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Abstract001

Entity alignment is a key technology for in-002
tegrating knowledge graphs (KG). However,003
existing methods assume KG is static and004
overlook the fact that KG evolves over time.005
With the growth of KG, previous alignment006
results may require adjustments, and new007
equivalent entities need to be found for the008
newly added entities. Additionally, new009
entities often have fewer neighbors, which010
adds difficulty to their alignment. In this011
paper, we propose DEA-AttrAlign to ad-012
dress these challenges. The core idea is to013
quickly generate representations for enti-014
ties based on their neighborhoods. In cases015
where neighborhood information for new016
entities is lacking, we propose utilizing en-017
tity attributes and semantic facts derived018
from triplets as additional alignment infor-019
mation. Extensive experiments show that020
our approach is more effective than methods021
based on retraining or inductive learning.022

1 Introduction023

Entity alignment(EA) is the task of finding024

identical entities across different knowledge025

graphs(KGs). It can facilitate the sharing and026

transfer of knowledge from multiple sources,027

providing better support for downstream appli-028

cations such as question-answering systems(Yu029

et al., 2017), and search engine optimiza-030

tion(Xiong et al., 2017). Early research in en-031

tity alignment mainly relied on string matching032

to calculate entity similarity and used similarity033

propagation for inference during entity align-034

ment(Melnik et al., 2002; Suchanek et al., 2011).035

The development of deep learning techniques036

has led to recent work representing entities as037

embeddings and using nearest neighbor search038

in vector space for entity alignment(Chen et al.,039

2017). Typically, embedded-based entity align-040

ment models employ shallow or deep neural041

networks, such as TransE(Bordes et al., 2013) 042

or Graph Convolutional Networks (GCN)(Kipf 043

and Welling, 2017), to encode entities and uti- 044

lize the vector representations to compute sim- 045

ilarity between entities. These methods have 046

achieved good alignment performance in the 047

alignment reasoning stage, driving current re- 048

search in entity alignment. 049

However, most current entity alignment 050

methods assume that the knowledge graphs 051

are static(Yan et al., 2021), ignoring the fact 052

that KG grows over time. For example, the 053

system of DBpedia(Lehmann et al., 2015) ex- 054

tracts approximately 21 billion new triples each 055

month(Hofer et al., 2020), introducing new enti- 056

ties and providing clues for correcting previous 057

alignments. However, most existing methods 058

can only adapt to changes in the KG by re- 059

training models on the grown KG. This will 060

undoubtedly result in significant cost consump- 061

tion. 062

In this paper, we focus on the problem of 063

alignment after the growth of KG(referred to 064

as dynamic KG entity alignment, Figure 1 pro- 065

vides an example of dynamic KG entity align- 066

ment.) which presents the following challenges: 067

Figure 1: Explanation of dynamic KG entity align-
ment. Solid icons represent newly added entities.
Dotted lines represent equivalent entities. The task
of dynamic KG alignment is to find equivalent enti-
ties for the newly added ones and correct misalign-
ments from the previous stage.

• When the KG grows, it inevitably intro- 068

duces the problem of aligning new enti- 069
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ties. The cost of retraining the model from070

scratch is high. Therefore, a key challenge071

is how to obtain embeddings for new enti-072

ties quickly, accurately, and with minimal073

cost. ContEA(Wang et al., 2022) first uses074

the entity reconstruction function to infer075

the embeddings of new entities based on076

their neighborhoods. Then fine-tune the077

KG encoder to obtain more accurate em-078

beddings. However, its entity reconstruc-079

tion function only performs mean pooling080

on the neighbors surrounding the entity,081

without considering the varying influence082

of neighbors connected by different rela-083

tions on the entity.084

• The neighborhood information surround-085

ing new entities is often insufficient, lead-086

ing to the long-tail entity problem. This087

poses significant challenges for GCN-based088

EA methods. MCEA(Qi et al., 2022) pro-089

poses to enhance the embedding represen-090

tation of long-tail entities by using second-091

order neighborhood embeddings during092

the aggregation of neighbors. This in-093

evitably introduces some noise. It has094

been proven that attribute information095

plays a positive role in the entity align-096

ment process and complements the KG097

structure(Zeng et al., 2019; Cheng et al.,098

2022). However, currently, no work has099

utilized attributes in dynamic entity align-100

ment.101

In response to these challenges, we propose102

DEA-AttrAlign, a framework for Dynamic En-103

tity Alignment with Attribute Integration. For104

the challenge of obtaining embeddings for new105

entities: when a new entity is introduced, we106

utilize its neighborhood information to gener-107

ate embeddings. Specifically, we don’t simply108

average its neighbors, but instead use attention-109

based weighted averaging to address the vary-110

ing influence of different neighbors. Then the111

encoder is fine-tuned to generate embedding112

representations that are more sensible.113

To tackle the challenge of the long-tail en-114

tity problem, we propose integrating knowl-115

edge facts to enrich information by preserving116

the original triplet semantics for new entities117

with insufficient neighborhood information. In118

previous research on static entity alignment, at-119

tribute information has been proven to enhance120

performance(Yang et al., 2019; Lai et al., 2020; 121

Shi et al., 2023). Therefore, we are attempt- 122

ing for the first time to utilize the attribute 123

information to achieve better performance in 124

dynamic EA. 125

Extensive experiments have been conducted, 126

and our method has achieved optimal perfor- 127

mance whether in the base KG or after KG 128

growth. 129

2 Preliminary 130

2.1 Entity Alignment 131

Given two KGs G1 = {E1, R1, A1, T R
1 , T A

2 } 132

and G2 = {E2, R2, A2, T R
2 , T A

2 }, where E , R, A 133

represent sets of entities, relations, and at- 134

tributes respectively. TR ⊂ E × R × E is 135

the set of relation triplets. TA ⊂ E × A × V 136

is the set of attribute triplets. Entity align- 137

ment aims to find the alignment set A = 138

{(e1, e2) ∈ E1 × E2 | e1 ≡ e2}, where "≡" repre- 139

sents equivalence. In most cases, a small set of 140

seed alignments Atrain is provided as training 141

data, and the task is to find the remaining align- 142

ments Ares = {(e′
1, e′

2) ∈ E ′
1 × E ′

2 | e′
1 ≡ e′

2}, 143

where e′
1 and e′

2 represent the sets of entities 144

to be aligned in the two KGs. 145

2.2 Dynamic KG Entity Alignment: 146

The dynamic KG G is defined as a series 147

of snapshots G = (G0, G1, ..., GT ), where 148

the superscript number represents different 149

timestamps. For any two consecutive times- 150

tamps Gt = {E t, Rt, T t
R, T t

A} and Gt+1 = 151

{E t+1, Rt+1, T t+1
R , T t+1

A }, it holds that E t ⊆ 152

E t+1, Rt = Rt+1, T t
R ⊆ T t+1

R , and T t
A ⊆ T t+1

A . 153

Given two growing KGs G1 and G2, and a 154

seed entity alignment As at time t = 0. The 155

goal of dynamic entity alignment is to pre- 156

dict new alignments and revise old alignments 157

At
new =

{(
et

1, et
2
)

∈ E t
1 × E t

2 | et
1 ≡ et

2
}

based on 158

the current learned embeddings and alignment 159

model at time t. Considering that acquiring 160

seed entities is challenging, we do not assume 161

that the growth of KGs will bring new training 162

data, meaning that As remains the same at 163

t = 0 and t > 0. 164

3 Method 165

In this section, we will introduce our dynamic 166

entity alignment framework: DEA-AttrAlign. 167

Figure 2 depicts its overall process. It mainly 168
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Figure 2: Overview of the proposed method DEA-AttrAlign

consists of two stages: the base KG alignment169

stage and the growth KG alignment stage.170

171

3.1 Basic KG alignment stage172

At this stage, we first represent entities as em-173

bedding vectors by capturing information from174

both the structure and attributes of the entities.175

Specifically, we train a GNN-based structural176

encoder to capture structural information and177

we utilize pre-trained language models to cap-178

ture textual information associated with entity179

attributes. Subsequently, we combine specific180

similarity measures to find alignment results.181

3.1.1 Structural Encoder182

We adopt a GNN-based Dual-AMN(Mao et al.,183

2021) as the structural encoder to capture the184

structural information. It includes two mod-185

ules, which capture structure information at186

different levels. It consists of an inner-graph187

module (Aggregatorinner) that captures struc-188

tural information within a single KG and a189

cross-graph module (Aggregatorcross) that cap-190

tures cross-graph matching information. The191

process can be expressed using the following192

formula.193

heinner = Aggregatorinner(
∑

ej∈Nei

αijej)) (1)194

195
hestruct = Aggregatorcross(heinner , Eproxy) (2)196

Where, hestruct represents the structural in-197

formation embedding of entity e. Nei repre-198

sents the neighbors of entity e. Eproxy repre- 199

sents the proxy vector. 200

To train the Structural Encoder, we utilize 201

two losses: alignment loss and neighborhood 202

loss. The alignment loss adopts the loss pro- 203

posed by Dual-AMN. The neighborhood loss, 204

designed to address the issue of KG expansion, 205

aims to quickly and reasonably generate initial 206

embeddings for new entities. 207

Alignment Loss Given the embedding of 208

the structural encoder, the objective of align- 209

ment learning is to minimize the distance be- 210

tween equivalent entities (positive samples) and 211

maximize the distance between non-equivalent 212

entities (negative samples). We adopted the 213

loss function used in Dual-AMN as the align- 214

ment loss. 215

Lalign = log

1 +
∑
i∈As

∑
j∈Aneg

e1

exp (γ (λ + si − sj))


(3) 216

217

sj = sim
(
e1, e′

2
)

− sim
(
e′

1, e2
)

(4) 218

si = sim (e1, e2) (5) 219

Where AS is the seed alignment pair, e′
1, e′

2 220

are the negative samples. The specific sam- 221

pling strategy is that for e1, all other entities 222

in the same training batch are used as negative 223

samples. The negative samples for e2 are ob- 224

tained in the same way. γ is a scale factor, and 225

λ is the margin for separating the similarities 226

3



of seed alignment pairs and negative pairs. The227

similarity calculation uses cosine similarity.228

Neighborhood Loss As the KG grows, a229

well-trained GNN structural encoder may en-230

counter new entities. The significant challenge231

is how to incorporate the newly added entities232

into the encoder. ContEA(Wang et al., 2022)233

adopts averaging neighbors to initialize embed-234

dings for new entities. However, this approach235

overlooks the varying impact of different neigh-236

bors on the new entity. Therefore, we utilize237

an attention mechanism to represent the new238

entity through its neighbors, thus emphasizing239

the distinct roles of different neighbors. For240

this purpose, we have designed a neighborhood241

loss function:242

Lnei =
∑
ei∈E

∥∥∥∥∥∥ei −
∑

ej∈Nei

αijej

∥∥∥∥∥∥
2

2

(6)243

Where, Nei represents the set of one-hop244

neighbors of entity ei. The calculation of αij245

is as follows:246

αij =
exp

(
vT hrk

)
∑

e′
j∈Nei

∑
rk′ ∈Rij′ exp

(
vT hrk′

) (7)247

Where, vT is an attention vector, hrk
repre-248

sents the embedding vector of the relationship249

rk between entities ei and ej .250

Adding the neighborhood loss and alignment251

loss with weights gives the final loss:252

Lbase = Lalign + β · Lnei (8)253

3.1.2 Attribute Semantic Encoder254

The structural encoder can effectively capture255

the structural information of KGs. Previous256

studies have shown that structure and textual257

representations are fundamentally two comple-258

mentary views of entity alignment. Therefore,259

We also introduce attribute features in dynamic260

EA. Firstly, we collected the attribute infor-261

mation of entities from the DBP15K dataset.262

As KG grows, we use entity names to query263

related attributes and attribute values in Db-264

pedia. Then we used LaBSE(Feng et al., 2022)265

as the text encoder to capture entity seman-266

tic information. The specific approach is as267

follows:268

For entity names, we directly feed them into269

the encoder to form embeddings. For entity270

attribute information, we concatenate all at- 271

tribute triples related to e into a single string, 272

denoted as eattr (in the form of a1v1a2v2...). 273

The order of attribute triples depends on their 274

frequency in the knowledge graph. Finally, 275

we merge the entity's structural and seman- 276

tic information to form the final embedding 277

representation: 278

hei = hestruct ⊕ heattr (9) 279

where, heattr represents the attribute infor- 280

mation embedding of entity e using LaBSE. ⊕ 281

denotes the concatenation operation. Entity 282

name embedding is used as the initialization 283

of the structural encoder. 284

3.1.3 Bidirectional Alignment 285

Selection 286

After passing through two encoders, we ob- 287

tain the joint embedding representation of the 288

entities. Then, we use CSLS to compute the 289

similarity matrix and select alignment results. 290

To address the one-to-many issue inherent in 291

nearest neighbor search, we implement bidirec- 292

tional nearest neighbor selection. This method 293

ensures that (e1, e2) is considered equivalent 294

only if e1 ’s nearest neighbor in KG2 is e2, and 295

e2 ’s nearest neighbor in KG1 is e1. 296

3.2 Growth KG Alignment Stage 297

Figure 3 illustrates the main process of the 298

growth KG alignment stage. When t > 0, the 299

structure of KGs changes with the emergence 300

of new triples. 301

The task in this stage is to capture the struc- 302

tural changes while generating embeddings for 303

new entities. To tackle this challenge, we first 304

generate embeddings for the newly added enti- 305

ties using their neighborhoods with attention 306

mechanisms and relevant fact triples. Then, we 307

fine-tune the structural encoder. We also cap- 308

tured the semantic information brought by the 309

attributes of the new entities. After fine-tuning, 310

we combine the structural and semantic em- 311

beddings to form the final embeddings which 312

are used for new alignment predictions. Heuris- 313

tic strategies are employed to merge the new 314

predicted alignments with the old alignments 315

discovered at t − 1. 316
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Figure 3: Growth KG alignment stage

3.2.1 New Entity Embedding317

Generation318

The embedding generation of the new entity319

is divided into two steps: neighborhood-based320

initialization and factual triplet semantics in-321

corporation.322

Neighborhood-based Initialization323

Thanks to the optimization objective of neigh-324

borhood loss, we can represent a new entity325

using its neighborhood. The specific approach326

is shown in Equations 1 and 2.327

Factual Triplet Semantics Incorporation328

However, the neighbors of new entities are often329

sparse, resulting in a long-tail entity problem.330

Inspired by KAGNN(Huang et al., 2022), we331

used an approach that combines the factual332

triplets of new entities to enhance the embed-333

ding representation of new entities. More de-334

tails can be found in Appendix A.1.335

3.2.2 Fine-tuning Structural Encoder336

The new entity embedding representation ob-337

tained through the aforementioned process is338

not adequate. In addition, as new entities339

appear, the embedding representations of en-340

tities connected to the new entities will also341

be affected and need to be updated. To ad-342

dress the above issues, we choose to fine-tune343

the structural encoder. Specifically, accord- 344

ing to Wang et al. (2022), we only update the 345

parameters of the second module of the struc- 346

tural encoder, named the cross-layer aggregator 347

Aggregatorcross. 348

For the training data for fine-tuning, since 349

alignment mostly occurs around anchor enti- 350

ties, we only select anchor entities that appear 351

in new triplets (referred to as affected entities) 352

as seed alignments. However, the neighbors 353

of new entities are often sparse, so there are 354

not many anchor entities. It is far from suffi- 355

cient to fine-tune the model with only these 356

data. Therefore, combining the results of the 357

basic KG alignment stage, we select m pairs of 358

highly confident alignment results by setting 359

a threshold, thereby providing more compre- 360

hensive data for fine-tuning. We use two parts 361

of data for fine-tuning. The loss function for 362

fine-tuning is: 363

Lupdate =Lalign (High − Confidence)
+ α · Lalign (Affectd) + β · Lnei

(10)
364

The alignment loss of affected entity pairs, 365

denoted as Lalign (Affectd), and the alignment 366

loss of high-confidence entity pairs, denoted 367
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as Lalign (High − Confidence), are calculated.368

The fine-tuning loss function is then obtained369

by taking a weighted sum of these three losses.370

α and β are hyper parameters used to balance371

their importance.372

3.2.3 Alignment updates373

After obtaining the joint embeddings for the374

structure and attributes of the new entities,375

we can compute a similarity matrix for the376

entities, which allows us to make a new set377

of alignment predictions. Inevitably, conflicts378

may arise between these new alignment predic-379

tions and those generated in the previous step.380

To address this, we use a simple yet effective381

solution. For a given prediction (e1, e2), when382

both e1 and e2 are new entities, we keep it as383

an accurate alignment prediction. However,384

when either e1 or e2 is an old entity, conflicts385

occur between the alignment predictions and386

the ones given in the previous step. Because e1387

or e2 may align with a new entity in the current388

stage, while e1 or e2 has already aligned with389

the old entity in the previous stage. In this390

case, we determine which pair of predictions391

to keep based on the principle of similarity,392

retaining the pair with higher similarity.393

4 Experiment394

4.1 Datasets395

Wang et al. (2022) propose a dataset for dy-396

namic KG entity alignment, which is con-397

structed based on the widely used DBP15K398

dataset. Specifically, it includes 5 snapshots399

to simulate the growth of KGs. The detailed400

statistical information of the dataset is shown401

in Appendix B.1.402

4.2 Baselines403

We compared our model with the following404

methods and conducted experiments on the405

datasets.406

4.2.1 Retraining baselines407

Since most existing embedding-based EA meth-408

ods are designed for static KGs, they need to409

be retrained whenever new triplets appear.410

Here, we select the representative translation-411

based method MTransE(Chen et al., 2016), as412

well as several GNN-based methods, including413

GCN-Align(Wang et al., 2018), KEGCN(Yu414

et al., 2021), and Dual-AMN(Mao et al., 2021) 415

as our baselines. 416

4.2.2 Inductive baselines 417

There are limited entity alignment methods fo- 418

cusing on KG growth, such as DINGAL-O(Yan 419

et al., 2021) and ContEA(Wang et al., 2022). 420

Additionally, since there are some inductive 421

Knowledge Graph Embedding (KGE) methods 422

that can generate embeddings for new enti- 423

ties, we selected two representative inductive 424

KGE methods, MEAN(Hamaguchi et al., 2017) 425

and LAN(Wang et al., 2020), as the entity rep- 426

resentation layer, and integrated them with 427

Dual-AMN, referring to Wang et al. (2022). 428

We denote them as MEAN+ and LAN+ for 429

our two baselines. 430

4.3 Experiment settings 431

4.3.1 Evaluation metrics 432

Dao et al. (2023) noted that rank-based met- 433

rics like Mean Reciprocal Rank (MRR) and 434

Hits@K, though common in information re- 435

trieval, are unsuitable for EA matching tasks 436

since only Hits@1 aligns with the recall of 437

greedy matching algorithms. Therefore, we 438

follow their approach and use precision, recall, 439

and F1 score for evaluation. All values are 440

presented as percentages from 0 to 100, with 441

an F1 score of 100 indicating a perfect match. 442

4.4 Results 443

4.4.1 Main results 444

We conducted experiments on the dataset and 445

the experimental results are shown in Table 1. 446

To further validate the impact of attributes 447

on dynamic entity alignment, we apply our 448

attribute fusion method to five GCN-based 449

baseline models. The experimental results are 450

shown in Appendix B.3 451

Overall performance Our model achieved 452

optimal performance across all snapshots. 453

Compared to the best baseline, ContEA, our 454

model’s F1 scores improved significantly on var- 455

ious datasets. For the DBPZH−EN snapshots, 456

the F1 scores increased by 9.2% (t = 0), 11.9% 457

(t = 1), 10% (t = 2) and 8.9% (t = 3). Simi- 458

larly, for DBPJA−EN , the improvements were 459

6.9%, 7%, 5.9% and 4% across the respective 460

snapshots. On the DBPF R−EN snapshots, our 461
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t = 0 t = 1 t = 2 t = 3
P R F1 P R F1 P R F1 P R F1

D
B

P
Z

H
−

E
N Re

tra
in

in
g MTransE 55.2 17.8 26.9 24.2 11.1 15.2 15.9 7.8 10.5 9.4 5.4 6.8

GCN-Align 56.5 21.2 30.8 27.5 17.0 21.0 17.3 14.0 15.5 12.3 11.7 12.0
KEGCN 56.9 22.1 31.9 33.8 18.0 23.5 27.3 25.3 19.6 23.0 12.8 16.5

Dual-AMN 83.3 60.3 69.9 50.6 51.4 51.0 38.5 45.6 41.7 28.5 28.6 28.6
In

du
ct

MEAN+ 82.8 57.6 67.9 48.3 42.2 45.0 35.7 34.1 34.9 26.7 26.4 26.5
LAN+ ∗ 82.7 57.6 67.9 48.8 42.6 45.5 36.0 34.5 35.2 27.4 27.1 27.2

DINGAL-O 49.7 19.5 28.0 37.0 15.8 22.2 31.5 13.5 18.9 25.1 11.1 15.4
ContEA 84.5 61.1 70.9 54.1 53.1 53.6 43.1 46.8 44.9 36.4 41.6 38.8

DEA-AttrAlign 91.1 71.5 80.1 66.4 64.7 65.5 52.4 57.5 54.9 45.1 50.6 47.7

D
B

P
J

A
−

E
N Re

tra
in

in
g MTransE 59.9 20.0 29.9 29.3 12.1 17.2 21.3 8.2 11.8 15.1 6.1 8.7

GCN-Align 62.1 24.4 35.0 31.9 19.3 24.1 21.6 15.7 18.2 16.2 12.9 14.4
KEGCN 58.4 22.7 32.7 36.2 18.2 24.3 29.3 14.9 19.8 25.7 12.4 16.7

Dual-AMN 84.4 59.0 69.5 54.4 50.6 52.5 42.2 43.0 42.7 34.8 29.2 31.8

In
du

ct

MEAN+ 84.7 57.1 68.2 52.8 42.0 46.8 40.7 33.0 36.5 33.0 26.1 29.2
LAN+ 84.5 57.5 68.4 52.8 42.4 47.0 41.0 33.3 36.8 33.5 26.5 29.2

DINGAL-O 54.0 22.7 32.0 39.1 17.4 24.1 32.8 13.7 19.4 27.1 11.3 15.9
ContEA 85.5 60.5 70.9 57.7 52.2 54.8 46.5 44.3 45.4 39.8 37.9 38.9

DEA-AttrAlign 90.2 68.5 77.8 62.4 61.3 61.8 50.1 52.6 51.3 41.7 44.2 42.9

D
B

P
F

R
−

E
N Re

tra
in

in
g MTransE 57.0 18.8 28.3 24.6 10.0 14.2 14.5 6.2 8.7 10.8 4.0 5.9

GCN-Align 58.3 22.3 32.3 28.5 17.2 21.5 18.4 13.1 15.3 13.8 10.3 11.8
KEGCN 58.7 23.3 33.4 35.0 17.8 23.6 27.4 13.3 17.9 23.2 10.4 14.4

Dual-AMN 85.1 61.8 71.6 52.1 49.8 51.0 40.7 40.4 40.6 35.1 27.3 30.7

In
du

ct

MEAN+ 84.0 58.5 69.0 51.4 41.5 45.9 38.7 30.5 34.1 31.4 23.5 26.9
LAN+ 84.5 59.4 69.7 50.6 41.0 45.3 37.9 30.0 33.5 30.4 22.7 26.0

DINGAL-O 54.0 22.4 31.7 38.1 16.5 23.1 32.9 12.4 18.0 25.8 9.2 13.6
ContEA 86.8 63.5 73.3 56.6 52.4 54.4 45.2 42.6 43.8 38.7 35.4 37.0

DEA-AttrAlign 91.8 75.4 82.8 59.2 64.2 61.6 46.6 51.3 48.8 39.0 41.5 40.2

Table 1: Main results of entity alignment on three datasets

model achieved gains of 9.5%, 7.2%, 5%, and462

3.2% at the corresponding time points.463

Compared with retraining baselines464

Compared to the best retraining baseline: Dual-465

AMN, our model’s F1 scores show significant466

improvements across all datasets and time467

points. For DBPZH−EN , the F1 scores in-468

crease by 10.2%, 14.5%, 13.2%, and 19.1% at469

t = 0, t = 1, t = 2, and t = 3, respectively.470

In the DBPJA−EN dataset, the scores increase471

by 8.3%, 9.3%, 8.6%, and 11.1% at the same472

time points. For DBPF R−EN , the respective473

increases are 11.2%, 10.6%, 8.2%, and 9.5%474

at each time point. DEA-AttrAlign achieves475

good performance by considering the entire476

process as continuous, effectively utilizing the477

outputs of previous stages (such as alignment478

prediction results and model parameters) and479

integrating their alignment predictions through480

heuristic strategies(Wang et al., 2022).481

Compared with inductive baselines As482

for the inductive baselines, DINGAL-O, a483

model specifically designed for dynamic entity484

alignment tasks, does not perform well either485

as it does not make any adjustments to the486

model parameters and simply inducts new enti-487

ties based on existing model parameters, which488

is unreasonable. Although ContEA achieves 489

good results compared to other inference mod- 490

els, it only relies on neighborhoods for new 491

entity generation, and we know that the neigh- 492

borhoods of new entities are often very sparse. 493

Our method not only utilizes neighborhood in- 494

formation with attention mechanisms to gener- 495

ate embeddings for new entities but also incor- 496

porates textual information derived from the 497

semantic facts of new entities and the attribute 498

triples associated with them. Various types 499

of information are used to make the embed- 500

dings of new entities more reasonable, leading 501

to performance improvements. Furthermore, 502

due to the incorporation of entity attribute 503

triples, our method also achieves performance 504

improvements of 9.2% on DBPZH−EN , 6.9% 505

on DBPJA−EN , 9.5% on DBPF R−EN during 506

the basic KG alignment stage (t = 0). 507

Additionally, it can be observed that the per- 508

formance of all models decreases as the graph 509

grows. This is because the search space of can- 510

didate entity pairs expand, the ratio of seed 511

alignment to entities to be aligned decreases 512

and the number of entities to be aligned be- 513

comes very large, resulting in difficulties in 514

correctly matching entities. 515
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t = 0 t = 1 t = 2 t = 3
P R F1 P R F1 P R F1 P R F1

Z
H

−
E

N

DEA-AttrAlign 91.1 71.5 80.1 66.4 64.7 65.5 52.4 57.5 54.9 45.1 50.6 47.7
w/o Nei 80.3 53.6 64.3 15.8↓ 52.8 45.1 48.7 16.8↓ 39.3 38.1 38.7 16.2↓ 32.2 32.4 32.3 15.4↓
w/o Attr 87.3 65.7 75.0 5.1↓ 60.4 57.8 59.1 6.4↓ 49.1 50.5 49.8 5.1↓ 42.1 43.8 42.9 4.8↓

w/o Attr&Name 83.7 60.1 69.9 10.2↓ 57.2 52.4 54.7 10.8↓ 46.5 46.5 46.5 8.4↓ 38.5 40.6 39.5 8.2↓
w/o Fact - - - - 60.9 56.4 58.6 6.9↓ 47.7 50.3 49.0 5.9↓ 39.4 44.5 41.8 5.9↓

J
A

−
E

N

DEA-AttrAlign 90.2 68.5 77.8 62.4 61.3 61.8 50.1 52.6 51.3 41.7 44.2 42.9
w/o Nei 82.1 55.2 66.0 11.8↓ 53.6 44.3 48.5 13.3↓ 41.3 35.3 38.0 13.3↓ 33.0 28.1 30.4 12.5↓
w/o Attr 88.6 66.1 75.7 2.1↓ 61.3 55.9 58.5 3.3↓ 50.4 46.5 48.4 2.9↓ 43.7 38.7 41.0 1.9↓

w/o Attr&Name 85.2 60.4 70.7 7.1↓ 59.6 51.8 55.4 6.4↓ 49.4 43.9 46.5 4.8↓ 43.2 36.9 39.8 3.1↓
w/o Fact - - - - 58.8 54.5 56.6 5.2↓ 46.4 47.1 46.7 4.6↓ 38.7 40.2 39.5 3.4↓

F
R

−
E

N

DEA-AttrAlign 91.8 75.4 82.8 59.2 64.2 61.6 46.6 51.3 48.8 39.0 41.5 40.2
w/o Nei 83.4 58.0 68.5 14.3↓ 53.3 44.4 48.5 13.1↓ 39.3 32.8 35.8 13.0↓ 30.7 25.0 27.5 12.7↓
w/o Attr 85.7 62.1 72.0 10.8↓ 55.5 49.7 52.5 9.1↓ 46.0 39.6 42.6 6.2↓ 41.3 31.8 35.9 4.3↓

w/o Attr & Name 84.7 60.8 70.8 12.0↓ 57.2 49.4 53.0 8.6↓ 47.5 39.4 43.0 5.8↓ 42.0 31.6 36.1 4.1↓
w/o Fact - - - - 54.9 53.5 54.2 7.4↓ 42.3 43.3 42.8 6.0↓ 35.6 36.0 35.8 4.4↓

Table 2: Ablation study results on three datasets

4.4.2 Ablation study516

We design four sets of ablation experiments.517

The experimental results are shown in Table 2.518

DEA-AttrAlign w/o Nei: When training519

the structural encoder, neighborhood loss is520

not used.521

DEA-AttrAlign w/o Attr: At all stages,522

for an entity e, we only use GCN to capture523

structural information.524

DEA-AttrAlign w/o Attr&name: In525

the basic KG alignment stage, we do not use526

the textual representation vector of the entity527

name as initialization for entity e. Instead, we528

randomly initialize the embedding.529

DEA-AttrAlign w/o Fact: In the growth530

KG alignment stage, we no longer use TransE531

to retain the semantic information of the fac-532

tual triplets. We only rely on GCN to aggre-533

gate neighborhood information in generating534

embeddings.535

After removing the neighborhood loss, there536

is a significant decrease in model performance537

by over 10% on each snapshot, which also538

proves the effectiveness of the neighborhood539

loss we designed. The structural encoder540

trained with the neighborhood loss enables us541

to initialize embeddings for new entities using542

their neighbors. The performance decreases543

when the attribute information is removed. On544

the ZH-EN dataset, performance decreased by545

up to 6.1% (t = 1); on the JA-EN dataset, per-546

formance decreased by up to 3.3% (t = 1); on547

the FR-EN dataset, performance decreased by548

up to 10.8% (t = 0) and there is even greater549

performance decrease when the entity name550

is also removed. On the ZH-EN dataset, per-551

formance decreased by up to 10.8% (t = 1);552

on the JA-EN dataset, performance decreased 553

by up to 7.1% (t = 0); on the FR-EN dataset, 554

performance decreased by up to 12.0% (t = 0). 555

This also demonstrates the effectiveness of our 556

method in utilizing both attribute information 557

and entity names. The performance also de- 558

creases when the semantic information of the 559

factual triplets is removed. On the ZH-EN 560

dataset, performance decreased by up to 6.9% 561

(t = 1); on the JA-EN dataset, performance 562

decreased by up to 5.2% (t = 1); on the FR-EN 563

dataset, performance decreased by up to 7.4% 564

(t = 1), which further validates the effective- 565

ness of this module. 566

5 Conclusion 567

In this paper, we propose a method called 568

DEA-AttrAlign to address the more realistic 569

scenario of entity alignment, which is dynamic 570

entity alignment task. This method leverages 571

entity neighborhood structure and fact triples 572

to quickly generate embeddings for new entities. 573

Additionally, we are the first to incorporate at- 574

tribute information into the dynamic entity 575

alignment task, using attributes to enhance 576

alignment when entity neighborhood informa- 577

tion is insufficient. Extensive experimental 578

results demonstrate the effectiveness of our 579

method. 580

6 Limitations 581

Although the effectiveness of our method, DEA- 582

AttrAlign, has been demonstrated, there are 583

still issues that need to be explored in the fu- 584

ture: (1) The current datasets simulate KG 585

growth by assuming only the appearance of 586

new entities. More complex scenarios, such as 587

8



the addition or deletion of relationships, need588

to be explored in future research. (2) Our589

current work incorporates only two modalities,590

namely structure and text. Future work could591

investigate the impact of incorporating addi-592

tional modalities, such as images, on dynamic593

entity alignment.594
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A Method Appendix 774

A.1 Detail of factual triplet semantics 775

incorporation 776

Figure 4: Combine the factual triplets

The detail of factual triplet semantics in- 777

corporation is shown in Figure 4. For a 778

given entity e, it may act as either a head 779

or tail entity in a factual triplet (head en- 780

tity, relation, tail entity). In response to 781

these two different cases, the following pro- 782

cessing methods are used. Specifically, we 783

employ the notion of TransE to represent 784

triplets, which assumes h + r ≈ t for a triplet. 785

When the entity e serves as the head en- 786

tity in a triplet, it has corresponding neigh- 787

bors {(rt1, et1), (rt2, et2), . . . , (rtn, etn)}, where 788

n represents the number of neighbors. There- 789

fore, we can represent the entity e using its 790

neighbors as {et1rt1, . . . , etnrtn}. When e 791
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DBPZH−EN DBPJA−EN DBPFR−EN
|T |ZH | T |EN |As| |Av| |Ap| |T |JA |T |EN |As| |Av| |Ap| |T |FR |T |EN |As| |Av| |Ap|

t=0 70,414 95,142 3,623 1,811 12,682 77,214 93,484 3,750 1,875 13,127 | 105,998 115,722 3,727 1,863 13,048
t=1 103,982 154,833 3,623 1,811 14,213 112,268 150,636 3,750 1,875 15,079 148,274 184,132 3,727 1,863 15,875
t=2 137,280 213,405 3,623 1,811 16,296 147,097 207,056 3,750 1,875 18,092 191,697 251,591 3,727 1,863 20,481
t=3 173,740 278,076 3,623 1,811 18,716 185,398 270,469 3,750 1,875 21,690 239,861 326,689 3,727 1,863 25,753
t=4 213,814 351,659 3,623 1,811 21,473 227,852 341,432 3,750 1,875 25,656 293,376 411,528 3,727 1,863 31,564
t=5 258,311 434,683 3,623 1,811 24,678 274,884 421,971 3,750 1,875 29,782 352,886 507,793 3,727 1,863 37,592

Table 3: Statistics of the three datasets

serves as the tail entity, the neighbors are792

{(rh1, eh1), (rh2, eh2), . . . , (rhn, ehn)}. The em-793

bedding table becomes: {eh1 + rh1, . . . , ehn +794

rhn}.795

For an entity e, we have multiple embed-796

ding representations: {et1 −rt1, . . . , etn −rtn},797

{eh1 + rh1, . . . , ehn + rhn}. To better utilize798

these embeddings, we use an attention mecha-799

nism to combine them.800

B Experiment Appendix801

B.1 Dataset802

The detail of the dataset is shown in Table 3.803

It includes 5 snapshots to simulate the growth804

of KGs. The two knowledge graphs from the805

cross-lingual entity alignment dataset DBP15K806

serve as the first snapshot. Each subsequent807

snapshot grows by adding 20% more triplets808

based on the previous snapshot.809

B.2 Implementation details810

We set the embedding dimensions for entities811

and relations to be 100. For attributes and812

entity names, after encoding with LaBSE, we813

use PCA to reduce their dimensions to 100.814

The embedding similarity metric used is CSLS.815

As for the hyperparameters, we set α = 0.1, β816

= 0.3, m = 1000, lr = 0.005, and dropout_rate817

= 0.3.818

B.3 Integration of attributes819

The experimental results are shown in Ta-820

ble 4. It can be seen that attribute informa-821

tion has brought significant performance im-822

provements across all snapshots on the three823

datasets. Specifically, for GCN-Align, KEGCN,824

and DINGAL-O, which are relatively simple825

GCN models unable to capture structural infor-826

mation effectively, utilizing the text features of827

attributes can lead to substantial performance828

gains. While Dual-AMN, with its excellent829

graph encoder, captures KG structural informa-830

tion well, experimental results indicate that tex-831

tual features of attributes can further enhance 832

its performance, showing the positive effect 833

of attributes on entity alignment tasks. Even 834

ContEA, specifically designed for dynamic EA 835

task, would yield a performance improvement 836

of 6.8% (t = 1), 4.9% (t = 2) and 4% (t = 2) 837

on DBPZH−EN when using merged attribute 838

triplets. Although combining attributes can 839

enhance the performance of various models to 840

some extent, our model still achieves the best 841

performance on each snapshot of every dataset. 842

Even when removing attribute information, our 843

method outperforms models that incorporate 844

attribute information (such as Dual-AMN and 845

DINGAL-O). This further confirms the effec- 846

tiveness of our approach. 847

It is worth noting that for the DINGAL- 848

O model on the FR-EN dataset, utilizing at- 849

tributes may lead to a decrease in precision 850

but a significant improvement in recall. Higher 851

recall indicates the discovery of more correct 852

potential alignments, consistent with Hit@1. 853

This aligns with our expectations as we first 854

need to ensure a high recall to find as many 855

alignments as possible. 856

Furthermore, the effect of attributes is more 857

pronounced on the ZH-EN dataset. This is 858

because Chinese and English exhibit significant 859

differences, which are mitigated by the LaBSE 860

cross-lingual encoder. 861

C Related Work Appendix 862

C.1 Static entity alignment 863

Currently, most methods consider entity align- 864

ment in static scenarios, with the mainstream 865

approach being embedding-based entity align- 866

ment methods. The approach involves using 867

a KG encoder to represent entities as vectors 868

and then finding equivalent entities based on 869

specific similarity measures. Based on different 870

KG encoders, they can be classified into two 871

categories: translation-based(Lin et al., 2019; 872

Pei et al., 2019; Sun et al., 2019a; Zhu et al., 873
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2017) and GNN-based(Mao et al., 2021, 2020;874

Sun et al., 2019b; Wang et al., 2018; Wu et al.,875

2019). Translation-based models mainly use876

KG embedding (KGE) techniques(Wu et al.,877

2019) to embed entities into vectors and map878

the embedded representations of entities to the879

same vector space based on pre-aligned enti-880

ties, which are the training data. GNN-based881

models, on the other hand, utilize the idea of882

twin GNN, where two KG encoders share pa-883

rameters to encode entities from two KGs into884

vectors without the need to map pre-aligned885

entities to the same vector space. Due to their886

simplicity and high performance, GNN-based887

models are currently the mainstream entity888

alignment models.889

C.2 Dynamic entity alignment890

Few works focus on dynamic entity alignment.891

DINGA(Yan et al., 2021) first proposed the892

task of dynamic entity alignment. They be-893

lieved that the difficulty of this task lies in894

the challenging update of embeddings, which895

is highly coupled with the KG encoder and896

the topology structure of the graph. There-897

fore, they proposed to address the dynamic898

entity alignment task by reducing the cou-899

pling. DINGAL has a variant called DINGAL-900

O, which uses previously learned model pa-901

rameters to perform alignment predictions for902

new entities. ContEA(Wang et al., 2022) pro-903

posed a bidirectional matching strategy to se-904

lect high-confidence alignment predictions to905

cope with the growth of the knowledge graph906

when searching for new alignments. By using907

high-confidence predictions and affected enti-908

ties to fine-tune the previous model parameters,909

they achieved better results. They also intro-910

duced a heuristic strategy to resolve alignment911

conflicts during the stage.912
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t = 0 t = 1 t = 2 t = 3
P R F1 P R F1 P R F1 P R F1

D
B

P
Z

H
−

E
N

GCN-Align 56.5 21.2 30.8 27.5 17.0 21.0 17.3 14.0 15.5 12.3 11.7 12.0
GCN-Align⋄ 81.3 50.7 62.5 55.5 47.5 51.2 42.1 42.3 42.2 33.1 37.3 35.1

KEGCN 56.9 22.1 31.9 33.8 18.0 23.5 27.3 25.3 19.6 23.0 12.8 16.5
KEGCN ⋄ 82.4 53.7 65.0 56.6 49.9 53.0 43.3 44.3 43.8 35.2 39.0 37.0
Dual-AMN 83.3 60.3 69.9 50.6 51.4 51.0 38.5 45.6 41.7 28.5 28.6 28.6

Dual-AMN ⋄ 90.0 68.8 78.0 61.4 63.1 62.2 44.3 55.9 49.5 - - -
DINGAL-O∗ 49.7 19.5 28.0 37.0 15.8 22.2 31.5 13.5 18.9 25.1 11.1 15.4
DINGAL-O ⋄ 69.5 39.5 50.4 47.4 39.1 42.8 34.8 34.9 34.8 26.9 31.0 28.8

ContEA 84.5 61.1 70.9 54.1 53.1 53.6 43.1 46.8 44.9 36.4 41.6 38.8
ContEA ⋄ 88.2 64.8 74.7 61.0 59.8 60.4 47.0 53.0 49.8 39.7 46.3 42.8

DEA-AttrAlign 87.3 65.7 75.0 60.4 57.8 59.1 49.1 50.5 49.8 42.1 43.8 42.9
DEA-AttrAlign ⋄ 91.1 71.5 80.1 66.4 64.7 65.5 52.4 57.5 54.9 45.1 50.6 47.7

D
B

P
J

A
−

E
N

GCN-Align 62.1 24.4 35.0 31.9 19.3 24.1 21.6 15.7 18.2 16.2 12.9 14.4
GCN-Align⋄ 79.1 46.3 58.4 51.1 42.8 46.6 37.6 36.7 37.1 29.9 31.1 30.5

KEGCN 58.4 22.7 32.7 36.2 18.2 24.3 29.3 14.9 19.8 25.7 12.4 16.7
KEGCN ⋄ 79.1 47.7 59.5 51.8 43.8 47.5 39.5 37.6 38.5 31.9 32.0 32.0
Dual-AMN 84.4 59.0 69.5 54.4 50.6 52.5 42.2 43.0 42.7 28.5 28.6 28.6

Dual-AMN ⋄ 86.7 61.9 72.3 57.5 55.6 56.5 45.0 48.3 46.6 - - -
DINGAL-O∗ 54.0 22.7 32.0 39.1 17.4 24.1 32.8 13.7 19.4 27.1 11.3 15.9
DINGAL-O ⋄ 66.4 35.9 46.6 43.4 35.1 38.8 31.1 30.0 30.6 24.2 25.6 24.9

ContEA 85.5 60.5 70.9 57.7 52.2 54.8 46.5 44.3 45.4 39.8 37.9 38.9
ContEA ⋄ 87.5 63.2 73.4 61.2 57.0 59.0 48.9 48.9 48.9 41.8 41.4 41.6

DEA-AttrAlign 88.6 66.1 75.7 61.3 55.9 58.5 50.4 46.5 48.4 43.7 38.7 44.1
DEA-AttrAlign ⋄ 90.2 68.5 77.8 62.4 61.3 61.8 50.1 52.6 51.3 41.7 44.2 42.9

D
B

P
F

R
−

E
N

GCN-Align 62.1 24.4 35.0 31.9 19.3 24.1 21.6 15.7 18.2 16.2 12.9 14.4
GCN-Align⋄ 79.1 46.3 58.4 51.1 42.8 46.6 37.6 36.7 37.1 29.9 31.1 30.5

KEGCN 58.4 22.7 32.7 36.2 18.2 24.3 29.3 14.9 19.8 25.7 12.4 16.7
KEGCN ⋄ 79.1 47.7 59.5 51.8 43.8 47.5 39.5 37.6 38.5 31.9 32.0 32.0
Dual-AMN 84.4 59.0 69.5 54.4 50.6 52.5 42.2 43.0 42.7 28.5 28.6 28.6

Dual-AMN ⋄ 86.7 61.9 72.3 57.5 55.6 56.5 45.0 48.3 46.6 - - -
DINGAL-O∗ 54.0 22.7 32.0 39.1 17.4 24.1 32.8 13.7 19.4 27.1 11.3 15.9
DINGAL-O ⋄ 66.4 35.9 46.6 43.4 35.1 38.8 31.1 30.0 30.6 24.2 25.6 24.9

ContEA 86.8 63.5 73.3 56.6 52.4 54.4 45.2 42.6 43.8 38.7 35.4 37.0
ContEA ⋄ 87.0 63.9 73.7 59.6 54.5 56.9 47.2 43.5 45.3 40.2 35.3 37.6

DEA-AttrAlign 85.7 62.1 72.0 55.5 49.7 52.5 46.0 39.6 42.6 41.3 31.8 35.9
DEA-AttrAlign ⋄ 91.8 75.4 82.8 59.2 64.2 61.6 46.6 51.3 48.8 39.0 41.5 40.2

Table 4: Results of entity alignment with attribute integration. The symbol ⋄ represents the results
utilizing attribute information.
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