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RulePrompt: Weakly Supervised Text Classification with
Prompting PLMs and Self-Iterative Logical Rules

Anonymous Author(s)

ABSTRACT
Weakly supervised text classification (WSTC), also called zero-shot
or dataless text classification, has attracted increasing attention
due to its applicability in classifying a mass of texts within the
dynamic and open Internet environment, since it requires only a
limited set of seed words (label names) for each category instead
of labeled data. With the help of recently popular prompting pre-
trained language models (PLMs), many studies leveraged manually
crafted and/or automatically identified verbalizers to estimate the
likelihood of categories, but they failed to differentiate the effects
of these category-indicative words, let alone capture their correla-
tions and realize adaptive adjustments according to the unlabeled
corpus. In this paper, in order to let the PLM better understand
each category, we at first propose a novel form of rule-based knowl-
edge using logical expressions to characterize the meanings of
categories. Then, we develop a prompting PLM-based approach
named RulePrompt for the WSTC task, consisting of a rule mining
module and a rule-enhanced pseudo label generation module, plus a
self-supervised fine-tuning module to make the PLM align with this
task. Within this framework, the inaccurate pseudo labels assigned
to texts and the imprecise logical rules associated with categories
mutually enhance each other in an alternative manner, establish-
ing a self-iterative closed loop of knowledge (rule) acquisition and
utilization, with seed words serving as the starting point. Exten-
sive experiments validate the effectiveness and robustness of our
approach, which outperforms state-of-the-art weakly supervised
methods. Importantly, our approach yields interpretable category
rules, proving its advantageous for disambiguating easily-confused
categories.

CCS CONCEPTS
• Information systems → Web mining; Clustering and classi-
fication; • Computing methodologies → Learning paradigms.

KEYWORDS
weak supervision, text classification, seed word, pre-trained lan-
guage model, prompt, logical rule, rule mining, pseudo label
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1 INTRODUCTION
With the rapid development of Internet, an abundance of textual
content is produced across news media and social networks. It is
significant and challenging to classify these texts into predefined
categories, especially when up-to-date labeled data are hard to ac-
cess due to the dynamic and open nature of Internet. Consequently,
there has been a growing interest in weakly supervised text classi-
fication (WSTC) [15, 21, 28, 29, 36, 37], also known as zero-shot or
dataless text classification [3, 4, 12, 13, 20–22, 26, 27, 30, 31, 33, 38],
which only requires a limited set of seed words (label names) for
each category.

Recently, the proliferation of prompting pre-trained language
models (PLMs) greatly bolstered the WSTC task, but their perfor-
mances still lag behind supervised methods [29]. Since no labeled
data are available as evidence, relying solely on seed words for
grasping category meanings proves inadequate. In previous re-
search, many approaches either provided manual verbalizers of
categories or automatically discover them based on word embed-
ding similarity. Taking them as additional knowledge, some studies
estimated category likelihoods by tapping into the generative capa-
bility of PLMs [37, 38], and others leveraged PLM’s effective vector
representations to calculate the similarity or entailment between
texts and categories [24, 27]. However, most of them failed to differ-
entiate the effects of these category-indicative words (abbreviated
as indicative words). Although NPPrompt [38] did calculate and
utilize the weights of them, their roles in classification remained in-
dependent of each other and lacked adaptive adjustments based on
the current corpus, so cannot accommodate ever-changing Internet
environment.

However actually, the effect of each category-indicative word
varies. Certain words can determine the category on its own, like
the label names, while others need to be used cooperatively to dis-
tinguish between easily-confused categories. For example, the word
“penalty” itself cannot signify the “Sports” category, but when com-
bined with “goal”, the text is likely to talk about a football match.
Conversely, an additional word “company” could imply the “Society”
category rather than “Sports”. Therefore, a simplistic set of indica-
tive words is not enough to cover the full meanings of categories.
Instead, logical operations such as conjunction and disjunction are
appropriate to capture the correlation of these words as enriched
knowledge for weakly supervised classification. Fortunately, the
flexibility of prompting PLMs just offers an opportunity to apply
these logical rules in the template to achieve precise semantic rep-
resentation of categories.

It is obvious that logical rules are difficult to set manually as prior
knowledge, but they can be mined from preliminarily categorized
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texts with the aid of pseudo labels generated by the PLM. Further-
more, the mined rules and pseudo labels can mutually enhance
each other in an alternative way, establishing a self-iterative closed
loop for knowledge acquisition and utilization, with seed words
as the starting point. That poses two main challenges: (1) When
inaccurate pseudo labels are available, how to identify candidate
category-indicative words using the PLM and build correlations
among them by means of logical rules to characterize each cate-
gory? (2) With imprecise logical rules, how to effectively transform
them into the PLM template for classification by handling each logi-
cal operator individually, and then update the pseudo label assigned
to each text?

To address these issues, this paper at first proposes a novel kind
of rule-based knowledge in the form of logical expressions for
category understanding in WSTC. Each category is represented
by a disjunctive normal form, where indicative words serve as
atomic propositions. Specifically, a single disjunctive term (one-
literal clause) denotes strong and self-explanatory indicative words,
while a clause of conjunctive form depicts the synergistic effect of
weak and polysemous indicative words.

Based on this, a prompting PLM-based approach for text classifi-
cation is developed, through iteratively updating both the pseudo
label of each text and the logical rule of each category. That is
realized mainly via two modules, rule mining and rule-enhanced
pseudo label generation. The former first extracts signal words from
each text by the PLM, and regards these words as a transaction
of the relevant category decided by the current pseudo labels. For
each category, we mine frequent 1-itemsets (items) and 2-itemsets
respectively from specific subsets of transactions, and construct the
disjunctive normal form. In the latter, the current logical rule for
each category is injected into three PLM-based models, each provid-
ing a different perspective. Then, a new pseudo label is generated
for each text via integrating the results of these models. In addition,
in each iteration, the PLM can be fine-tuned with a self-supervised
loss to better align with the task requirements.

In summary, the contributions of this paper include:
• To the best of our knowledge, this is the first attempt

to differentiate the effects of category-indicative words
in the WSTC task and characterize category meanings
through logical rules, thereby establishing a new paradigm
for knowledge representation in this field.

• A novel approach leveraging prompting PLMs is presented
to make the pseudo labels of texts and the logical rules of
categories enhance each other iteratively. That facilitates
a sufficient fusion of automatically generated rule-based
knowledge and unlabeled data.

• Comprehensive experiments conducted on multiple real
datasets demonstrate the effectiveness and interpretability
of our approach. It consistently outperforms state-of-the-
art weakly supervised methods, and yields intuitive logical
rules for categories to avoid confusion.

2 RELATEDWORK
2.1 Weakly Supervised Text Classification
Weakly supervised text classification (WSTC) demands minimal
seed information, such as label names or extended keywords for

each category, thereby significantly reducing the cost of text annota-
tion. At an early stage, some researchers used auxiliary knowledge
bases like Wikipedia to establish the semantic correlation between
texts and labels [3, 26]. Subsequently, topic-model based methods
emerged [4, 12, 13, 30, 31], which inferred category-aware topics
from a limited set of seed words. In the last few years, neural meth-
ods has gained prominance [20, 21, 28, 33, 36]. They trained neural
classifiers using pseudo labels of texts, often relying on generated
pseudo-texts or PLMs to detect category-indicative keywords. For
example, LOTClass [22] used label names as the only seed words,
and introduced BERT for category understanding.

In recent time, prompting-based methods [6, 10, 23] have been
extensively developed for the WSTC task. A lot of work harnessed
the strong generative capability of PLMs with instruction template
for classification. For instance, NPPrompt [38] used initial word
embeddings by PLM to automatically construct verbalizers with-
out manual design or unlabeled corpus, and estimated probability
distribution over categories through weighted sum of these words.
PromptClass [37] introduced a noise-robust method to iteratively
self-train text classifiers and update pseudo labels, employing two
fine-tuning strategies of PLMs to improve the quality of pseudo la-
bels. WDDC [32] utilized generated words for the [MASK] token as
supervision signals, and proposed a latent variable model to train a
word distribution learner and a text classifier simultaneously. Other
approaches explored the effective vector representation power of
prompting PLMs. PESCO [27] incorporated label descriptions into
predefined prompts, formulating the WSTC task as a neural match-
ing problem. Meanwhile, LIME [24] used large textual entailment
models trained with external data to suggest seed words and infer
text labels.

Although these methods have demonstrated inspiring perfor-
mance, a gap still exists when compared to fully supervisedmethods.
Due to the absence of labeled data, there is a need to automatically
extract and apply additional knowledge from unlabeled data during
the classification process. Existing methods just relied on a set of
category-indicative words, but have not taken the varying effect
of these words into account, which leads to imprecise category
understanding.

2.2 Logical Rules for Natural Language
Processing Tasks

Recently, there has been increasing research interest in the integra-
tion of logical rules into natural language processing tasks, aiming
to improve the interpretability of neural network models.

Hu et al. [11] proposed a teacher-student framework combining
deep neural networks with first-order logic rules, and transformed
the structured information of logic rules into the weights of neu-
ral networks. TALLOR [14] addressed the named entity tagging
problem by using a small set of seed logical rules as weak super-
vision, and further selected new accurate logical rules based on
a hand-tuned threshold. PTR [9] incorporates logic rules to en-
code human prior knowledge and composes several manually de-
signed sub-prompts into final task-specific prompts. PRBoost [34]
viewed top-𝑘 predictions from the [MASK] token as candidate rules
through the disjunction operation. They generated these rules from
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large-error instances based on a few labeled data, and then used
human-selected rules to generate weak labels for model training.

However, most of these previous work required seed rules as ini-
tial supervision or human feedback when selecting accurate rules.
In contrast, our approach focuses on the WSTC task, and estab-
lishes self-iterative closed loop for the acquisition and utilization
of logical rules, eliminating the need for human intervention. Ad-
ditionally, while existing PLM-based methods primarily employed
one operator when composing decision rules, we consider both the
disjunction and conjunction operators to distinguish the strength
and effect of indicative words, enabling a more precise understand-
ing of categories.

3 PRELIMINARIES
In this section, we formulate the task of weakly supervised text
classification (WSTC), and briefly introduce prompting PLMs as
well as two roles of them as the foundation of our approach.

3.1 Problem Formulation
Given a corpus of unlabeled texts 𝐷 = {𝐷1, . . . , 𝐷𝑁 } and a set of
target categories 𝑍 = {𝑧1, . . . , 𝑧𝐾 } with a label name 𝑙 (𝑧) for each
𝑧 ∈ 𝑍 , weakly supervised text classification (WSTC) aims to assign
a category label 𝑧 (𝑑) to each text 𝑑 . Following the extremely weak
supervision setting [28], only the sole label surface name of each
class is used as supervision here, without other seed words.

3.2 Prompting PLMs for Estimating Likelihoods
Prompt-based tuning applies cloze-style tasks to tune PLMs. A
prompt is composed of a template T (·) and a set of selected words
V . We can fill each text 𝑑 into the template T (·) to obtain the
prompt input T (𝑑). For example, for the text classification task on
news, the prompt can be written as

T (𝑑) = 𝑑 It is about [MASK] news. (1)

In vanilla prompt engineering, the verbalizer, i.e., an injective
mapping function 𝜙 : 𝑍 → V , links the category set and the set of
selected words. Then, at the masked position, we can calculate the
likelihood for each category via word probability distributions.

𝑃 (𝑧 |𝑑) = 𝑃 ( [MASK] = 𝜙 (𝑧) | T (𝑑)) . (2)

Recently, A lot of work studied for a verbalizer with richer label
words to represent the category. Typically, NPPropmt [38] con-
structs a 𝐾-nearest-neighbor verbalizer, through searching over the
whole vocabulary V for the top-𝑘 nearest words to the label name
of 𝑧 in the embedding space of the PLM, denoted asM(𝑧).

M(𝑧) = Top−𝐾0
𝑣∈V

{sim(emb(𝑣), emb(𝑙 (𝑧))}, (3)

where emb(𝑣) and emb(𝑙 (𝑧)) are the embeddings of word 𝑣 and
label name 𝑙 (𝑧) respectively, and sim(·) means cosine similarity.

Then, we get the unnormalized probability for each category:

𝑄 (𝑧 |𝑑) =
∑︁

𝑣∈M(𝑧 )
𝑤 (𝑣, 𝑙 (𝑧)) · Θ( [MASK] = 𝑣 | T (𝑑)), (4)

where Θ is the kernel smoothing on logits instead of probability,
and 𝑤 (𝑣, 𝑙 (𝑧)) is the weight of the word 𝑣 on the label name 𝑙 (𝑧),

defined in the softmax form:

𝑤 (𝑣, 𝑙 (𝑧)) = exp(sim(emb(𝑣), emb(𝑙 (𝑧))})∑
𝑣′∈M(𝑧 ) exp(sim(emb(𝑣 ′), emb(𝑙 (𝑧))) (5)

Besides, NPPrompt uses more than one keywords for some cate-
gories. The final score is calculated as follows:

𝑄 (𝑧 |𝑑) = max
𝑣∈Φ(𝑧 )

𝑄 (𝑣 |𝑑)) (6)

where Φ(𝑧) contains all keywords for category 𝑧, and 𝑄 (𝑣 |𝑑) is
computed similar to Equation 4, replacing the category 𝑧 by one of
its indicative words 𝑣 and the label name 𝑙 (𝑧) just by itself 𝑣 .

3.3 Prompting PLMs for Getting Signal Words
In addition to estimating category likelihoods, some work utilized
prompting PLMs to generate words which can summarize the con-
tent of the given text. That is also based on the probability distribu-
tion over V , and can be used to get better supervision information
than the words themselves appearing in the text. Formally, given a
threshold 𝐾1, for each text 𝑑 , top 𝐾1 words with higher logits can
be seen as the signal words of 𝑑 , denoted as 𝑆𝑊 (𝑑).

𝑆𝑊 (𝑑) = Top−𝐾1
𝑣∈V

{𝑃 ( [MASK] = 𝑣 | T (𝑑))}, (7)

4 METHOD
In this section, we at first define logical rules of categories as a new
kind of knowledge. Based on this, the framework of RulePrompt is
presented followed by details of the three key modules.

4.1 Logical Rules of Categories
In this paper, we propose a novel kind of rule-based knowledge
representation for categories as additional weak supervision infor-
mation in text classification. It takes automatically mined category-
indicative words as atomic propositions, and build their correlation
through logical expressions with disjunction and conjunction oper-
ators. Specifically, each category can be represented by a disjunctive
normal form.

Definition 4.1 (Logical Rules of Categories). The meaning of each
category 𝑧 can be represented by a logical rule as follows:

𝑟 (𝑧) =
(
𝑎1 ∨ · · · ∨ 𝑎𝑆

)
∨
(
(𝑏11 ∧ 𝑏12) ∨ · · · ∨ (𝑏𝑇 1 ∧ 𝑏𝑇 2)

)
(8)

where both 𝑎 𝑗 (1 ≤ 𝑗 ≤ 𝑆) and 𝑏 𝑗1, 𝑏 𝑗2 (1 ≤ 𝑗 ≤ 𝑇 ) are indicative
words of the category 𝑧. The rule can be divided into two sub-rules.
The first 𝑆 words are strong and can indicate the category on its
own, so they are connected directly by the disjunction operator
and compose the disjunctive sub-rule, denoted as 𝑟d (𝑧). The last 2𝑇
words are comparatively weak and need to act together to imply the
category, so they are firstly paired with the conjunctive operator,
and then combined by disjunction. That is called the conjunctive
sub-rule and denoted as 𝑟 c (𝑧). It is reasonable to think the two parts
of the rule characterize a category in different views.

4.2 Framework
On this basis, we propose a novel prompting PLM-based approach
for theWSTC task as shown in Figure 1. At first, as the starting point
with only label names, we leverage a classical zero-shot prompt-
ing method using PLM [38] to generate the initial pseudo labels

3
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Figure 1: Framework of the Proposed Approach RulePrompt.

and the signal words of texts (blue dash line). Then, the approach
enters the self-iteration between pseudo labels and category knowl-
edge (logical rules) through mutual enhancement (green solid line).
Meanwhile, the PLM is gradually optimized by self-supervised fine-
tuning to better support the main iteration above (yellow dotted
line). To this end, three modules are designed.

In the rule mining module, based on the current pseudo labels
with confidence scores, we cluster the unlabeled texts assigned to
each category into three sets. Then, with the signal words of each
text obtained by PLM, frequent 1-itemsets (items) and 2-itemsets of
each category are mined from the first two confident sets respec-
tively, which composes the disjunctive normal form of the logical
rule for each category.

In the rule-enhanced pseudo label generation module, we incor-
porate the current logical rules into three prompting PLM-based
classification models from different perspectives to update pseudo
labels. On the one hand, the words in the disjunctive sub-rule
with higher support is directly used to obtain richer verbalizers in
the generation-based model. On the other hand, the whole rule is
injected into templates to derive texts for similarity-based classifi-
cation. That is realized in two views, global embedding similarity
and local word overlapping. Finally, these results are averaged to
get new pseudo labels of texts.

In addition, in order to make the PLM accommodate this specific
task, the self-supervised fine-tuning module is executed after each
time pseudo labels are generated, employing self-supervised loss
over high-confidence texts.

4.3 Rule Mining Module
In weakly supervised setting, only label names are not adequate to
reflect the meanings of categories. Thanks to the strong generative
and representation capability of prompting PLMs, it is feasible to
utilize the pseudo labels and signal words of texts to furthermore
understand categories and enrich the prior knowledge. Since pseudo
labels are imperfect, to mitigate error propagation, the selection
of texts and signal words should be restricted to those with high

confidence. Inspired by [2], we define the confidence score (of the
pseudo label) of a text as

𝑐𝑜𝑛𝑓 (𝑑) = 𝑃 (𝑧 (1) |𝑑) − 𝑃 (𝑧 (2) |𝑑) (9)

where 𝑧 (1) and 𝑧 (2) respectively denote the first and the second
most probable label for text 𝑑 computed by the prompting PLM.
Compared to the highest probability, the difference value gives a
better indication of how confident the PLM regards the current
unique prediction.

However, for each category 𝑧, the numbers of texts appropriate
to extract strong words and weak words are hard to determine, so
we adaptively cluster the texts assigned to 𝑧 into three sets by K-
means, based on the confidence scores. These texts with excellent,
good and poor quality, are denoted as 𝐷1

𝑧 , 𝐷2
𝑧 and 𝐷3

𝑧 respectively.
For the signal words of texts, the set 𝑆𝑊 (𝑑) computed by Equa-

tion 7 needs to be further filtered to guarantee their quality. We
utilize the whole corpus to pursue the speciality of signal words
for the text, which we think can better imply the assigned category
as well. The new unnormalized probability can be calculated as:

𝑃 ′ ( [MASK] = 𝑣 | T (𝑑)) = 𝑃 ( [MASK] = 𝑣 | T (𝑑))
1
𝑁

∑︁
𝑑 ′∈𝐷

𝑃 ( [MASK] = 𝑣 | T (𝑑′))
, (10)

Then, we select the top 𝐾2 signal words with higher logits as the
strong signal words, denoted as 𝑆𝑆𝑊 (𝑑).

𝑆𝑆𝑊 (𝑑) = Top−𝐾2
𝑣∈V

{𝑃 ′ ( [MASK] = 𝑣 | T (𝑑))}, (11)

Next, we use frequent pattern mining [1, 8, 25] to obtain repre-
sentative rules of categories. For 𝐷𝑖1 and 𝐷

𝑖
2, we treat each text as

a transaction and each strong signal word of it as an item of the
transaction. Then, we at first pay attention to the most confident set
𝐷1
𝑧 to mine frequent 1-itemsets (items) with a pre-defined support

threshold ℎ1, which compose the disjunctive sub-rule of 𝑧, as each
of them alone is enough to indicate a category. The support of a
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Figure 2: Rule Mining Module.

word 𝑎 in 𝐷1
𝑧 is calculated as:

𝑠𝑢𝑝 (𝑎, 𝐷1
𝑧 ) =

∑
𝑑∈𝐷1

𝑧
𝐼1 (𝑎, 𝑑)

|𝐷1
𝑧 |

(12)

where 𝐼1 (𝑎, 𝑑) is an indicator function expressing whether 𝑎 is in
the transaction of 𝑑 ,

𝐼1 (𝑎, 𝑑) =
{1, 𝑎 ∈ 𝑆𝑆𝑊 (𝑑),
0, 𝑎 ∉ 𝑆𝑆𝑊 (𝑑). (13)

Moreover, for the set 𝐷2
𝑧 with moderate confidence scores, we

mine 2-itemsets given another threshold ℎ2 to construct the con-
junctive sub-rule. Although these words cannot represent a cate-
gory individually, their co-occurrence in the set of strong signal
words should also be captured. The support of a 2-itemset𝑏 = 𝑏1∧𝑏2
is calculated as:

𝑠𝑢𝑝 (𝑏, 𝐷2
𝑧 ) =

∑
𝑑∈𝐷2

𝑧
𝐼2 (𝑏, 𝑑)

|𝐷2
𝑧 |

(14)

where 𝐼2 (𝑏, 𝑑) is another indicator function expressing whether
both 𝑏1 and 𝑏2 are in the transaction of 𝑑 ,

𝐼2 (𝑏, 𝑑) =
{1, 𝑏1 ∈ 𝑆𝑆𝑊 (𝑑) ∧ 𝑏2 ∈ 𝑆𝑆𝑊 (𝑑),
0, 𝑏1 ∉ 𝑆𝑆𝑊 (𝑑) ∨ 𝑏2 ∉ 𝑆𝑆𝑊 (𝑑) . (15)

Besides, we need to exclude those pairs containing words also
appearing in the frequent 1-itemsets for any other category in 𝐷2

𝑧 ,
which would bring confusion.

4.4 Rule-Enhanced Pseudo Label Generation
Module

In this subsection, we present the reverse direction of the iteration,
i.e., how to inject the mined logical rules of categories into the
pseudo labels generation process. Considering the diverse capabil-
ities of PLMs and the distinct roles that logical rules play within
them, three units from three perspectives are designed to compute
the probability of each text belonging to each category. The final
results are obtained by averaging the outputs from the three units.

4.4.1 Verbalizer-based Category Estimation Unit. Since label names
are too limited to characterize categories, the indicativewords in our
logical rule can be naturally used to expand the verbalizers in clas-
sical zero-shot prompting model (Equation 2). In view of the strict
requirement of verbalizers, for each category, we only use the words

in the first half of the disjunctive sub-rule according to their support
values. The expanded set is written as Φ′ (𝑧) = {𝑙 (𝑧), 𝑎1, 𝑎2, . . . , 𝑎 𝑆

2
}

similar to the manually crafted set of keywords in Equation 6. Be-
sides, inspired by NPPrompt [38], the top-𝐾0 closest words to each
of them are also used to complement the verbalizers. For a verbalizer
word 𝑣 ∈ Φ′ (𝑧), we can get the probability 𝑄 (𝑣 |𝑑) and then take
the maximum value among all verbalizers as aggregated probability
𝑄 (𝑧 |𝑑) similar to Equation 6, as all of these words can imply the
category independently.

Noticing that 𝑄 is an unnormalized probability, we use the soft-
max function to transform the value between 0 and 1, to get the
probability 𝑃1 (𝑧 |𝑑) from the first perspective.

𝑃1 (𝑧 |𝑑) =
exp(𝑄 (𝑧 |𝑑))∑

𝑧′∈𝑍 exp(𝑄 (𝑧′ |𝑑)) (16)

4.4.2 Embedding-based Similarity Matching Unit. To conduct a
similarity-based matching between a text and a category through
prompting PLM, an intuitive idea is to put the logical rule of each
category into the template as in Equation 1. However, the expression
of conjunction and disjunction in the [MASK] token is not like
natural language, which would affect the semantic understanding
of the PLM. Hence, we handle each indicative word separately
instead and combine them in different ways for disjunction and
conjunction.

For the disjunctive sub-rule, we directly calculate embedding-
based similarity between a text 𝑑 and a category 𝑧 as weighted sum
of the similarity between 𝑑 and each word 𝑎 in the sub-rule of 𝑧:

𝐸𝑆d (𝑑, 𝑧) =
∑
𝑎∈𝑟 d (𝑧 ) 𝑠𝑢𝑝 (𝑎, 𝐷1

𝑧 ) · sim(𝑓 (𝑑), 𝑔(𝑎))
𝑆

, (17)

where 𝑠𝑢𝑝 (𝑎, 𝐷1
𝑧 ) is the support of the word 𝑎 in 𝐷1

𝑧 , 𝑓 (𝑑) is the
sentence embedding of text𝑑 , and𝑔(𝑎) = 𝑓 (T (𝑎)) is the embedding
of the template after removing “d” and replacing [MASK] with 𝑎.

While for the conjunctive sub-rule, besides the outer disjunction
operation can be handled in the same way, the similarity between
𝑑 and each 2-itemset 𝑏 = 𝑏1 ∧𝑏2 is computed through the weighted
composition of vectors instead of similarity scores.

𝐸𝑆c (𝑑, 𝑧) =
∑
𝑏∈𝑟 c (𝑧 ) 𝑠𝑢𝑝 (𝑏, 𝐷2

𝑧 ) · sim(𝑓 (𝑑), 𝑔′ (𝑏))
𝑇

, (18)

where 𝑠𝑢𝑝 (𝑏, 𝐷2
𝑧 ) is the support value of the 2-itemset 𝑏 in 𝐷2

𝑧 , and
the embedding variant 𝑔′ (𝑏) can be computed as the weighted sum
of the embedding vectors of the either conjunctive term of 𝑏.

𝑔′ (𝑏) =
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 )
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 ) + 𝑠𝑢𝑝 (𝑏2, 𝐷2
𝑧 )

· 𝑓 (T (𝑏1))

+
𝑠𝑢𝑝 (𝑏2, 𝐷2

𝑧 )
𝑠𝑢𝑝 (𝑏1, 𝐷2

𝑧 ) + 𝑠𝑢𝑝 (𝑏2, 𝐷2
𝑧 )

· 𝑓 (T (𝑏2)) (19)

At last, the embedding-based similarity 𝐸𝑆 (𝑑, 𝑧) between 𝑑 and 𝑧
is defined as the maximum value for the two sub-rules, and regarded
as the probability 𝑃2 (𝑧 |𝑑) from the second perspective.

𝑃2 (𝑧 |𝑑) = 𝐸𝑆 (𝑑, 𝑧) = max(𝐸𝑆d (𝑑, 𝑧), 𝐸𝑆c (𝑑, 𝑧)) (20)

4.4.3 Word Overlapping-based Similarity Matching Unit. Following
the idea of PRBoost [34], besides embedding-based similarity match-
ing in a global view, we also consider the word overlapping-based
similarity in a local view, leveraging PLMs’ capability of generating

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

signal words from texts once again. In this way, the rule is no longer
inserted into the [MASK] token, but instead occupies the position
of the input text in the template as an independent sentence. Con-
sequently, indicative words within a rule can be connected by the
word “and” to form a coherent sentence, regardless of the actual
logical operator. However, the use of the word “or” as a connector
is not consistent with typical human speech patterns.

We still deal with two sub-rules separately. For the disjunctive
sub-rule, the overlapping of strong signal words is computed as:

𝑂𝑆d (𝑑, 𝑧) = 𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟d (𝑧))))
𝐾2

, (21)

where 𝐴𝑛𝑑 (·) is a transformation function from a logical rule to
a sentence, which connects the indicative words of the rule with
“and”. For instance, 𝐴𝑛𝑑 (𝑟 c (𝑧)) = “𝑎1 and 𝑎2 and . . . and 𝑎𝑆 ”.

For the conjunctive sub-rule, as the involved indicative words
are weaker, the matching process should be more strict. Hence,
we divide the sub-rule into two parts alternately, construct the
sentence separately, and take the maximum of the similarity scores:

𝑂𝑆𝑐 (𝑑, 𝑧) = max
(𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟𝑐1 (𝑧)))

𝐾2
,

𝑆𝑆𝑊 (𝑑) ∩ 𝑆𝑆𝑊 (T (𝐴𝑛𝑑 (𝑟𝑐2 (𝑧)))
𝐾2

)
, (22)

where 𝑟𝑐1 = {𝑏11, 𝑏12, 𝑏31, 𝑏32, . . .} and 𝑟𝑐2 = {𝑏21, 𝑏22, 𝑏41, 𝑏42, . . .}.
Finally, the similarity of word overlapping between a text 𝑑 and

a category 𝑧 is defined as the sum over both sub-rules. Then, the
corresponding probability from the third perspective is obtained
through the softmax function.

𝑂𝑆 (𝑑, 𝑧) = 𝑂𝑆d (𝑑, 𝑧) +𝑂𝑆c (𝑑, 𝑧), (23)

𝑃3 (𝑧 |𝑑) =
exp(𝑂𝑆 (𝑑, 𝑧))∑

𝑧′∈𝑍 exp(𝑂𝑆 (𝑑, 𝑧′)) . (24)

To get a final predictive probability, the three scores from differ-
ent perspectives are averaged together to supplement each other.

𝑃 (𝑧 |𝑑) = (𝑃1 (𝑑, 𝑧) + 𝑃2 (𝑑, 𝑧) + 𝑃3 (𝑑, 𝑧))/3 (25)

Based on this, the pseudo label of a text can be assigned to the
category with the maximum probability.

4.5 Self-Supervised Fine-Tuning Module
Although prompting PLMs are strong enough to assist deriving
classification results in various manners, they are not specially de-
signed for the WSTC task. Therefore, we introduce self-supervised
fine-tuning into the closed loop, which uses the PLM’s current pre-
diction 𝑃1 (𝑑, 𝑧) to refine PLM itself, gradually enabling it to adapt
to the specific task. Specifically, we adopt self-supervised entropy
[18] as the loss function to sharpen the probability distribution
of category assignments generated by the PLM. That can maxi-
mize the potential of the PLM and mitigate the accumulation and
propagation of errors during the model training process. Given
the inaccuracy of pseudo labels, we just select a majority of texts
(denoted as 𝐷′) with tolerable predictive probability for fine-tuning.
Formally, the loss is defined as follows:

𝐿 =
∑︁

𝑑∈𝐷 ′⊂𝐷

∑︁
𝑧∈𝑍

−𝑃1 (𝑧 |𝑑) log 𝑃1 (𝑧 |𝑑). (26)

Table 1: Dataset Statistics.

Dataset # Texts # Classes Classification Type Imbalance

AGNews 120000 4 News Topics 1.0
NYT 31997 9 News Topics 27.09
IMDB 25000 2 Review Sentiment 1.0

The fine-tuning is conducted after each main iteration updates
the pseudo labels of texts, and when rule mining module is executed
in the next iteration, new signal words derived by the fine-tuned
PLM can be used. The overall algorithm is shown in Algorithm 1.

Algorithm 1 RulePrompt
Input: An unlabeled text corpus 𝐷 ; a set of categories 𝑍 with label

names; a pre-trained language model (PLM)𝑀 .
Output: The category label 𝑧 (𝑑) of each text 𝑑 ∈ 𝐷 .
1: Obtain initial pseudo labels 𝑧 (0) (𝑑) via probability distribution
𝑃 (𝑧 |𝑑) for each text 𝑑 ∈ 𝐷 through NPPrompt with Equation 4;

2: for 𝑖 = 1 to 𝐼𝑡𝑒𝑟 do
3: Obtain the confidence score of each text with Equation 9;
4: Obtain strong signal words 𝑆𝑆𝑊 (𝑑) for each text 𝑑 ∈ 𝐷

through the PLM𝑀 with Equation 11;
5: for all category 𝑧 ∈ 𝑍 do ⊲ Rule Mining
6: cluster the texts assigned to 𝑧 into 𝐷1

𝑧 , 𝐷
2
𝑧 , 𝐷

3
𝑧 based on

their confidence scores;
7: Mine 1-itemsets from 𝐷1

𝑧 with Equation 12;
8: Mine 2-itemsets from 𝐷2

𝑧 with Equation 14;
9: Compose logical rule 𝑟 (𝑖 ) (𝑧) according to Definition 4.1;
10: end for
11: for all text 𝑑 ∈ 𝐷 do ⊲ Pseudo Label Generation
12: Obtain new pseudo label 𝑧 (𝑖 ) (𝑑) via probability distri-

bution 𝑃 (𝑧 |𝑑) with Equation 25;
13: end for
14: Fine-tune the PLM𝑀 with Equation 26; ⊲ Fine-Tuning
15: end for
16: return 𝑧 (𝐼𝑡𝑒𝑟 ) (𝑑);

5 EXPERIMENTS
In this section, we first introduce datasets, baselines and experimen-
tal settings in the experiments. Then, overall results are presented
to demonstrate the effectiveness and robustness of the proposed
approach. Finally, we analyze the importance of components by
ablation study, as well as the key hyperparameter, iteration number.

The experiments were performed on NVIDIA A40 GPUs, and
implemented based on an open-source toolkit OpenPrompt [5].

5.1 Experimental Setup
5.1.1 Datasets. We use three popular datasets from the Internet
for evaluation. The statistics of them are shown in Table 1.

• AGNews [35] is a news article dataset from AG’s corpus.
• NYT [35] contains news articles written and published by

New York Times, covering abundant news topics.
• IMDB [19] is for sentiment classification of movie reviews.
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Table 2: Label Names and Templates for RulePrompt.

Dataset Label Names Template

AGNews politics, sports, business, technology A [MASK] news: 𝑑
NYT business, politics, sports, health, education, estate, arts, science, technology Topic: [MASK] 𝑑
IMDB good, bad 𝑑 In summary, the film was [MASK] .

5.1.2 Baselines. We compare our approach with the following
weakly supervised methods. The first two are seed-driven methods,
which require at least three keywords for each category as input,
and others belong to emerging PLM-based methods.

• WeSTClass [21] generates pseudo labels based on word
embeddings and obtains the final classifier via self-training.

• ConWea [20] generates pseudo labels based on the con-
textualized representations of keywords, and trains a text
classifier to further expand the keyword sets.

• LOTClass [22] utilizes the pre-trained BERT to find in-
dicative keywords, which are directly used for category
understanding and feature representation learning.

• XClass [28] expands indicativewords for category-oriented
representations, and generates pseudo labels for fine-tuning
a text classifier via clustering.

• ClassKG [33] builds a keyword graph with co-occurrence
relation, and generates pseudo labels via a self-trained sub-
graph annotator, used to update keywords iteratively.

• NPPrompt [38] constructs verbalizers based on initial
word embeddings by PLM, and estimates probability distri-
bution over categories via weighted sum of these words.

• PromptClass [37] utilizes zero-shot prompting to generate
pseudo labels and improves the quality of them through
two fine-tuning strategies of PLMs.

Besides, we also inspect a fully supervised method, which uses
BERT classifier with fine-tuning based on the labels in the training
set. It can be regarded as an upper-bound for WSTC methods.

5.1.3 Experimental Settings. We use the same input label name
of each category as previous work, and list them as well as the
template for each dataset in Table 2. As prompt-based methods are
relatively robust with PLMs [29], we follow previous work [27, 38]
to choose RoBERTa-large [16] as our PLM.

In regard to getting signal words and strong signal words of
texts, we set 𝐾1 = 100 and 𝐾2 = 20. In the process of frequent
pattern mining, we set support thresholds ℎ1 = ℎ2 = 0.1 for AGNews
and IMDB, 0.05 for imbalanced NYT. As only top 1-itemsets and 2-
itemsets can enter the rule, these thresholds are insensitive and
can thus be a low value. The maximum numbers of terms in the
disjunctive sub-rule and conjunctions in the conjunctive sub-rule
are both 𝑆 = 𝑇 = 10. In the embedding-based similarity matching
unit, we choose Roberta-SimCSE [7] as the sentence encoder.

In the self-supervised fine-tuning module, we train 5 epochs
in each iteration for NYT and IMDB, for AGNews that is larger, the
number of epochs is 8. We use AdamW [17] as the optimizer. The
number of full iterations 𝐼𝑡𝑒𝑟 is unified to 3 across all datasets.
Besides, the proportion of texts used for fine-tuning is set to 80%.

Following previous work, we also use Micro-F1 and Macro-F1 as
the evaluation metrics. The results of baselines are quoted from [34]

with missing values marked as “-”. Since NPPrompt uses more than
one keyword on some datasets in its original setting, we re-run it
with their codes1 using only the label names for fair comparison.

5.2 Overall Results
The overall results of RulePrompt, its variant without fine-tuning,
and baseline methods are shown in Table 3.

It is evident that our model consistently outperforms baselines
for all datasets, and almost catch up with the supervised methods
on IMDB. That certifies the role of logical rules of categories in as-
sisting prompting PLMs to understand the topics of texts, compared
with independent category-indicative words. In addition, the ad-
vantage over PromptClass highlights the importance of the mutual
enhancement of pseudo labels and logical rules, as they are both
imperfect at the starting point. Although RulePrompt exhibits a
slight gap with ConWea on the Macro-F1 metric in the imbalanced
NYT dataset, which is caused by the amplification of categories with
small samples, our approach is more stable across all datasets.

As to the largest AGNews dataset, RulePrompt surpasses the vari-
ant without fine-tuning, but in case of NYT and IMDB, adopting a
fixed PLM is more appropriate. That can be explained by the dataset
size. When there is sufficient evidence available for each category,
even if unlabeled, it becomes feasible to refine the PLM to accom-
modate the specific task and dataset, with the help of self-iterative
logical knowledge of categories. Conversely, when the dataset is
small, its particularities are harder to summarize and the PLM is
better to retain its initial state trained by large-scale Internet data.

For an interpretability analysis, in the AGnews dataset, we observe
that for the category “politics”, the words “war” and “palestinian”
are mined as 1-itemsets to form the disjunctive sub-rule, while
“world ∧ foreign” and “diplomatic ∧ geopolitical” are identified
as 2-itemsets, forming the conjunctive sub-rule. These rules align
with common intuitions and significantly contribute to a more
comprehensive representation of their respective categories.

Furthermore, in the NYT dataset, the word “architecture” is found
within rules associated with two different categories: “Estate” and
“Arts”. It is paired with “residential” and “apartments” for the former,
but “museum” and “cultural” for the latter. That exemplifies the
ability of our approach to disambiguate easily-confused categories.

5.3 Ablation Study
The ablation results for the two main modules are shown in Table
4. In order to make the role of each component more prominent,
the experiments were carried out in the first iteration (denoted as
RulePrompt-1), thus without self-supervised fine-tuning.
In terms of rule mining. The variants include removing the con-
junctive sub-rule (−Conj), and mining rules from all texts without

1https://github.com/XuandongZhao/NPPrompt
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Table 3: Overall Results on Three Datasets Measured by Micro-F1 and Macro-F1. The Best Scores are Marked in Bold.
Methods AGnews NYT IMDB

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

WeSTClass 0.823 0.821 0.683 0.570 0.774 -
ConWea 0.746 0.742 0.817 0.715 - -
LOTClass 0.869 0.868 0.671 0.436 0.865 -
XClass 0.857 0.857 0.790 0.686 - -
ClassKG 0.881 0.881 - - 0.888 0.888
NPPrompt 0.692 0.628 0.720 0.596 0.939 0.939

PromptClass (RoBERTa+RoBERTa) 0.895 0.895 - - 0.906 0.906
PromptClass (ELECTRA+ELECTRA) 0.884 0.884 - - 0.931 0.931

RulePrompt 0.897 0.896 0.822 0.699 0.940 0.940
RulePrompt without Fine-Tuning 0.842 0.838 0.826 0.702 0.941 0.941

Fully Supervised 0.940 0.940 0.943 0.899 0.945 -

Table 4: Results of Ablation Study for One Iteration. The Best Scores are Marked in Bold.
Methods AGnews NYT IMDB

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

RulePrompt-1 (−Conj) 0.853 0.850 0.821 0.694 0.938 0.938
RulePrompt-1 (−𝐷𝑧 ) 0.502 0.423 0.748 0.653 0.933 0.933

RulePrompt-1 (−𝑈 1) 0.763 0.761 0.600 0.542 0.912 0.912
RulePrompt-1 (−𝑈 2) 0.853 0.850 0.818 0.688 0.937 0.937
RulePrompt-1 (−𝑈 3) 0.852 0.849 0.820 0.693 0.935 0.935

RulePrompt-1 0.854 0.851 0.823 0.700 0.940 0.940

clustering-based set division (−𝐷𝑧 ). At first, the lack of conjunction
part will lower the performance. That confirms the discrepancy
among indicative words on characterizing category meanings, and
the combined effect of relatively weaker words cannot be neglected.
Besides, when the rules are mined from the whole corpus, the
accuracy is distinctly declined. That can be attributed to the inac-
curate pseudo labels which decides the mining object. Therefore,
the confidence scores for the predicted labels is vital to help choose
appropriate texts to search for rules in an adaptive way.
In terms of rule-enhanced pseudo label generation. The vari-
ants contain the methods without either of the three units respec-
tively. For most cases, the full approach performs the best. That
reflects different capabilities of the PLM as well as the different
manners of logical rules enhancing the PLM. Since it is hard to
determine which is better beforehand, averaging the predictive
results of them to supplement each other is a good choice.

5.4 Analysis of Iteration Number
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Figure 3: Results with Varied Number of Iterations.

We vary the number of full iterations 𝐼𝑡𝑒𝑟 from 1 to 5 for all
datasets. Figure 3 shows the values of two metrics for RulePrompt.
It can be seen that the performance shows a trend of first rising
and then declining, and reaches optimal after about three iterations.
That is nearly consistent across all datasets, and thus indicates the
robustness of this setting as well as our approach.

An exception appears for the imbalanced NYT when Macro-F1 is
examined. That coincides with the observation in the overall results
and proves the requirement of our approach for a certain number
of unlabeled texts of each category to mine precise knowledge.

6 CONCLUSION
Addressing the limitations of relying solely on seed words (label
names) for supervision in weakly supervised text classification task,
this paper explores a kind of novel knowledge representation to
characterize category meanings, which facilitates the effective inte-
gration of knowledge and unlabeled corpus. The proposed logical
rules for categories can be automatically mined based on the pseudo
labels of texts and iteratively self-optimized through mutual en-
hancement with them. Thanks to the enriched symbolic knowledge,
the potential of prompting PLMs are further exploited in terms of
generative capability and semantic representations, which is real-
ized by incorporating the PLM into the rule-based iteration process.
With this framework, RulePrompt exceeds the SOTA weakly super-
vised methods, and the logical rules we extract are intuitive and
provide valuable guidance by disambiguating easily-confused cate-
gories. For future work, wewill strengthen the expressiveness of the
category rules, such as the adding negation operator. Additionally,
more effective iteration strategies are also worth studying.
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