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ABSTRACT

The experimental discovery of neutrinoless double-beta decay (NLDBD) would
answer one of the most important questions in physics: Why is there more matter
than antimatter in our universe? To maximize the chances of detection, NLDBD
experiments must optimize their detector designs to minimize the probability of
background events contaminating the detector. Given that this probability is in-
herently low, design optimization either requires extremely costly simulations to
generate sufficient background counts or contending with significant variance. In
this work, we formalize this dilemma as a Rare Event Design (RED) problem:
identifying optimal design parameters when the design metric to be minimized is
inherently small. We then designed the Rare Event Surrogate Model (RESuM)
for physics detector design optimization under RED conditions. RESuM uses
a pretrained Conditional Neural Process (CNP) model to incorporate additional
prior knowledges into a Multi-Fidelity Gaussian Process (MFGP) model. We ap-
plied RESuM to optimize neutron moderator designs for the LEGEND NLDBD
experiment, identifying an optimal design that reduces neutron background by
(66.5 ± 3.5)% while using only 3.3% of the computational resources compared
to traditional methods. Given the prevalence of RED problems in other fields
of physical sciences, the RESuM algorithm has broad potential for simulation-
intensive applications.

1 INTRODUCTION

Why is there more matter than antimatter in our universe? This question remains one of the most im-
portant yet unsolved questions in physics. Several Nobel Prizes have been awarded for groundbreak-
ing discoveries that have advanced our understanding of this questions, including the discovery of
CP violation in kaons (Cronin and Fitch, 1980), the detection of cosmic neutrinos (Koshiba, 2002),
and the development of the Kobayashi-Maskawa theory of CP violation (Kobayashi and Maskawa,
2008). Despite these monumental achievements, the reason for the dominance of matter over anti-
matter remains unsolved. One of the most promising next steps toward answering this question is
the potential discovery of Neutrinoless Double-Beta Decay (NLDBD) (Dolinski et al., 2019). Such
a discovery would represent a major milestone in this direction and would undoubtedly be consid-
ered a Nobel-Prize-level breakthrough in physics. Due to its utmost importance, the entire U.S.
nuclear physics community has gathered for a year-long discussion in 2023 and recommended the
experimental search for NLDBD as the second-highest priority (Committee, 2023) for next 10 years.

The most challenging aspect of NLDBD search is dealing with background events: physical events
that are not NLDBD, but are indistinguishable from it. Since NLDBD is hypothesized to occur less
than once every three years (LEGEND-Collaboration et al., 2021; Dolinski et al., 2019), even a sin-
gle background event entering the detector could potentially ruin the entire detection effort. There-
fore, designing ultra-pure NLDBD detectors with optimal parameters to minimize the probability
of background events entering the detector becomes the utmost goal of all NLDBD experiments.
Traditionally, the detector design procedure is conducted with simulations: we first simulate our
detectors and N1 background events under a certain design parameter θ1, then count the number
of background events that eventually enter our detector, m1. We then repeat the simulation process
with another design parameter θ2 and count m2. If m1/N1 < m2/N2, it suggests that the design
θ1 is better than θ2. This simulation process can be repeated multiple times until an optimal de-
sign is found. An obvious shortcoming of this traditional approach is the computational cost: due
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to the ultra-pure nature of the NLDBD detector, N needs to be extremely large (O(104)) for m to
even be above zero (corresponding to approximately one event of interest among 104 total back-
ground events). This is amplified by the complexity of the design space, involving numerous and
often non-linearly interdependent parameters such as detector geometry, material properties, and
environmental conditions.

An obvious solution to this problem is to build a surrogate model that can significantly accelerate
our simulations (Li et al., 2023; Ravi et al., 2024). However, due to the rare event nature, m is
either 0 or a small, discrete integer, which leads to high variance in our design metric m/N . This
variance renders training traditional continuous surrogate models extremely difficult. In this paper,
we formulate this problem as a Rare Event Design (RED) problem and present RESuM—a Rare
Event Surrogate model to solve this problem. RESuM navigate through a complex landscape and
approximate the complex relationships between the design parameters θ and rare event design metric
m/N . The benchmarking result shows that RESuM could reduce the LEGEND neutron background
by (66.5±3.5)% using only 3.3% of the computational power compared to traditional methods. Due
to the broad presence of RED problems in physical sciences, RESuM has the potential to be applied
to other domains, including Astronomy and Material Science.

2 RELATED WORKS

Due to the computational cost of particle physics simulations, generative models like VAE (Z. Fu
et al., 2024), GAN (Kansal et al., 2021; Vallecorsa, 2018; Hashemi et al., 2024), and diffusion
models are widely used as surrogate models for fast simulation (Kansal et al., 2023). Although
these deep generative models, usually trained on large datasets, robustly reproduce enriched high-
dimensional data, their black-box nature renders them non-interpretable and lacking clear statistical
meaning. Meanwhile, the CNP model (Garnelo et al., 2018), as a probabilistic generative model,
offers the distinct advantage of few-shot learning and provides clear statistical interpretation. It
has demonstrated good performance in few-shot problems, including classification tasks (Requeima
et al., 2019), statistical downscaling (Vaughan et al., 2022), and hydrogeological modeling (Cui
et al., 2022). In this study, we explore a novel surrogate modeling approach that focuses solely on
key detector design metrics. The CNP model was not used as a generative model, but as a predictive
model to smooth out discreteness of rare design metrics.

Another related field is rare event simulation and probability prediction in reliability engineering.
The rare event problem here focuses on estimating extremely low failure probabilities Pf when
both limit state G(X) and probability density f(X) are known. Since direct Monte Carlo simu-
lation becomes intractable as Pf approaches zero, specialized techniques, including adaptive sam-
pling and FORM/SORM methods, have been developed. The development progressed from FORM
by Hasofer (1974) and its extension to non-normal distributions (Fiessler et al., 1979), compre-
hensively reviewed in Der Kiureghian et al. (2005). Methodological advances include adaptive
sampling (Bucher, 1988), surrogate-based methods (Li and Xiu, 2010; Li et al., 2011), sequential
importance sampling (Papaioannou et al., 2016), and multi-fidelity approaches (Peherstorfer et al.,
2016; 2018). Recent work has introduced multilevel sampling (Wagner et al., 2020) and ensem-
ble Kalman filters (Wagner et al., 2022). The RED problem differs fundamentally from traditional
reliability engineering rare event problems, as it must estimate failure probabilities (triggering proba-
bilities in RED) without an explicitly known performance function G(x). Our access to the function
G(x) is limited to binary observations through Bernoulli[G(x)], which outputs either 0 or 1, and
the design metric to surrogate m/N is computed by summing all binary outcomes and dividing by
N .

3 RARE EVENT DESIGN PROBLEM

Definition Let θ ∈ Θ be the vector of design parameters, where Θ represents the space of all pos-
sible design parameters. Consider a simulation involving N events, or data points, under design pa-
rameter θ; each event can either trigger a signal 1 or not. Define a stochastic process {X1, . . . , XN},
where each random variable Xi corresponds to the i-th event in the simulation and Xi = 1 if the i-th

1“trigger a signal” could represent any event of interest depending on the task setup. In the case of the
NLDBD background minimization task, it means a background event successfully leaches into the detector
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event triggers a signal and Xi = 0 if it doesn’t. Each random variable Xi is statistically independent
of all other Xj for j ̸= i.

Each simulated event i is considered independent, and the outcome of Xi depends on two sets
of parameters: a set of design parameters θ which is universal across all events, and another sets
of event-specific parameters ϕi ∈ Φ where Φ represents the space of all possible event-specific
parameters. The probability that the i-th event will trigger a signal is thereby defined as a function
of both θ and ϕi, which could be denoted as t(θ,ϕi).

Let m represent the number of events that trigger a signal. The design metric y is then defined as:

y =
m

N
=

∑N
i=1 Xi

N
(1)

Rare Event Assumption The number of triggered events m follows a binomial distribution with
the triggering probability t(θ,ϕi). Under the rare event assumption that m ≪ N and the triggering
probability for each event t(θ,ϕi) is small, the number of triggered events m can be approximated
by a Poisson distribution as m ∼ Poisson (Nt̄(θ)). Where t̄(θ) is the expected triggering probability
over all simulated events when N goes to infinity:

t̄(θ) =

∫
t(θ,ϕ)g(ϕ)dϕ (2)

The function g(ϕ) denotes a predefined probability density function (PDF) where ϕi could be sam-
pled from during the simulation process. t̄(θ) is obtained by marginalizing t(θ,ϕ) over g(ϕ).
Therefore, the ultimate metric that we want to minimize is t̄ , which is the expectation of y:

θ∗ = argmin
θ∈Θ

t̄(θ) (3)

Since t̄ depends on θ, minimizing t̄ requires extensive sampling of different θ values within the
design space Θ to identify the optimal parameter.

Large N Scenario Assuming that t̄(θ) remains fixed. When N becomes large, according to the
central limit theorem, m will tend to follow a normal distribution:

m ∼ N (Nt̄(θ), N t̄(θ))

Since y = m/N , this means that y will also follow a normal distribution with symmetric, well-
defined statistical uncertainties t̄(θ)/N :

y ∼ N (t̄(θ), t̄(θ)/N)

As N −→ +∞, y will asymptotically approximate t̄(θ) with statistical uncertainties approaching 0.

Small N Scenario When N becomes small, the total number of instances m that trigger a signal
has a higher variance, as each individual instance has a significant impact on m. The accuracy
measure y = m

N can no longer be approximated with a normal distribution. This makes y more
sensitive to statistical fluctuations of a few simulated events. Furthermore, there is a non-negligible
probability that no event will trigger a signal, meaning that m = 0 and y ∼ m

N = 0. In summary,
in the small N scenario, the design metric y of interests will only takes on a discrete set of values,
y ∈

{
0
N , 1

N , . . . , m
N

}
.

4 RARE EVENT SURROGATE MODEL

The Rare Event Surrogate Model (RESuM) aims to solve the RED problem under the constraint of
limited access to large N simulations and an unknown triggering probability t(θ,ϕi). Consider a
scenario where we run K simulation trials with different design parameter θ, indexed by k; each
simulation trial contains N events indexed by i. The RESuM model includes three components:
a Conditional Neural Process (CNP) (Garnelo et al., 2018) model that is trained on event level;
a Multi-Fidelity Gaussian Process (MFGP) (Kennedy and O’Hagan, 2000; Qian and Wu, 2008)
model that trains on simulation trial level; and active learning techniques to sequentially sample
the parameter space after training. The conceptual framework and details of our model design are
outlined in the following subsections.

3
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4.1 BAYESIAN PRIOR KNOWLEDGE WITH CONDITIONAL NEURAL PROCESS

The random variable Xki represents whether the ith event triggered a signal or not. In traditional
particle physics, the value of Xki is determined through a Monte Carlo simulation process: first, a
parameter ϕki is sampled from the distribution g(ϕ) to generate the event. This event then propa-
gates through the detector, characterized by the design parameter θk. The outcome of the simulation,
which implicitly involves the joint distribution t(θk,ϕki), is only observed as Xki. As discussed
before, Xki can only be 0 or 1. In the small N scenario, the root cause of the discreteness of y is
this binary nature: 1 if a signal is triggered or 0 if not. This produces significant statistical variance
in y. Suppose we want to model this simulation process with a Bernoulli distribution:

Xki ∼ p(Xki|θk,ϕki) = Bernoulli(t(θk,ϕki)) (4)

The goal of incorporating prior knowledge is to smooth out the highly discrete Xki which could
only take binary values (0 or 1). For the ith event in the kth simulation trial, we would like to build
a neural network that accept θk,ϕki and produce a continuous, floating point score βki. The score
βki should approximate t(θk,ϕki) given design parameter θk and event-specific parameter ϕki.

This work provides an alternative solution by adopting a similar idea to the CNP model. CNP works
by learning a representation of input-output relationships from context data to predict outputs for
new inputs (Garnelo et al., 2018). In our case, the input is θk and ϕki, and the output is the random
variable Xki. The random process that generates Xki based on the inputs is the Bernoulli process
controlled by t(θ,ϕ). We then adopt the same representation learning idea used in the CNP, which
involves approximating the random process by sampling from a Gaussian distribution conditioned
at observed data. The mean and variance are modeled with neural networks:

Bernoulli(t(θ,ϕ)) ≈ Bernoulli(β) (5)

β ∼ N (µNN (θ,ϕ,w), σ2
NN (θ,ϕ,w))|Xki,ϕki,θk

(6)

The nuisance parameters, denoted as w, represent the trainable parameters of the neural network
(Garnelo et al., 2018), including the weights and biases, that are optimized during training by min-
imizing the likelihood of the observed data. Importantly, the neural networks are not trained to
predict the binary observable X , but rather to estimate the continuous floating-point score β. A
comprehensive description of the CNP model, along with the interpretation of the score β and the
associated loss function (likelihood), is provided in Appendix 12. The score β for each simulated
event serves as prior information that is incorporated into the MFGP surrogate model.

4.2 MODEL DESCRIPTION

Building on the conceptual framework described in 4.1, we will provide an end-to-end overview of
RESuM as shown in Figure 1. We generate two types of simulations: low-fidelity (LF) and high-
fidelity (HF). Detailed descriptions of these simulations can be found in Section 5.1. The primary
distinction between them lies in the number of simulated events N , where NHF ≫ NLF . Another
key difference is the distribution g(ϕ) from which the parameter ϕi of each event is sampled, where
HF simulation contains a more complicated, physics-oriented g(ϕ). The low computational cost
of LF simulation allows us to simulate more trials thereby exploring a broader range of θ. The
first step is to train the CNP model. The CNP comprises three primary components: an encoder,
an aggregator, and a decoder. The parameters θk,ϕki, and Xki of each simulated event are first
concatenated into a context point. The encoder, implemented as a Multi-Layer Perceptron (MLP),
transforms each context point into a low-dimensional representation. These representations are then
aggregated through averaging to form a unified representation that represents t(θ). The decoder
uses t(θ) and the ϕki of new data to output parameters µki and σ2

ki for each event i. We then use
µki and σ2

ki to form a normal distribution and sample a CNP score βki from it. The scores βki are
chosen to naturally fit a normal-like distribution but bounded between 0 and 1. Since the CNP is
trained at event level, βki will be the same regardless of whether the event is generated in HF or LF
simulation.

Based on the trained CNP model, the next step involves in calculating three design metrics at dif-
ferent fidelities. The first one is yRaw = m/N from HF simulations, which is the ultimate design

4
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Figure 1: Overview of the RESuM framework for solving RED problems. The left side illustrates
the CNP used for modeling both LF and HF simulation data. The CNP aggregates event-specific
parameters ϕi and design parameters θ from LF and HF simulations to produce yLF

CNP and yHF
CNP,

which, together with HF simulation output yHF
Raw, serve as inputs to the surrogate model. The right

side shows the multi-MFGP that combines predictions ŷCNP from LF and HF to estimate the HF
design metric ŷHF

Raw.

metric we want our surrogate model to emulate. The second metric is also derived from HF simula-
tions but is defined as the average CNP score of all simulated events:

yCNP =
1

N

N∑
i=0

βki (7)

The third metric is yCNP calculated over LF simulations. These three design metrics are then
incorporated into a MFGP model to train the surrogate model. Co-kriging was used to account for
correlations among different design metrics. The mathematical detail of MFGP can be found in
Appendix 10

After training the MFGP model, we adopt active learning to select new sampling points θnew to
generate yRaw with HF simulations. Since HF simulation is expensive, to determine which point
to collect next, we use a gradient-based optimizer to find θn+1 = argmaxθ∈X I(θ) (Paleyes et al.,
2023). The acquisition function I(θ) determines the next data point to explore by balancing ex-
ploration (high variance) and exploitation (high mean). We chose the integrated variance reduction
method, where the next point, θn+1, is selected to maximally reduce the total variance of the model
(Sacks et al., 1989). More detail about the active learning method can be found in Appendix 11.

5 EXPERIMENT AND RESULT

The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay (LEGEND) is a
next-generation pioneering experiment in the search for NLDBD, with over 300 international col-
laborators. One of the major background event type in LEGEND are 77(m)Ge, which are produced
through a three-step physics process: (1) Cosmic Muons are high-energy particles that constantly
shower down from the sky. (2) When cosmic muons enter the LEGEND outer detector, they can in-
teract with materials in the outer detector, which generates a lot of neutrons. (3) Neutrons then
propagate through the LEGEND detector system. If a neutron enters the inner detector, it has
a chance to produce 77(m)Ge by neutron capture, which is the primary background of concern.
77(m)Ge, once produced, will be particularly challenging, because it could mimic NLDBD events,
making it nearly impossible to distinguish and reject once produced2. The most viable solution to
mitigate this background is through the design of a neutron moderator—a neutron shield that slows
down the neutrons and reduce the neutron flux entering the inner detector system between step (2)
and (3). Figure 2 provides an overview of the LEGEND detector and a proposed neutron moderator
design. Our goal with the RESuM is to optimize the geometric design of the neutron moderator to
prevent most neutrons from leaching into the inner detector. The optimization process consists of
two key steps: generating simulations under different design parameters, and adopting the RESuM
model to surrogate and identify the optimal design of neutron moderators.

2Currently, there are no efficient methods to eliminate 77(m)Ge once created, aside from employing complex
active tagging algorithms (Neuberger et al., 2021) that introduce additional dead time.
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Figure 2: Left: Rendering of the LEGEND-1000 experiment with the hundreds of detectors. The
inner detector region is shown in green while the rest are outer detectors. Right: Illustration of the
neutron moderator/shield design with the 5 design parameters (viewed from top).

5.1 NEUTRON MODERATOR SIMULATIONS

Two neutron moderator design schemes were proposed: (1) a continuous, cylindrical-shaped shield
surrounding the detector array, and (2) a turbine-like shield composed of several panels. As il-
lustrated in Figure 2 (Right), we define five design parameters to include both geometries under
continuous transition: the radius r of the cylindrical layer or the distance of the panels, the shield
thickness d, the number of panels n, the angle of the panels φ, and the panel length L. These five
parameters constitute the design parameter space Θ, where each parameter is allowed to vary within
a predefined range.

A specific design θ can be sampled from Θ to perform simulations and obtain the corresponding
design metric yRaw. For a given θ, we utilized a Monte Carlo (MC) simulation package based on the
GEANT-4 toolkit (Agostinelli et al., 2003; Allison et al., 2006), integrated with the existing LEG-
END software frameworks (Neuberger; Ramachers and Morgan). We first simulate the LEGEND
detector with a neutron moderator configuration according to the sampled design parameter θ, as
shown in shown in Figure 2. Second, we simulate neutrons which are allowed to propagate through
the detector within the simulation system, and the number of 77(m)Ge produced, m, is counted
within the inner detector. The design metric yRaw is then computed as yRaw = m/N .

We implemented two levels of simulation fidelity: high-fidelity (HF) and low-fidelity (LF). Since
neutrons are primarily produced by cosmic muons showering down from the atmosphere, the HF
simulation starts by generating muons outside the LEGEND detector using physics information
provided by the MUSUN muon simulation software (Kudryavtsev, 2009). The event-specific pa-
rameter ϕµ of each muon is sampled from a carefully-designed distribution gµ(ϕµ). These muons,
with predefined energies and directions, will propagate through the detector geometry, leading to
the production of neutrons with their associated ϕini

n assigning an initial position (x, y, z), initial
momentum (px, py, pz), and initial energy E to the created neutrons. The total number of simulated
muons NHF for each design parameter θk is typically very large, on the order of 107. The LF simu-
lation, on the other hand, skipped the muon simulation step. Neutrons are directly simulated within
the detector, and the event-specific parameter ϕini

n is randomly sampled from a uniform distribution
ginin (ϕini

n ) in a predefined range. The total number of neutrons simulated, NLF is on the order of
104, which is also significantly smaller than in the HF simulation. To fully assess the probability
of a neutron in step (3) producing a 77(m)Ge background event, we must also consider the neu-
tron’s end position, the time from its creation to termination, and its energy transfer at termination.
Consequently, ten parameters form the event-specific parameter ϕ = (ϕini

n ,ϕfin
n ) obtained from a

predefined distribution g(ϕ) =
∫
gfin

n (ϕfin
n | ϕini

n ) · gini
n (ϕini

n | ϕµ) · gµ(ϕµ) dϕµ (as discussed in
Section 3).

While the LF simulation is based on a simplified distribution ginin (ϕini
n ) (instead of ginin (ϕini

n | ϕµ)),
it offers significant computational advantages, with a cost of only 0.15 CPU hours per run—about
1130 times faster than the HF simulation. This allows a broader exploration in the design param-
eter space Θ. Conversely, the HF simulations are crucial for providing rigorous estimates of the
77(m)Ge background event production rate, ensuring that the optimized designs meet the stringent
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background requirements for the LEGEND experiment. In total, 4 HF and 304 LF simulations were
generated to form the training dataset for the surrogate model, with the four HF samples being reused
from a previous simulation study, as suggested in Neuberger et al. (2021).

5.2 CONDITIONAL NEURAL PROCESS RESULT

The network structure and motivation of the CNP are discussed in Section 4.2. Training is performed
using supervised learning, where a signal label (1) is assigned to neutrons that successfully produce
77(m)Ge background, and a background label (0) is assigned to neutrons that do not. The network
input parameter x here consists of the design parameters θk, as well as the event-specific parameters
ϕini

n,ki and ϕfin
n,ki. A major challenge in training the CNP is the severe imbalance between signal and

background, with a ratio of approximately 1 : 5 · 104. This is consistent with the rare event assump-
tion, where m ≪ N . To address this imbalance, we apply mixup (Zhang et al., 2018) techniques
which generates new training samples x̂ by forming linear combinations of existing signal samples
xl and background samples xj , along with their corresponding labels yl and yj :

x̂ = λxl + (1− λ)xj and ŷ = λyl + (1− λ)yj

where λ is randomly drawn from a beta distribution B(0.1, 0.1). This process introduces a weighted
blend of signal and background, helping to alleviate the imbalance in the data and improve the
model’s generalization and robustness. To demonstrate the effectiveness of the CNP in reducing

Figure 3: Comparison of raw data (red points) and CNP predictions (green points with error bars)
across different design parameters. a) CNP result on the training dataset with mixup. b) predicted
scores for a validation dataset. c) to g) provides scatter plots of the raw metric yRaw (red points) and
yCNP (green points with error bars), plotted against each design parameter in Θ. The CNP model
offers smoother, more refined predictions compared to yRaw.

statistical variance in the design metric, we calculated two different metrics for each LF simulation
trial: the raw design metric yRaw (in [nuclei/(kg · yr)]) and the averaged CNP score yCNP. The
results of both metrics are plotted against the five design parameters in Figure 3. As anticipated, the
raw metric yRaw exhibits significant statistical fluctuations that overshadows any correlations with
respect to each design parameter. In contrast, the CNP score yCNP reveals clear dependencies on
the radius and number of panels (see Figure 3 Bottom). This indicates that CNP effectively reveal
additional prior information into the MFGP.

5.3 RESUM RESULT

With CNP-generated scores, the full RESuM model was trained with three design metrics at differ-
ent fidelities: yRaw for HF simulations, yHF

CNP for HF simulations, and yLF
CNP for LF simulations. The

ultimate goal is to emulate yRaw for HF simulations which provides a more accurate representation of
77(m)Ge production rates under design parameter θ. The MFGP model was carried out by using the
Emukit python library (Paleyes et al., 2023). Figure 4 (Left Bottom) illustrates the active learning
process, including the HF model prediction (Top) and the acquisition function (Bottom). The surro-
gate model provides an estimate of the design metric of interest (yRaw from HF simulations) along
with its associated uncertainty at each point in the input space. The acquisition function evolves as
new data points refine the objective function approximation, balancing exploitation of known optima
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Figure 4: Left: One-dimensional CNP-LF (cyan), CNP-HF (dark cyan) and HF (orange) model pre-
dictions (dashed line) with uncertainty band (shaded area) as a function of the radius r. The lower
panel shows the acquisition function as a function of the radius after each iteration. It guides the
selection of future evaluation points in the input space to efficiently search for the optimal solution.
Right: One dimensional model predictions over various design parameters. It illustrates the sequen-
tial model prediction update by adding new sampling points in each iteration.

with exploration of uncertain regions. As notable in the lower panel of Figure 4 (Left), the acquisi-
tion function initially explores regions with high uncertainty, especially at medium distances where
the optimum is likely to be found. The active learning procedure can be iterated as long as compu-
tation resources allow. In this work, six active learning iterations were performed to obtain the final
result. The HF model predictions for the 77(m)Ge production rate are shown in Figure 4, which dis-
plays one-dimensional projections of yLF

CNP from LF simulations (cyan), yHF
CNP from HF simulations

(dark cyan), and yRaw from HF simulations (orange) model predictions (dashed line) along with as-
sociated uncertainties (shaded area), as functions of 5 design parameters. These figures illustrate
how the model’s uncertainty decreased with each new sampling iteration. After six active learning
iterations, the model predictions converged on several optimal designs, as shown in Table 1. These
designs exhibit a range of configurations, with most favoring smaller panel angles φ and a higher
number of shorter panels, while one achieve optimal performance with fewer but significantly longer
panels. Additionally, the optimal designs tend to cluster around two radii ranges, approximately 165
cm and 200 cm, suggesting that positioning the neutron moderator near these distances provides the
best balance between effective neutron capture and material efficiency. This positioning allows for
sufficient moderator mass to trap neutrons while maintaining an appropriate distance to minimize
neutron escape. These designs outperformed those with larger gaps between panels, primarily due
to the increased thickness of neutron moderator shielding. The optimal design reduces the 77(m)Ge
production rate from 0.238 nuclei/(kg · yr) to 0.0798 nuclei/(kg · yr), leading to a (66.5± 3.5)%
reduction in neutron-induced background in LEGEND. Notably, RESuM identified the optimal de-

Table 1: Optimal neutron moderator design parameters identified by the RESuM model.

Radius r Thickness d NPanels n Angle φ Length L ŷmin
Raw σmin

Raw
[cm] [cm] [deg] [cm] [nuclei/(kg · yr)] [nuclei/(kg · yr)]
165.6 3.3 188 19.3 7.5 0.0798 0.0483
207.3 2.8 120 3.5 3.2 0.0786 0.0494
202.2 2.4 153 9.1 3.0 0.0787 0.0489
164.3 4.2 192 15.4 3.1 0.0784 0.0485

sign parameters with drastically reduced computational costs. Each HF simulation required 170
CPU hours, while each LF simulation needed just 0.15 CPU hour. If we were to explore the design
space with only HF simulations, traditional methods would have required 52,700 CPU hours to ex-
plore all 310 design parameter sets. In contrast, RESuM used 310 LF simulations and 10 HF (4 for
MFGP training and 6 for active learning) simulations, totaling 1746.5 CPU hours—only 3.3% of the
computational resources required by conventional approaches.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 MODEL VALIDATION AND BENCHMARKING

The ultimate goal of this manuscript is to learn the functional mapping f : θ → y. Each trained
model should be able to take θ as input and predict ŷRaw as the predicted mean and σ̂Raw as the
prediction uncertainty. For this purpose, additional independent, out-of-sample HF simulations are
generated as validation dataset, and the ground truth yRaw for each HF simulation is calculated by
counting the number of background events m. Given the high computational demands of HF sim-
ulations and our limited resources, we generated 100 out-of-sample HF simulations at randomly
sampled θ values. We benchmarked the RESuM (MFGP+CNP) model against two baseline models:
a Multi-Fidelity Bayesian Neural Network (MF-BNN,Bingham et al. (2019); Guo et al. (2022)), and
a standard MFGP model Paleyes et al. (2023). Due to convergence speed difference, each model
was trained on different dataset variants and validated on the same validation dataset. The compar-
ison utilized five benchmarking metrics: the Mean Square Error (MSE) between yRaw and ŷRaw,
statistical coverage at 1σ, 2σ, and 3σ coverages, and computational cost to generate training data
expressed as a percentage relative to traditional methods. Model selections and additional details are
discussed in Appendix 13. The benchmarking result is shown in Table 2. For each trial, the coverage

Table 2: Benchmarking Result of RESuM model with respect to 3 different baseline models.

Trial Model Dataset (#LF,#HF) MSE 1σ̂ [%] 2σ̂ [%] 3σ̂ [%] Cost [%]
1 MF-BNN (305,5) 0.471 100 100 100 1.7
2 MF-BNN (307,7) 0.439 100 100 100 2.3
3 MF-BNN (310,10) 0.021 100 100 100 3.3
4 MFGP (305,5) 0.025 42 100 100 1.7
5 MFGP (307,7) 0.007 31 56 79 2.3
6 MFGP (310,10) 0.015 17 33 48 3.3
7 RESuM (305,5) 0.002 67 96 99 1.7
8 RESuM (307,7) 0.003 64 92 99 2.3
9 RESuM (310,10) 0.002 69 95 100 3.3
10 RESuM (100x) (310,10) 0.003 62.4 92.2 99.6 3.3

Proper Statistical Coverage 68.27 95.45 99.73

is computed by counting the percentage of ground truth yRaw that falls within the 1/2/3 σ̂Raw band
of ˆyRaw. Assuming a standard normal distribution, the expected 1, 2, and 3σ̂ coverages are 68.27
%, 95.45%, and 99.73% , respectively. Among all benchmarked models, only the RESuM model
(Trial 7-10) achieves both high prediction accuracy (low MSE) and proper statistical coverage. In
comparison, the MFGP model (Trial 4-6) exhibits worse prediction accuracy and significant under-
coverage. The MF-BNN model (Trial 1-3) yields much worse prediction accuracy with significant
overcoverage. We also trained the RESuM model 100 times (Trial 10) with different randomly sam-
pled datasets and validation sets. It shows that RESuM’s prediction and coverage are consistently
good. The coverage results, illustrated in Figure 5, underscore RESuM’s capability to effectively
surrogate complex detector design simulations.

0 20 40 60 80 100
HF Simulation Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

y r
aw

HF Validation Data RESuM ±1 ±2 ±3

Figure 5: Coverage plot of the RESuM model predictions (Trial 9 in Table 5). The shaded regions
represent the uncertainty bands at different confidence levels: ±1σ̂ (green), ±2σ̂ (yellow), and ±3σ̂
(red). The RESuM model captures the overall trend of the HF validation data with proper coverage.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 LIMITATIONS AND APPLICATIONS

Limitations: The primary limitation of this work is the restricted computational resources avail-
able for thoroughly validating the model’s performance. Due to these constraints, we were limited
to generating only 100 HF simulations to assess coverage. Ideally, with unlimited computational re-
sources, a comprehensive grid search across the 5-dimensional design parameter space would allow
for more robust validation. Additionally, the active learning strategy employed in RESuM is rela-
tively simplistic. Future work will focus on exploring more sophisticated active learning algorithms
to more efficiently identify the optimal design.

Generalizability: Although this work focuses on a specific detector design scenario within the
LEGEND experiment, we believe that the mathematical formulation of RED problem, as outlined
in Section 3, is applicable to a wide range of simulation and optimization challenges in the physical
sciences. A few examples are provided below:

• Astromony: In computational astronomy, an emerging area involves simulating binary
black hole (BBH) mergers to match the gravitational wave (GW) signals detected by the
LIGO experiments (Fishbach and Holz, 2017). This process involves highly complex and
computationally expensive many-body simulations (Kruckow et al., 2018). In this context,
cosmological constants, such as the Hubble Constant and Dark Energy Density, can be
treated as design parameters θ, while the initial position, mass, and spin of each black hole
are considered event-specific parameters ϕ. The design metric m is defined as the number
of BBH mergers occuring over a given time period, with N representing the black holes
simulated. The ground truth is provided by the GW catalog from LIGO. Some related
work in this direction include (Lin et al., 2021; Broekgaarden et al., 2019).

• Material Science: First-principles simulations using Density Functional Theory (DFT)
are fundamental in condensed matter research for material property prediction and design
optimization (Dovesi et al., 2018; Hutter et al., 2014; Kang et al., 2019). While DFT
simulations involve multiple parameters (temperature, pressure, doping concentration) and
produce specific outputs like electronic band structures, their computational expense often
limits thorough parameter space exploration. This limitation drives the need for efficient
surrogate models that can rapidly approximate DFT results while maintaining accuracy,
thereby accelerating materials discovery.

8 CONCLUSION AND OUTLOOK

In this work, we presented RESuM, a rare event surrogate model designed for detector design op-
timization problems in physics. We began by statistically define the RED problem and proposed a
CNP-enhanced surrogate model to solve it. We demonstrated the effectiveness of RESuM on opti-
mizing the neutron moderator design for the LEGEND NLDBD experiment. Our results show that
RESuM successfully identified an optimal design, reducing neutron background by 66.5% while uti-
lizing only 3.3% of the computational resources required by traditional methods. The accuracy and
coverage of the trained RESuM model were successfully validated with independently simulated HF
datasets. This means the surrogate model aligns well with physical simulations with proper cover-
age. Based on the statistical formulation and validation results, we believe that the RESuM model is
more statistically robust and interpretable compared to other surrogate models, such as those based
on GANs, for accelerating simulations (de Oliveira et al., 2017; Z. Fu et al., 2024).

Although this work focuses on a specific detector design problem in physics, we believe that RED
problems are prevalent in many other domains, as discussed in Section 7. Our future work will
focus on two key directions: first, we want to further refine the RESuM model by validating with
more HF simulations and improving the active learning algorithm; second, we intend to explore
additional application of the RESuM model, especially in simulating Binary Black Hole mergers
in Astronomy, as outlined in Section 7. This effort seeks to foster greater collaboration across the
machine learning, physics, and astronomy communities, ultimately benefiting all fields involved.
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9 REPRODUCIBILITY STATEMENT

To ensure that the RESuM model can be reliably reproduced, we have carefully documented all
aspects of the methodology and experiment. The simulation tool and package used in our work is
explicitly referenced in Section 5.1. The dataset, preprocessing steps, and model architecture are
described in Section 4.2, Section 5.1 and Section 5.2. Model parameters and evaluation metrics are
clearly defined in Section 4.2 and Section 5.2. The code of this work is anonymized and released
as the supplementary material of this submission. All scripts for data handling, model training, and
evaluation are included in the supplementary material, along with environment specifications and
fixed random seeds to minimize variability. The training data of this work is too large as it involves
in expensive simulations. The authors plan to release training data in the camera-ready version.
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APPENDIX

10 MULTI-FIDELITY GAUSSIAN PROCESS

Our implementation builds upon the architecture described in Ravi et al. (2024). For completeness,
we provide a succinct overview of the essential components below.

In a Gaussian process (GP) a function f̂(θ) is modeled as:

f̂(θ) ∼ GP(µ(θ), k(θ,θ′))

where k(θ,θ′) is the covariance function.

Given data DN = {Θ, y}, the posterior mean and variance at a new point θ∗ are:

µ∗ = K(θ∗,Θ)K(Θ,Θ)−1y

σ2
∗ = K(θ∗,θ∗)−K(θ∗,Θ)K(Θ,Θ)−1K(Θ,θ∗)

where K is constructed by evaluating the covariance function k at the corresponding input points.
This model represents the joint distribution of multiple fidelities as a multivariate GP with a specified
covariance structure. The covariance matrix in this model includes both correlation terms between
fidelities and discrepancy terms within fidelities.

We assume an additive relationship between the High and Low fidelities, so that the HF model
f̂H(θ) could be expressed in terms of the LF model f̂L(θ) with a discrepancy δ(θ):

f̂H(θ) = ρf̂L(θ) + δ(θ)

where ρ is a scaling factor and δ(θ) is another random variable modeled as a GP. According to this
relationship, the joint distribution of the two random variables f̂L(θ) and f̂H(θ) could be calculated
as: (

f̂L(θ)

f̂H(θ)

)
∼ N

(
0,

(
KLL ρKLL

ρKLL ρ2KLL +Kδ

))
Here KLL and Kδ are the covariance of f̂L(θ) and δ(θ). For more fidelity levels, the method
recursively applies:

f̂Hi(θ) = ρif̂Li(θ) + δi(θ)

11 ACTIVE LEARNING STRATEGY

We use integrated variance reduction to quantify and minimize the expected posterior variance over
the input space θ. The goal of integrated variance reduction is to minimize the total variance across
the design space:

I(θ =

∫
Θ

[
σ2

prior(θ
′)− σ2

post(θ
′ | θ)

]
dθ′,

where σ2
prior(θ

′) denotes the prior variance of the GP at point θ′ and σ2
post(θ

′ | θ) is the posterior
variance at θ′ given observation θ. The new sampling point θnew is selected by maximizing this
integrated variance:

θnew = arg max
θ′∈Θ

I(θ′)
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In the case of a Gaussian Process (GP), the acquisition function I(θ) defined by integrated variance
reduction simplifies to the Lower Confidence Bound (LCB) acquisition function under the assump-
tion that the variance reduction directly translates to balancing the predicted mean and uncertainty:

ILCB(θ) ≈
1

#samples

#samples∑
i

k2(θi,θ)

σ2(θ)
.

with σ2(θ) representing the predictive variance at the observed point θ and k is the Radial Basis
Function (RBF) kernel with θi sampled randomly (Paleyes et al., 2019). Furthermore, we aim to
optimize the acquisition function under parameter constraints—which limit the allowable values of
the design parameters—using a gradient descent algorithm to locate the global maximum. These
constraints ensure that the parameters remain within feasible ranges, reflecting the practical and
structural requirements necessary for maintaining the integrity and functionality of the overall de-
sign. The constraints are incorporated into the acquisition function by adding penalty terms that
reduce the expected improvement to zero when constraints are violated, discouraging the algorithm
from exploring infeasible regions.

12 CONDITIONAL NEURAL PROCESS

The core principle of the Conditional Neural Process (CNP) framework is to approximate arbitrary
random processes using Gaussian sampling, where the mean µ and variance σ are parameterized by
neural networks. In this section, we show that the CNP score β can be viewed as an estimate of
t(θ,ϕ), with the Gaussian distribution representing the posterior of t(θ,ϕ). Furthermore, the RED
problem can be aligned with the theoretical framework of the Variational Autoencoder (VAE), as
detailed in Kingma (2013), with t(θ,ϕ) interpreted as the latent vector.

We begin by formulating the RED problem within a Bayesian framework: The training data consists
of a finite set of Xki values generated through simulation, and the objective is to construct an en-
coder q that approximates the posterior distribution of t(θ,ϕ), conditioned on the observed dataset
{Xki,ϕki,θk}.

q(t(θ,ϕ)|Xki,ϕki,θk) ≈ p(t(θ,ϕ)|Xki,ϕki,θk) (8)
According to Bayes’ theorem, the conditioned posterior in Eq. 8 could be calculated with the likeli-
hood of the observed dataset and the prior of t(θ,ϕ):

p(t(θ,ϕ)|Xki,ϕki,θk) ∝ L(Xki|ϕki,θk, t(θ,ϕ))p(t(θ,ϕ)) (9)

The prior p(t(θ,ϕ)) is conventionally set as a constant. Let Lk represents the k-th simulation, the
combined likelihood of the full dataset is therefore:

L(Xki|ϕki,θk, t(θ,ϕ)) =

K∏
k=1

Lk =

K∏
k=1

Nk∏
i=1

Bernoulli(x = Xki|p = t(θk,ϕki)) (10)

Note that the ground truth of t(θ,ϕ) is unknown. In the Bayesian framework, we can only estimate it
with a probability density function, which is q(t(θ,ϕ)). The estimation of the likelihood is therefore:

L(Xki|ϕki,θk, q(t)) =

M∏
k=1

Nk∏
i=1

∫
Bernoulli(x = Xki|p = t(θk,ϕki))q(t(θ,ϕ))dt (11)

It is important to note that the quantity t here is not a variable but a function, and the integration is
performed in the Hilbert space. The problem, therefore, becomes to find the function q∗(t(θ,ϕ)) so
that:

q∗ = arg max
q∈f(θ,ϕ)

L(Xki|ϕki,θk, q(t)) (12)

Here f(θ,ϕ) represents the set of arbitrary normalized functions of (θ,ϕ). While this optimization
problem is mathematically solvable, the integration computation in Hilbert space is mathematically
non-trivial and computationally expensive, rendering this solution impractical.

Then, here comes the CNP model, which simplifies and tackles this optimization problem in the
following steps:

15
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First, approximate q with parameterized Gaussian, which is a natural choice if we regard the task as
a statistical parameter estimation for t(θ,ϕ):

qNN (t(θ,ϕ)) = N (µNN (θ,ϕ,w), σ2
NN (θ,ϕ,w))|Xki,ϕki,θk

(13)

Then, the neural network is trained to minimize the likelihood described in Eq. 11. Therefore, the
CNP model actually performs a statistical estimation for t(θ,ϕ) by approximating the posterior q
with Gaussians.

If we consider t(θ,ϕ) as the latent vector in the VAE model, the pre-defined Bernoulli process acts
as a probabilistic “decoder”, which generates data given the latent vector.

With this framework, our task can be generally described as follows: Assume we have a predefined
probabilistic decoder, p(x|z, c), where z represents the latent vector and c is the condition. Ad-
ditionally, we have a simulation informed by domain knowledge that generates data based on the
nominal latent vector z∗, though its exact value is unknown. Our objective is to develop a surrogate
model that performs statistical estimation, represented as q(z|x), to infer the nominal latent vector
from the simulated data x. The posterior distribution q(z|x) serves the same role as the proba-
bilistic encoder in a VAE model. We can then sample the latent vector z from q(z|x), which can
subsequently be used to generate the ”reconstructed” (surrogate) data x′. The illustration of this
architecture is shown in Figure 6.

Figure 6: Architecture of Surrogate Model for the RED Problem

In this work, as the primary objective is to optimize the design parameters rather than generate ad-
ditional simulated datasets, we utilize only the averaged CNP score β as input to the subsequent
MFGP model. Nevertheless, it is important to highlight that the trained CNP model has the poten-
tial to generate surrogate data as a fast simulator. This capability can be especially beneficial in
other studies where the detailed distribution of the latent vector parameters is of interest, enabling
more efficient exploration of the parameter space and supporting applications such as uncertainty
quantification and model validation.

For the RED problem, specifically, t(θ,ϕ) corresponds to the latent vector z, but with infinite
dimensions, as it represents a continuous function over (θ,ϕ). (θ,ϕ) acts as the condition c, and
the fusion of latent vector and condition is performed by plugging θ,ϕ into the function t to get
t(ϕ,θ)

It is worth noting that the latent vector, denoted by z, in our model, is not a conventional finite-
dimensional vector but rather a vector situated in a Hilbert space. Dimensionality reduction can be
achieved through quantization, which involves discretizing the space by creating a grid over (θ,ϕ)
and computing values only at the selected grid points. An alternative approach is to project the latent
vector onto a set of basis functions and impose a cutoff. For instance, with Fourier decomposition,
the vector’s coefficients can be retained up to a certain frequency limit, effectively serving as a high-
frequency cutoff. In this work, we adopt the CNP model to represent it with a fixed dimensionality.

13 MODEL BENCHMARKING DETAILS

Training and Validation Data Additional independent, out-of-sample HF simulations are generated
as validation dataset. Given the high computational demands of HF simulations and our limited
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resources, we generated 100 out-of-sample HF simulations at randomly sampled θ values. The
training dataset is identical to the RESuM training data described in Section 5, comprising 310 LF
and 10 HF simulations. We further divided this dataset into three subsets: Small (305 LF + 5 HF),
medium (307 LF + 7 HF), and full (310 LF + 10 HF). The small dataset establishes a threshold,
meaning our RED problem at hand necessitates a minimum of 305 LF data samples to adequately
capture the mapping of the 5-dimensional design space, as subsets with fewer samples would lack
sufficient coverage. Additionally, some experiments reveal that at least 5 HF samples are required
to establish a reliable correlation between LF and HF, enabling meaningful integration of the two
fidelities.

Baseline Models There are two requirements for selecting baseline models: (1) the model must
be multi-fidelity, and (2) it must be able to produce uncertainty estimates. Given these constraints,
we selected two baseline models for benchmarking against the RESuM model (which combines
MFGP and CNP): the Multi-Fidelity Gaussian Process (MFGP), and the Multi-Fidelity Bayesian
Neural Network (MF-BNN). Leveraging several information sources, the MFGP and the RESuM
frameworks employ a co-kriging approach such that the high-fidelity output is represented as:
yhf = ρ · ylf + δ, where ρ is a scaling factor and δ a discrepancy term -both inferred from the
data. The MFGP and the RESuM model follow the architecture described in Chapter 10. In case of
the Bayesian Neutral Network (BNN) (Bingham et al., 2019), we implemented a Multi-fidelity net-
work by adopting a hierarchical architecture inspired by Guo et al. (2022). The MF-BNN integrates
low- and high-fidelity data using two interconnected BNNs.

Each model, including RESuM, was trained on small, medium, and full training datasets and val-
idated on an out-of-sample validation dataset. The benchmarking metrics, described in the next
paragraph, were evaluated for each model. Additionally, to further demonstrate the robustness of
the RESuM model, we performed 100 iterations, where each iteration involved randomly splitting
the 410 LF and 110 HF samples into a full training dataset and a validation set (100 HF samples).
The benchmarking metrics were then computed as averages across these 100 iterations to ensure
statistical reliability and consistency.

Benchmarking Metric The ultimate goal of this manuscript is to learn the functional mapping
f : θ → y. Each trained model should be able to take θ as input and predict ŷRaw as the predicted
and σ̂Raw as the prediction uncertainty. Meanwhile, the ground truth yRaw for each HF simulation in
the validation dataset is determined by counting the number of background events m. Based on these
variables, we propose five validation metrics to assess the accuracy and coverage of each model:

• MSE: the mean square error (ŷRaw − yRaw)
2 summed over 100 HF validation datasets.

• 1/2/3σ[%]: The 1/2/3σ coverage of model prediction. This metric calculates the percent-
age of validation dataset for which yRaw falls within ŷRaw ± 1/2/3σ̂Raw. Assuming a
standard normal distribution, the expected coverage at ±1σ̂Raw, ±2σ̂Raw, and ±3σ̂Raw are
68.27%, 95.45%, and 99.73% , respectively.

• Cost: The computational cost of generating the training data is shown as a percentage
relative to the cost of traditional method (52,700 CPU hours). This metric depends only on
the size of the training dataset, with values of 1.1%, 2.3%, and 3.3% for the small, medium,
and full datasets, respectively.

Benchmarking Results To provide a comprehensive understanding of the benchmarking results in
Table 2, we include detailed plots in Figure 7 illustrating the statistical coverage for each baseline
model for the full dataset (Trial 9, Trial 6, and Trial 3 of Table 2). The plots in Figure 7 visualize the
percentage of ground truth yRaw (black marker) for all trials of the validation dataset that falls within
the 1σ̂Raw, 2σ̂Raw, and 3σ̂Raw bands (shaded area) of the model prediction under study.

When comparing RESuM (Trial 9, Figure 7 (Upper)) to a simpler MFGP model (Trial 6, Figure 7
(Middle) that only utilized the LF yRaw and HF yRaw of the exact same LF and HF data (excluding
the CNP outputs yCNP ), the contrast in outcomes were striking. The simplified MFGP model not
only failed to capture the complex dependencies between design parameters, but its predictions were
also physically inconsistent. As shown in Figure 7 (Middle), the prediction bands for the simplified
MFGP model are excessively narrow and fail to capture the actual variability of the HF validation
data. The model’s inability to describe ŷRaw is evident, as it does not adequately reflect the complex
interactions within the design space. The model’s 1σ̂Raw, 2σ̂Raw, and 3σ̂Raw confidence intervals

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Validation comparison of RESuM (Upper) with the simplified MFGP (Middle) and MF-
BNN (Bottom) models using 310 LF and 10 HF data samples during training. Both comparison
models fail to adequately describe ŷRaw, as demonstrated by their overly narrow (in case of MFGP)
or wide (in case of MF-BNN) prediction bands and poor alignment with the HF validation data.
Despite the narrow (wide) uncertainty bands, the predictions lack physical relevance, highlighting
the models’ inability to capture the complexity of the design space without the CNP model.

are unrealistically tight, offering little insight into the true uncertainties of the system. With that,
the coverage at 1σ̂Raw, 2σ̂Raw, and 3σ̂Raw or the simplified model was only 17%, 33% and 48%,
a notably poor result compared to the RESuM model, which achieved a 1σ̂Raw, 2σ̂Raw, and 3σ̂Raw
coverage of 69%, 95% and 100% with much more realistic uncertainty predictions. Similarly, the
MF-BNN model (Trial 3, see Figure 7 Bottom) failed to adequately represent the data, resulting
in predictions that lack physical interpretability and deviated from the system’s expected behavior.
The poor performance of the MF-BNN model can likely be attributed to the insufficient amount
of training data, particularly the limited number of HF samples. The extremely wide uncertainty
bands produced by the MF-BNN highlight the high degree of uncertainty in its predictions, further
emphasizing its inability to effectively learn from the sparse training data.

These findings underscore the complexity of the design space and the limitations of traditional Gaus-
sian regression or neural network approaches with limited HF data. In contrast, the CNP-enabled
RESuM model effectively reduced statistical variance and provided meaningful physical insights by
capturing complex relationships between design parameters θ and event-specific parameters ϕ.
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