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Abstract

Entity alignment is a key technology for in-
tegrating knowledge graphs (KG). However,
existing methods assume KG is static and
overlook the fact that KG evolves over time.
With the growth of KG, previous alignment
results may require adjustments, and new
equivalent entities need to be found for the
newly added entities. Additionally, new
entities often have fewer neighbors, which
adds difficulty to their alignment. In this
paper, we propose DEA-AttrAlign to ad-
dress these challenges. The core idea is to
quickly generate representations for enti-
ties based on their neighborhoods. In cases
where neighborhood information for new
entities is lacking, we propose utilizing en-
tity attributes and semantic facts derived
from triplets as additional alignment infor-
mation. Extensive experiments show that
our approach is more effective than methods
based on retraining or inductive learning.

1 Introduction

Entity alignment(EA) is the task of finding
identical entities across different knowledge
graphs(KGs). It can facilitate the sharing and
transfer of knowledge from multiple sources,
providing better support for downstream appli-
cations such as question-answering systems(Yu
et al., 2017), and search engine optimiza-
tion(Xiong et al., 2017). Early research in en-
tity alignment mainly relied on string matching
to calculate entity similarity and used similarity
propagation for inference during entity align-
ment(Melnik et al., 2002; Suchanek et al., 2011).
The development of deep learning techniques
has led to recent work representing entities as
embeddings and using nearest neighbor search
in vector space for entity alignment(Chen et al.,
2017). Typically, embedded-based entity align-
ment models employ shallow or deep neural

networks, such as TransE(Bordes et al., 2013)
or Graph Convolutional Networks (GCN)(Kipf
and Welling, 2017), to encode entities and uti-
lize the vector representations to compute sim-
ilarity between entities. These methods have
achieved good alignment performance in the
alignment reasoning stage, driving current re-
search in entity alignment.

However, most current entity alignment
methods assume that the knowledge graphs
are static(Yan et al., 2021), ignoring the fact
that KG grows over time. For example, the
system of DBpedia(Lehmann et al., 2015) ex-
tracts approximately 21 billion new triples each
month(Hofer et al., 2020), introducing new enti-
ties and providing clues for correcting previous
alignments. However, most existing methods
can only adapt to changes in the KG by re-
training models on the grown KG. This will
undoubtedly result in significant cost consump-
tion.

In this paper, we focus on the problem of
alignment after the growth of KG(referred to
as dynamic KG entity alignment, Figure 1 pro-
vides an example of dynamic KG entity align-
ment.) which presents the following challenges:
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Figure 1: Explanation of dynamic KG entity align-
ment. Solid icons represent newly added entities.
Dotted lines represent equivalent entities. The task
of dynamic KG alignment is to find equivalent enti-
ties for the newly added ones and correct misalign-
ments from the previous stage.

e When the KG grows, it inevitably intro-
duces the problem of aligning new enti-



ties. The cost of retraining the model from
scratch is high. Therefore, a key challenge
is how to obtain embeddings for new enti-
ties quickly, accurately, and with minimal
cost. ContEA(Wang et al., 2022) first uses
the entity reconstruction function to infer
the embeddings of new entities based on
their neighborhoods. Then fine-tune the
KG encoder to obtain more accurate em-
beddings. However, its entity reconstruc-
tion function only performs mean pooling
on the neighbors surrounding the entity,
without considering the varying influence
of neighbors connected by different rela-
tions on the entity.

e The neighborhood information surround-
ing new entities is often insufficient, lead-
ing to the long-tail entity problem. This
poses significant challenges for GCN-based
EA methods. MCEA(QIi et al., 2022) pro-
poses to enhance the embedding represen-
tation of long-tail entities by using second-
order neighborhood embeddings during
the aggregation of neighbors. This in-
evitably introduces some noise. It has
been proven that attribute information
plays a positive role in the entity align-
ment process and complements the KG
structure(Zeng et al., 2019; Cheng et al.,
2022). However, currently, no work has
utilized attributes in dynamic entity align-
ment.

In response to these challenges, we propose
DEA-AttrAlign, a framework for Dynamic En-
tity Alignment with Attribute Integration. For
the challenge of obtaining embeddings for new
entities: when a new entity is introduced, we
utilize its neighborhood information to gener-
ate embeddings. Specifically, we don’t simply
average its neighbors, but instead use attention-
based weighted averaging to address the vary-
ing influence of different neighbors. Then the
encoder is fine-tuned to generate embedding
representations that are more sensible.

To tackle the challenge of the long-tail en-
tity problem, we propose integrating knowl-
edge facts to enrich information by preserving
the original triplet semantics for new entities
with insufficient neighborhood information. In
previous research on static entity alignment, at-
tribute information has been proven to enhance

performance(Yang et al., 2019; Lai et al., 2020;
Shi et al., 2023). Therefore, we are attempt-
ing for the first time to utilize the attribute
information to achieve better performance in
dynamic EA.

Extensive experiments have been conducted,
and our method has achieved optimal perfor-
mance whether in the base KG or after KG
growth.

2 Preliminary

2.1 Entity Alignment

Given two KGs G = {&, Ry, A, TR, T4}
and Go = {9, R, A, TR, T4}, where £, R, A
represent sets of entities, relations, and at-
tributes respectively. Tr C & x R x & is
the set of relation triplets. T4 C &€ x A xV
is the set of attribute triplets. Entity align-
ment aims to find the alignment set A =
{(e1,e2) € &1 x & | 1 = ea}, where "=" repre-
sents equivalence. In most cases, a small set of
seed alignments A;,qin 18 provided as training
data, and the task is to find the remaining align-
ments Ay = {(e],€)) € & x & | €] =eh},
where €] and ef represent the sets of entities
to be aligned in the two KGs.

2.2 Dynamic KG Entity Alignment:

The dynamic KG G is defined as a series
of snapshots G = (go,gl, ...,QT), where
the superscript number represents different
timestamps. For any two consecutive times-
tamps G! = {St,Rt,ﬂé,Tj} and Ggitl =
{eMFL R TEH T4, it holds that £ C
EHL Rt =R TL C T and T4 C T4

Given two growing KGs G; and Gs, and a
seed entity alignment A at time ¢ = 0. The
goal of dynamic entity alignment is to pre-
dict new alignments and revise old alignments
Al ={(el,eh) € & x &L | €} = e} } based on
the current learned embeddings and alignment
model at time ¢. Considering that acquiring
seed entities is challenging, we do not assume
that the growth of KGs will bring new training
data, meaning that 45 remains the same at
t=0andt>0.

3 Method

In this section, we will introduce our dynamic
entity alignment framework: DEA-AttrAlign.
Figure 2 depicts its overall process. It mainly
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Figure 2: Overview of the proposed method DEA-AttrAlign

consists of two stages: the base KG alignment
stage and the growth KG alignment stage.

3.1 Basic KG alignment stage

At this stage, we first represent entities as em-
bedding vectors by capturing information from
both the structure and attributes of the entities.
Specifically, we train a GNN-based structural
encoder to capture structural information and
we utilize pre-trained language models to cap-
ture textual information associated with entity
attributes. Subsequently, we combine specific
similarity measures to find alignment results.

3.1.1 Structural Encoder

We adopt a GNN-based Dual-AMN(Mao et al.,
2021) as the structural encoder to capture the
structural information. It includes two mod-
ules, which capture structure information at
different levels. It consists of an inner-graph
module (Aggregator;pner) that captures struc-
tural information within a single KG and a
cross-graph module (Aggregator.r.ss) that cap-
tures cross-graph matching information. The
process can be expressed using the following
formula.

he;per = Aggregatoripper( Z aije;)) (1)
e;ENe,;
hestruct = Aggregatorcrass(hemnem gproxy) (2)

Where, he,,.,.. represents the structural in-
formation embedding of entity e. N, repre-

sents the neighbors of entity e. &ppozy repre-
sents the proxy vector.

To train the Structural Encoder, we utilize
two losses: alignment loss and neighborhood
loss. The alignment loss adopts the loss pro-
posed by Dual-AMN. The neighborhood loss,
designed to address the issue of KG expansion,
aims to quickly and reasonably generate initial
embeddings for new entities.

Alignment Loss Given the embedding of
the structural encoder, the objective of align-
ment learning is to minimize the distance be-
tween equivalent entities (positive samples) and
maximize the distance between non-equivalent
entities (negative samples). We adopted the
loss function used in Dual-AMN as the align-
ment loss.

Ealign :log 1+ Z Z €xXp ('_Y ()‘+51 _Sj))

i€As jeAQTE
()
(4)

s; = sim (eq, €5) — sim (€], e2)

(5)

Where Ag is the seed alignment pair, €}, €}
are the negative samples. The specific sam-
pling strategy is that for ep, all other entities
in the same training batch are used as negative
samples. The negative samples for ey are ob-
tained in the same way. =y is a scale factor, and
A is the margin for separating the similarities

s; = sim (eq, e2)



of seed alignment pairs and negative pairs. The
similarity calculation uses cosine similarity:.

Neighborhood Loss As the KG grows, a
well-trained GNN structural encoder may en-
counter new entities. The significant challenge
is how to incorporate the newly added entities
into the encoder. ContEA(Wang et al., 2022)
adopts averaging neighbors to initialize embed-
dings for new entities. However, this approach
overlooks the varying impact of different neigh-
bors on the new entity. Therefore, we utilize
an attention mechanism to represent the new
entity through its neighbors, thus emphasizing
the distinct roles of different neighbors. For
this purpose, we have designed a neighborhood
loss function:

2

= > llei— > aije (6)

eiég ejENel- 2

['nei

Where, N, represents the set of one-hop
neighbors of entity e;. The calculation of a;;
is as follows:

exp ('vTth)
Ze;GNai Erk’ERij’ exp (vTth’>

(7)

Oéij =

Where, v” is an attention vector, h,. repre-
sents the embedding vector of the relationship
T, between entities e; and e;.

Adding the neighborhood loss and alignment
loss with weights gives the final loss:

= Ealign + B : Enei (8)

3.1.2 Attribute Semantic Encoder

The structural encoder can effectively capture
the structural information of KGs. Previous
studies have shown that structure and textual
representations are fundamentally two comple-
mentary views of entity alignment. Therefore,
We also introduce attribute features in dynamic
EA. Firstly, we collected the attribute infor-
mation of entities from the DBP15K dataset.
As KG grows, we use entity names to query
related attributes and attribute values in Db-
pedia. Then we used LaBSE(Feng et al., 2022)
as the text encoder to capture entity seman-
tic information. The specific approach is as
follows:

For entity names, we directly feed them into
the encoder to form embeddings. For entity

£base

attribute information, we concatenate all at-
tribute triples related to e into a single string,
denoted as e,y (in the form of ajviagvs...).
The order of attribute triples depends on their
frequency in the knowledge graph. Finally,
we merge the entity's structural and seman-
tic information to form the final embedding
representation:

hei = hestruct @ heattr (9)

where, he_,,. represents the attribute infor-
mation embedding of entity e using LaBSE. &
denotes the concatenation operation. Entity
name embedding is used as the initialization
of the structural encoder.

3.1.3 Bidirectional Alignment
Selection

After passing through two encoders, we ob-
tain the joint embedding representation of the
entities. Then, we use CSLS to compute the
similarity matrix and select alignment results.
To address the one-to-many issue inherent in
nearest neighbor search, we implement bidirec-
tional nearest neighbor selection. This method
ensures that (ej, es) is considered equivalent
only if e; ’s nearest neighbor in K G5 is eo, and
e2 s nearest neighbor in K Gy is eg.

3.2 Growth KG Alignment Stage

Figure 3 illustrates the main process of the
growth KG alignment stage. When ¢ > 0, the
structure of KGs changes with the emergence
of new triples.

The task in this stage is to capture the struc-
tural changes while generating embeddings for
new entities. To tackle this challenge, we first
generate embeddings for the newly added enti-
ties using their neighborhoods with attention
mechanisms and relevant fact triples. Then, we
fine-tune the structural encoder. We also cap-
tured the semantic information brought by the
attributes of the new entities. After fine-tuning,
we combine the structural and semantic em-
beddings to form the final embeddings which
are used for new alignment predictions. Heuris-
tic strategies are employed to merge the new
predicted alignments with the old alignments
discovered at t — 1.
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Figure 3: Growth KG alignment stage

3.2.1 New Entity Embedding
Generation

The embedding generation of the new entity
is divided into two steps: neighborhood-based
initialization and factual triplet semantics in-
corporation.

Neighborhood-based Initialization
Thanks to the optimization objective of neigh-
borhood loss, we can represent a new entity
using its neighborhood. The specific approach
is shown in Equations 1 and 2.

Factual Triplet Semantics Incorporation
However, the neighbors of new entities are often
sparse, resulting in a long-tail entity problem.
Inspired by KAGNN(Huang et al., 2022), we
used an approach that combines the factual
triplets of new entities to enhance the embed-
ding representation of new entities. More de-
tails can be found in Appendix A.1.

3.2.2 Fine-tuning Structural Encoder

The new entity embedding representation ob-
tained through the aforementioned process is
not adequate. In addition, as new entities
appear, the embedding representations of en-
tities connected to the new entities will also
be affected and need to be updated. To ad-
dress the above issues, we choose to fine-tune

the structural encoder. Specifically, accord-
ing to Wang et al. (2022), we only update the
parameters of the second module of the struc-
tural encoder, named the cross-layer aggregator
Aggregatoreross-

For the training data for fine-tuning, since
alignment mostly occurs around anchor enti-
ties, we only select anchor entities that appear
in new triplets (referred to as affected entities)
as seed alignments. However, the neighbors
of new entities are often sparse, so there are
not many anchor entities. It is far from suffi-
cient to fine-tune the model with only these
data. Therefore, combining the results of the
basic KG alignment stage, we select m pairs of
highly confident alignment results by setting
a threshold, thereby providing more compre-
hensive data for fine-tuning. We use two parts
of data for fine-tuning. The loss function for
fine-tuning is:

=Lalign (High — Con fidence)

+ - Laign (Af fectd) + B+ Luei
(10)

Eupdate

The alignment loss of affected entity pairs,
denoted as Laiign (Af fectd), and the alignment
loss of high-confidence entity pairs, denoted



as Lalign (High — Con fidence), are calculated.
The fine-tuning loss function is then obtained
by taking a weighted sum of these three losses.
« and (3 are hyper parameters used to balance
their importance.

3.2.3 Alignment updates

After obtaining the joint embeddings for the
structure and attributes of the new entities,
we can compute a similarity matrix for the
entities, which allows us to make a new set
of alignment predictions. Inevitably, conflicts
may arise between these new alignment predic-
tions and those generated in the previous step.
To address this, we use a simple yet effective
solution. For a given prediction (e, e2), when
both e; and ey are new entities, we keep it as
an accurate alignment prediction. However,
when either e; or es is an old entity, conflicts
occur between the alignment predictions and
the ones given in the previous step. Because e;
or es may align with a new entity in the current
stage, while e; or ey has already aligned with
the old entity in the previous stage. In this
case, we determine which pair of predictions
to keep based on the principle of similarity,
retaining the pair with higher similarity.

4 Experiment

4.1 Datasets

Wang et al. (2022) propose a dataset for dy-
namic KG entity alignment, which is con-
structed based on the widely used DBP15K
dataset. Specifically, it includes 5 snapshots
to simulate the growth of KGs. The detailed
statistical information of the dataset is shown
in Appendix B.1.

4.2 Baselines

We compared our model with the following
methods and conducted experiments on the
datasets.

4.2.1 Retraining baselines

Since most existing embedding-based EA meth-
ods are designed for static KGs, they need to
be retrained whenever new triplets appear.
Here, we select the representative translation-
based method MTransE(Chen et al., 2016), as
well as several GNN-based methods, including
GCN-Align(Wang et al., 2018), KEGCN(Yu

et al., 2021), and Dual-AMN(Mao et al., 2021)
as our baselines.

4.2.2 Inductive baselines

There are limited entity alignment methods fo-
cusing on KG growth, such as DINGAL-O(Yan
et al., 2021) and ContEA(Wang et al., 2022).
Additionally, since there are some inductive
Knowledge Graph Embedding (KGE) methods
that can generate embeddings for new enti-
ties, we selected two representative inductive
KGE methods, MEAN(Hamaguchi et al., 2017)
and LAN(Wang et al., 2020), as the entity rep-
resentation layer, and integrated them with
Dual-AMN), referring to Wang et al. (2022).
We denote them as MEAN+ and LAN+ for
our two baselines.

4.3 Experiment settings

4.3.1 Evaluation metrics

Dao et al. (2023) noted that rank-based met-
rics like Mean Reciprocal Rank (MRR) and
Hits@K, though common in information re-
trieval, are unsuitable for EA matching tasks
since only Hits@1 aligns with the recall of
greedy matching algorithms. Therefore, we
follow their approach and use precision, recall,
and F1 score for evaluation. All values are
presented as percentages from 0 to 100, with
an F1 score of 100 indicating a perfect match.

4.4 Results
4.4.1 Main results

We conducted experiments on the dataset and
the experimental results are shown in Table 1.
To further validate the impact of attributes
on dynamic entity alignment, we apply our
attribute fusion method to five GCN-based
baseline models. The experimental results are
shown in Appendix B.3

Overall performance Our model achieved
optimal performance across all snapshots.
Compared to the best baseline, ContEA, our
model’s F'1 scores improved significantly on var-
ious datasets. For the DBPyzy_pn snapshots,
the F1 scores increased by 9.2% (¢ = 0), 11.9%
(t=1), 10% (t = 2) and 8.9% (¢t = 3). Simi-
larly, for DBPja_gn, the improvements were
6.9%, 7%, 5.9% and 4% across the respective
snapshots. On the DBPrgr_gn snapshots, our
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Table 1: Main results of entity alignment on three datasets

model achieved gains of 9.5%, 7.2%, 5%, and
3.2% at the corresponding time points.

Compared with retraining baselines
Compared to the best retraining baseline: Dual-
AMN, our model’s F1 scores show significant
improvements across all datasets and time
points. For DBPzy_ gy, the F1 scores in-
crease by 10.2%, 14.5%, 13.2%, and 19.1% at
t=0,t=1,t =2, and t = 3, respectively.
In the DBPj4_gn dataset, the scores increase
by 8.3%, 9.3%, 8.6%, and 11.1% at the same
time points. For DBPrr_gn, the respective
increases are 11.2%, 10.6%, 8.2%, and 9.5%
at each time point. DEA-AttrAlign achieves
good performance by considering the entire
process as continuous, effectively utilizing the
outputs of previous stages (such as alignment
prediction results and model parameters) and
integrating their alignment predictions through
heuristic strategies(Wang et al., 2022).

Compared with inductive baselines As
for the inductive baselines, DINGAL-O, a
model specifically designed for dynamic entity
alignment tasks, does not perform well either
as it does not make any adjustments to the
model parameters and simply inducts new enti-
ties based on existing model parameters, which

is unreasonable. Although ContEA achieves
good results compared to other inference mod-
els, it only relies on neighborhoods for new
entity generation, and we know that the neigh-
borhoods of new entities are often very sparse.
Our method not only utilizes neighborhood in-
formation with attention mechanisms to gener-
ate embeddings for new entities but also incor-
porates textual information derived from the
semantic facts of new entities and the attribute
triples associated with them. Various types
of information are used to make the embed-
dings of new entities more reasonable, leading
to performance improvements. Furthermore,
due to the incorporation of entity attribute
triples, our method also achieves performance
improvements of 9.2% on DBPzy_gn, 6.9%
on DBPjs_gN, 9.5% on DBPrr_gN during
the basic KG alignment stage (¢ = 0).

Additionally, it can be observed that the per-
formance of all models decreases as the graph
grows. This is because the search space of can-
didate entity pairs expand, the ratio of seed
alignment to entities to be aligned decreases
and the number of entities to be aligned be-
comes very large, resulting in difficulties in
correctly matching entities.
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Table 2: Ablation study results on three datasets

4.4.2 Ablation study

We design four sets of ablation experiments.
The experimental results are shown in Table 2.

DEA-AttrAlign w/o Nei: When training
the structural encoder, neighborhood loss is
not used.

DEA-AttrAlign w/o Attr: At all stages,
for an entity e, we only use GCN to capture
structural information.

DEA-AttrAlign w/o Attr&name: In
the basic KG alignment stage, we do not use
the textual representation vector of the entity
name as initialization for entity e. Instead, we
randomly initialize the embedding.

DEA-AttrAlign w/o Fact: In the growth
KG alignment stage, we no longer use TransE
to retain the semantic information of the fac-
tual triplets. We only rely on GCN to aggre-
gate neighborhood information in generating
embeddings.

After removing the neighborhood loss, there
is a significant decrease in model performance
by over 10% on each snapshot, which also
proves the effectiveness of the neighborhood
loss we designed. The structural encoder
trained with the neighborhood loss enables us
to initialize embeddings for new entities using
their neighbors. The performance decreases
when the attribute information is removed. On
the ZH-EN dataset, performance decreased by
up to 6.1% (¢t = 1); on the JA-EN dataset, per-
formance decreased by up to 3.3% (t =1); on
the FR-EN dataset, performance decreased by
up to 10.8% (t = 0) and there is even greater
performance decrease when the entity name
is also removed. On the ZH-EN dataset, per-
formance decreased by up to 10.8% (t = 1);

on the JA-EN dataset, performance decreased
by up to 7.1% (t = 0); on the FR-EN dataset,
performance decreased by up to 12.0% (t = 0).
This also demonstrates the effectiveness of our
method in utilizing both attribute information
and entity names. The performance also de-
creases when the semantic information of the
factual triplets is removed. On the ZH-EN
dataset, performance decreased by up to 6.9%
(t = 1); on the JA-EN dataset, performance
decreased by up to 5.2% (¢t = 1); on the FR-EN
dataset, performance decreased by up to 7.4%
(t = 1), which further validates the effective-
ness of this module.

5 Conclusion

In this paper, we propose a method called
DEA-AttrAlign to address the more realistic
scenario of entity alignment, which is dynamic
entity alignment task. This method leverages
entity neighborhood structure and fact triples
to quickly generate embeddings for new entities.
Additionally, we are the first to incorporate at-
tribute information into the dynamic entity
alignment task, using attributes to enhance
alignment when entity neighborhood informa-
tion is insufficient. Extensive experimental
results demonstrate the effectiveness of our
method.

6 Limitations

Although the effectiveness of our method, DEA-
AttrAlign, has been demonstrated, there are
still issues that need to be explored in the fu-
ture: (1) The current datasets simulate KG
growth by assuming only the appearance of
new entities. More complex scenarios, such as



the addition or deletion of relationships, need
to be explored in future research. (2) Our
current work incorporates only two modalities,
namely structure and text. Future work could
investigate the impact of incorporating addi-
tional modalities, such as images, on dynamic
entity alignment.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. In Proceedings of the 26th
International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, page
27872795, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Muhao Chen, Yingtao Tian, Mohan Yang, and
Carlo Zaniolo. 2016. Multilingual knowledge
graph embeddings for cross-lingual knowledge
alignment. In International Joint Conference on
Artificial Intelligence.

Muhao Chen, Yingtao Tian, Mohan Yang, and
Carlo Zaniolo. 2017. Multilingual knowledge
graph embeddings for cross-lingual knowledge
alignment. In Proceedings of the Twenty-Sixzth
International Joint Conference on Artificial In-
telligence, IJCAI-17, pages 1511-1517.

Bo Cheng, Jia Zhu, and Meimei Guo. 2022. Mul-
tijaf: Multi-modal joint entity alignment frame-
work for multi-modal knowledge graph. Neuro-
computing, 500:581-591.

Nhat Minh Dao, Thai V. Hoang, and Zonghua
Zhang. 2023. A benchmarking study of matching
algorithms for knowledge graph entity alignment.
ArXiv, abs/2308.03961.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2022. Language-
agnostic BERT sentence embedding. In Proceed-
ings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 878-891, Dublin, Ireland.
Association for Computational Linguistics.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi
Shimbo, and Yuji Matsumoto. 2017. Knowl-
edge transfer for out-of-knowledge-base entities:
a graph neural network approach. In Proceedings
of the 26th International Joint Conference on
Artificial Intelligence, IJCAI’17, page 1802-1808.
AAAT Press.

Marvin Hofer, Sebastian Hellmann, Milan Dojchi-
novski, and Johannes Frey. 2020. The new db-
pedia release cycle: Increasing agility and effi-
ciency in knowledge extraction workflows. Se-
mantic Systems. In the Era of Knowledge Graphs,
12378:1 — 18.

Zhichao Huang, Xutao Li, Yunming Ye, Baoquan
Zhang, Guangning Xu, and Wensheng Gan.
2022. Multi-view knowledge graph fusion via
knowledge-aware attentional graph neural net-
work. Applied Intelligence, 53:3652-3671.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolu-
tional networks. Preprint, arXiv:1609.02907.

Kwei-Herng Lai, Daochen Zha, Yuening Li, and
Xia Hu. 2020. Bert-int: A bert-based interac-
tion model for knowledge graph alignment. In
International Joint Conference on Artificial In-
telligence.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick van Kleef, S. Auer, and Christian Bizer.
2015. Dbpedia - a large-scale, multilingual knowl-
edge base extracted from wikipedia. Semantic
Web, 6:167-195.

Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, and
Bin Wang. 2019. Guiding cross-lingual entity
alignment via adversarial knowledge embedding.
2019 IEEE International Conference on Data
Mining (ICDM), pages 429-438.

Xin Mao, Wenting Wang, Yuanbin Wu, and Man
Lan. 2021. Boosting the speed of entity align-
ment 10 x: Dual attention matching network

with normalized hard sample mining. Proceed-
ings of the Web Conference 2021.

Xin Mao, Wenting Wang, Huimin Xu, Man Lan,
and Yuanbin Wu. 2020. Mraea: An efficient
and robust entity alignment approach for cross-
lingual knowledge graph. Proceedings of the 13th
International Conference on Web Search and
Data Mining.

S. Melnik, H. Garcia-Molina, and E. Rahm. 2002.
Similarity flooding: a versatile graph matching
algorithm and its application to schema matching.
In Proceedings 18th International Conference on
Data Engineering, pages 117-128.

Shichao Pei, Lu Yu, and Xiangliang Zhang. 2019.
Improving cross-lingual entity alignment via opti-
mal transport. In International Joint Conference
on Artificial Intelligence.

Donglin Qi, Shudong Chen, Xiao Sun, Ruipeng
Luan, and Da Tong. 2022. A multiscale con-
volutional gragh network using only structural
information for entity alignment. Applied Intel-
ligence, 53:7455-7465.

Xinchen Shi, Bin Li, Ling Chen, and Chao Yang.
2023. Bi-neighborhood graph neural network
for cross-lingual entity alignment. Knowl. Based
Syst., 277:110841.


https://api.semanticscholar.org/CorpusID:15912887
https://api.semanticscholar.org/CorpusID:15912887
https://api.semanticscholar.org/CorpusID:15912887
https://api.semanticscholar.org/CorpusID:15912887
https://api.semanticscholar.org/CorpusID:15912887
https://doi.org/10.24963/ijcai.2017/209
https://doi.org/10.24963/ijcai.2017/209
https://doi.org/10.24963/ijcai.2017/209
https://doi.org/10.24963/ijcai.2017/209
https://doi.org/10.24963/ijcai.2017/209
https://api.semanticscholar.org/CorpusID:250180897
https://api.semanticscholar.org/CorpusID:250180897
https://api.semanticscholar.org/CorpusID:250180897
https://api.semanticscholar.org/CorpusID:250180897
https://api.semanticscholar.org/CorpusID:250180897
https://api.semanticscholar.org/CorpusID:260704470
https://api.semanticscholar.org/CorpusID:260704470
https://api.semanticscholar.org/CorpusID:260704470
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://api.semanticscholar.org/CorpusID:219602200
https://api.semanticscholar.org/CorpusID:219602200
https://api.semanticscholar.org/CorpusID:219602200
https://api.semanticscholar.org/CorpusID:219602200
https://api.semanticscholar.org/CorpusID:219602200
https://api.semanticscholar.org/CorpusID:249324191
https://api.semanticscholar.org/CorpusID:249324191
https://api.semanticscholar.org/CorpusID:249324191
https://api.semanticscholar.org/CorpusID:249324191
https://api.semanticscholar.org/CorpusID:249324191
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://api.semanticscholar.org/CorpusID:218769192
https://api.semanticscholar.org/CorpusID:218769192
https://api.semanticscholar.org/CorpusID:218769192
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:210992203
https://api.semanticscholar.org/CorpusID:210992203
https://api.semanticscholar.org/CorpusID:210992203
https://api.semanticscholar.org/CorpusID:232404187
https://api.semanticscholar.org/CorpusID:232404187
https://api.semanticscholar.org/CorpusID:232404187
https://api.semanticscholar.org/CorpusID:232404187
https://api.semanticscholar.org/CorpusID:232404187
https://api.semanticscholar.org/CorpusID:210882549
https://api.semanticscholar.org/CorpusID:210882549
https://api.semanticscholar.org/CorpusID:210882549
https://api.semanticscholar.org/CorpusID:210882549
https://api.semanticscholar.org/CorpusID:210882549
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1109/ICDE.2002.994702
https://api.semanticscholar.org/CorpusID:199466365
https://api.semanticscholar.org/CorpusID:199466365
https://api.semanticscholar.org/CorpusID:199466365
https://api.semanticscholar.org/CorpusID:251084819
https://api.semanticscholar.org/CorpusID:251084819
https://api.semanticscholar.org/CorpusID:251084819
https://api.semanticscholar.org/CorpusID:251084819
https://api.semanticscholar.org/CorpusID:251084819
https://api.semanticscholar.org/CorpusID:260259557
https://api.semanticscholar.org/CorpusID:260259557
https://api.semanticscholar.org/CorpusID:260259557

Fabian M. Suchanek, Serge Abiteboul, and Pierre
Senellart. 2011. Paris: Probabilistic alignment
of relations, instances, and schema. Preprint,
arXiv:1111.7164.

Zequn Sun, Jiacheng Huang, Wei Hu, Muhao
Chen, Lingbing Guo, and Yuzhong Qu. 2019a.
Transedge: Translating relation-contextualized
embeddings for knowledge graphs.  ArXiv,
abs/2004.13579.

Zequn Sun, Chengming Wang, Wei Hu, Muhao
Chen, Jian Dai, Wei Zhang, and Yuzhong Qu.
2019b. Knowledge graph alignment network with
gated multi-hop neighborhood aggregation. In
AAAI Conference on Artificial Intelligence.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong
Pan. 2020. Logic attention based neighborhood
aggregation for inductive knowledge graph em-
bedding. Preprint, arXiv:1811.01399.

Yuxin Wang, Yuanning Cui, Wenqgiang Liu, Ze-
qun Sun, Yiqgiao Jiang, Kexin Han, and Wei
Hu. 2022. Facing changes: Continual entity
alignment for growing knowledge graphs. ArXiv,
abs/2207.11436.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
349-357, Brussels, Belgium. Association for Com-
putational Linguistics.

Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang,
Rui Yan, and Dongyan Zhao. 2019. Relation-
aware entity alignment for heterogeneous knowl-
edge graphs. ArXiv, abs/1908.08210.

Chenyan Xiong, Russell Power, and Jamie Callan.
2017. Explicit semantic ranking for academic
search via knowledge graph embedding. In Pro-
ceedings of the 26th International Conference on
World Wide Web, WWW 17, page 1271-1279,
Republic and Canton of Geneva, CHE. Interna-
tional World Wide Web Conferences Steering
Committee.

Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing,
and Hanghang Tong. 2021. Dynamic knowledge
graph alignment. In AAATI Conference on Artifi-
cial Intelligence.

Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu,
Jimmy Lin, and Xu Sun. 2019. Aligning cross-
lingual entities with multi-aspect information. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
4431-4441, Hong Kong, China. Association for
Computational Linguistics.

10

Donghan Yu, Yiming Yang, Ruohong Zhang, and
Yuexin Wu. 2021. Knowledge embedding based
graph convolutional network. In Proceedings
of the Web Conference 2021, WWW ’21, page
1619-1628, New York, NY, USA. Association for
Computing Machinery.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero
dos Santos, Bing Xiang, and Bowen Zhou. 2017.
Improved neural relation detection for knowledge
base question answering. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 571-581, Vancouver, Canada. Association
for Computational Linguistics.

Weixin Zeng, Jiuyang Tang, and Xiang Zhao.
2019. Iterative representation learning for en-
tity alignment leveraging textual information. In
PKDD/ECML Workshops.

Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2017. Iterative entity alignment via joint
knowledge embeddings. In International Joint
Conference on Artificial Intelligence.

A Method Appendix

A.1 Detail of factual triplet semantics
incorporation

©® © -8 © O -J

N

Figure 4: Combine the factual triplets
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The detail of factual triplet semantics in-
corporation is shown in Figure 4. For a
given entity e, it may act as either a head
or tail entity in a factual triplet (head en-
tity, relation, tail entity). In response to
these two different cases, the following pro-
cessing methods are used. Specifically, we
employ the notion of TransE to represent
triplets, which assumes h + r ~ t for a triplet.
When the entity e serves as the head en-
tity in a triplet, it has corresponding neigh-
bors {(r41,e11), (T2, €2)s - -+, (Pen, €1n) }, Wwhere
n represents the number of neighbors. There-
fore, we can represent the entity e using its
neighbors as {e;ru,...,emrm}t. When e
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DBPzi—gN l DBPjA—gN DBPpr-gN
Tlgn 1 Tlex [A A (Al | Tha [Tlex [AS AL AL | [Tler  [Tlen A Al A
t=0 | 70,414 95,142 3,623 1,811 12,682 | 77,214 93,484 3,750 1,875 13,127 | | 105,998 115,722 3,727 1,863 13,048
t=1 | 103,982 154,833 3,623 1,811 14,213 | 112,268 150,636 3,750 1,875 15,079 | 148,274 184,132 3,727 1,863 15,875
t=2 | 137,280 213,405 3,623 1,811 16,296 | 147,097 207,056 3,750 1,875 18,092 | 191,697 251,591 3,727 1,863 20,481
t=3 | 173,740 278,076 3,623 1,811 18,716 | 185,398 270,469 3,750 1,875 21,690 | 239,861 326,689 3,727 1,863 25,753
t=4 | 213,814 351,659 3,623 1,811 21,473 | 227,852 341,432 3,750 1,875 25,656 | 293,376 411,528 3,727 1,863 31,564
t=5 | 258,311 434,683 3,623 1,811 24,678 | 274,884 421,971 3,750 1,875 29,782 | 352,886 507,793 3,727 1,863 37,592

Table 3: Statistics of

serves as the tail entity, the neighbors are

{(rn1sen1), (Th2; €n2)s - - -5 (Thn, €nn) - The em-
bedding table becomes: {en1 + 741, .., €n +
'r;m}.

For an entity e, we have multiple embed-
ding representations: {€; —T¢1,...,€m — Tin},
{en1 + Tr1,...,€nn + Thn}. To better utilize
these embeddings, we use an attention mecha-
nism to combine them.

B Experiment Appendix

B.1 Dataset

The detail of the dataset is shown in Table 3.
It includes 5 snapshots to simulate the growth
of KGs. The two knowledge graphs from the
cross-lingual entity alignment dataset DBP15K
serve as the first snapshot. Each subsequent
snapshot grows by adding 20% more triplets
based on the previous snapshot.

B.2 Implementation details

We set the embedding dimensions for entities
and relations to be 100. For attributes and
entity names, after encoding with LaBSE, we
use PCA to reduce their dimensions to 100.
The embedding similarity metric used is CSLS.
As for the hyperparameters, we set a = 0.1, §
= 0.3, m = 1000, I, = 0.005, and dropout__ rate
= 0.3.

B.3 Integration of attributes

The experimental results are shown in Ta-
ble 4. It can be seen that attribute informa-
tion has brought significant performance im-
provements across all snapshots on the three
datasets. Specifically, for GCN-Align, KEGCN,
and DINGAL-O, which are relatively simple
GCN models unable to capture structural infor-
mation effectively, utilizing the text features of
attributes can lead to substantial performance
gains. While Dual-AMN, with its excellent
graph encoder, captures KG structural informa-
tion well, experimental results indicate that tex-
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the three datasets

tual features of attributes can further enhance
its performance, showing the positive effect
of attributes on entity alignment tasks. Even
ContEA, specifically designed for dynamic EA
task, would yield a performance improvement
of 6.8% (t = 1), 4.9% (t = 2) and 4% (t = 2)
on DBPyzy_ gy when using merged attribute
triplets. Although combining attributes can
enhance the performance of various models to
some extent, our model still achieves the best
performance on each snapshot of every dataset.
Even when removing attribute information, our
method outperforms models that incorporate
attribute information (such as Dual-AMN and
DINGAL-O). This further confirms the effec-
tiveness of our approach.

It is worth noting that for the DINGAL-
O model on the FR-EN dataset, utilizing at-
tributes may lead to a decrease in precision
but a significant improvement in recall. Higher
recall indicates the discovery of more correct
potential alignments, consistent with Hit@1.
This aligns with our expectations as we first
need to ensure a high recall to find as many
alignments as possible.

Furthermore, the effect of attributes is more
pronounced on the ZH-EN dataset. This is
because Chinese and English exhibit significant
differences, which are mitigated by the LaBSE
cross-lingual encoder.

C Related Work Appendix
C.1

Currently, most methods consider entity align-
ment in static scenarios, with the mainstream
approach being embedding-based entity align-
ment methods. The approach involves using
a KG encoder to represent entities as vectors
and then finding equivalent entities based on
specific similarity measures. Based on different
KG encoders, they can be classified into two
categories: translation-based(Lin et al., 2019;
Pei et al., 2019; Sun et al., 2019a; Zhu et al.,

Static entity alignment



2017) and GNN-based(Mao et al., 2021, 2020;
Sun et al., 2019b; Wang et al., 2018; Wu et al.,
2019). Translation-based models mainly use
KG embedding (KGE) techniques(Wu et al.,
2019) to embed entities into vectors and map
the embedded representations of entities to the
same vector space based on pre-aligned enti-
ties, which are the training data. GNN-based
models, on the other hand, utilize the idea of
twin GNN, where two KG encoders share pa-
rameters to encode entities from two KGs into
vectors without the need to map pre-aligned
entities to the same vector space. Due to their
simplicity and high performance, GNN-based
models are currently the mainstream entity
alignment models.

C.2 Dynamic entity alignment

Few works focus on dynamic entity alignment.
DINGA(Yan et al., 2021) first proposed the
task of dynamic entity alignment. They be-
lieved that the difficulty of this task lies in
the challenging update of embeddings, which
is highly coupled with the KG encoder and
the topology structure of the graph. There-
fore, they proposed to address the dynamic
entity alignment task by reducing the cou-
pling. DINGAL has a variant called DINGAL-
O, which uses previously learned model pa-
rameters to perform alignment predictions for
new entities. ContEA(Wang et al., 2022) pro-
posed a bidirectional matching strategy to se-
lect high-confidence alignment predictions to
cope with the growth of the knowledge graph
when searching for new alignments. By using
high-confidence predictions and affected enti-
ties to fine-tune the previous model parameters,
they achieved better results. They also intro-
duced a heuristic strategy to resolve alignment
conflicts during the stage.
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t=20 t=1 t=2 t=3
p R F1 P R F1 P R F1 p R F1
GCN-Align 56.5 21.2 308 275 170 21.0 173 140 155 123 11.7 120
GCN-Align® 81.3 50.7 62.5 55.5 47.5 51.2 42.1 42.3 42.2 33.1 37.3 35.1
KEGCN 56.9 221 319 338 180 235 273 253 196 23.0 128 16.5
> KEGCN °© 82.4 53.7 65.0 56.6 49.9 53.0 43.3 44.3 43.8 35.2 39.0 37.0
5 Dual-AMN 83.3 603 699 506 514 51.0 385 456 41.7 285 28.6 28.6
E Dual-AMN © 90.0 68.8 78.0 61.4 63.1 62.2 44.3 55.9 49.5 - - -
fL DINGAL-O* 49.7 195 28.0 37.0 158 222 315 135 189 251 11.1 154
g DINGAL-O ¢ 69.5 39.5 50.4 47.4 39.1 42.8 34.8 34.9 34.8 26.9 31.0 28.8
ContEA 845 61.1 709 541 531 53.6 431 468 449 364 41.6 38.8
ContEA ° 88.2 64.8 74.7 61.0 59.8 60.4 47.0 53.0 49.8 39.7 46.3 42.8
DEA-AttrAlign | 873 65.7 75.0 60.4 57.8 59.1 49.1 50.5 49.8 42.1 43.8 429
DEA-AttrAlign © | 91.1 71.5 80.1 66.4 64.7 65.5 52.4 57.5 549 45.1 50.6 47.7
GCN-Align 62.1 244 350 319 193 241 216 157 182 16.2 129 144
GCN-Align® 79.1 46.3 58.4 51.1 42.8 46.6 37.6 36.7 37.1 29.9 31.1 30.5
KEGCN 58.4 227 327 362 182 243 293 149 198 257 124 16.7
KEGCN © 79.1 477 59.5 51.8 43.8 47.5 39.5 37.6 38.5 31.9 32.0 32.0
&ZJ Dual-AMN 84.4 59.0 69.5 544 506 525 422 43.0 427 285 286 28.6
;IC Dual-AMN ° 86.7 61.9 72.3 57.5 55.6 56.5 45.0 48.3 46.6 - - -
qy DINGAL-O* 54.0 227 320 391 174 241 328 13.7 194 271 11.3 159
g DINGAL-O ¢ 66.4 359 46.6 43.4 35.1 38.8 31.1 30.0 30.6 24.2 25.6 24.9
ContEA 85.5 605 709 57.7 522 548 465 443 454 398 379 389
ContEA ° 87.5 63.2 73.4 61.2 57.0 59.0 48.9 48.9 48.9 41.8 41.4 41.6
DEA-AttrAlign | 88.6 66.1 75.7 61.3 559 585 504 46.5 484 43.7 387 441
DEA-AttrAlign ® | 90.2 68.5 77.8 62.4 61.3 61.8 50.1 52.6 51.3 41.7 44.2 42.9
GCN-Align 62.1 244 350 319 193 241 216 157 182 162 129 144
GCN-Align® 79.1 46.3 58.4 51.1 42.8 46.6 37.6 36.7 37.1 29.9 31.1 30.5
KEGCN 58.4 227 327 362 182 243 293 149 198 257 124 16.7
o KEGCN ° 79.1 47.7 59.5 51.8 43.8 47.5 39.5 37.6 38.5 31.9 32.0 32.0
b Dual-AMN 84.4 59.0 69.5 544 50.6 525 422 43.0 427 285 28.6 28.6
E Dual-AMN ¢ 86.7 61.9 72.3 57.5 55.6 56.5 45.0 48.3 46.6 - - -
& DINGAL-O* 54.0 22.7v 320 391 174 241 328 137 194 271 113 159
CQQ DINGAL-O ¢ 66.4 35.9 46.6 43.4 35.1 38.8 31.1 30.0 30.6 24.2 25.6 24.9
ContEA 86.8 635 733 56.6 524 544 452 426 43.8 387 354 37.0
ContEA ° 87.0 63.9 73.7 59.6 54.5 56.9 47.2 43.5 45.3 40.2 35.3 37.6
DEA-AttrAlign | 85.7 62.1 72.0 555 49.7 525 460 396 426 41.3 31.8 359
DEA-AttrAlign © | 91.8 75.4 82.8 59.2 64.2 61.6 46.6 51.3 48.8 39.0 41.5 40.2

Table 4: Results of entity alignment with attribute integration. The symbol ¢ represents the results
utilizing attribute information.
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