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Abstract

Motivated by practical applications where stable long-term performance is criti-
cal—such as robotics, operations research, and healthcare—we study the problem
of distributionally robust (DR) average-reward reinforcement learning. We propose
two algorithms that achieve near-optimal sample complexity. The first reduces the
problem to a DR discounted Markov decision process (MDP), while the second,
Anchored DR Average-Reward MDP, introduces an anchoring state to stabilize
the controlled transition kernels within the uncertainty set. Assuming the nominal
MDP is uniformly ergodic, we prove that both algorithms attain a sample complex-
ity of O (|S||A[tZ;,e72) for estimating the optimal policy as well as the robust
average reward under KL and fj-divergence-based uncertainty sets, provided the
uncertainty radius is sufficiently small. Here, ¢ is the target accuracy, |S| and |A |
denote the sizes of the state and action spaces, and .,y is the mixing time of the
nominal MDP. This represents the first finite-sample convergence guarantee for
DR average-reward reinforcement learning. We further validate the convergence
rates of our algorithms through numerical experiments.

1 Introduction

Reinforcement learning (RL) [35] is a core machine learning framework in which agents learn to
make decisions by interacting with their environments to maximize long-term rewards. RL has
been successfully applied across a wide range of domains—from classic applications in robotics and
control systems [19}[13]] to more recent advances in game playing [21} 6} 18] and large language model
(LLM)-driven reasoning tasks [46l [14].

A central assumption in RL is that the training environment (e.g. a simulator) faithfully represents
the real-world deployment setting. In practice, however, this assumption rarely holds, leading
to fragile policies underperform when exposed to mismatches between training and deployment
environments. This remains a major obstacle to translating RL’s successes in simulated settings to
reliable performance in real-world applications.
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To address this challenge, Zhou et al. [55] built upon the distributionally robust Markov decision
process (DR-MDP) framework [[16,127,147]] to propose a distributionally robust reinforcement learning
(DR-RL) framework. Subsequent work advanced the field, including both model-free [22}39]142]] and
model-based settings [29} 49,7, [33]], as well as approaches for offline learning [32]] and generative
models [39, 142, 52, [7], along with functional approximations [2}24]].

However, the aforementioned developments predominantly focus on discounted-reward or finite-
horizon settings, while the average-reward case remains largely overlooked. This gap is significant
because average-reward reinforcement learning is crucial in many practical applications where
long-term performance matters more than short-term gains. For example:

 Control systems (e.g., robotics, autonomous vehicles) often require optimizing steady-state
performance rather than cumulative discounted rewards.

» QOperations research problems (e.g., inventory management, queueing systems) rely on
long-run average metrics for stability and efficiency.

 Healthcare or energy management applications may prioritize sustained optimal performance
over finite-time rewards.

Average-reward RL is not only important but also more challenging in terms of algorithm design
and theoretical analysis. In the standard (non-robust) RL setting, the minimax sample complexity
for generative models in discounted-reward cases was resolved as early as 2013 [[1]]. In contrast,
analogous results for average-reward settings were only developed much later, with recent advances
in Wang et al. [37]], Zurek and Chen [56/ 157, 58}, 159] under granular structural assumptions.

This paper marks the first systematic analysis of the statistical properties of distributional robust
average-reward MDPs (DR-AMDPs) in the tabular setting, addressing a critical gap in the literature.

Specifically, we propose two algorithms that achieve near-optimal (in a minmax sense) sample
complexity for learning DR-AMDPs. The first is based on a reduction to the DR discounted-reward
MDP (DR-DMDP), where a discount factor v must be carefully chosen to balance the trade-off
between finite sample statistical error and the algorithmic bias introduced by the reduction. The
second algorithm, anchored DR-AMDP, modifies the entire uncertainty set of transition kernels by
introducing an anchoring state with a certain calibration probability.

To demonstrate their statistical efficiency, we consider a tabular setting where the nominal MDP is
uniformly ergodic (Definition [3.3) with a uniform mixing time upper bound ¢.,x for all stationary,
Markovian, and deterministic policies. We show that, to learn the optimal robust average reward

and policy within & accuracy, both algorithms achieve a sample complexity of O (|S||A[t2;,e7?)
under KL and fj-divergence uncertainty sets, assuming a sufficiently small uncertainty radius J (to
be defined). Here, |S| and |A| denote the cardinality of the state and action spaces, respectively.
Compared to standard (non-robust) average-reward RL literature, this rate is optimal in its dependence

on |S||A| and .

Our analysis establishes three key contributions to the theory of DR-RL under the average-reward
criterion. First, we address a fundamental modeling challenge: conventional uncertainty sets can
contain MDPs that are not unichain, thereby invalidating the standard Bellman equations. To resolve
this issue, we derive structural conditions on the uncertainty set that ensure stability for all MDPs
within it. Second, we develop and analyze the reduction yielding the first stability-sensitive sample

complexity bound for DR-DMDPs of O(|S||A|t2;, (1 — v) 2~ 2) and hence the aforementioned
upper bound for DR-AMDPs. Building on this framework, we introduce the anchored algorithm
and show that its output coincides with that of the reduction approach under a suitable choice of
the anchoring parameter. Third, both algorithms are designed to function without requiring prior
knowledge of model-specific parameters, particularly the mixing time ?,,;. Collectively, our work
offers a unified treatment that connects robustness, stability, algorithm design, and finite-sample

guarantees for DR-RL under the average-reward criterion.

The remainder of this paper is organized as follows: Section [2] surveys existing results for both
standard and robust RLs. Section[3|introduces the mathematical preliminaries, including key notations
and problem formulation. Our main theoretical contributions, including algorithmic development
and sample complexity analysis, are presented in Section[d] Finally, Section [5|provides empirical
validation of our theoretical findings and Section [6]concludes the paper and discusses future work.



2 Literature Review

able 1: Summary of S.0.T.A. sample complexity results in the literature, where t,,;x is defined in

B2l

Type Sample Complexity Origin
g Discounted (E)(|SHA|(1 — )7 3e7?) Azar et al. [, Li et al. [20]
'(% Discounted Mixing ~ © (IS]|Altmix(1 —v)272)  Wang et al. [37]
& Average Mixing O (IS]|Altmixe2) Wang et al. [38]], Zurek and Chen [56]]
= Discounted Q(\S\ |A[(1—v)"%72) Shi and Chi [32], Wang et al. [42]]
o Discounted Mixing O (|S||At,(1 —7)"?¢7?) Theorem{4.3
B Average Mixing O(|S||A|2,, e72) Theorem 4.4 &

Sample Complexity of Discounted-Reward Tabular RL: There is an extensive literature on the
sample complexity of tabular reinforcement learning. In standard (non-robust) settings, the minimax
sample complexity for discounted-reward problems has been well studied. Early works by Azar
et al. [1], Li et al. [20] established the minimax rate of O(|S||A|(1 — ) 3¢72). More recent
research has shifted toward instance-dependent bounds that leverage structural properties of the
MDP. For example, Wang et al. [38]], Zurek and Chen [58] derive tighter instance-dependent bounds
of O(|S||A|tmix(1 — v)72e72) and O(|S||A|H(1 — v)~2¢72) under the assumptions that P is
uniformly ergodic or weakly communicating, where H denotes the span of the relative value function.

Sample Complexity of Average-Reward Tabular RL: Recently, there has been growing interest in
the sample complexity of average-reward reinforcement learning in standard (non-robust) settings.

Early work by Jin and Sidford [17] established a bound of O(|S||A|t2,, e~2) using primal-dual

stochastic mirror descent. A rate of O(|S||A |tmixe ) was established later via a reduction to the
discounted MDP setting [18]. Subsequent analyses achieved tighter bounds: Wang et al. [38]] obtained
arate of O(|S||A [tmixe~2), while Zurek and Chen [56] 58] derived instance-dependent optimal rates
of O(|S||A|He~2) for weakly communicating MDPs. Further refinements [57,/59] achieved similar
rates without requiring prior knowledge, using plug-in and span penalization approaches. Beyond
the generative model setting, Zhang et al. [54] and Chen [3]] provided finite-sample analyses for
synchronous and asynchronous Q-learning, respectively. Asymptotic properties were also studied in
Yu et al. [53], Wan et al. [36]] for asynchronous Q)-learning.

DR-DMDP and DR-RL: Our work builds on the theoretical foundations of robust MDPs [[11} 16|
27,147, 148|131 141]], which primarily develop dynamic programming principles under the discounted-
reward setting. Recent advances in distributionally robust reinforcement learning (DR-RL) have
investigated the sample complexity of DR-DMDPs under various divergence-based uncertainty
sets. For example, Wang et al. [42]], Shi and Chi [32] establish a model-free upper bound of
O(IS||A|(1 — ) ~%e~2) under KL-divergence. Under y>-divergence, Shi et al. [33]] obtain a similar
upper bound, while Clavier et al. [[7]] show that /,,-norm constraints admit a tighter minimax rate of
O(IS||A|(1 — «v)~3e72). In this paper, by incorporating the mixing time parameter, we present a
“instance-dependence" sample complexity bound of O (|S||A[t2,, (1 — v)~2c~2), which improves
the dependence on the effective horizon from (1 —~)~* to (1 —~)~2. Several other works contribute
to the theoretical and algorithmic landscape of DR-RL in various settings, including Panaganti and
Kalathil [28]], Yang et al. [[51]], Xu et al. [49], Blanchet et al. [3], Liu et al. [23]], Wang et al. [40], Yang
et al. [50].

Distributionally Robust Average-Reward MDPs: While the sample complexity of learning DR-
DMDPs has been extensively studied, the average-reward setting remains relatively underexplored.
Wang et al. [45 43| 44] propose Robust relative value iteration and TD/Q-learning algorithms and
prove their convergence, but without providing sample complexity guarantees. Grand-Clément
et al. [12] show that for (s, a)-rectangular uncertainty sets, the optimal policy can be stationary and
deterministic; however, this result may not extend to s-rectangular uncertainty sets. Although existing
work has investigated the existence and structure of optimal policies in average-reward DR-RL,
non-asymptotic sample complexity bounds remain an open question.



We provide a summary of state-of-the-art sample complexity results in the literature in Table [T}
In particular, we establish the first sample complexity guarantees for the average-reward DR-RL
formulation, which achieves optimal dependence for ¢ and |S||A|.

3 Preliminaries

3.1 Markov Decision Processes

We briefly review and define some notations for classical tabular MDP models. Let A(S) denotes the
probability simplex over RS. A finite discounted MDP (DMDP) is defined by the tuple (S, A, 7, P, ).
Here, S, A denote the finite state and action spaces respectively; r : S x A — [0, 1] is the reward
function; P = {ps ., € A(S) : (s,a) € S x A} is the controlled transition kernel, and v € (0, 1)
is the discount factor. An average-reward MDP (AMDP) model, on the other hand, is specified by
(S, A, r, P) without the discount factor.

Define the canonical space Q2 = (S x A)Y equipped with F the o-field generated by cylinder sets. The
state-action process {(St, A¢),t > 0} is defined by the point evaluation X (w) = s¢, A¢(w) = a; for
all t > 0 for any w = (s, ao, $1,a1,-..) € §). A general history dependent policy m = (7;)1>0 €
IIgp is a sequence of the agent’s decision rule. Here, the decision rule m; at time ¢ is a mapping
7t (S x A)t xS — A(A), signifying the conditional distribution of A; given the history. It is
known in the literature [30} [12] that to achieve optimal decision making in the context of infinite
horizon AMDPs, DMDPs, or their robust variants (to be introduced), it suffices to consider the policy
class II of stationary, Markov, and deterministic policies; i.e. m € II can be seen as a function
7 : S — A. Thus, in the subsequent development, we restrict our discussion to II.

As in Wang et al. [38] a policy # € II and an initial distribution 1 € A(S) uniquely defines a
probability measure on (2, F). We will always assume that 4 is the uniform distribution over S.
The expectation under this measure is denoted by E'%. To simplify notation, we define Py (s, s') :=

ZaEA m(als)ps,a(s’) and rr(s) := ZaEA m(als)r(s,a).

Discounted-reward MDP (DMDP): Given a DMDP instance (S, A,r, P,~) and = € II, the
discounted value function V5 : S — R is defined as: V5 (s) = EF [> oo, 7'7(St, Ar)|So = s]. An
optimal policy 7* € II achieves the optimal value V5 (s) := max e VZ (s).

Average-reward MDP (AMDP): For AMDP model (S, A, r, P) and 7 € II, the long-run average-
reward function g7, : S — R is defined as g% (s) := limsupy_, . T 'EF] tT:_Ol (S, Ap)|So = $].
When P is uniformly ergodic (a.k.a.unichain, to be defined later), the g7 is constant across states
[30]. In this context, an optimal policy 7* € 1I achieves the long-run average-reward max e gp-

3.2 Uniform Ergodicity

Motivated by engineering applications where policies induce systems that are stable in the long
run, we consider a stability property of MDPs known as uniform ergodicity, a stronger version
of the unichain property. In this setting, the controlled Markov chain induced by any reasonable
policy converges in distribution to a unique steady state in total variation distance ||-|| 1, defined by

lp = qllpy :=supacs [P(A) — q(A)| for probability vectors p,q € A(S).

We start with reviewing concepts relevant to uniformly ergodic Markov chains.

Definition 3.1. (Uniform Ergodicity) A transition kernel &' € RS*S is uniformly ergodic if one of
the following holds

* There exists a probability measure p for which || K" (s,-) — p||, — O forall s € S.

* K satisfies the (m, p)-Doeblin condition: For some m € N and p € (0, 1] if there exists a
probability measure ¢ and a stochastic kernel R s.t. K™ (s, s") = pip(s’)+ (1 —p)R(s, s').

It is well known [25]] that p must be the unique stationary distribution of K and that two conditions
are equivalent. The ¢ and R in the Doeblin condition are known as the minorization measure and the
residual kernel respectively.

Next, we introduce the mixing and minorization times associated with a uniformly ergodic kernel K.



Definition 3.2. (Mixing Time and Minorization Time) Define the mixing time of a uniformly er-
godic transition kernel P as tyix(K) = inf {m > 1 : max,es [|[K™(s,) — p(*)||rv < %}, and the
minorization time as tminorize (K ) := inf {m/p : mingeg K™ (s, ) > pi(-) for some ¢ € A(S)}.

It is shown in Theorem 1 of Wang et al. [37] that for a uniformly ergodic transition kernel K, these met-
rics of stability are equivalent up to constants: ¢minorize(K) < 22tmix (K) < 2210g(16)tminorize (K)-

While the MDP sample complexity literature typically uses the mixing time as a complexity parameter,
for our purposes, the Doeblin condition and the associated minorization time offer sharper theoretical
insights into how adversarial robustness affects the statistical complexity of RL. Given the equivalence
between ¢pix (K) and timinorize (K), and the latter’s advantage in revealing these insights, we will use
tminorize (/) time throughout this work.

Having reviewed the uniform ergodicity of a stochastic kernel K, we define uniformly ergodic MDPs.

Definition 3.3 (Uniformly Ergodic MDP). An MDP (or its controlled transition kernel P) is said
to be uniformly ergodic if for all policies m € II, tminorize (Pr) < 00. Then, define timinorize :=
maXrell tminorize(Pﬂ') < o0.

To provide sharper sample complexity results, it is useful to define the following upper bound
parameter on m.

my = max inf {m : Py is (m,p) — Doeblin and m/p = tminorize(Pr) for some p}.  (3.1)
TE

This is well defined: In Appendix [A] Lemma[A.3] we prove that for any transition kernel Py, the
equality m/p = tminorize(Pr) is always attained by some m and p s.t. minges P (s, ) > p(+).

It is easy to see that my < tminorize, and we will demonstrate by the example in SectionE]that it is
possible for m\, = 1 while ¢,,inorize can be arbitrarily large.

3.3 Distributionally Robust Discounted-Reward and Average-Reward MDPs

This paper focuses on a robust MDP setting where the stochastic dynamics of the system is influenced
by adversarial perturbations on the transition structure. We assume the presence of an adversary that
can transition probabilities within KL or fi-divergence uncertainty sets. Specifically, for probability
measures ¢,p € A(S) where ¢ is absolutely continuous w.r.t. p, denoted by ¢ < p, we define

Dxr(qllp) = 2 esl0g(q(s)/p(s))q(s) and Dy (qllp) = > .es fr(a(s)/p(s))p(s). Here, the
function fy, is defined for k € (1,00) by fi(t) = (t* — kt + k — 1)/(k(k — 1)). When k = 2, Dy,
is the y2-divergence.

We assume that the underlying MDP has an unknown nominal controlled transition kernel
P ={psq € A(S):(s,a) €S xA}. 3.2)

For each (s,a) € S x A we define the uncertainty set under divergence D = Dxr,, Dy, and
parameter § > 0 centered at p, o, by Ps o(D,d) := {p: D(p||ps,a) < 6}. This set contains all
possible adversarial perturbations of the transition out of (s, a). Note that the parameter J controls
the size of the P (D, d), quantifying the power of the adversary. The uncertainty set for the entire

controlled transition kernel is P(D, §) := X (5,0)ESX A Ps.o(D,d). An uncertainty set of this product
from is called SA-rectangular [41].

We will suppress the dependence of D and § when it is clear from the context. Also, for notation
simplicity, define the mapping I'p, , : RS — R for P, , C A(S) by

Tp, (V)= inf Egs.,[V(5)].

PEPs,a
Optimal distributionally robust Bellman operators 7. and 7" are central to our algorithmic design.

Definition 3.4. The optimal DR Bellman operators 7%, 7* : RS — RS are defined by
T (V)(s) := max {r(s,a) +Tp, . (V)}

33
T*(v)(s) = max {r(s,a)+Tp,,(v)} (3.3)



DR-DMDP: A DR-DMDP model is given by the tuple (S, A, P, r,~). For fixed = € TI, define the
DR value function

Vi (s) == Peir(lg)N Ef

So=s 4

D (S, A
t=0

See Iyengar [16] for a rigorous construction of the expectation E5. Then, the optimal value function
is V3 (s) := maxecn VA (s). It is well known (c.f. Iyengar [16])) that V5 is the unique solution of
the DR Bellnbman equation: V5 = T (V}3).

Note that the expectation E'F is under the adversarial perturbation from a Markovian policy class
(P)N. Tt is possible to consider other information structures for the adversary while retaining the
satisfaction of the Bellman equation [41]].

DR-AMDP: A DR-AMDP model is given by the tuple (S, A, P, r). To simplify our presentation,
we restrict our consideration to uniformly ergodic DR-AMDPs.

For each 7 € II we define the DR long-run average-reward function by

T—1
T . . I 1
gp(s) == PelI(17£)N llgljolip ES T ; r(St, A¢)|So = 5] . 3.5)

Natually, the optimal average reward is g5 (s) := max em 95(s).
This paper focuses on a setting where the DR-AMDP is uniformly ergodic in the following sense.

Definition 3.5. A DR-AMDP (or P) is said to be uniformly ergodic if for all controlled kernels
Q € P, Q is uniformly ergodic as in Definition[3.3]

We note that P = P(D, ) is compact in the sense that P ,(D, ) is a compact subset of A(S) for
all s, a. With uniform ergodicity and compactness, Wang et al. [43] shows that g}, (s) is constant for
s € S which uniquely solves the DR Bellman equations.

Proposition 3.6 (Theorems 7 an 8 of Wang et al. [43]]). If P is uniformly ergodic with a uniformly
bounded minorization time, then g5(s) = gj is constant in s € S. Moreover, there exists a solution
(g,v) of v(s) = T*(v)(s) — g*(s) for all s € S and any such solution satisfies g(s) = g3 for
all s € S. Moreover, the policy 7*(s) € argmaxqea {r(s,a) + I'p, ,(v)} achieves the optimal
average-reward g,.

4 DR-AMDP: Algorithms and Sample Complexity Upper Bound

In this section, we introduce two algorithms for DR-AMDPs and establish their sample complexity
upper bounds. Before presenting the algorithms and results, we first specify the assumptions on the
data-generating process and MDP models, along with insights into their rationale and relevance.

We assume the availability of a simulator, a.k.a. a generative model, which allows us to sample
independently from the nominal controlled transition kernel p; ,, for any (s,a) € S x A. Given
sample size n, we sample i.i.d. {Sglg, cee Sé'fz)} from p; , and construct the empirical transition
probability
1< ,

Asa "=~ ]I{S(l) = /}. 4.1

Psa(s) n; fh=s @.1)
Unlike Wang et al. [43]], which requires a unichain assumption on every element of P, we only
assume that the nominal controlled transition kernel P is uniformly ergodic. We will establish that

this weaker condition, coupled with a properly constrained adversarial uncertainty set in Assumption
[2 will still guarantee the uniform ergodicity for all Q) € P.

Assumption 1. The nominal controlled transition kernel P in (3.2) is uniformly ergodic with
minorization time ,,inorize as in Definition 3.3

To introduce limits on the adversarial power and facilitate our sample complexity analysis, we
introduce the following complexity metric parameter:



Definition 4.1. Define the minimum support as:

= 3 sa ! . ca / 0 42
pri= omin APl s pea(s) > 0) (42)

Assumption 2. Suppose the parameter § satisfies § < ﬁp A when P = P(Dky,, ), and § <

1 -

max{8,4k}m?2 P when P = P(ka ’ 6)

Here, the constant 1/8 can potentially be relaxed. As mentioned earlier, this restriction on the
adversarial power parameter ¢ ensures the minorization times remain uniformly bounded across the
uncertainty set by a constant multiple of the nominal controlled kernel’s minorization time.

Proposition 4.2. Suppose Assumptions|I|hold, and P = P(Dxu, 6) or P(Dy, ,0) satisfying As-
Sblmpllbn Then, for all Q € Pand w 1], tminorize(Qﬂ') < 2tminorizes Where tiinorize isfrom
Assumption([l]

The proof is deferred to Appendix B [E] We further note that without Assumption 2] the Hard MDP
instance in Section [5] will have a non-mixing worst-case adversarial kernel and state-dependent
optimal average reward even when § = ©(p,/m?). This emphasizes the necessity of limiting the
adversarial power to obtain a stable worst-case system and state-independent average reward.

We propose two algorithms: Reduction to DR-DMDP and Anchored DR-AMDP. Notably, these
are the first to provide finite-sample guarantees for DR-AMDPs and achieve the canonical n~ /2
convergence rate in policy and estimation. Furthermore, both algorithms operate without requiring

prior knowledge of ¢,inorize. Together, these contributions represent foundational advances in the
study of data-driven learning of DR-AMDPs.

4.1 Reduction to DR-DMDP

First, we present the algorithmic reduction from DR-AMDP to DR-DMDP. The algorithm design
in this section is inspired by prior works [45] [18]. Specifically, we apply value iteration to an
auxiliary empirical DR-DMDP model to obtain both the value function and optimal policy. Utilizing
a calibrated discount ¥ = 1 — n~'/2 where n is the input sample size in Algorithm we achieve
an e-approximation of the target DR-AMDP value and policy with the auxiliary DR-DMDP using
()(|S||"A|t2 inorich/_\lgiz) samples.

m

Algorithm 1 Distributional Robust DMDP: DR — DMDP(y,n, D)
Input: Discount factor v € (0,1), sample size n > 1, D = Dy, or Dy, .
For all (s,a) € S x A, compute the n-sample empirical transition probability p; ,, as in @.I)
Construct the uncertainty setas P = X g o Ps.a Where Ps o = {p: D(pl|ps,a) < 6}
Compute the solution Vg as the solution to the empirical DR Bellman equation; i.e. Vs € S:

Vi(s) = max {r(s, a) + 71"73&&(1/7;)} .

Then, extract any optimal policy 7* € II from 7*(s) € arg max,ca {r(s, a)+'5 (Vg)}

Sk *
return 7, V73

With the help of Proposition .2} the Algorithm [T] has the following optimal sample complexity
guarantee.

Theorem 4.3. Suppose P = P(Dkw,6) or P(Dy, , ) and Assumptions|I| 2| are in force. Then,
for any n. > 32p " log(2|S|?|A|/B), the policy T* and value function Vg returned by Algorithm

satisfy
T* C- tminorize
0< V5 VS < —"—"1/log(2|S|%|A|/B) and
P P (1_’}/) ,—np/\ (| || ‘/)

* * C/ : tminorize
||V73 ~ Vil < W log(2[S[*|A[/B)

with probability at least 1 — [, where the constants ¢, < 96+/2 for both the KL and fy, cases.

4.3)



The proof of Theorem 4.3]is deferred to Appendix [D] [G| We note that Theorem [4.3] implies that
to achieve an e-optimal policy as well as producing a uniform e-error estimate of V5 with high

probability using Algorlthml we need O(|S||A[t2,,0rise (1 — 7) 2P te~2) samples. Compared
to state-of-the-art sample complexity results for DR-DMDPs [32} 42| 33]], Theorem [.3|provides a
significant refinement: when the nominal controlled kernel is uniformly ergodic, the effective horizon
dependence improves to (1 — ~)~2. Notably, this (1 — ~)~2 scaling is also known to be optimal in
the non-robust setting [37]], which corresponds to DR-DMDPs when § = 0. As we will show, this
optimal dependence directly enables the canonical n~'/2 convergence rate for policy learning and
value estimation in the DR-AMDP setting.

Algorithm 2 Reduction to DMDP

Input: Samples size n.
Assigny=1—1/4/n and run Algorithmwith input DR — DMDP(+, n) to obtain 7, VZ.
return 7%, VX /\/n

Theorem 4.4. Suppose P = P(Dxx,,0) or P(Dy,,d) and Assumptionsand are in force. Then
for anyn > 32p* log(2|S|2|A|/B), the policy T* and value function Vg/\/ﬁ returned by Algorithm

[ satisfies
C -t .
0<gh—gh <M /log(2]S|2|A and
o o < g OISPIATD

ot
< minorize 10 282 A_
=R [ S FIATR)

with probability 1 — B, where the constants ¢, ¢ < 120v/2 for both the KL and f;; cases.

(4.4)

Again, we remark that Theorem [4.4]implies that to achieve an e-optimal policy as well as producing
a uniform e-error estimate of the optimal robust long-run average reward with high probability using

Algorlthml we need O(|S|| A |¢2 ~2) samples.

mmorlzep/\ €

4.2 Anchored DR-AMDP

In this section, we develop anchored DR-AMDP Algorithm [3] that avoids solving a DR-DMDP
subproblem. Inspired by Fruit et al. [10], Zurek and Chen [57]’s anchoring approach for classical
MDPs, our anchored DR-AMDP approach modifies the entire uncertainty set of controlled transition
kernels via a uniform anchoring state sy and a calibrated strength parameter £. We show that
Algorithm[3enjoys the same error and sample complexity upper bounds to Algorithm 2]

Algorithm 3 Anchored DR-AMDP
Input: Sample size n > 1 and divergence D = Dxj, or Dy, .
For all (s,a) € S x A, compute the n-sample empirical transition probability p; ,, as in @.I).
Let ¢ = 1/4/n and fixed any anchonng point so € S. Construct the anchored emplrlcal uncertainty
setas P = X, a)xsxAPg o> Where Pg o= ={(1—-&p+£&lel, : D(pllps,a) <6}
Solve the empirical DR average reward Bellman equation

vh(s) = max {r(s,0) + Tp_(v5)} — g5(s)

for a solution pair (g%, v;‘s) .

Extract an optimal policy 7* € II as 7*(s) € arg max,ca {r(s, a)+Tp (v%)}
return 7%, g;‘;

Theorem 4.5. Suppose Assumptionand are in force. Then for any n > 32p "' log(2|S|?|A|/B),
the policy 7 and value function g;“; returned by Algorithmsatisﬁes ®@4) with Vg /\/n replaced by

g;g with probability at least 1 — 3.
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Figure 1: Transition diagram of the hard MDP instance in Wang et al. [37].

This theorem implies the same O(|S||A|t2 5,05z~ € ~2) sample complexity to achieve an e-optimal
policy and value estimation.

Sketched Proof of Theorems 4.4{and Our proof begin with establishing that, under Assump-
tion E], each adversarial transition kernel () € P consists of conditional distributions ¢, , that are
absolutely continuous with respect to the nominal distributions p; o, with a uniform lower bound
1 — 5-—— on its Radon-Nikodym derivative. This guarantees that ¢yinorize (@r) < O(tminorize) for
allQePandweH

Next, combining Theorem [D.T| with Lemma[C.3] we establish that the policy error satisfies

~ 2 ~
[ve = vE | < = max| Trom) - T vp)

1 - men

This reduces the analysis of the policy error to bounding the estimation error of the DR Bellman
operator evaluated at V5. As the rewards cancel out, it remains to show that the DR functional
applied to V7 satisfy appropriate concentration bound.

To this end, we apply the strong duality for the DR functional, the bound in Lemma and a
Bernstein-type inequality to show that for any function V, the deviation satisfies

Hrﬁg,a(v) - FPs,a(V)HOO <0 <sztllp(/\‘/))

with high probability.

Finally, by selecting the parameters v = 1 — 1/y/n and = 1/y/n, and noting that Span (V) <
O (tminorize)» We complete the proof for the KL-divergence case of Theorems [4.4] ﬂ and u The
argument under the fi-divergence formulation proceeds in an analogous manner.

S Numerical Experiments

In this section, we present numerical experiments to validate our theoretical results. We employ the
Hard MDP family introduced in Wang et al. [37], which confirms a minimax sample complexity
lower bound of Q(tminorizes_Q) for estimating the average reward to within an ¢ absolute error
in the non-robust setting, matching the known upper bound. Our experiments show an empirical
convergence rate of n~ /2 for both algorithms, validating them as the first algorithms that achieve
this rate in the DR-AMDP setting.

Definition 5.1 (Hard MDP Family in Wang et al. [37]]). This family of MDP instances has S = {1, 2},
A = {1,2}, and reward function (1, -) = 1 and (2, -) = 0. The controlled transition kernel P is
parameterized by p with transition diagram given in Figure

Observe that under this controlled transition kernel, all stationary policies induce the same transition
matrix P,.. Moreover, restricting p € (0, 2] we have P™ = (1 — (1 — 2p)™) 3.J+(1—2p)™1, where
J is the matrix of all 1 and [ is the identity matrix. Therefore, P, is (m, (1 — (1 — 2p)™))-Doeblin.
Thus, the minorization time of P is inf,,,>1 m/(1 — (1 —2p)™) = i.
This example clarifies our use of m, in Definition while m, = 1 for all p € (0,1/2], the
minorization time ¢yinorize 1S Unbounded, approaching infinity as p goes to 0.

Next, we evaluate the performance of Algorrthm [2and [3] by analyzing their value approximation
errors under both KL and x? uncertainty sets. x? is a special case of f;-divergence with k = 2.



The sub-figures in Figure 2] presents the error achieved by the algorithms using a total of 7 transition
samples for every state-action pair. Each data point in the plots corresponds to a single estimate
generated by one independent run of the corresponding algorithm. Then, we compute the [, -error
between the estimator and the ground-truth average-reward, which is computed via value iteration.

We then perform regression on data points on each MDP instance with the same parameter p. The
plots demonstrate the error converging with rate n~'/2, evidenced by the slope of —1/2 in Figure
[2)on a log-log scale. We observe a remarkably low variance around the regression line of both
algorithms, given that each data point is a single independent run of the corresponding algorithm.
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Figure 2: Comparative numerical experiments on (a-b) Algorithm[2]and (c-d) Algorithm [3|for the
hard MDP instance, demonstrating e-dependence under different divergence measures.

In addition to these experiment, we also perform a larger scale experiment to stress test our algorithm.
Due to space limitations, the report is provided in Appendix [H]

6 Conclusion and Future Work

In this work, we study distributionally robust average-reward reinforcement learning under a genera-
tive model. We first establish an instance-dependent bound of O(|S||A |2 (1 —~)~2e72) for

minorize

DR-DMDP. Building on this result, we propose two a priori knowledge-free algorithms with finite-
sample complexity O(|S||A[t2;, iz 2)- Our work provides novel insights into the relationship
between uniform ergodicity and sample complexity under distributional robustness.

While our results rely on the assumptions of uniform ergodicity and constraints on the uncertainty
size, we acknowledge these as potential limitations. For future work, we plan to generalize these
results to weakly communicating settings and, potentially, multichain MDPs, and investigate broader
uncertainty sets (e.g., [,-balls and Wasserstein metrics).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All the main claims accurately reflect the paper’s contribution.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations due to assumptions made for the theoretical guarantee are
discussed in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full set of assumptions is formally stated in Sectiond} with rigorous proofs
provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The complete algorithmic implementation under the generative model is
provided in Section ] including detailed pseudo-code. Section [5specifies all experimental
configurations and parameter settings, ensuring full reproducibility of our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the complete experimental code in the supplemental materi-
als.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Section[5]documents all experimental parameters and implementation details necessary for
understanding the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present statistical significance by fitting the regression line, which is clearly
outlined in the figures in Section 5]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our sample complexity analysis provides statistical guarantees that are inde-
pendent of computational power considerations, which represent a distinct aspect from our
theoretical focus.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: NeurIPS Code of Ethics has been scrutinised and followed carefully.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper establishes the first sample complexity upper bound for DR-AMDP,
representing a significant advance in distributionally robust reinforcement learning theory.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No such assets are included.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not include such kind of experiment.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We don’t have human participants in the study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core methodology, including algorithm design and theoretical analysis,
was developed independently without employing LLM.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Notations and Basic Properties

In this section, we present the technical proof for DR-MDPs. Before introducing the theoretical
foundations and analyzing related statistical properties, we first define key notations and auxiliary
quantities to facilitate subsequent analysis.

For ARMDPs, it is useful to consider the span semi-norm Puterman [30]. For vector u € R, let
e=(1,---,1)", and define:

Span )= o) = g, ()
9 inf T (A1)
=2 inf flu — cel| -

Note that the span semi-norm satisfies the triangle inequality
Span (v; + v2) < Span (v1) 4+ Span (vg) .

Our analysis relies extensively on two fundamental operators: the DR discounted policy Bellman
operator 7.7 and its optimal counterpart 7. These operators are defined as follows:

TF(V)(s) = Z m(sla) (r(s,a) +Tp, . (V)) (A.2)
acA
T, (V)(s) == max {r(s,a) +Tp, ,(V)}. (A3)

Similarly, we define the empirical DR discounted policy operator ﬁ” and its optimal counterpart 77*
as:

TrV)(s) =Y w(sla) (r(s,0) +9T5, (V) (A4)
acA
’7A;*(V) (s) := max {r(s, a) + s, . (V)} . (A3)

It has been shown that the DR value function V7 is the unique fixed-point of the DR discounted policy
operator (A.2), ak.a. V7 is the solution to the DR discounted Bellman equation: V5 = 7.7 (V7)
Iyengar [16]], Puterman [30], Nilim and El Ghaoui [27].

We introduce some technical notations. For function v : S — R, let
plo) = p(s)o(s)
sES
Notice that with the above notation, we simplify the expectation as E,[v] = p [v].

For probability measure p,q € A(S), we say that p is absolutely continuous w.r.t. ¢, denoted
by p < g, if g(s) = 0 implies that p(s) = 0. If p < ¢, we define the likelihood ratio, a.k.a.
Radon-Nikodym derivative,

b '—@i s else
q(s) =46 fq(s) >0, else 0.

We say that p and g are mutually absolutely continuous, denoted by p ~ ¢ if p < ¢ and ¢ < p.
For p € A(S), we also define the L>°(p) norm of a function v : S — R by

00 = €essSs = a. .
ol = esssupl] = maxefo(s)

In the DR setting, given uncertainty set Ps , and a function V' : S — R, we say p* is a worst-case
measure if
p*[Vl= inf p[V]

peps,a
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Also, recall Definition .1} we define the minimal support probability p in measuring the samples
required.
. . !/ /
‘= min min s'): s)>0
p/\ (s,a)ESXA{éﬂGSpSﬂ( ) ps,a( ) }

The sample complexity’s dependence on p, emerges from two theoretical requirements. First,
accurate estimation of the worst-case transition kernel demands that samples capture the distribution’s
support, necessitating at least 2(1/p,) samples to ensure all non-zero probability transitions are
observed. Second, the perturbed transition kernel needs to preserve certain mixing characteristics.
This is crucial for us to establish a uniform high probability bound on the minorization times of the
controlled kernels in the uncertainty set.

Specifically, we consider the "good events" set 1,, 4, as the collection of empirical measures that
remain sufficiently close to the nominal transition kernel P. Recall from (@.I)) that

Ps,a(s’) = %i 1 {ng‘g = 5’} :

i=1
For any d > 0 we define,
1/7\ ,a — Ds,
Qn.d(ps,a) == {w : ‘ ERALIE < L2 < d} (A.6)
ps,a Lm(ps,a)
as the relative difference between p; , and p; 4 is close up to d. Then, define:
Qn,d = m Qn,d(ps,a)~ (A7)
(s,a)ESxA

Theorem A.1 (Bernstein’s inequality, Theorem 3 in Boucheron et al. [4]]). Let X1, Xo,..., X, be
independent random variables with E[X;] = p and | X; — | < M almost surely. Then we have:

1 & 2 2Var(X). 2
R Xi—n
=1

M
< —log—+4/—log —. (A.8)
3n
with probability at least 1 — .

B n B

By Bernstein’s inequality, we could bound the probability measure of €2, 4:
Lemma A.2. When the relative difference d satisfies:

1 2IS|?|A 2 2IS?A|
log + 4/ —log——
A

then
P(Q ) <8

Proof. Let supp(ps,q) := {5 : ps,a(s’) > 0}. Given n i.i.d. samples {5512, Sé?g, . ,ngfl)} drawn
from p, ,. We define the indicator variables:

X;a(s’) =1 {Sg’?l = s’} )
Note that X7 ,(s’) ~ Bernoulli(ps,q(s’)) forall 1 < i < n. Then:

n

_ 1 s,
ps,a(sl) = ﬁ ZXs,a(S,)

i=1

S d>
Loo(pswl)

< Z Z P (|Ps,a(s") = ps,a(s)| > dps,a(s)) (A.9)

(s,a)ESXA s’ €supp(ps,a)

SR |

(s,a)ES XA s’ €supp(ps,a)

By Union bound, we have:

PEEDS P(]

(s,a)eSxA

~
Ps,a = Ps,a

Ds,a

I oy
- X’L AN . !
7 2o Xale) = prals)

> dps,a(S’)>
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Then, by Bernstein’s inequality (A.), for any action-state pairs (s,a) € S x A, and next state
s" € supp(ps,a), since By, , [X; ,(s')] = ps,a(s’), and [ X{ ,(8") — ps.a| < 1, we have:

1= i 1. 2[S]2A 2Var(B i(ps,q (s’ 2|S[2|A
S ) s < L tog 2SPIAL [2Var(Bemouli(pa () 2ISEIA
ne " 3n B n B
(A.10)
with probability at least 1 — \SIEW' Thus, let
_ 1 2sPiAl, [z olselal
3np/\ J ﬁ npa & ﬁ
then, for all (s,a) € S x A, and s’ € supp(ps,q):
) 2SPIA] 2ps.a(s’) , 2IS[*[A]
dpaa(s’) =222l Ny e L ALA TS
Paa(s) 3npa & B npa & B
1. 2IS*A| 2ps.a(s’) 2[S[*A]
>—1 . 1 A1l
23, og 3 + n og 3 ( )
() 2 ; / 2
Zi log 2|S|*|A] n 2Var (Bernoulli(ps 4 (s'))) log 2|S|2|A]
3n B n B

Where (%) relies on Var(Bernoulli(ps 4(s"))) = ps.a(s)(1 — ps.a(s’)), then we conclude, for all
(s,a) € S x A and s’ € supp(ps,q), with probability 1 — WBIAI’ we have:

< dps,a(s). (A.12)

R
- XZ AN s a !
@ K8l = peal)

Then we conclude that:

P <
And further:

Py Y% P<
Ps,a)

1 & oy
- Xz N 5 a !
2 2 X5l = peal)

B
> dpso(s') | < =5
( )> SP/A]

1~ .
= Xz !/ — Dsa /
- E s.a(8) = Ps,als’)

> dps,a(S’)>

(s,a)ESXA s’ €supp( i=1
A13)
3 (
<ISPlAl b
SI?A]
Proved. O

Lemma A.3. Let the transition kernel K be uniformly ergodic. If tminorize(K) < 00, then there

exists an (m, p) pair, such that:
m

; - tminorize(K>

Proof. By definition:
tminorize(K) := inf {m/p : nlelél Knl(& ) 2 pl/’() for some w € A(S)} :

AS tiinorize (){) < 00, then, there exists a constant C' > 0, such that
tminorizc S C.

As the feasible (m, p)-pair such that:

(n.p) & () s mig K 2 o) forsome v € A(S) |
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% < C, thenm < Cp < C because p € (0, 1], we conclude:
meC:={1,2,---,|C]} and |C|< 0.
Define C,;, and ppax(m) as:

Crn ={p: I € A(S), K™(s,-) > p¥o(-)}

Pmax(Mm) = sup p
pECm

(A.14)

With this definition, note that

. m
tminorize(K) - inf .
meC,pECm, p

We will show that the set C,, is closed, hence pyax(m) € C,, is achieved.

Since S is finite, A(S) C RISI is compact. Consider any sequence {pn} C C,, such that p,, — p.
Then, there exists ¢, (S), such that

K™(s,) =2 pnt¥n(), s€S.
As A(S) is compact, sequence {,, } has subsequence {,,, }, such that:
tn, — ¥ € A(S) pointwise.
and a corresponding {p,,, } such that p,, — p. Then for any (s,s’) € S x S:
K™(5,5') > puy - Yo (), Vh
We have p,,, — p and ¢, (s') — ¥(s'):
Py - Uni (') = p - b(s).

Thus:
Km(sa) Zp’l/)()7 VSGS;

i.e. p € Cy,. Hence, C,, is a closed and pyax(m) € Cpp,.

Therefore,
m m
tminorize(K) = inf — =min ———.
mineriee(K) = e 5~ e Do ()
Since C is finite, there exists am* € {1,2,---,|C]} such that
m*
tminorizc (K) == m-

O

Lemma A.4. Suppose the controlled transition kernel P is uniformly ergodic. If for all Q € P,
Ds.a K (s,q holds for all (s,a) € S x A, then P is uniformly ergodic.

Proof. Since P is a uniformly ergodic, then for all = € II, timinorize (Pr ), by Lemma there exists

(Mg, pr) such that:
Mz
- = tminorizc P7r .
p (Pr)
For any ) € P and state pair (Sg, Sm, ) € S X S, the m-step transition probability of Py, and Q

can be expressed as:

P (80, 8m,) = D Dagr(so) (51)Dsyn(sy) (52) - Dyt m(er 1) (Smr)
S1,82, Smp—1
(A.15)
Q7™ (50, 8m,) = Z qSo,ﬂ(So)(31)q81,r(31)(32) s 1w (1) (Sm)-
81,825 3Smy—1
Define:
u(50757n,r) = {(51; 82, 75m,r—1) S Smﬂil :psi,ﬂ'(si)(si-‘rl) > 030 S v S My — 1} .
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Since ps o < ¢s,, holds for all (s, a) pairs, we have for any tuple (s1, S2,- - , Sm,.—1) € U(S0, Sm.,. )

my—1

H psi,ﬂ(si)(3i+1) > 0;
=1

by absolute continuity, it implies:

my—1

H qsivﬂ—(si)(si+l> >0
=1

Then:

Q7™ (505 5m.,)

= Z QSO,W(SO)(Sl)qsl,ﬂ'(sl)(82) s (s

S$1,52," ,Smy—1

> Z ng,w(so)(51)%1,#(31)(32) s 1w (1) (Sm)

(81,52, ,8mp—1)EU(50,5my )

Qso,7(s 9s1,m(s
— Z (O(O)(Sl)) pso,w(so)(‘gl) (1(1)(52)> pSlﬂf(Sl)<82)

(Sm.)

nLﬁfl)

(51,82, 8 —1)EU(50,5m) Pso.m(s0) Psy,m(s1)
Dsmp—1,7(smz—1)
| G ) [
ZC(S(M Smn) : Z pso,ﬂ(so)(Sl)psl,ﬂ—(sl)(sz) .. .pSMW71m(Smﬂ_l> (Smw)

(81,82, +Smp—1)EU(S0,Sm )

=c(50, Sm, ) - PP (50, Sm., )
(A.16)
where:

My

1
(80, 8m,) = min M(

si+1) > 0
(81,82, y8my—1)EU i—0 psi,ﬂ'(si)

Denote ¢ := min(, y)esxs ¢(s,s") > 0, we conclude:
QT (S0, 8m,.) = cPI™(s0, 8m,) forall (sg,sm,.) €S xS.
Since P; satisfies (m, pr)-Doeblin condition, for some ¢ € A(S), we have:
QT (80, Sm,.) = Pl (80, 8m.,. ) = cprtb(sg) forall (sg,Sm.) €S xS
Q. satisfies (m, ¢ )-Doeblin condition where ¢, = ¢p,. Thus, we concludes for all Q € P and

m € II, Q satisfies (m, ¢, )-Doeblin condition, and:

Mz
tminorize(Qﬂ') S — < 0 forall = S II — max tminorize(Q‘n') < o0
Cr mell
Finally, we concludes, for all ) € P:
r;leal?[( tminorizc(Qﬂ) < 0.

‘P is uniformly ergodic. O

Having established the uniformly ergodic property preservation under absolute continuity, we now
introduce additional technical tools central to our analysis. Our proof strategy fundamentally relies
on the span semi-norm framework for value functions in DMDPs, the following proposition from
Wang et al. [37] formalizes this connection:

Proposition A.5 (Proposition 6.1 in Wang et al. [37]]). Suppose Py satisfies (m, p)-Doeblin condition,
and V5 is the value function associate with kernel P under policy , then Span (VJ) < 3m/p

Our core approach involves approximating the DR-AMDP through its DR-DMDP counterpart. To
establish this connection rigorously, we require the following fundamental lemma that bridges
discounted and average-reward value functions:
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Lemma A.6 (Lemma 1 in Wang et al. [38]). Suppose Py satisfies (m, pr)-Doeblin condition and
tminorize (PT{') < 00, then:
”(1 - ’Y)Vlg - g,TFr’”oo < 9(1 - ’y)tminorize(Pw)

Proposition A.7 (Restatement of Proposition 3.6). If P is uniformly ergodic with a uniformly
bounded minorization time, then g}S (s) = g}k;. is constant in s € S. Moreover, there exists a solution
(g,v) of v(s) = T*(v)(s) — g*(s) for all s € S and any such solution satisfies g(s) = g5 for
all s € S. Moreover, the policy 7*(s) € argmaxaea {r(s,a) + I'p, ,(v)} achieves the optimal
average-reward gp.

Proof. Since P is uniformly ergodic with uniformly bounded minorization time, for any stationary
policy 7 the kernel Q) satisfies an (mp, , pg, )-Doeblin condition. Then, by Theorem UE in Wang
et al. [37],

Sup [|Qx (s,) = pox (v = 201 —pg,)"mesd, i >0,

where pg,, denotes the unique stationary distribution of Q. Let T := supgep ren Mm@, < oo and
p = infgep ren P, > 0. Choose s” € S such that pq, (s') > 15 Let

S {m. 1n(1/(88|))-‘ .

In(1 —]3)

Then, for any s € S,
Ql(s,s") = pa.(s) =41 —pg)/me) > — ——= > —— > 0.

Now, for a fixed sg € S, consider the iteration

Vg1 < T*(wt),
Wi41 = Vg1 — Ut+1(30> €,

where e is the all-ones vector. Combine the fact there exists a positive integer .J such that for all
Q € P and any stationary deterministic policy m, there exists a state s’ € S, such that Q7 (s, s’) > 0,
applying Theorem 8 in Wang et al. [44]], (w;, v;) converges to a solution (g, v) of

v(s) = T (v)(s) —g(s),  Vs€S,
which proves existence. Combining Theorem 7 in Wang et al. [44]], we have that g(s) = g5 for all
s € S and
T*(s) € arg maj‘({ r(s,a) + I'p, ,(v) }
ac ’

achieves the optimal average reward g7. O

B Uniform Ergodicity of the KL. Uncertainty Set

In this section, we prove the uniform ergodic properties over P and P under Assumption |1| and
[2l To achieve this, we establish the uniform Doeblin condition through a careful analysis of the
Radon-Nikodym derivatives between perturbed and nominal transition kernels ¢, , and p, . we
propose some concepts in facilitating to bound the Radon-Nikodym derivative between derivative
between perturbed kernel g5 , and nominal p; 4.

Proposition B.1. Suppose § < ﬁpm then for all q5 . € Ps.q, the Radon-Nikodym derivative

satisfies
1

2m\/

ds,a
Ps,a

>1-

L (ps,a)

holds for all (s,a) € S x A
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Proof. Consider gs , € Ps,q. then with KL-constraint, for any s’ € S, where p; o(s") > 0, we have
d >Dxt, (¢s,allPs,a)

ds,a
={s,a |:10g :l
Ps,a

(B.1)
qs a(sl) / 1- QSqa(S/)
Zq.s,a 8/ log( ’ > + 1- QS,a S IOg T
( ) p37a(5/) ( ( )) 1 7ps’a(5/)
While the last inequality is derived by log-sum inequality. Let:
z 1—=
h(z,y leog(>+ 1—a:10g( )
(2.9) 2) 4 (1 -2 log (1=
where y € [pa, 1 — pa], since:
O*h(x,y) 1 N 1
ox2 r 1l-=z
And h(y y) 0, we know for any fixed y, h(x,y) is convex with respect to z on x € (0,y). Since
h(0, 1 ) > log (171;“ > pa > 6. By mean value theorem there exists a unique
( ) s.t. h( (y)7 ) = 0. Hence, define z*(y) := ming¢ (o, {2 : h(x,y) = 0}, and for any fixed
€ (0,1),if z*(y) < ty, then:
6 = h(@"(y),y) > h(ty,y)
1-+¢
= tylogt + (1 — ty)log ( = y)
Y
W (B.2)
> (1—t+tlogt)y
@ (1—1¢)?
D002

2
Here (1) refers to the h(ty, y) expansion at y = 0

lim h(ty,y)/y =1 —t+tlogt
y—0

Ohlty.y)
Oy
then
h(ty,y) > (1 —t +tlogt)y
And (2) refers to the fact that

1— 2
1—t+tlogt> (1%

on te(0,1)
The above functional dependence is optimal in polynomial. Hence, when ¢ = 1 —

1 1 1
§ > h(z* >h{(1-— >
@), y) 2 (( 2mv> y7y) ~ 8m%y ~ 8m? PA

However, under the assumption that § < ﬁp A» the preceding inequality leads to a contradiction
As Yy e [p/\7 1- 5 =

pals lety = ps o(s’), we establish the uniform lower bound

1
s,a /> 1- s,a !
eals) 2 (1= 5 ) )

This inequality holds uniformly across all

==, we have:

* State-action pairs (s,a) € S x A

e Next states s’ € supp(ps,a)
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Consequently, the Radon-Nikodym derivative admits a uniform lower bound over the uncertainty set
s,a-

1

ds.a >1-— ,
2m\/

ps7a Loc(ps,a) B
forall (s,a) € S x A. O

inf
qs,a€Ps,a

Followed by the boundedness of the Radon-Nikodym derivative, we are able to show the uniform
ergodic properties on the uncertainty P

Proposition B.2 (Restatement of the KL case in Proposition[£.2). Suppose P is uniformly ergodic,
and § < ﬁpm then P = P(Dxu, 0) is uniformly ergodic and for all Q € P and = € 1I:

tminorize(Qw) S 2tminorizea (B3)

where tminorize IS from Assumption |Z|

Proof. By Lemma since P is uniformly ergodic, then there exists an (., p,) pair, such that:

% = tminorize(Pﬂ) and uzs < my
Pr
For all Q € P, by Proposition|B.1} we have for all (s,a) € S x A,
Isa >1- !
Ps,a L (pa.a) - 2my

Then, for all state pairs (sg, Sm,.) € S x S, consider Q7'~, we have:

Q;nw (507 Smﬂ) > Z QS(],TK‘(SU)(Sl)qsl,ﬂ'(sl)(SQ) o qsm\/,l,ﬂ'(smﬂ,l)(smﬂ)

51,82, Sy —1
1 1

> Z pso,ﬂ(so)(sl)(l - m)psl,ﬂ'(m)(sz)(l - 2m\/) e

81,825 sSmag—1

(3 )1~ 5
Pspr—1,m(8mn—1)\Smp T om
. - v (B.4)

> 1 _ Pm.,r m
> (1) P )
M1
2 7P7T 7((807 smﬂ-)

2
@ px
> 7¢(5mw)

The inequality (1) follows from:

1 \" 1 \" _1
1-— >(1- > —.
(-3m) 2 (-5) 23

(1) holds. The result (2) is derived from the (m., p,)-Doeblin condition satisfied by P,. This
implies that for every policy 7 € II, the perturbed kernel Q) maintains a (1, %~)-Doeblin condition.
Crucially, this conclusion holds uniformly across all policies in II. Furthermore, the minorization
time satisfies:

m
tminorize(QTr) S pff S 2tminorize(P7r) S 2tminorize7
2
where tminorize = MaXrell tminorize(Pr) by Assumption Thus tminorize(@) is uniformly

bounded over Q € P and 7w € II:

sSup max tminorize(Q‘n’) < thinorize < 0,
QeP mell

‘P is uniformly ergodic. O
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Building upon Proposition[B.2] we establish that all perturbed transition kernels Q € P, Q. satifies
the (m, & )-Doeblin condition, and PP preserves uniformly ergodic given P is uniformly ergodic
with approprlate adversarial power constramt We further extends the uniform ergodicity to empirical

kernels P and empirical uncerainty sets p. Although these results are not essential for proving our
main theorems, they provide valuable methodological insights for uniform ergodicity theory:

(i) Offering a technical blueprint for extending classical ergodic theory to DR settings
(i) Laying the theoretical foundation for analyzing uncertainty sets in Markov models
(iii)) Opening new research directions for perturbation analysis of ergodic processes.

These findings may prove particularly useful for future studies in DR-MDP and related ares.

Lemma B.3. Suppose P is uniformly ergodic. When the sample size:

2 2
> 32m3 log 2|S|#|A]
Pa B

the empirical nominal transition kernel P is also uniformly ergodic with:

max tminorize(Pﬂ') S 2tminorize
mell
on the event set Q,, - and

my

P(Q ) )21—5

n, 2my/

Proof. When the sample size satisfies:

2 2
> 32ms, log 2|S|*|A]
Pa B

then:

1 2[SI*|A| 2 2|S|?|A]
log + 4/ —log ———
npa

3npa B g
v (B.5)
—48mi  4dmy
1
<
- 2m\/

Then by Bernsteins’ inequality and

O 2SPIAL, 2 aisPIAl
npa B npa B ~ 2my

the probability of the event set {2, 1 is bounded by:

2my

P(Qn . )21—5

s Ty
For any fixed (s,a) € S x A, and d € [0, 1] on the event of Q,, 4(ps,). we have, for all s" €
supp(ps,a):

ﬁs,a(s/) Z ps7a(sl) - R



Then, by Lemma for any 7 € II, there exists a (mx, pr) pair such that = = tyinorize(Pr)-

Consider the transition matrix 1377, we have, for all (s,s’) € S x S:

P‘/:n” (Sa sl) = Z ﬁs,w(s) (51)]/)\51,71'(81)(82) o 'i)\sm,l,ﬂ(smﬂ.fl)(sl)
(81,82, y8m—1)€E|S|mm—1
- ( ) > Ps,n(s) (51)Psym(51) (82) Doy (s 1) (5)
(515527"' ,Smﬂ71)€|S|7”"f71
> ’ P™(s,s
> (1- va) (s, )
> IL
- 2
~ (B.6)
which implies Py satisfies the (., Z)-Doeblin Condition, and:
tminorize(ﬁﬂ') S T;L: = 2tminorize(P7r) S 2tminorize-
2
Pis uniformly ergodic with probability 1 — 5. O

Combining Proposition [B:2] with Lemma[B.3] we establish that for all empirical transition kernels
Q € P, the minorization time satisfies

tminorize(@ﬂ) S 4tminorize-
This bound yields the following immediate Corollary.

Corollary B.4. Suppose the nominal transition kernel P is uniformly ergodic, and § < ﬁp As
\
then when the sample complexity

2 2
L 3md | 2ISA|
Pa B
the empirical uncertainty set Pis uniformly ergodic and satisfies: following holds with probability
1-p

sup max tminorize(Qﬂ') S 4tminorize
QeP mell

with probability 1 — (.
Proof. First, by Lemma for any 7 € II, there exists a (m, p;) pair such that:
% - tminorize(P‘n')-

Px
Then, consider

Pr:= min { min ﬁw(s’)}

(s,a)eSxA | s’esupp(ps,a)
by Lemma[B.3] when
32m?2 2|S|%|A]
> log
Pa B
P> (1 — ﬁ) pA = $pa, and P, satisfies (mq, & )-Doeblin condition with probability 1 — 3.
Then, by Proposition[B.2] as

1 .
0 < 167213/\ < 872‘3/\.
It implies for all Q € P, Q satisfies (m., 2 Zx )-Doeblin condition, and:
dm,

tminorizc (@ﬂ' ) S
Pr

S 4tminorizc(P‘n’) S 4tminorizca

Pis uniformly ergodic with probability 1 — . O
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Theorem B.5. Under Assumptionsand when § < wﬁp A, When sample size satisfies:

32m? 2|S12|A|
n > log ,
Pa B
then,
* P is uniformly ergodic, and for any QQ € P and w € 11, the minorization time of Qr:
tminorize(Qﬂ') S 2tminorize
with probability 1.
« Pis uniformly ergodic and for any w € 11, the minorization time of ﬁ,r:
tminorize(Pﬂ') S 2tmin0rize-
with probability 1 — [3.
. Pis uniformly ergodic, and for any @ € P, the minorization time of Q\,r:

tminorize(Qﬂ’) S 4tmin0rize-

with probability 1 — [3.
Proof. The result follows by synthesizing three key components:

1. The uniform Doeblin condition for KL-constrained uncertainty set (Proposition[B.2)
2. The Doeblin condition for empirical transition kernel (Lemma [B.3)

3. The uniform Doeblin condition for empirical KL-constrained uncertainty set (Corollary [B.4)

The combination of 1-3 yields the claimed uniform bounds through careful propagation of the
minorization parameters across different uncertainty sets. O

C Properties of the Bellman Operator: KL-Case

In this section, we aim to bound the error between DR discounted Bellman operator (A.2)) and the
empirical DR discounted Bellman operator (A.4)). In the DR setting, it is challenging to work with
the primal formulation in the operators:

Ip, (V)= inf p[V].

PEPs,a

To overcome this difficulty, we instead work with the dual formula by using the strong duality.

Lemma C.1 (Theorem 1 of Hu and Hong [15]]). For any (s,a) € S x A, let P o be the uncertainty
set centered at the nominal transition kernel ps o. Then, for any 6 > 0:

Ip, (V)= zé% {—a5 —alogps, {e‘v/a} } , (C.DH
foranyV :S — R

Since the reward and value function are bounded, directly apply Lemma[C.]to the r.h.s of Equation
(3-3), V3, and (g5, v}) satisfied the following dual form of the optimal DR Bellman equation:

V5 = max {r(s, a) + v sup {—oz5 —alogps.q [er;/a} }}
a€A a>0

(C.2)
v = ma (5.~ g5+ sup { a8 — alog e =7/ }}

ac a>0
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Our analyses are inspired by the approach in Wang et al. [42]. To carry out our analysis, we first
introduce some notation. As in Wang et al. [42]], we denote the KL-dual functional under the nominal
transition kernel p 4

f(ps,a, Vi) == —ad — alogps 4 [e_v/o‘] , (C.3)

then

FP.e,a,(V) = sup f(ps,aa Vvo‘)
a>0

At the same time, define the help measures as:
ps,a(t) = tﬁs,a + (]- - t)p
Aps,a = ﬁs,a — Ps,a (C4)
s,a (t7 04) =f (ps,a (t), v, a) .
By Definition (A7), it is clear when d < 1, ps () ~ ps,q holds for all (s,a) € S x A and t € [0, 1]
on {1y, 4.
We first introduce the auxiliary lemma that will be used useful in facilitating the later proof:

Lemma C.2. Forany (s,a) € S x A, and value function Vi,V € RS, we have:

T, . (V1) = Tp, (Vo) < [[Vi = Vall

Proof. For any q € Ps 4, we have:
q[Vi] < q[Vo] +q[Vi — V2]

Since g is a probability measure, by Holder’s inequality with |¢| for all ¢ € P;
q[Vi =Ve] < [Vi =V -

Thus:

qaV1] <q[Va] + Vi = Vo, forall g€ Psq

inf p V1] <q[Va] + V1 = V2|, forall g€ Py,
p s,a

inf V1] < inf V Vi—Vs
,duf pil< inf p[a]+ Vi — Vel (€.5)

Lp, (V1) <I'p, ,(Va) + [|[V1 = V2| o
Ip, ., (Vi) =Tp, ,(V2) <+ Vi = V2|,

Switch V; and V5, we have:

Ip, ,(Va) =Tp, (V1) < [[Vi = Vall,
Then we conclude:
Tp,.(Vi) =T, . (Vo) < Vi = Vall -
Proved O

Then, we bound the error of empirical value function VX and the true value function V7 with respect
to the the Bellman operators (A.3) and (D.27) by the following lemma:

Lemma C.3. Let 7 be any policy, and V5 and Vg are the fixed points to the DR Bellman Operators
(A2), and (A.4), where Vg = T (VE) and V= T (VE), then we have:

|vz-vz T (VE) - T (VF)

o0

1
e
o 1—-7
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Proof. DR Bellman operators 7:;‘ and 7?” are y-contractions, i.e., for any two value functions
V1, Vs € RY, we have:

|77 0%) - T ()], =may

}:7daw)0(swﬂ-+vfpaa04)-rﬁaa)—’ﬂhgaﬂé)ﬂ

acA

v Y w(als) (Tp, . (Vi) — Fps,a<v2>)|

(@)
<7IIVi = Vall&

- N (i)
|77 o0 -Trwm)|_ <7 - Vel

where the inequalities (4), (¢4) are concluded by Lemma Thus, we have: (€0
vz -vz|_=|7rom-mrom)|_
= |7 08 = TR + TR - T )| .
<|fTrwm - Trwm)|_+ |rem - )| |
< Vi -va |+ e - Tros)|
and
[vi-ve| < = [ om -] (€3)
Proved. =

Next, we aim to bound the approximation error HT” (Vg) =TT (VE)|| . Previous approaches relies

on estimating via KL-dual functionals with optimal multipliers o* € [O §~1(1 —~)~1]. While this

yields an bound of O(6~(1 — ~)~1), it ultimately leads to suboptimal O(1/¢*) sample complexity.
Building on Wang et al. [42]]’s breakthrough in achieving d-independent bounds through KL-dual
analysis, we make two key advances:

1. Targeted Value Function Analysis: Instead of considering the entire value function space
[0, (1 — +)71]S, we restrict analysis to Vg specifically. This allows us to replace the
(1 —~)~! dependence with the span semi-norm of V3.

2. Error Rate Improvement: Combining the Span (V) dependent error bound with Propo-
sition we improve the bound from O (671(1 —~)!) to:

|77 - Tr o)

S 6 (tminorize(Pﬂ))

As shown in Section [D} these refinements ultimately yield the improved smaple complexity of
O(S||A2 )

mlnorlzep/\ €

Lemma C.4. Let py,po,p € A(S) s.t. p1,pa < p. Define A := py — po. Then, foranyV : S — R

and j € (0,1],
NGO |
supal —————= < | = | Span (V)’
azp[) D [er/a] — <2) p ( )

p

(C.9)

Le=(p)

Proof. First we note that for any £ € R, we have:
A [er/a] A [ef(ka)/a}

p [e—V/a] - P [e—(V—k)/a]
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Hence, if we shift the value function V' = V —infscg V(s) — Sp%(v), where [|V’|| = +Span (V),
then, it is equivalent to show:

A eV A 67‘/,/&} j i |A
sup a7¥ =supa) ———= <3 V|17, H
ax0  plemV/e] axo pleV'/e] L>(p)
Thus, we only need to show
—V/a A
. e .
supoﬂiv] <3|V, ’
az0 plemV/e] Pz (p)

i.e., the bound with respect to lo, of V and replace [-||., by 3Span(-). WLOG, we assume
infses V(s) = 0. Then for a fixed ¢ > 0, decompose the domain of o € [0,¢| V] ] U
(clIlV]l o s 00) = K1 U Ka, we have:

su jiA [67‘//0(] — { J A [67‘//&} J
p« = max sup « sup o

sle)

a>0 P [e—V/a] acKy p [e—V/a] 7a€K2 p [e—V/a} (C.10)
— max {K1(c), Ka(c)}
For K(c), we have
A A
Ji(c) < sup H < |Vl peo ) ‘
aeK || P oo p L>(p)
For K5 (c), the condition is more complicated
A [emVHIVIe)/a]
— J
Ks(c) = ozSGUII()Q o » [e—(VHIVHW)/"]
As A[l] =0:
A [67<V+anm>/a} —A {aj (67<V+\|vnx>/a _ 1)}
Then:
ajA [e=(VHIVI)/a] _ Afad (emVHIVIL)/ @ —¢)]
p [e=@HIVi<)/a] p [e=VHIVI<)/a]
1 dA
= o= ~(VHIVIle) /o _
= [ VHIVI TP {dp @ (e 1)}
< ) [e,(vﬂwnm)/a} P Lo (p)
ol (e—(V+HVHoo)/a _ 1) A
= o (VHIVIL) /e Hp Lo (p)
ol (e~ (VHIVIs) /o _q
Consider the first term VTS ‘ , denote
(o= (VHIVID /e _
o’ (e DI (eznvum/a _ 1)
o~ (VHIVIL)/a N (C.12)
=f(a)
Taking the derivative of f(«), we have:
8](;21) —jad! (e2||VHoo/a B 1) Lo (_2 ||ZQ|OO€2|V|°O/a)
(C.13)

ol ((1 2 ‘./|oo> 2Vi/a _ 1)
Ja
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2(vl

replace t = ——

=, andc = j(2[[V] )"~

of(a) ¢ t\
90 _tjl(<1_j>e —1) (C.14)

d ¢ t\ B t+1\ ,
dttj_1<<l—j>e—l>—<l—j>€<0 (C.15)

combine the fact: lim;_,00, f () = 0. It implies J, f (o) < 0, and further f(«) is decreasing with
respect to a. Therefore, over Ko:

and when j € [0, 1]

J(@) < JelVI) < €lVILe) (¢ = 1) foralla € Ka(c)

Combine the previous result, we get the result where:

Kafe) < eVl (& -1) |5

Le(p)
Then:

A

A €7V/O¢ .
Sgpa]])[[(g—‘//a]] = max{(c|voo)j

vy (- 1) |2

L= (p)

L= (p) }

In select ¢ = é, the minimax optimality is achieved, we have:

) er/oz ] ) A
swar S <o v |
« p [6 O‘] L>(p)
As the the above result is invariant under the constant shift of V, let V! = V —infcg V(s) — Sp%(v),
we have:
A feV/e A [efvl/a:| 3\’ .
sup oﬂ# =supa’ ———— < () Span (V)’ ||—
az0  pleV/e]  azo pleV'/e] 2 P llzeep)
Proved O

Lemma C.5. For any value function V with span semi-norm Span (V'):

e IfSpan (V) = 0, the optimal Lagrange multiplier &* = 0, and for all ¢s o € Ps, 4, Gs,q is a
worst-case measure.

o IfSpan (V') # 0, the optimal Lagrange multiplier o* > 0, and:

" __ Ds,a [e—V/a*]]_ {}]
Psal) = Poa [ V7] (C.16)

is a worst-case measure

Proof. From Si et al. [34], for optimal Lagrange multiplier «*, it sufficient to consider o €
0.6 [Vl pe )
When Span (V) = 0, it implies V' is a constant over supp(ps,q ), and:
f(ps,aa V,a) =—ad - alogps.q {eiv/a}
=—ad+ [|Vllpe(p,.) -

(C.17)

Thus, as f(ps,a, V, %) = sup,>g f(Ps,a, V, @), @ = 0, and for all g, 4 € Ps 4, s,q iS @ Worst-case
measure since V' is a constant function on supp(ps,q)-
When Span (V') # 0, o* satisfies:

f(ps,a, V, O‘*) = sup f(ps,m V, O‘)
10,07Vl Loo (pg o))
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As o is the optimal Lagrange multiplier and f is differentiable, consider the first-order partial
derivative with respect to a:

0f (s Vi) _ o Psalge] [ 7V/a}
oo = Ds,a [6_‘//04] logps.a |€ )
and lim,—0 0o f > 0. As o is the optimal multiplier, On f (s,a, V, @)|a=a+ = 0, and
Ps,a [ V* 67V/a*] —Via*
P lar 1] . a [ /a } —
Pea [e_v/a*] 0g Ps,a |€ 1)
Further:
82f(ps,avvv O[) _ Ps,a [VQE*V/OL] Ps,a [Vei‘//a]Q
0a? T adpsq eV 3 —v/a]?
[ ] adpga [eVie] 2 s
B i Psa [VZe—V/a] “Ds.a [e—V/oc] Psa [Ve—V/a]
= a3 Ps.a [e—V/a]2 Psa [e—V/a]Q
Define the measure: .
o (g Prale LY
ps,a ps’a I:e_v/a*:l
Thus: ) v y
0 f(ps,ay‘/;a) _ arp:,a( ) <0 (C.19)

Oa? ad
Thus f(ps,a, V, @) is concave for a > 0. a* is the unique optimal multiplier where o > 0 and pj ,
satisfies:

. s,
Die (5% ol[pea) =% [1og ]

Vv «
:p: a |:* — log‘psya |:@*V/a :|:|
’ o (C.20)
V _—V/a*
Ps.a [ ~ € } %
=——22——=—1lo m[e /a]
Psa [e*V/O‘*] gp
=4.
Therefore, we show pg , is a worst-case measure. O

Lemma C.6. Let p, , be the nominal transition kernel, and Ds o be the empirical transition kernel,
then the below inequality holds:

< 3d - Span (V), (C.21)

sup f(Ps,a, V, @) — sup f(ps,a, V, @)
a>0 a>0

on Qy, g4, when d < %

Proof. Recall the general KL-dual functional under the probability measure p; ,, value function V,
and parameter « is:

i = - 7]
Then:

< sup |f(1’7\s,aa V, O‘) - f(ps,m V, O‘)' (C.22)

a>0

sup f(ﬁs,a? Va Oé) — Sup f(ps,a7 ‘/7 O[)
a>0 a>0

Further, consider the difference of |f5, , v.a — fp. .. Vial:
|f(ﬁ5,av V, 0‘) - f(ps,aa V, a)| = ‘QS,a(la a) - gS,a(Oa a)|
_ 0gs,a(t, @)
ot
(ﬁs,a - ps,a) [e—V/oz]
(pS,a(T)) [eiv/a]

forsome 7 € [0,1]
t=T1

(C.23)
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On Q,, 4 where d < %, we have for all 7 € [0, 1], and s’ € supp(ps.a):

~ 1
Ps.a(T)(s") = TDs.a(s") + (1 — T)ps.als’) > §ps’a(s’) (C.24)
Apply Lemma[C.4] we have:
—~ (]/7\9 a — Ps a) [67V/a]
su s,a Vs Q) — s,a»V704 = sup |« : .
aZp(] ‘f(p ) ) f(p )| ozzI()J (ps,a(T)) [e_V/a]
(Z) 3 As a ~— Fs,a
< fSpan (V) u
2 Ds.alT) Lo (ps.a) (C.25)
(1) o _
< 3Span (V) Psa ~ Psa
Psa Lo (p, a)

< 3d - Span (V)

Where inequality (i) is by Lemma|C.4] and the inequality (i7) is by Equation (C.24)). The difference
of KL-dual functional is bounded by:

sup [f(Ps,a:V, ) = f(Ps,ar Vo )| < 3d - Span (V)

on g whend < 1. O

Lemma C.7. When n > 32p " log(2|S|?|A|/B|), then for any w € 11, the lo-error of the emprical
DR Bellman operator T} and the DR Bellman operator T can be bounded by:
8 . 2ISPIA|

‘ - S 9tminorize(P7r>\/npA IOg 6

with probability 1 — B, where Py is the transition kernel induced by controlled transition kernel P
and policy .

~

T (VE) = T7(VE)

Proof. First, by Bernstein’s inequality, when:

32 2SP|A
ZZog 2L

n >
RN B

Then:

ﬁs,a(sl) - ps,a(sl)
ps7a(5/)

1 2sPAl L 2 2ispla
_377/]3/\ & ﬁ A & /6

2
< ilog 2|S|2|A] (C.26)
nPa B
1
< =
-2

with probability at least 1 — 3 for all (s,a) € S x A and s’ € supp(ps,q), thus, let
8 2|S|2|A
PN ERETRT
npa p

P(Qn,d) > 1- ﬂ

thend < 1, and:
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Then we consider the difference of the Bellman operators for particular value function V5, on Q,, 4

= max
') sES

|77 - 77

acA a€A

VE)—Tp,.(VE)

< max ‘FA
=7 (s,a)eSxA PS*Q(

= max

sup f(]/)\s,aa Vg, 04) — sup f(ps,av VE, @)
(s,a)ESXA

a>0 a>0

K]
(§)3d - Span (V7)
(C.27)
on , 4, where () is derived by Combine Proposition [A.5] and Lemma when Py is
(M, pr)-Doeblin with m /pr = tminorize(Pr), and Span (VZ) < 3my /pr, thus, we have:

~ Im 8 2|SI?|A|
Tr(VE) =TI (Vg < — ) —log ————— (C.28)
| Tr e -7 pﬂ%w B
withe probability 1 — 3. Let:
32 2|S|?|A]
n > —log ———.
Pa g
Then with probability at least 1 — 3, for any 7 € I, the following bound holds:
STy _ AT 8 . 2ISPA
H7jy (VP) - 7:y (VP) - < gtminorizc(Pﬂ')\/np/\ IOg B . (CZQ)
Proved. O

D Sample Complexity Analysis: KL Uncertainty Set
In this section, we prove the sample complexity bound as shown in Theorem4.4] and Theorem[4.5]
D.1 DR-DMDP under KL Uncertainty Set

Lemma D.1. Let 7 = arg max e Vg, then the following inequality holds:

o< Vi1 <om s 3

oo

Proof. The left direction of the inequality is trivial. For the right one inequality, we have:

Vp — Vi =maxVi — Vg
mell

=max Vj — maﬁ(Vg +Vs -Vp
TE

well
. (D.1)
< | max vz - max vz +||[VA" - VE ‘
- 171163121( P 17?6341_)1( P oS + P P %)
<2 HVI — vz
- 17116341}[( P P %)
Proved. =

Theorem D.2 (Restatement of Theorem [.3). Suppose Assumptions[I| and 2 are in force. Then
for any n > 32px ' log(2|S|?|A|/B), the policy ©* and value function V3 returned by Algorithm

satisfies:
T 72tminorizc 2 2 | S | 2 ‘A|
0<VE — V5 <%, |~ log —
L \/np/\ 578
(D.2)

36tminorize 2 2 | S | 2 ‘A|
v vy < Plminorize [ 2 o0 ZPVIA]

H P P oo 1 - \/np/\ & ,8
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with probability 1 — 3. Consequently, the sample complexity to achieve c-optimal policy and value
Sfunction with probability 1 — 3 is:

¢ [S||A[2 o . 2IS[2A
< minorize 1
TETTa—e BT B

where c = 2 - 722, and ¢ = 2 - 362 respectively.

Proof. For any 7 € 1II, as V7 is the fixed point to the DR Bellman operator (A-2), where V5 =
77 (Vp), by Lemma[C.7} when:

52, 2ISPIA|

Pa B

then, with probability 1 — 3, for all = € II:

n =

T T 1 T U ™ ™
HVﬁ V5 - Sm HT, (V7) -7 (Vp) -
1 ~
<sup —— HTTr VI — TV
Qerp 1 —7 V3 =TV
@) tminorize T 2[S[?|A (D3)
0 o P (@2) [ 2ISRIA]
QeP 1 - np/\ ﬂ
(i4) - 2
D6tmnore [2 | 2ISPIA]
1—7 npa B

where (i) is derived by Lemma and (i7) relies on Proposition where tminorize (@) 1S
uniformly bounded for all () € P and 7 € II. We conclude, when

32 2/S|2|A|
n > — log ———,

Pa B

we have

%

o< vi v <amgy |-

oo
~

T (Vp) = T7(Vp)

2
<7max‘

T1— mell o (D.4)
72tminorize 2 2 | S |2 |A‘
<———/—log——.
1—v npa B
with probability 1 — 5.
Since for value function evaluation:
V2 v <mae vz v
36tminorize 2 2|S|2|A‘ (DS)
< Fominorive [ 20 SELIRL
1—7 npa B

holds for the same sample complexity condition and high probability guarantee, we prove the
Theorem. O

Remark D.3. In the proof of Theorem[D.2] we establish a high probability guarantee for the uni-
form value function approximation error: max,crg HV% -Vi H < (Otminorize(1 — 7)—171—1/2).
(o)

Crucially, this uniform bound simultaneously controls both:
* The policy gap: V5 — Vg ’

* The value function approximation error: ”V; -V3

oo
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via the relationship:

Both errors < O (max HVA Az

.)

This simultaneous control ensures the final error guaranee in (D.2)) holds without requiring additional
division of the confidence parameter (3. The key observation is that our uniform concentration bound
on value functions automatically propagates to both policy selection and value estimation errors.

D.2 Reduction to DR-DMDP Approach under KL Uncertainty Set
Theorem D.4 (Restatement of Theorem[@.4). Suppose Assumption[l) and[2|are in force, then for any
32 2[S]?|A]
n > —log ———
Pa B

the policy ™™ and value function % returned by AlgorithmE|satisﬁes:

s 2 2|S|2|A
0 § g;; - 9775 §96tminorizc — IOg M
np B
(D.6)
V5 2 2[S°|A
£ g <48tminorize — log ————
NI W T

with probability 1 — 3. Hence, the sample complexity of achieving an e-error in either optimal policy
or value estimation is

2 2|SI2|A
n — tHllIlOI‘lZQ 1 g ‘ S ‘ | |
pae? 8

where ¢ = 2 - 962, and ¢ = 2 - 482 repectively.

Proof. Initially, let

=T L (Vp) Ve =T- . (V3) (D.7)
Ve =T o (VF) 5 =T 1 (V3) (D.8)

For the 7* policy evaluation, we have:
0<gp —9p
* * ~
e Vs Vs Vs Vi

* Vf;.? T

=gp — + —+— +

gpﬁ\/ﬁﬁfff‘% (D.9)
Vp

g1

‘ o

Then, by definition:

Ll

= H CvE

‘ oo

+‘9A

oo

g7 Vp = ||max g% — max Vp < max ||gFp Vp
P = P~ = P~ =
n well well well n
vn o \f vn o (D.10)
V2 Vi = s V7 e < vz - v
Then, we have:
. Vo
<gh— gt <2 P P H" D.11
0<gp—gp <2max|gp Tn oo+ grgggf % (D.11)
For Vi\/% value evaluation, we have:
f Pl VR v - v Pl
V* * *
<|[|-E — Ve & —9p (D.12)
B R/ o N o
1 7
<—|Vz -V, L _ g%
<7 %-v +H\/ﬁ o
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Combine (D.10), we have:

Vﬁ‘f T V77>T Vz Vﬂ'
_Pr _ < __P T _
o e v I v H PPl
Therefore, we have:
7T
* T 'P s
e (v N +21£3§ HV%J—VP -
Vi Vr
P * e P s
—= — < max - = max — HV
n gp oo T nmell gp \/’71 IS + mell \/>

We consider the error bound term by term, for simplicity, we denote v = 1 — .

Step 1: bounding ||g7 — (1 —)VE|
When 0 < g%(s) — (1

and hence:

0<gp(s)—(1

< inf g7 (s) —
< éréng(s)

<gp(s)—(1

< sup ||gg —
s [

— 7v)VA (s), then, for any € > 0, there exist an P. € P such that
(1-=7VE(s)+e>(1

—7)VE.(s)
—Vp(s)
(1 =7)VE(s) +¢

—Y)VE.(s) +¢
- NVl +e

Taking limit as ¢ — 0, we conclude when 0 < g% (s) — (1 — )V (s):

0<gp(s) — (1 =)V (s

Similarly, when 0 > g% (s) — (1

< > —(1-7V3
)_Sgl;)”.gQ (1=V3|..

— v)VZ (s), let consider P. such that:

9p(s) +€ = gp.(s)

then we have:

0=>gp(s) = (1

— VB (s)

> g% (s) —e — inf (1 —4)VZ
> gp.(s) —¢ érelp( MV (s)

>g§()—( -

— sup H
QeP

YVE.(s) —¢
NVE = 95l

Taking limit as ¢ — 0, we conclude when 0 > g%(s) — (1 — )V (s):

0<(1=7)Vp(s) —gp(s

And thus:
lgp(s) — (L =7)Vp

And further:
lgp — (L= MVE o

< - (1=)VE
ngDHQQ 1=V

o < T —(1=yV5 f 11
(8>|_51€11;||9Q 1 -V, fora

< 5—(1—)VE
_géggllgcg L-NV3Il..

Then, by Lemma[A.6] over the nominal uncertainty set P:

lgp — (1 =NVE |l < sup ||g5 —
QEP

By Proposition|B.2} ¢minorize (@) is uniformly bounded on P x II by 2¢,inorize, We have:
||g;r) - (1 - V)V’g”oo S SUP 9(]— - V)tminorizc(Q‘n’) S 18(]— - Py)tminorizc

As the above inequality holds for all w € II, further, plug back vy =1 —

max
mell

~ VP
973—%

VQ H < 9 1- ) sup tminorizc(Qw)
Q€P

\/7 9
18tminorize

N
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(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

we conclude that:

(D.18)



with probability 1.
Step 2: bounding HVA 2

By the definition of V73 and V7, “we know VZ and VX are the solutions to the DR Bellman equations
VE =TT (VE), V. S ’TJ(Vﬁ) thus, by Lemma

-vE|| < ﬁ |7 -Tr s (D.19)

Combine Lemma|[C.7] and Proposition 4.2 we have when:

2 2|SI2|A
n> 32 10g ASIIAL
PA B
then, with probability at least 1 — 3, for all = € II.
|ve-vs| < T VE) - Tr )|
D.20
18tminorize 8 2 | S | 2 |A| ( )
< ———| —log———.

1- nPa B

Further, with the choice of y = 1 — f’ we conclude when n > 32 log M , then:

8 2[S|?|A
S 18tminorize - log M
o npa B

max — ||VZ - VT
7\'EH H P P

with probability 1 — 3.
Step 3: combining the previous results. For 7* policy evaluation'

~ Vv
¥ T <9 T~ ‘P ) H T s
SRR e IR v LR
36tminorize 2|S‘ ‘A|
Si + 36tm1norlze log
vn \/np,\ 5
(D.21)
36tminorize 1+ 1 2|S| |A|
= Og
Vvn A B
2 2[S|?|A]
<96tm1n riz - 1 - 5
wth probability 1— 3. Where the last inequality uses the trival bounds where p5 < 3, and [S|[,|A[ > 1.

2.962¢2

Thus, when n = s, the policy 7* satisfies:

s 2 2|S|2|A
0 § g;; - 9775 gthminorizc — IOg M
npa B
(D.22)
v 2 2[S|°|A
N <48tminorize - log - 5
H Nl N npA 8

simultaneously with probability 1 — 3. The sample complexity of achieving an e-error in either
optimal policy or value value estimation is:

c- t?nanYlZC 2‘8‘2 |A|
n = 5 lo
pae B

where ¢ = 2 - 962 and ¢ = 2 - 482 repectively. Recall the minorization time is equivalent to mixing
time, the total sample used is:

S||A|t S[|2|A S||A|t
N|S||A’I‘LO< H |m1nor1ze1 | | | |) O<||||mlx)

pae? B N
Proved. O

Remark D.5. Notice the error guarantee relies on the relative error between p; , and p, , is less or
equal thant £, hence P(Q¢ 1) < S, thus, the lowerbound of nis 2 (1/px).
’2
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D.3 Anchored DR-AMDP Approach under KL Uncertainty Set

This section analyzes the anchored algorithm and establishes a sample complexity upper bound for the
anchored DR-AMDP Algorithm[3] Key to our analysis is the insight that the anchored DR-AMDP can
be identified with a DR-DMDP with discount factor v = 1 — £ where £ is the anchoring parameter.

Fix sg € S, recall that
Poa={(01-&p+€le) ,pePsa} and P= X P,
(s,a)XxSxA
We consider the anchored DR average Bellman equation
v(s) = max {r(s, a)+T'p (v)} —g(s) VseS. (D.23)
ae Psa

Lemma D.6. Assume that P is uniformly ergodic. Let V5 be the solution to the DR Bellman equation
with discounted parameter v = 1 — &:

Va(s) = max {r(s,0) + (1 =€) Tp, (V)] Vs €S.

Then, (g,v) = ({Vp(s0), V) is a solution pair to the anchored DR average Bellman equation
(D.23). Moreover, for all solution pairs (¢',v") to (D.23), ¢' = £V (so).

Proof. As P is uniformly ergodic, for all @ € P, @ is uniformly ergodic. Thus, for @ € P, by
Lemma , for any 7 € II there exists an (m., p,) pair such that % = tminorize (@ ). As for all
Qe P, mell and (sg,5,,) €S X S:
Q" (50,5m,) = (1 = )@ +€1e])™ (50, 5m,)
2(1 =) Q7" (50, 5m,.)

Since Q satisfies (1, pr)-Doeblin condition, it follows that @ satifies (1, (1 — &)™~ p,)-Doeblin
condition. Consequently, @ is uniformly ergodic, which further implies that P is uniformly ergodic.

Given the uniform ergodicity of P, by Proposition if (g,v) is a pair of the solutions to the
anchored DR average Bellman equation:

v(s) = max {r(s,a) +Tp,, (11)} —g(s) VseS

Then g = g is unique. Next, we show (g, v) = (§V}5(s0), V) is the solution to the anchored DR
average Bellman equation:

mas {7(s, @) + Tp(v)} — g(s)

= I;lea}i( {T(S, a) + FE(V’P*)} - §V7§(30)

(D.24)

—nc{r(s.a 4 int (1= 9+ 1) 31| - €V () s

=max {r(s,a) +(1-¢) pei%fap Vpl + §V7§(so)} — &£V (s0)

acA
=max {r(s,a) + (1 - Ol'p, . (V5)}
Vi (s)
Thus, we show (£V3(s0), Vj3) is a pair of solution to Equation (D-23), combine Lemma [3.6} we
know g = £V5(so) is unique, where V33 is the optimal value function of DR discounted Bellman
operator (A.3) with parameter 1 — &. O

The above Lemma|D.6|holds for any uncertainty set P, hence (g, v) = (§Vj3(so), V55) and (g,v) =
€3 V3 (so), Vg) are the solutions to the anchored DR average Bellman equation (D.26) and empirical

anchored DR average Bellman equation (D.27)) respectively:

v(s) = max {r(s, a) + FEM(U)} —g(s) VsesS (D.26)
v(s) :I;lea}i( {r(s, a) + Fﬁm(v)} —g(s) VseS (D.27)

Similarly, the equivalent also holds for the DR policy equations:
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Lemma D.7. If P is uniformly ergodic, let V5 be the solution to the DR discounted policy equation
withy =1—¢&:

VE = Z w(als) (r(s,a) + (1 = &Tp, ,(VF)) VseS

a€A
Then,
(9,v) = (§V5 (50), Vp) (D.28)
is a solution pair of the anchored DR average policy Bellman equation:
v(s) = Z m(als) (r(s, a) + Fgﬂ(i})) —g(s) VseS. (D.29)
ac€A

Moreover, for all solution pairs (¢',v") to (D29), ¢’ = EVE (so).

Proof. The proof is similar with Lemma[D.6| As g = g7, is unique, we only need to show (D.28) is a
solution pair:

>~ #lals) (r(s,a) + Tz, (0)) ~ g(s)

a€A

=" (als) (v(s,0) + Tp, (VF)) = €VA(s0)

acA

=" w(als) (r(s,a) + (1= ETp, , (VE)) + > m(als)EVE(so) — EVE(so)  (P-30)

a€A a€A

= Z m(als) (r(s,a) + (1 = &E)Tp, . (VF))

acA
Thus, by Theorem 6 in Wang et al. [43], we show ({V5 (sg), V5 ) is a pair of solution to Equation
(D.29), where g = £V5 (o) is unique. O

With these auxiliary result, we present our proof to the following main result.
Theorem D.8 (Restatement of Theorem[d.3). Suppose AlgorithmB|is in force. Then for any:
32 2|SI2|A
oo 32, 2SPAl
Pa B

The output policy T™ and approximate average value function g;‘; satisfies:

. _ & 2 2[SI?|A]

0<g9p —9p <96tminorize — log 5
(D.31)

. 2 2IS]2|A

’ gé - 977 o §48tmin0rize \/’I’Lp/\ IOg %

with probability at least 1 — B. Hence, the sample complexity of achieving an e-error in both optimal
policy and value estimation is

¢ trgninorize 2|S|2|A‘
n = oo .
pag B

where ¢ = 2 - 962 and c = 2 - 482 repectively.

Proof. For policy evaluation, consider policy 7* returned by Algorithm[3] by Lemma[3.6, we know
7* is an optimal policy for the anchored empirical uncertainty set P:

9p

= g5
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further . .
gp —9p =maxgp —gp

T T T
=maxgp —maxgy +g5 —gp (D.32)
< 2max‘ gA — gp
mell

For average value function evaluation 9;55

max g% — max gz
mell 72 well P

95 ~ 9P| _
= %0 (D.33)

<maxH X — g%
= rel gB g’P oo

gp , by Lemma ﬁ we know g;: = ng(so), then:

Then, we analysis ’
%(x=H8$®w—€%N%>+ﬂ$@w—gﬂ‘

|
< [levE (s0) — €V )|+ l16VA (s0) ~ 9l

Since for all Q € P, by Proposition[B.1} we know p, . < ¢s,q forall (s,a) € S x A. Then by
Lemma- A4 for all @ € P, Q is also unlformly ergodlc and Span (9%) = 0. Thus:

| A+ l€VE (s0) = g7 (s0) e

+11EVE - 95l
oo

95 —
= (D.34)

Yy Y

gé—gp -

el -z

(D.35)
<z -z

With the choice £ = ﬁ, by Lemma and Lemma when n > g—f log Q‘%ZWA‘, with probability
1—p,forall m € 1I:

18tminorize 2|S| |A|
= —gp Si + 18tm1norlze 10 - 5
1Stminorize 2|S|2|A‘
= |1+ 1 og ——
NG ( Pa B
(D.36)
8 2[S[*|A
<24tmin riz - 1 e
— O e\/np/\ Og ﬂ
2 2[S[*[A
<48tmin0rize 710 - —
B \/nPA & B
Thus, combine the results:
2 2|SI2|A
9p — 973 < Zmax HgA — 973 < 96t minorize| | — log M (D.37)
nPa B
with probability 1 — 5. And when:
2 962t12111n01‘120 2|S|2|'A'|
5 log
pae B
we get:
0<gp—ygp <¢
with probability 1 — 5, 7* is an e-optimal policy.
Simultaneously,
2S|?[A|
L — 05 < e < 48tmlnorlzc 71 (D38)
o = b |, < maux]lop — 93] J g
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with probability 1 — 5. And when:

p 28 e 2SEIA]
pre? B
we get:
’ 95 —9p|| =€
with probability 1 — 3, g% is an e-optimal value function. O

E Uniform Ergodicity of the f;, Uncertainty Set

In this section, we prove the technique results similar in fj;-divergence constraints given the Assump-
tion[TJand [2] Like what we have in KL-diverence, we first bound the Radon-Nikodym derivative
between perturbed kernel g, , and nominal p; ,.
Lemma E.1. Suppose 6 < mp A then for all qs o € Ps.q, the Radon-Nikodym derivative
of gs,q Satisfies:

1
Qm\/

qs,a
Ds,a

>1-

LDC(PS,@)

forall (s,a) € S x A

Proof. We prove the Lemma by contradiction. For any (s,a) € S x A, consider g5 , € Ps 4, SUppose
there exists s’ € S, such that
1
sa gy <1 —
ps,a 2"n\/

ri=

Then for any g5, € Ps,q, We have:

Dy (@sallpsa) = Ps.a {fk (qﬂ

s,a

5,a E.1
> i (?(s’)) Ps.als’) (D
> fr (r)pa
Define the helper function gj,(t) := (¢t — 1)%, when k > 2, we have:
th—kt+k—-1 1 )
Jr(t) = gi(t) “TRe-D E(t -1)
P —kk+k—1—(k—1){#*—2t+1)
k
(k+1) E2)
th—kt+k—1—(k—-1)*+2(k—1)t— (k—1)
B k(k—1)
= (k= 1)+ (k—2)t
k(k—1)
The nominator is
t-(t* = (k= 1)t + (k- 2)),
let
pe(t) = t* "1 — (k= 1)t + (k- 2).
Then:
dpst(t) =k-1t"2—(k—1)<0 on te]0,1] (E.3)
dpy(t) 0 and dpy(t) <0 (E4)
a |, dt
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We conclude that py(¢t) > 0 on ¢ € [0,1], and thus:

tpk (t) >0

fk(t) - gk(t) = m =

1
2my, *

Hence, whent =r <1 —

1 1

1
fe(r) = gx(r) >g (1 B 2mv) Tk 4m2  4km? = pr (E.5)
= fr(r)pa >0

However, the above inequality contradict to (EI)) where fi(r)pa < 6.
For the case when & € (1, 2), consider the function:

fu(®) th —kt+k—1

M= G0 T RE D)2 (E0)

It is easy to see that lim; ;- hx(t) = 3, and hy,(0) = 1. Hence hy(0) > lim;_,;- h(t). Then, the
derivative:

dhp(t)  (kt* ' —k)k(k —1)(t — 1)%2 — (t* —kt +k — 1)2k(k — 1)(t — 1)

dt K2(k — 1)2(t — 1)

C(k—2)th —kth Tl ket — ke + 2 ED
k(k—1)(t—1)3
Denote the nominator as:
a(t) = (k= 2)t* —ktF =Y 4kt —k +2,
then we have:
dqst(t) —k(k — 2)t" — k(k — 1)t 4 k
d2§7’;(t) ek — 1)k — 2652 — k(k — 1) (k — 2)h E8)

=k(k —1)(k —2)t*=3(t — 1)

When 1 < k < 2, the second order derivative d7q;(t) > 0 ont € (0,1). dqi(t) is monotone
increasing, and as diqi(t)|t=1 = 0, we have d;qx(t) < 0ont € (0, 1], which sequentially implies
qx(t) is monotone decreasing,

k() = qx(1) =0 ont € (0,1]

And further dyhy () < 0, hy(t) is monotone decreasing from  to 5. Thus, for 1 < k < 2:

= fiu(t) > =(t — 1) (E.9)

N |

1
2my,

Combine the previous results, we have, whent = r < 1 —

1

)
> >

which contradict to
§> Dy, (Qs,a”pS,a) > fk(r)p/\-

Consequently, we prove, for all k& € (1,00) when § < WPA, the Radon-Nikodym
derivative of between any ¢ , € P; , and p, , satisfies:

’ L (ps,a)

Proved. O

1
2m\/ '

4s,a
Ps,a

>1-
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Further, similiar with Proposition we have when § < ‘P is uniformly ergodic

Trm oz P
4max{2,kym2 t/N>

with:
sup max tminorize(Q‘n') S 2tminorize (EIO)
Qep mell
The idea is as same as the KL- dlvergence case, as under Assumption[2] the Radon- leodym derivative
is uniform bounded by 1 — 5—— over P, thus, we have for any Q € P, Q' (s, s') > &= P (s, s)

forall (s,s’) € S x S.

Pr0p0s1t10n E.2 (Restatement of Proposition {.2). Suppose P is uniformly ergodic, and § <
>, then P = P(Dy, ,d) is uniformly ergodic and for all Q) € P, and w € II:

max{8, 4k}m
tminorize(Qﬂ') S 2tminorize (Ell)

where tminorize IS from Assumption E]

Proof. By LemmalA.3] since P is uniformly ergodic, then there exists an (1, p-) pair, such that:

% = tminorize(-PTr) and uzs < my
DPr
For all Q € P, by Lemma we have for all (s,a) € S x A,
Isa >1- !
Ps,a L (pa.a) - 2my

Then, for all state pairs (sg, Sm,. ) € S x S, consider Q7'~, we have:

Q;ﬂw (SOaSmW) > Z qSO,ﬂ‘(So)(Sl)qsl,ﬂ‘(sl)(s2) o 'Qva_l,w(smw_l)(Smw)

81,82, Smy—1 (E.12)
p; Y(Sm.,)-

The proof of the above inequality is the same as in (B.4). This implies that for every policy = € II,
the perturbed kernel @, maintains a (m,, & B = )-Doeblin condition. Furthermore, the minorization
time satisfies:

m
tminorize(Qﬂ) S Z: S 2tminorize(P7r) S thinorizea
2

where tminorize = MaXgell tminorize(Pr) by Assumption Thus tminorize(@r) is uniformly
bounded over Q € P and 7 € II:

sup max tminorize(Qﬂ') < 2tminorize < oo,
QeP mell

P is uniformly ergodic. O

We furthr establish unlform ergodicity properties for both the empirical transition kernel P and its

empirical uncertainty set 73 serving as a probabilistic counterpart to Theorem [B.5| Whle not directly
impacting our sample complexity results, this analysis reveals that when the robustness parameter
satisfies: )

< - -
~ max {16, 8k} m? P
both P and P maintain uniform ergodicity with high probability.

Corollary E.3. Under Assumption|l|and § < Wp A, When the smaple size satisfies:

> 32mv log 2\8\ |A]
Pa Je]
then:

* P is uniformly ergodic, for any ) € P and 7 € 11, the minorization time of Q) :

tminorize(Q‘n') S 2tminorize
with probability 1.
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« Pis uniformly ergodic and for any 7 € 11, the minorization time of ]3,r:
tminorize(ﬁﬂ') S thinorize
with probability 1 — f3.
« Pis uniformly ergodic, for any @ cePandr € 11, the minorization time of @,r:
tminorize(Qﬂ') S 4tminorize
with probability 1 — .
Proof. Since P is uniformly ergodic, by Lemma for any 7 € II, there exists an (m., p,) pair

such that % = tminorize (PTK')
First, for P, by Lemmal[E.T] for all Q € P, we have:

1

va

qs,a
DPs,a

>1-
Lco(p-%,a)

and there exists an ¢ € A(S), for any (sg, sm, ) € S X A:

Lz
i m > 1- Pm” »Om
@ (o) = (1= g0 ) P2 o)

Pr ’
Z?¢(3 )

which implies Q satisifes (1, &~)-Doeblin condition with probability 1. And further, we have

(E.13)

My

tminorize(Qﬂ') < P
2

= 2’fminorize

And P is uniformly ergodic.
Second, for empirical kernel P, by Lemma we have when

32m? 2|S|%|A]
n > log
N B

empiricla kernel ]37T satisifes (., &= )-Doeblin condition, and Pis uniformly ergodic with probability
1-5.

. 32
Third, since when n > 22w

g 2|S|?|A|
V.
PA 1Og B ’

P(Q ) )21-5

s Imy

OnQ, P> (1 — ﬁ) pA > %p/\. By Lemma

1 ~
0 < < .
~ 8max{2,k} m%p/\ ~ 4max {2, k} m? PA

It implies fo all Q € P, Q. satisifes (my, 1 (& ))-Doeblin condition, P is uniformly ergodic and

~

§UH max tminorize (Qﬂ') S 4tminorize
QeP "€

with probability 1 — 3. O
F Properties of the Bellman Operator: f,-Case

In this section, we target to bound the error between DR discounted Bellman opertaor and empirical
DR discounted Bellman operator under fi-divergnce. Similar to the KL-case. We override the
notations for the fj-case, and introduce the fj-duality
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Lemma F.1 (Lemma 1 of Duchi and Namkoong [9]). For any (s,a) € S x A, let Ps , be the

fr-uncertainty set centered at the nominal transition kernel ps . Then, for any 6 > 0, let k* = %
p,. (V) = s {a—a®B,.. [la-vispy]" ] 1)
where c(6) = (1 + k(k — 1)5)%, (-)+ =max{-,0} and V : S — R is the value function.
we denote the fi-dual functional under the nominal transition kernel p;
F(pra Vo) = 0 = ae@pe [0 = V)5 ] "2

then

FPs,a (V) = sup f(ps,av V, a)
a€cR

At the same time, we follow the auxiliary measures and function used in KL-case:
ps,a(t) = tﬁs,a + (1 - t)p
Aps,a = f)\s,a — Ps,a (E.3)
gs,a(ta a)=f (ps,a(t); V,a).
When d < 1, ps.q(t) ~ ps,q holds forall (s,a) € S x A and ¢ € [0,1] on Q,, 4.

Lemma F.2. For any 6, the supremum of f(ps,qa,V, «) is achieved at o* > essinf,, V. Ifa* >
essinf, , V, then

1
o [(F = V¥ I—%r
au(e) = el V]
Ds,a [(Qf - V)+ ]
where p; , defined as below:
L pea|le=ETLEY
ps,a(') =

Poa [(@= V)]
is a worst-case measure. When o* = essinf,,_ , V, the worst-case measure is given as:
p* () _ Ps,a []l {U n }]
o Ps.a [1{U}]
where U = {s' : V(s') = essinf,, , V}.

Proof. A directly consequence for f(ps,q,V, ) is

f(ps,a,Via) =a when o <essinfV
Ps.a

Thus, f is monotone increasing as a < essinf,,_ , V, thus, the supremum of f(ps 4, V, cv) is achieved
at a* > essinf, V. The first order derivative of f(ps, 4, V, ) with respect to « is given as:

U V) _y g, ) (p [ T [ v>’f—1}) (F4)

By Proposition 1 of Duchi and Namkoong [9], the dual form of f(p; o, V, @) is concave with respect
to c, and the supremum is achieved at o* where 9, f (Ps.a, V;, @)|a=a+ = 0. Since:

8f(ps,aa‘/aa) _ k* w1 k*—1
e = 1—c,(0) | ps,a [(oze -V)i } “Ps.a [(ae -V)i } . (F.5)
By the first order condition, we have:

_ af(ps,aa V, a)

0 Oa

*

a=a o (F.6)
=1—ck(d) (ps7a [(a*e — V)ff} ¥ Psa [(a*e — V){fq)
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Whiche implies:
wql— L
o DPs,a [(Oé*e — V)lj_ } k
Ps.a [(Oé*e — V)i*_l]
Then, to show p;‘,a is a worst-case measure, it is sufficient to show p;‘ya[V} = f(ps.a,V,a*) and
Dy, (P% ollps,a) = 0. We have:

Ps.a {(a* - V)’_f—lv}
Psa [(a = V)E ]

pra [0 = VIE UV —at)] pa [(0r = V)E ]
- Ds,a [(Oé* — V)ff_l] + Ds.a [(a* _ V){c‘r*—l]

ck(9) ET)

p:,a [V] =

- (E8)
— A F DPs,a [(O‘* — V)+ ]
-a - . 1
ps,a [(04 - V)+ ]
@ . . Sk
= a" — ¢, (0)ps,a [(a — V)i } §
= f(ps,a, V, ")
Where (i) is derived by Equation (E7). Moreover, by the definition of fj-divergence we have:
. k x
1 (a* — V)&t k(ar — V)& 1
Df (p:.a”ps,a) = 777 Ps,a P - — + k—1
H k(k —1) Ps.a [(a* — V)E 7] Psa [(aF — V)]
1 * k* kla* =V k*—1
_ ps,a[ @ -V ket VET +k6_e]
=17 [ pa [(ar = v)E " poa[(ar =V)ET]
* * k-1
1 (el mv] e vE]
k(k — 1) Ps.a [(Oz* _ V)ﬁ.*_l}k Ds.a [(a* _ V)If_l]
1
= - -1
Kk —1) (ck(0) —k+k—-1)
=0.
(F.9)

Here we proved that when o™ > essinf,  V:

L Ceiait]
ps,a - ps’a [(a* _ V)]jjfl]

D5 o 18 @ worst-case measure. Further we show when o = essinf, V., p; , defined below is a
worst-case measure:
_ Psa(1{UN-}]

"
ps,a( ) Psa []l {U}] )

where U = {s': V(s') = essinf,, , V'}. As p; (V) = essinf,_, V, then we only need to show

Dy, (% ollps,a) < 6. To show this, we divide V' into two cases.

First, if V' is a constant function on supp(ps q), then U = S, then for all ¢5 o € Ps 4, Gs,0 [V] =

essinf, 'V, and p:’a = Ds,as Ps,a € Ps,q 1S @ Worst-case measure.

Second, if V' is not a constnat, then S\U = (J, observe that, by continuity, there exists an ey > 0,
such that for all 0 < € < ¢,

essinf V< a*4+e< essinf V(s)

Ps,a SNps‘a‘S\U
At the same time, as f(ps,q, V, @*) = sup, f(ps,q, V, ), then

af(ps,av Vv, a)

<0
Oa -

a*+e
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which implies:

1

0>1-—ck(d) <ps,a {(a* +e— V)i] e Ps.a [(a* +e— Vﬂfl})

1oL (F.10)
PP (G 4V
T P EL{UDF T (U]
The above inequality holds for all ¢ — 0, thus, by k* = ﬁ, we concludes:
(6) > S (F.11)
Ck Z — X
Ps,a []1 {U}]k '
Then, we can compute the fj,-divergence as:
1 1{ur \* k1 {U}
Dy, (0% allpne) = po | ) - fro1
Pl k(k—1) Pea 1{UY)  pea[L{U}]
1 1
= —k+k-1
k@1)<maH{UHkl " ) F12
(4) 1
< — -1
< WD @ -
=J.
Where (i) follows by (EIT). Thus, we proved the Lemma. O

Lemma E3. If § < 5ppa, then o* > [[V][ o, .

Proof. First, if V is essentially the constant, then Span (V') = 0, and

fpsaVoa) =a when o <[V,

And hence a* > [V o -
When V is not essentially the constant, let U = {s’ : V(s') = essinf,,, V' }, and S\U # 0, hence:

Ps,a []l {U}] S 1- P

Recall Lemma|[F2] the worst-case measure is given as:

Ps.a [(a* —V)F {'}]

Psalt) = —
¢ ps,a [(a* - V)i 1]
Hence:
0 > Dy, (D% ps.a) = 1 ! -1
= Pl T =) \pel LU
1 1
> -1 F.13
> = (e ) )
(;') 1
2 kp/\
Inequality () is derived by ﬁ — 1> £ when ¢ > 0. However, the above result contradict to the

assumption where § < 5-p. Thus, we conclude a* > ||V ; O

(Ps,a)"

As a* > HV”LOO(Ps,a):
(0" ~V)i=a’~ V>0

holds. Then, we show the following Lemma:
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Lemma F4. Let py,p2,p € A(S) s.t. p1,pa < p. Define A := py — pa. Then, foranyV : S — R
and k* > 1:

1 [ Af(a=V)F] ‘ H
sup — || < - Span (F.14)
ol B [pla =V ¥)
Proof. Notice that for all ¢ € R:
S —A [(a—V)’“*] = sup 1 - [((a—c) (V_C))k*} (E.15)
e B pla— V]| T s B [Pl — (V —opF
letc=essinf, Vand V' =V — ¢, then [|[V'||  « (,) = Span (V), and we have:
sup 1A [(a = V)¥] _ 1A [((a—c) = V)*]
2Vl B | P[(@=VIF I ooy b [p[((a =) = V)R] 16
1] Af(a— V)] '
= sup —_—
a>Span(V) k [(a - Vl)k _1]

First, consider the case where « > 2k*Span (V), then, for any s € S, and V'(s) > 0, we have:

« 1
>2%* > ——M
Vi(s) =7 T 127w

(F.17)

(O[ _ V/)k*fl >

And when V'(s) = 0, (a — V'(5))* =1 > o ' holds trivially.
Further, with tayler expansion, there exists a 5 where £(s) € (0, Sp%(v)) , such that:

O_Vﬁvwzl_ww@hﬁﬂﬁ—w

«

k*—2 V/(S)z
2

(1-¢&(s))

« 2 le’

Then, we can derive that:

A [(a — V’)k*]
Ps.a(r [(a = V)]
A {ak* (1 _ k‘*% + k*(kgfl) (1- g)k*—Q%’j)]

p[*5]
2 . A {ak* (7]{*%’ + k*(kz*fl) (1 _ E)k*72%/22)]

1
a>2k*Span(V) k* P |:0‘k*71:|

2
1HA
<=
S 17

2 HA
<~ 1=
=5 | p

(@)
<

1
sup —
a>2k*Span(V) k*

1
< sup T
a>2k*Span(V) k*

—

2 <_k,*V/ak*—1 + k*(’;_l) (1 _ é—)k*—2vl2ak*—2)

sup -
Oék —1

Lo°(p) a>2k*Span(V)

L>(p)
k*vlak*fl (1 _ k*2—1 (1 _ é—)k}*72%)
sup

Lo (p) a>2k*Span(V) ak

k* —1 J R
1= 1— k™ =2
V)

Lo (p)
2A
P
2A
P

. sup
Loo(p) a>2k*Span(V) Le(p)
(i44)

- Span (V)
Le(p)

(F.18)
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The equality (i) follows from the property that A [¢] = 0 for any constant function ¢, since the
difference between two measurres A annihilates constants. The inequality (i¢) is obtained by
applying the condition o > 2k*Span (V'), which ensures sufficient regularization. Finally, (#i%)
emerges from the fundamental constraint £* > 1 in our parameter condition.

Second, we consider the case where Span (V) < o < 2k*Span (V'), actually, the the above result
holds trivally:

1| A (- v)¥]
sup T 1
Span(V)<a<2k*Span(V) k p [(Oé - V) }
1 Af(a—VNE -1
< sup —flo= V'], [ ,)k,_l] (F.19)
Span(V)<a<2k*Span(V) k p [(a -V ) ]
2A
<||— - Span (V)
P llzee(p)
Combine the previous two cases, we derived the result:
1| A[(a=V)¥ 2A
sup o [(a—k)*j < H - Span (V)
a> | Vipeo gy ¥ |PIl@=V)¥ 1] Pl (p)
Proved O

To establish Lemma [F.6] bounding the dual functional difference, we build on Lemma [F:4] While this
result is analogous to Lemma [C.7for the KL-divergence case, the analysis for fj-divergence requires
first applying the Envelope Theorem to characterize the variational behavior of the dual optimization
problem.

Lemma F.5 (Envelope Theorem, Corollary 3 of Milgrom and Segal [26]). Denote V as:
V(t) = sup f(x,t)
reX

Where X is a convex set in a linear space and f : X x [0, 1] — R is a concave function. Also suppose
that to, and that there is some x* € X*(to) such that d; f (x*, ty) exists. Then'V is differentiable at
to and

dV(te) _ 0f(a",1)

dt ot
Lemma F.6. Let p; o be the nominal transition kernel, and Ds o, be the empirical transition kernel,

when § < Wp A, then the below inequality holds

sup f(Ps,a: Vs @) — sup f(Ps,a: Vs a)| < 4d - Span (V)
a€cR a€R

on Qy, g4, when d < %

Proof. Since

< ;p <1

= max {8,4k} m2" " = 2k’
by Lemma we have o > HVHL&(ZJSYQ), thus, we only need to consider the case where o >
IVl Lo p, ,)» then recall

gs,a(tv a) :f(ps,a(t)v Vv, O‘)

] (F.20)
—a = e (O)psal®) [(a = V)]
is concave with respect to «, then denote G(t) and o* (t) we have:
G(t) = Sup gs,a(taa)
a2Vl oo pn o) (E21)

:gs,a(tv a* (t))
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Combine previous results, we have:

~ dG(t
[SUD f (o V> 2) = 5up f(ps.a, V)| = G(1) — G(0)] = ]” (£22)
a€R a€R dt |,_,
Then, by Lemma|F.5] we have, as G(t) is differentiable on [0, 1], then:
dG(t) _ 0gs.,q(t, @)
dt N .
Then we have:
~ dG
sup f(ps,aa ‘/7 Oé) — Sup f(ps,aa ‘/a a) = |75
a€R a€R dt t=1
09s,a(t, )
= 75— F.23
ot a=a*(t) t=T1 ( )
_Ck(5) (5841 _ps,a) [(O‘*(t) - V)k*]
=" =<
ol pea® (= V)P i=r

Since o*(t) is the optimal multiplier for SUPG> |Vl oo . . gs,a(T, @), Using Lemma we have,
forall ¢t € [0, 1]: 7

w1 l—2

s PalD [(@0(0) = V)]
O @ )~ V]

Thus:

1

AStl_ s,a (r)—-V k*
|sup f(Ds,a, V, ) — sup f(ps,a, Vo) =— (Ps,a = ps,a) [(*(7) )]

a€R a€eR _k* ps,a(T) [(a*(T) - V)k*il]
N ; (F.24)
< sup i (ps,a _ps,a) [(a - V)k ]
T a2Vl . Ps,a(T) [(0 = V)F" 1]

Using the fact @* > ||V ,«(,. ., by the formula where k* = £, we know k > 1, then, apply

Lemma[F4]

1 Asa_ s,a a_vk* 2Asa_ s,a
ap | P el [f0 V)] < [HEen ) Span (V)
>[IVl ooy k Ps,a(T) [( = V) ] Ps,a(T) L% (pa.a)
Further, on the events set €, 4, we have, when d < %:
‘ ﬁg,a — Ps,a d "Psya < 7d < 2d
Ps,a(T) Mpeepy  NPsa+ (1 =T)psa(l=d) |, )~ 1—d ™
‘We derived the result:
sup |f (Ds,a, Vs o, &) — f(ps,a, V, )| < 4d - Span (V).
Proved. O

Lemma F.7. When n > 32p, ' log(2|S|2|A|/B), then for any 7 € 11, the loo-error of the empirical
DR Bellmam operator T and the DR Bellman operator T.[ can be bounded as:

2|S|2|A
- S lztminorize(Pﬂ')\/ni/\ log %

with probability at least 1 — 3, where Py is the transition kernel induced by controlled transition
kernel P and policy .

|7 ey - Trv)
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Proof. By Union bound and Bernstein’s inequality, we have, when:
32 2|S|%|A]
n > —log ——
Pa B

the relative error of s ,(s’) could be bounded as:

L 2SPlA| 2 | 2SPA]
—log ——— +/ —log ————
N

ﬁs,a(sl) - ps,a(sl)

ps,a(sl) _np/\ 5 ﬂ
2|S|2|A .
< [ 310 HSPIA (F25)
npa B
1
<-.
-2
Thus, let d = n% log 2‘S|;|A| < % we have:
P(Qn,d) > 1- ﬁ

Then, on 2, 4, by Lemma@, we could bound the error as:

|7 vE) =77 ()| =max |3 w(als) (v(s.a) +9T5, (VE)) = 3 wlals) (r(s,0) +Tp, , (VF))
Rt acA acA
< Tp. (VE) =T, . (VE)|
< max |05 (VE) = ADr,. (V)
<7y max sup f(ﬁs,mv};rva) — Sup f(ps,aa ngva)
(S,G)ESXA a€cR a€R

<7y max sup |f(1/7\87aa Ve, a) - f(p87a7 Vg, a)'
(s,0)ESXA eR

(2 4d - S %3

S, 2gx, - Span (V7)

(F.26)
The inequality (¢) is derived by Lemma[F4] Since LemmalA.3] there exists an (m, p,) pair such that
Mz /Pr = tminorize(Pr), combine Proposition[A.5], when P is (my,pr)-Doeblin, Span (VZ) <
3m, /px, we have: when

n > 32 log 72|S|2|A|
T Pa g
then
|77 ve) =T ve)||_ <4d-span (vF)
3 2S[2|A] (F.27)
§12tminorize(P7r)\/np/\ log 5
with probability 1 — 5. O

G Sample Complexity Analysis: f; Uncertainty Set
We proceed with the analysis of the Algorithm{T] [2]and3]in the f-divergence case.

G.1 DR-DMDP under f;, Uncertainty Set

Building upon these analytical foundations, we derive the following sample complexity bound for
DR-MDPs with fi-divergence uncertainty sets:

Theorem G.1 (Restatement of Theorem |.4). Suppose Assumptions[I| and 2] are in force. Then
for any n. > 32p, *log(2|S|2|A|/B), the policy T* and value function V3 returned by Algorithm
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satisfies:

T* 96tmin0rize 2 2|S 2|A
N e
n

B e p B
" (G.1)
4Stminorize 2 2 | S | 2 ‘A|
Vi-V3 < —, [ —log ————
HP Pl = 1—#~ \/np/\ 8 I3

with probability 1 — 3. Consequently, the sample complexity to achieve e-optimal policy and value
Sfunction with probability 1 — (3 is:
Clt?ninorize 2‘8‘2|A|

(1—v)2e2 %7 B

where ¢ = 2 - 962, and c = 2 - 482 repectively.

n <

Proof. For any 7, as VI is the solution to VZ = 77 (Vp), by Lemmawhen:

32 2|S|?|A]
n > —log ——,
Pa B
with probability 1 — 3, we have:

< sup | 77 (V3) - 77 (V3)

| -Tr s sup

8 . 2ISPA]
<12su tminorize ™ lo
<12 sup (Q )\/ P (G.2)

8 2|SI?|A|
< 24tmin riz —1 - 45 -
>~ o e\/np/\ og 5

Since the above result holds for all = € II, then:

<o max |7 (V) - 77 (8)

T T
maXHVﬁ Sz

mell o 11— ¥ well [eS)
G3
< 4875minorize 2 1 2‘S‘Q|A| ( )
—— /| — log ———.
B e npa & B
By Lemma as T = arg max,eqn Vg, we have:
i <]
Thus, when:
32 2|S|%|A]
n > —log ———.
Pa B
we have:
~ 2 2|S|?|A]
Vp—V5 < 96tminorizc —log ————
P ro= \/nPA 8 B
with probability 1 — 3.
At the same time, when 1 > 32p, ' log(2|S|?|A|/f), we have:
* * s T 48t minorize 2 2 | S | 2 |A|
[ 3] < v < S 2220
with probability 1 — 3 concurrently. O
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G.2 Reduction to DR-DMDP Approach under f; Uncertainty Set
Theorem G.2 (Restatement of Theorem[#.4). Suppose Assumptions[I} 2lare in force. Then, for any

32 2|S|2|A|
n > —log ———
Pa B

The output policy ™™ and % returned by Algorithm E| satisifes:

. 2 SI2|A
0 S g;; - g;TD §120tminorizc — IOg M
npa B
(G.4)
5 2 2[S|?|Al
£ g5 <60tminorize — log ———
H\/ﬁ Ir o npa 8 B

with probability 1 — (3, and the sample complexity to achieve c-optimal policy and value function

with probability 1 — (3 is:
2. 2|S|2A|>
n= O minorize 10 .
( pae? & B

Proof. Similar with The proof of Theorem [D-4] we have:

7T
* T ’P
0<gp—9gp §2ITrr16algI< 9p — T +2max HVg—Vg
Vi VE (G.5)
_P g < T~ _ P HVE—V”
T I v I v (Ll

As, with Proposition [B-2] we have P is uniformly ergodic, and for all Q € P and 7 € II:

tminorize(Qﬂ') S 2tminorize
_ 18tmin0rize

’ Pl T T v
Since by Lemma we have, when n > s—i log %Wz

Thus:
. VB

2[S|?|A
VZI-VE < 24t minorize (Qr 1
mar (V2 3. < g ma 2@ M i
(G.6)
8 2[S|?|A|
<48tminorizc — log ———
B \/nP/\ & 5
with probability 1 — 3. Combine the intermediate results, we have:
T* 36tmin0rize 8 2 ‘ S ‘ 2 |A|
OS > — gp §7+48tminorize — log ———
9p — 9p Jn \/ np g 3
36t minorize 128 2|S|?|A]|
=P 1+ log ———
Vi ( \/%A ®7 8
(G.7)
(4)
<12Otm1nor14e\/ 2‘8‘ |A|

X (21) 21SI2| A
—Yp S 6Otminorizc \/ 1 | | | |
[eS)
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with probability 1 — 3, where (i) and (ii) are derived simply by the trival parameter bound p, < 3,
S,A > 1, and 8 < 1. The sample complexity required for policy evaluation on 7* and value

. 1230 o S
evaluation on \/7% in achieving e-optimality are:

C't?ninorize 1 2|S|2|A‘
n= og ,
pae? B
where ¢ = 2 - 1202 and ¢ = 2 - 602 respectively. O

G.3 Anchored DR-AMDP Approach under fj;, Uncertainty Set

Theorem G.3 (Restatement of Theorem[d.3). Suppose Assumption[l} and[2|are in force. Then for
any

32 2|S|?|A]
— log ———.
Pa B

The policy ™™ and g% returned by Algorithm 3| satisifes:

n >

7 2 2|S|2|A
0< 9’77 - 977; SlQOtminorize \/np log %
A
(G.8)
. 2 2ISPA
‘ gﬁ —9p o §60tminorize \/’I’Lp/\ log T

with probability 1 — (3, and the sample complexity to achieve c-optimal policy and value function

with probability 1 — ( is:
tvinoni 2|S|2A|>
n= O minorize 10 .
( pae? & B

Proof. Similarily with what we have in Theorem 7* is an optimal policy for the anchored
empirical uncertainty set P:

*

95 =95
SO:
* 7" <9 T
o0 =5 < 2max o — s
In addition:
’gﬁ—gfpooérpg%’g;—g%w (G9)
Since g;;: = §V7§(so), for any 7 € II
g5 — 95| =€V Gs0) - €V (s0) + €V (s0) - 5B
. 00 %S)
(3)
<|levi - evz|_+ 1% - g5l (G.10)
<6 |[VE - VE|_+ 1€V - g5l

where (i) relies to P is uniformly ergodic, thus, g% (s) = g7 forall s € S, g% = c for some constant
c.
Then, we have:

0<gp—gp <2{max HstT -Vp

+2max 1EVE — 9Pl
o (G.11)

* *

9 — 9P

< maxHVlr - V3
oo 75 mell P P

VI _ g-
T max[lEVE —gp|l,
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With the choice of £ = ﬁ by Lemma and Lemma when n > g—i log %ﬂAl, then for all
m e I

T Yy

tminorize 8 2|S|2|1A|
95 — g S]-S + 24tmino1rizc IOg
2 Pl npa

vn B

18tminorize < 128 2|S|2|‘A| )
< ~minorize (1 4 [ Jog S0 (G.12)
Vn 9Ipa & B

2 2(S|2|A
§6Otminorize \/TL]J IOg %
A

with probability 1 — 3. We concludes, when:

n> g1og 72|S|2|A|
TP B
then with probability 1 — 3
. EEEN
0<gp—gp <12Otmin riz —1 - 5
S0p —9p > o e\/np/\ 0g 3
(G.13)
2 2S[?|A|
5 — 91 <60tminorize lo .
‘gB TPl = \/nPA & B

holds. And the sample complexity required to achieve e-optimality for both policy and average value
function is: ) ) ) )
2 inori S|®|A 2 S|°|A
n:O ( mlIlOr21Ze log | | | > :O ( m1x2 log | | | |) .
pag B pae g

where tmix = MaXqer tmix(Pr) < 00, since tmix iS equivalent to tminorize Up to a constant,
proved. O

H Additional Experiment

To further expand on our results in Section ] we provide additional experiments on baseline com-
parison and large-scale MDPs. First, we include comparisons with DR RVI Q-learning [45]] on
Hard MDP Instance [5.T]as baseline. Table[2]and Figure [3]shows the error performance for DR RVI
Q-learning and the two algorithms for po = 0.9 and § = 0.1. They demonstrated that the error levels
of our two algorithms are comparable and significantly outperform the previous baseline.

Table 2: Performance comparison with DR RVI Q-learning.
Sample 10 32 100 316 1000 3162 10000 31622 100000

DR RVI Q-learning [45] 1.84e-1 7.36e-2 7.47e-2 6.20e-2 5.52e-2 4.46e-2 3.60e-2 3.08e-2 2.6le-2
Reduction to DMDP 1.21e-1 595e-2 5.35e-2 2.74e-2 1.39%-2 6.65e-3 3.49e-3 3.21e-3 1.17e-3
Anchored DR-AMDP 1.67e-1 6.52e-2 6.26e-2 2.90e-2 1.16e-2 7.51e-3 3.27e-3 2.37e-3 1.23e-3

Further, to demonstrate the capability of our framework in solving large-scale MDPs, we consider a
large-scale MDP with 20 states and 30 actions, as in Wang et al. [45]]. The nominal transition distri-
bution is specified by ps o ~ N (1, 05,4), where o5 , ~ Uniform[0, 100], followed by normalization.
We then choose the uncertainty size 6 = 0.4 to introduce stronger perturbations, following the setting
in Wang et al. [45] under the KL-divergence. Note that although § = 0.4 violates Assumption [2}
the slope of the linear regression of our results on the logarithmic scale remains very close to —1/2,
further supporting our theoretical guarantees. This observation empirically validates the theoretical
results established in our theorems.

Further, to demonstrate the capability of our framework in solving large-scale MDP instances, we
consider a large-scale MDP with 20 states and 30 actions, as in Wang et al. [45]. Specifically,
Algorithm [2] and Algorithm [3] are evaluated on two distinct large-scale instances, respectively, to
verify their effectiveness. The nominal transition distribution is specified by ps o ~ N(1,05,4),
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(a) Algorithm for large-scale MDP. (b) Algorithmfor large-scale MDP.

where o, , ~ Uniform|0, 100], followed by normalization. We then choose the uncertainty size
0 = 0.4 to introduce stronger perturbations, following the setting in Wang et al. [45] under the
KL-divergence. Note that although 6 = 0.4 violates Assumption 2] the slope of the linear regression
of our results on the logarithmic scale remains very close to —1/2, further supporting our theoretical
guarantees. This observation empirically validates the theoretical results established in our theorems.

Table 3: Performance on large-scale MDP across different sample sizes.
Sample 10 32 100 316 1000 3162 10000 31622 100000

Reduction to DMDP  1.04e-1 6.54e-2 3.07e-2 2.46e-2 8.28e-3 4.82e-3 4.66e-3 3.12e-3 1.12e-3
Anchored DR-AMDP  6.55e-2 3.72¢-2 2.69¢-2 4.79¢-3 3.73¢-3 1.15e-3 1.33e-3 9.42e-4 5.6le-4
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