
Demonstrating the Impact of Modelling Decisions

Alan Lindsay, Ronald P. A. Petrick
Automated Planning Lab,

Department of Computer Science,
Heriot-Watt University, Scotland, UK
{alan.lindsay,r.petrick}@hw.ac.uk

Abstract

The modelling problem involves making compromises be-
tween a variety of competing factors, including planning effi-
ciency, plan language usefulness, and real-world optimisation
goals. Optimal plans in the resulting model may appear sub-
optimal when executed in the world. As a consequence, a hu-
man observer might find it difficult to comprehend the appar-
ent inefficient behaviours of the agent, which might impact on
the human’s trust of the agent. In this work we consider mod-
elling decisions, such as abstractions, and their impact on the
resulting plans. Our aim is to build a general approach that
can assist a user to better understand both the implications
of a modelling step and provide justification to support the
modelling step. As a start, we have extended an off-the-shelf
plan visualisation tool to provide plan failure visualisations,
to demonstrate the impact of these modelling decisions to the
user.

Introduction
It has been quite common to consider the problem of ex-
plainability as a model based or model reconciliation prob-
lem (Chakraborti et al. 2017; Lindsay 2019; Eifler et al.
2020). Focusing on the agent’s model can lead to the con-
struction of many useful and relevant explanations, and as-
suming that the human’s model is (partially) known in a
similar representation has led to important results in XAIP.
However, it is not yet clear whether this is sufficient in situ-
ations where the most relevant explanations lie outwith the
scope of the models. In this work we consider an alternative
to model reconciliation, where instead of expecting a hu-
man to ‘fix’ their model so that it better matches the robot’s
model, we instead consider informing the human about the
agent’s model, so that they might understand the reasons be-
hind its decisions. In general the agent’s model may sim-
ply be different, not necessarily better or worse in all cases.
Moreover, many of the benefits of using AI approaches are
not tied directly to better than human performance. For ex-
ample, robustness, predictability, accountability can all be
more important than reaching the goal in fewest actions in
certain domains. However, providing the user with knowl-
edge about the underlying agent model and the reasons for
its selection should allow the user to use the agent better.

We consider the modelling problem, where the domain
modeller makes a compromise between a variety of com-

peting factors, including model comprehension, model con-
ciseness, planning efficiency, plan language usefulness, real-
world optimisation goals, modelling patterns. Many of these
factors are unknown to the human user and might not cor-
respond to the real-world optimisation criteria, or any other
hidden criteria that the human user might care about. More-
over, decisions made during the modelling process will im-
pact on the plans that will be generated. For example, when
a problem model is abstracted, the cost of corresponding ac-
tion sequences might be changed.

In this work, we consider the modelling process and how
decisions that are made during modelling can impact on the
plans generated by the resulting model. We identify the sit-
uations where the modelling decisions lead to suboptimal
planning (in the context of some suitably rich model of the
world). We consider a scenario where an agent presents a
plan to a user and the user suggests an alternative plan,
which they consider better. We consider the use of these
plans to demonstrate how the agent’s model has led to its
plan, in order to assist the user in better understanding the
agent’s behaviour.

Background
In this section we provide an overview of model representa-
tion and problem modelling.

Problem Representation A classical planning problem
can be defined as follows:

Definition 1. A Classical Planning Problem is a planning
problem, P = ⟨F,A, I,G⟩, with fluents, F , actions, A, ini-
tial state, I , and goals, G. A solution (a plan) is a sequence
of actions, π = a0, . . . , an, that transform the initial state, I ,
to a state, sn, that satisfies the goals, G ⊆ sn.

An action is defined by a precondition and an effect
and is applicable in a state if its precondition is satisfied
by the state. The set S of states of a planning problem is
the set of states that can be reached by applying any se-
quence of applicable actions to the initial state. We use seq,
seq0, seq1 and similar to represent action sequences, e.g.,
seq = a0, . . . , an, and function cost(seq) returns the cost
of the sequence. The aim in classical planning is typically to
find short plans (unit cost).

Figure 1: Two different models for the same problem. The
agent’s model (right) abstracts positions X and Y as a sin-
gle position, from which the tree is not visible. In the user’s
model they are distinct and the tree is visible from Y .

Extensions to the classical planning problem include han-
dling numeric constraints and optimisation (Fox and Long
2003), time (Fox and Long 2003), and uncertainty: in
fully observable non-deterministic (FOND) planning prob-
lem (Muise, McIlraith, and Beck 2012) and partially ob-
servable planning problems (Bonet and Geffner 2011). And
work in explainable planning, exists in many of these con-
texts, e.g., (Fox, Long, and Magazzeni 2017; Sreedharan
et al. 2020; Lindsay et al. 2020; Carreno, Lindsay, and Pet-
rick 2021; Porteous, Lindsay, and Charles 2021).

Problem Modelling We characterise the modelling pro-
cess as a search through alternative models, with a set of
features, F0, . . . , Fn (e.g., computation time, number of ac-
tions), and a Boolean function, which determines the valid-
ity of the model. We make a simplifying assumption that
the modelling process proceeds through a series of steps,
from a rich model of the problem Mn to a limited model
of the problem M0. For the purposes of this work, we as-
sume two models: Mi and Mj . The agent uses Mi to plan
and we assume that we can map the user’s query plan onto
a suitable plan in Mj . We also assume that we can map be-
tween structural elements (propositions and actions) in each
model. For example, a scenario is presented in Figure 1, in
which the agent (a robot) must take a photo of a tree. In
the human model (Mj), positions X and Y are distinct and
the human believes that the photo can be taken at Y . In the
robot’s model, X and Y are abstracted as position X,Y and
the robot must instead move further, to Z to take the photo.

Modelling Decisions

In this section we consider some individual simplifying steps
that form part of this search. In each case we consider two
models: M0 and M1, such that M1 is a richer model and
M0 is the model after taking some simplifying step. We use
M0 and M1 to represent any one of the series of steps made
during the modelling process.

An Abstraction Step One modelling step is abstracting
part of the model. For example, in our running example, M0

has been abstracted from M1 by a simple abstraction step
that has merged locations X and Y . As a result of an abstrac-
tion step, one state in the agent’s model s(M0) represents a
(potentially infinite) set of states s0(M1), . . . , sn(M1). We
observe (unsurprisingly) that in making this step the model
will not be as precise, which can lead to restrictions in the
plans that the planner can discover. For example, in the run-
ning example, the agent’s model combines X and Y and this
abstraction means that it cannot take a picture from the re-
sulting position X,Y .

In general, abstraction can cause variations in properties
between the models, which can include optimality.
Definition 2. An optimality impairing modelling step M1

to M0 is a modelling step where relative optimality between
action sequences is not preserved. More formally, there ex-
ists a pair of states, s1b(M1), s

1
e(M1) and states that repre-

sent them in M0, s0b(M0), s
0
e(M0) and two action sequences,

seq11(M1), seq
1
2(M1), which each transition from s1b to s1e,

and are represented in M0 by seq01(M0), seq
0
2(M0), which

transition from s0b to s0e, and cost(seq11) < cost(seq12) and
cost(seq01) ≥ cost(seq02).

And abstraction can also impact on the valid sequences
and solvability:
Definition 3. A sequence pruning modelling step M1 to
M0 is a modelling step where abstracted states model
fewer propositions. More formally, there exists an expres-
sion ϕ0(M0) and the equivalent expression ϕ1(M1), where
in state s(M0), ϕ0 does not hold (s ̸|= ϕ0), but where there is
a state sj(M1) in M1, which is represented by s(M0), where
ϕ1 holds (sj |= ϕ1).

The use of abstractions is commonplace in planning,
e.g., (Haslum et al. 2007; Newton et al. 2007; Gregory et al.
2011). An example has recently been implemented for ab-
stracting from a hybrid continuous and discrete PDDL+
problem definition to a discretised PDDL2.2 model (Per-
cassi, Scala, and Vallati 2021). As an example of a sequence
pruning modelling step, discretising time can lead to certain
action sequences being impossible due to the lost precision
and this can also mean that some plans from M1 are not
considered plans in M0.

A Determinising Step In FOND problems, each action
has a set of possible outcomes (effects) and during exe-
cution one of these outcomes will occur (the planner can-
not choose). One approach to these problems is to remodel
the problem as a deterministic problem using a determinisa-
tion scheme (Muise, McIlraith, and Beck 2012). Two com-
mon schemes are the single actions determinisation (SOD),
which selects one of the outcomes for each action (e.g., the
one with most effects), and the all outcome determinisation
(AOD), which creates an action for each of the outcomes.
In the case of the SOD scheme, the determinised model
might make the problem unsolvable. In the case of the SOD
scheme, M0 allows the individual outcomes to be selected.
A promising action in M0 might be linked with an alterna-
tive outcome in M1, which actually leads to a dead-end. In

Figure 2: Aspects of the comparison between the agent’s model (M0) and a richer model (M1). On the left is the associated
computational cost of each model, providing justification for the modelling step. The mapping of the agent’s plan is demon-
strated, showing the plan in M1, and justifying the agent’s perception of the cost in M0. On the right the mapping is used to
demonstrate how the agent’s abstract model leads to the user’s plan, which is successful in M1, being invalid in M0.

contrast, an alternative plan might ensure success in the case
of any outcome.

Demonstrating the Impact of Modelling
Decisions

Given the agent’s proposed plan, π0(Mi) and the user’s
(mapped) counter proposal π1(Mj), we consider using the
user’s plan in order to demonstrate why the modelling steps
made from Mj to Mi have led to the agent preferring plan π0

over π1. We have identified the following three requirements
that we aim to satisfy in our work:

1. identify a set of modelling steps that are sufficient to ex-
plain the promotion of π0 over π1,

2. to explain and justify the identified modelling step(s),

3. demonstrate that the agent’s plan is rational in the context
of its model,

Identifying Modelling Steps
Our intention is to use the comparison between the two plans
to provide a context for identifying the relevant modelling
steps. The first challenge will be to determine a model Mj ,
which is appropriate for mapping the user’s alternative plan.
We assume that j > i (i.e., Mj is richer) and that the equiv-
alent of π0 in M1 costs more than π1 (i.e., modelling steps
might be attributable).

Given the sequence of steps, j, . . . , i, and the associated
models, each step, k to k − 1, can be labelled by examin-
ing the change in the model Mk to Mk−1 (for the user’s
plan) and Mk−1 to Mk (for the agent’s plan). The labels are
drawn from the potential impacts of each of the modelling
steps (see Section ‘Modelling Decisions’). For example, if
the step has led to the user’s plan being inconsistent, this
step is associated with the label ‘made inconsistent’. Simi-
larly, in the case where a determinisation step has been made
and a dead-end outcome has been added to the plan there
will be a label ‘added dead-end’. Notice, that although labels
such as ‘made suboptimal’ would be useful, they would not
be practical. Instead in other cases the labels note whether
the abstraction directly impacts the structures (actions and
propositions) that support the plan or not. We expect that the
selection of appropriate modelling steps will be based on an
ordering of the labels. For example, it is clear that a ‘made
inconsistent’ label is sufficient.

In the remainder we assume that the steps to be visualised
have been identified and we proceed with labelling the richer
model M1 and the limited model M0.

Explaining a Modelling Step
For each of the modelling steps that was indicated above, an
explanation of the modelling step can be given to the user,
with the aim of informing the user about the agent’s model
so that they are better able to judge the agent’s abilities. Our
aim is to create a visualisation and to use the comparison be-

Figure 3: Two screenshots from PDSim illustrating the valuation of an expression, ϕ1 (is the tree visible?), in two states in M1.
On the left, ϕ1 holds: the robot is in a position where the tree is visible, whereas on the right, ϕ1 does not hold. The states both
map to the same state (s) in M0, and the tree is not visible in s.

tween the user and agent plans to support this explanation.
Several of the components are illustrated in Figure 2, which
is divided with M1 shown at the top and M0 at the bottom.
On the left is a comparison of the features (more below) and
next is the agent’s plan, which can be visualised in both M0

and M1. In particular, the comparison between the plans in
M0 is important as this provides rational for the agent se-
lecting the agent’s plan (π0) in place of the user’s plan (π1).

On the right π1 is presented. In this example, we con-
sider a sequence pruning (Definition 3) case of an abstrac-
tion modelling step. In this case, the impact of this abstrac-
tion can be visualised by first demonstrating plan failure of
(the equivalent of) π1 in M0 and as a consequence estab-
lish that some state s(M0) does not model an expression
ϕ0(M0) (the equivalent of ϕ0 is ϕ1(M1)). Assuming that
states s1(M1), .., sn(M1) are represented by s(M0), then
we can aim to discover two states (si, sj), such that si mod-
els ϕ1 (si |= ϕ1) and sj does not (sj ̸|= ϕ1). For example,
two states for the running example are shown in top right
of Figure 2. It might not be trivial to identify relevant (or
any) elements from the states, s1, . . . , sn, such as in the case
of continuous variables. We can use the initial state of the
problem to identify a relevant state. This is done by modify-
ing the domain and problem: to find sj an action is added,
which achieves the goal when i. the state is consistent with
the mapping from state s(M0) to M1 and ii. sj ̸|= ϕ1. In
cases where a solution cannot be found we can attempt sam-
pling methods to explore the mapped states in M1.

Visualising Plan Failure in PDSim
In order to implement the steps indicated in Figure 2 we have
began to implement our approach within PDSim (De Pelle-
grin and Petrick 2021), which is a plan visualisation tool
implemented in the Unity game engine (https://unity.com/).
The tool allows for objects to be associated with prefab
objects and behaviours (e.g., animations) to be associated
with action effects. We have introduced a proposition tester,
which links state propositions with animations for positive
and negative cases. We can therefore generate visualisations
that demonstrate whether property ϕ1(M1) holds in state si
and state sj .

In the case of our running example, we developed a sim-
ple behaviour to visualise whether the tree is visible from
a specific location. First a ray is cast towards the tree. If it
hits it first then a field of view is drawn in blue to indicate

the camera shot. If the ray hits another object first then the
field of view is drawn in red and it stops at the first object.
We used this approach on two states (si and sj) that were
discovered using the above process. The visualisations are
presented in Figure 3.

Justifying the Modelling Step It is also important that the
user is able to understand the trade-offs that resulted in the
modelling step being made. In this work we appeal to testing
done during the viability study and the set of features asso-
ciated with each model. These features provide the user with
justification for each modelling decision, even if the features
capture information that is irrelevant to them. For example,
the conciseness of the model representation may be impor-
tant for simplifying the description of interfaces with other
parts of the system, but might be of no interest to the user.
However, including all of the factors used for selecting the
agent’s model can aid the user by providing transparency. In
Figure 2 (left) we have assumed the evaluation is based on
a single feature: computation time, and that the acceptance
function is based on a threshold value.

Conclusion
In this paper we have considered problem modelling as a se-
ries of steps, such as abstraction or determinisation, that are
made in order to optimise some factors. We consider how
decisions made during this modelling process can have im-
plications for the apparent quality of an agent’s plans. This is
contrary to a common assumption in XAIP, which is that the
agent is using a model of the world to plan (i.e., optimality
with respect to the agent’s model is optimal in the world).
We examine some specific modelling steps and the impact
that these make on the resulting plans. We then present pre-
liminary work that aims to demonstrate these impacts to the
user through visualisations. Of course, the model is only part
of the story and we are interested in how different types
of explanations including modelling based explanations and
planning explanations can be combined where appropriate.
We are also interested in determining the best environment
for communicating alternative models. There are now sev-
eral off-the-shelf plan visualisers, e.g., (De Pellegrin and
Petrick 2021; Kumar et al. 2022) and we aim to better un-
derstand the trade-offs between these alternative approaches.

https://unity.com/

References
Bonet, B.; and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In International Joint Conference on Artificial Intelligence.

Carreno, Y.; Lindsay, A.; and Petrick, R. 2021. Explain-
ing Temporal Plans with Incomplete Knowledge and Sens-
ing Information. In ICAPS 2021 Workshop on Explainable
AI Planning.

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proceedings of
the International Joint Conference on Artificial Intelligence.

De Pellegrin, E.; and Petrick, R. P. 2021. Automated Plan-
ning and Robotics Simulation with PDSim. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).

Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research 20: 61–124.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256 .

Gregory, P.; Long, D.; McNulty, C.; and Murphy, S. 2011.
Exploiting Path Refinement Abstraction in Domain Transi-
tion Graphs. In Proceedings of the Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence.

Kumar, A.; Vasileiou, S. L.; Bancilhon, M.; Ottley, A.; and
Yeoh, W. 2022. VizXP: A Visualization Framework for Con-
veying Explanations to Users in Model Reconciliation Prob-
lems. In Proceedings of the International Conference on
Automated Planning and Scheduling.

Lindsay, A. 2019. Towards Exploiting Generic Problem
Structures in Explanations for Automated Planning. In 10th
International Conference on Knowledge Capture, 235–238.

Lindsay, A.; Craenen, B.; Dalzel-Job, S.; Hill, R. L.; and
Petrick, R. P. A. 2020. Investigating Human Response, Be-
haviour, and Preference in Joint-Task Interaction. In ICAPS
2020 Workshop on Explainable Planning (XAIP).

Muise, C.; McIlraith, S.; and Beck, C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 22, 172–180.

Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning Macro-Actions for Arbitrary Planners and Do-
mains. In Proceedings of the International Conference on
Automated Planning and Scheduling.

Percassi, F.; Scala, E.; and Vallati, M. 2021. Translations
from Discretised PDDL+ to Numeric Planning. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling.
Porteous, J.; Lindsay, A.; and Charles, F. 2021. Communi-
cating Branching Plans for Human-Agent Decision Making.
In ICAPS 2021 Workshop on Explainable AI Planning.
Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.;
and Kambhampati, S. 2020. –D3WA+–A Case Study of
XAIP in a Model Acquisition Task for Dialogue Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 488–497.

	Introduction
	Background
	Modelling Decisions
	Demonstrating the Impact of Modelling Decisions
	Identifying Modelling Steps
	Explaining a Modelling Step
	Visualising Plan Failure in PDSim

	Conclusion

