.333± 0.171 9.50± 3.14 0.933± 0.016
CGFMw/N 3.728± 0.024 3.787± 0.026 1.14± 0.16 0.985± 0.000 8.333± 0.309 8.534± 0.298 114.45± 14.17 0.508± 0.016
ICNN 4.476± 0.039 4.58± 0.041 11.17± 0.05 0.906± 0.007 4.413± 0.048 4.519± 0.051 11.18± 0.05 0.886± 0.004

MFMw/N (k = 0) 3.775± 0.012 3.837± 0.013 1.75± 0.05 0.979± 0.001 3.855± 0.075 3.944± 0.087 3.73± 0.79 0.978± 0.003
MFMw/N (k = 10) 3.799± 0.009 3.860± 0.009 1.89± 0.26 0.978± 0.001 3.877± 0.042 3.961± 0.047 3.53± 0.30 0.978± 0.003
MFMw/N (k = 50) 3.800± 0.023 3.863± 0.023 1.93± 0.27 0.980± 0.001 3.857± 0.059 3.938± 0.066 3.40± 0.77 0.981± 0.001
MFMw/N (k = 100) 3.800± 0.008 3.863± 0.010 2.05± 0.12 0.979± 0.001 3.882± 0.008 3.973± 0.009 3.80± 0.26 0.979± 0.000

MFM (k = 0) 3.797± 0.020 3.864± 0.020 2.40± 0.32 0.971± 0.001 3.894± 0.026 3.982± 0.037 3.87± 0.83 0.976± 0.002
MFM (k = 10) 3.792± 0.041 3.863± 0.049 2.29± 0.47 0.975± 0.005 3.953± 0.095 4.055± 0.115 4.80± 2.00 0.978± 0.001
MFM (k = 50) 3.796± 0.014 3.864± 0.016 2.50± 0.22 0.972± 0.001 4.035± 0.099 4.153± 0.116 6.40± 2.19 0.971± 0.004
MFM (k = 100) 3.798± 0.037 3.866± 0.041 2.54± 0.28 0.970± 0.002 3.869± 0.094 3.953± 0.113 3.49± 0.76 0.975± 0.001

PDOFs
Train Test

W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑) W1(↓) W2(↓) MMD (×10−3) (↓) r2(↑)
FM 4.313± 0.062 4.521± 0.076 8.21± 0.55 0.919± 0.014 5.330± 0.112 5.712± 0.113 30.45± 3.30 0.798± 0.002
FMw/N 6.778± 0.046 7.015± 0.042 52.69± 2.63 0.708± 0.004 6.741± 0.177 6.985± 0.163 52.98± 5.35 0.713± 0.014
CGFM 4.281± 0.065 4.511± 0.078 6.81± 1.33 0.898± 0.011 5.574± 0.051 5.945± 0.052 37.13± 0.40 0.790± 0.009
CGFMw/N 5.549± 0.206 5.936± 0.214 32.44± 5.58 0.787± 0.014 7.258± 0.197 7.501± 0.212 80.45± 8.02 0.713± 0.005
ICNN 4.393± 0.034 4.534± 0.037 5.60± 0.20 0.956± 0.003 5.573± 0.049 5.943± 0.056 37.96± 1.58 0.798± 0.004

MFMw/N (k = 0) 4.500± 0.039 4.721± 0.043 12.21± 1.07 0.896± 0.005 5.173± 0.078 5.567± 0.077 26.17± 2.29 0.779± 0.003
MFMw/N (k = 10) 4.528± 0.033 4.751± 0.045 12.31± 0.73 0.888± 0.003 5.065± 0.169 5.431± 0.172 23.34± 4.74 0.786± 0.005
MFMw/N (k = 50) 4.468± 0.026 4.690± 0.030 11.15± 0.34 0.894± 0.006 5.088± 0.121 5.468± 0.115 23.43± 3.15 0.778± 0.005
MFMw/N (k = 100) 4.508± 0.042 4.731± 0.042 12.09± 1.34 0.891± 0.006 5.082± 0.037 5.461± 0.047 23.16± 0.90 0.792± 0.015

MFM (k = 0) 4.293± 0.005 4.491± 0.005 8.94± 0.54 0.925± 0.002 5.283± 0.017 5.653± 0.029 30.60± 0.77 0.797± 0.005
MFM (k = 10) 4.273± 0.039 4.474± 0.041 8.35± 0.83 0.915± 0.009 5.244± 0.168 5.626± 0.175 28.71± 5.10 0.790± 0.016
MFM (k = 50) 4.271± 0.038 4.466± 0.049 8.40± 0.40 0.924± 0.001 5.165± 0.132 5.538± 0.140 26.97± 2.46 0.796± 0.009
MFM (k = 100) 4.200± 0.079 4.381± 0.095 7.20± 1.13 0.918± 0.004 4.950± 0.199 5.321± 0.219 20.08± 5.10 0.798± 0.013
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F.1 ANALYSIS OF POPULATION EMBEDDINGS

Here, we analyze the embedding space of the population embedding model φ(p0; θ) for the synthetic
letters dataset and the organoid drug-screen dataset. To do this, we compute embeddings h =

φ({xj
0}N

′

j=1; θ) for each initial population. For letters we consider 200 random rotations per letter
and for the organoid drug-screen dataset we consider all population pairs (p0, p1). We then project
the embeddings into a 2-dimensional space using uniform manifold approximation and projection
(UMAP) to visualize model embeddings. We compute pairwise Euclidean distances of the samples in
the projected embedding space and report these distances visually using heat maps. See Fig. 7.
On the letters dataset, the population embedding model learns to embed similar letter close silhouettes
together. For example, ’A’ and ’V’, ’T’ and ’Y’ (even though ’Y’ silhouettes are never seen during
training), and more. Note, that in this dataset, letter silhouette populations p0 are both corrupted
with noise and rotated randomly. We conduct the same analysis for the organoid drug-screen dataset.
We observe that in some sense φ(p0; θ) groups populations from particular patients in a generally
consistent matter to that found in Ramos Zapatero et al. (2023). Specifically, we observe patient who
are chemosensitive (PDO 21, 75, 23, 27) cluster together, away from patients who are chemorefractory
(PDO 5, 11, 141, 216). This illustrates the embedding are able to capture patient drug response
characteristics from untreated patient sample p0.
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Figure 7: Analysis of population embeddings from φ(p0; θ). We provide a UMAP visualization of population
embeddings space (top) and pairwise distances of population embeddings computed in 2-dimensional space
(bottom). (Left) analysis of letter population embeddings plotted for 200 random rotations of each noisy letter
silhouette. (Right) analysis of patient population embeddings plotted for all control populations.

F.2 ANALYSIS OF PREDICTION QUALITY ON ORGANOID DRUG-SCREEN DATA

In this section, we analyze the predictions produced by vector field models trained with MFM. For
this analysis, we look at model predictions for the three respective left-out test patient splits: PDO-21,
PDO-27, PDO-75. For each control population in the patient split (specifically, for the test patient
in the given split), we predict the respective treatment response. We then subset the data to look
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at populations in the PDOF culture and take the mean of observations in each population (for both
predicted and target populations). We project the means of the predicted and target populations into
2D space using principal component analysis (PCA) across all. We fit PCA using means from source,
target, and predicted samples. Lastly, we plot the target and predicted samples separately. We show
the result of this analysis in Fig. 8.
We observe that for all three test patients the general structure is preserved, with the treatment,
Oxaliplatin (Green), being the furthest away both for the target and ground truth datasets. This is
because (as shown in the original paper by Ramos Zapatero et al. (2023)) Oxaliplatin has a large
effect on these cancer cells for the PDOF subset of PDOs. We see from Fig. 8 that this is more
pronounced for PDO-21 and PDO-27 than for PDO-75. Overall, this reflects the conclusions drawn
from Figure 4 in the original dataset paper Ramos Zapatero et al. (2023). In this way, we are able to
draw similar conclusions from the predicted populations as from the data.
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Figure 8: Analysis of treatment-specific response prediction. We plot population means in 2D PCA space for
target populations (Left), predicted populations (Middle), and the respective treatment identifier legend (Right).
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