
Generating Code World Models with Large Language
Models Guided by Monte Carlo Tree Search

Nicola Dainese∗
Department of Computer Science

Aalto University
nicola.dainese@aalto.fi

Matteo Merler∗
Department of Computer Science

Aalto University
matteo.merler@aalto.fi

Minttu Alakuijala
Department of Computer Science

Aalto University
minttu.alakuijala@aalto.fi

Pekka Marttinen
Department of Computer Science

Aalto University
pekka.marttinen@aalto.fi

Abstract

In this work we consider Code World Models, world models generated by a Large
Language Model (LLM) in the form of Python code for model-based Reinforce-
ment Learning (RL). Calling code instead of LLMs for planning has potential to
be more precise, reliable, interpretable, and extremely efficient. However, writing
appropriate Code World Models requires the ability to understand complex instruc-
tions, to generate exact code with non-trivial logic and to self-debug a long program
with feedback from unit tests and environment trajectories. To address these chal-
lenges, we propose Generate, Improve and Fix with Monte Carlo Tree Search
(GIF-MCTS), a new code generation strategy for LLMs. To test our approach in an
offline RL setting, we introduce the Code World Models Benchmark (CWMB), a
suite of program synthesis and planning tasks comprised of 18 diverse RL envi-
ronments paired with corresponding textual descriptions and curated trajectories.
GIF-MCTS surpasses all baselines on the CWMB and two other benchmarks, and
we show that the Code World Models synthesized with it can be successfully used
for planning, resulting in model-based RL agents with greatly improved sample
efficiency and inference speed.

1 Introduction

The ability to model the world is essential for goal-oriented intelligent agents [Ha and Schmidhuber,
2018]. When faced with a novel environment, the agent must quickly understand its mechanics to
achieve its goal, for example by building an internal representation of the world and planning with it.
In this context, natural language conditioning can be useful for grounding current observations in
past knowledge and improving the agent’s understanding of the world. Therefore, communicating
information about a new task to the agent in natural language is particularly promising, and multiple
works explore instruction-following agents [Jang et al., 2022, Ahn et al., 2022]. However, not all
important information can be communicated in the form of imperative instructions. Many key facts
required to solve a task involve understanding observations, predicting outcomes of different actions
and determining whether those outcomes align with the agent’s goals. Thus, systems capable of
leveraging additional descriptive information, such as model-based Reinforcement Learning (RL)
agents, have a greater potential for fast and efficient adaptation via natural language [Lin et al., 2024].

∗Asterisk indicates equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Code generation
with GIF-MCTS

Validate Code
World Model

Candidate
Code World Model

Can predict
correctly?

Environment and task
description

Feedback on
wrong predictions

class Environment:
 def __init__(self):
 se lf.cart_position =
 ...

Trajectories collected
from the environment

Large Language Model

No
Planning with the

Code World Model

Yes

Figure 1: Overview of the Code World Models (CWM) framework. Given the description of an
environment and a task, we use an LLM guided by the GIF-MCTS method to iteratively generate
and refine a candidate CWM. The candidate’s correctness is evaluated by checking if it correctly
predicts a set of trajectories collected from the true environment. If the model cannot fully predict
all transitions, the fraction of correct predictions and other information are given as feedback to the
LLM and the cycle repeats. After matching all transitions or having used up a computational budget,
the best CWM is returned and used to solve the task via model-based planning.

Large Language Models (LLMs) have revolutionized the field of Natural Language Processing, and
offer great opportunities for world modeling, thanks to their internet-scale knowledge, reasoning,
and instruction-following abilities. However, it is not clear how to best combine LLMs and world
models. One option is multi-modal systems such as text-to-video models [Gupta et al., 2023], which
present the highest prediction fidelity, language understanding and out-of-distribution generalization
for generation tasks, yet they are too slow to be called repeatedly in a planning loop due to their
high inference cost. On the other hand, language-conditioned model-based RL agents [Dainese et al.,
2023, Lin et al., 2024] are typically fast at planning and easily trainable. However, they cannot
conveniently incorporate LLMs because of their specialised architectures and as such have poor
language understanding and generalization capabilities. Other works, such as [Hao et al., 2023],
perform planning using an LLM as a world model directly, but they are slow for inference and
restricted to textual inputs and outputs, limiting their applicability in RL.

In this study we propose to model the world with code, rather than directly predicting the future with
an LLM, which is known to be costly, slow and unreliable. In contrast, code is precise, fast, reliable
and interpretable. We thus introduce Code World Models (CWMs), a novel approach to generate
RL world models by writing Python code with an LLM, for which a high-level overview can be
seen in Figure 1. The concept of CWMs has been independently and contemporaneously proposed
by Tang et al. [2024b]; however, our method is technically distinct (Section 2) and scales to more
complex world models (Section 5). Alongside this paradigm, we introduce the Code World Models
Benchmark (CWMB), consisting of 18 diverse RL environments for discrete and continuous control,
paired with corresponding natural language descriptions and curated trajectories. This benchmark
aims to facilitate the accurate synthesis of Code World Models through learning from the provided
data and evaluate different code generation methods across environments of varying complexity.

Synthesizing programs for world models requires complex reasoning, precise instruction following,
accurate implementation of the environment dynamics and reward functions, as well as coding skills
for debugging and refining long programs using unit tests. To meet these challenges we propose
Generate, Improve and Fix with Monte Carlo Tree Search (GIF-MCTS), a new code generation
method based on Monte Carlo Tree Search (MCTS, Kocsis and Szepesvári [2006]) for LLMs,
especially suited for generating Code World Models.2 We evaluate the performance of our method
on three benchmarks: the new CWMB, the Competition split on APPS [Hendrycks et al., 2021], a
popular and challenging coding benchmark, and RTFM [Zhong et al., 2020], a language-conditioned
grid-world, showcasing environments with varying characteristics and complexity. GIF-MCTS

2We release our code at https://github.com/nicoladainese96/code-world-models.

2

outperforms existing methods on all three benchmarks. Moreover, we demonstrate successful
planning in several environments using the synthesized CWMs. This results in model-based RL
agents with exceptional sample efficiency and inference speed (from four to six orders of magnitude
faster compared to directly querying an LLM as a world model, as shown in Appendix H), while,
provided the CWM is accurate, matching the performance of an oracle planner with access to the
real-world model. Finally, we discuss the limitations and challenges to overcome to make Code
World Models more broadly applicable.

2 Related Work

World models with code. Code is a promising choice for predictive world models thanks to its fast
inference, exact syntax and interpretable behavior. However, code alone often struggles to cover the
entire scope of the environment’s dynamics and previous works often uses different techniques to
build a full world model. AutumnSynth [Das et al., 2021] uses a custom programming language
named Autumn and integrates a functional synthesis step with a synthesized finite-state automata
to model any latent variable. Another popular choice is the Planning Domain Definition Language
(PDDL) [Ghallab et al., 1998], which expresses actions as a set of preconditions and effects on
the environment. However, PDDL approaches, as in the works by Guan et al. [2023] and Wong
et al. [2024], are reliant on having access to predicates about the environment and plan in terms of
high-level language actions, which need a low-level language-conditioned controller to be carried out.
LLMs have also been used to generate a model based on probabilistic code [Wong et al., 2023].

Most similar to our approach, the concurrently proposed WorldCoder3 [Tang et al., 2024b] also
leverages LLMs to generate a Python-based world model. WorldCoder chooses a program to refine
from a working set of programs using the classical Thompson Sampling bandit algorithm [Thompson,
1933, Katehakis and Veinott, 1987], informed by a Beta prior, to iteratively learn a world model from
gathered experience. Tang et al. focus on learning world models from online interactions with the
environment in two grid-world tasks and on transferring knowledge across variants of the same task.
We instead consider a broader selection of environments, propose to learn from offline data, and
handle continuous state and action spaces in addition to discrete worlds. Furthermore, we rigorously
benchmark and ablate our code generation method, GIF-MCTS, achieving state-of-the-art results on
the Competition split of the APPS coding benchmark, and obtain superior or on par performance to
WorldCoder on CWMB.

Code generation with LLMs. Current state-of-the-art code generation methods all employ LLMs.
While improvements to this task can come from both advancements in the LLMs’ coding abilities
and enhancements in prompting strategies to guide LLM decoding, the latter is the most relevant to
our work. A host of prompting techniques have shown how to leverage the In-Context Learning (ICL)
[Brown et al., 2020] abilities of LLMs to enhance a model’s reasoning skills, and, as a result, the
quality of generated programs. Perhaps the most influential of these is Chain of Thought (CoT) [Wei
et al., 2022, Kojima et al., 2022], which leverages in-context examples to encourage intermediate
reasoning steps. Tree-like approaches based on the CoT method have also been presented [Yao et al.,
2023, Hao et al., 2023]. The work by Zhang et al. [2023] proposes to guide the LLM generation
with an MCTS method based on the feedback from unit tests. However, the method considers every
token decoded by the LLM as an action in the MCTS tree, which becomes impractical when we have
hundreds of tokens per program.

Most similar to our method, LATS [Zhou et al., 2023] uses an MCTS-based generation strategy
that incorporates both self-reflection [Madaan et al., 2023, Shinn et al., 2023, Gou et al., 2024] and
feedback from the environment. While LATS is broadly applicable to reasoning tasks, it has limita-
tions in code-specific applications like ours. For instance, it generates n programs simultaneously
from the same node, rather than sequentially, which does not fully exploit the sequential nature of
MCTS. Additionally, it uses a separate prompt to reflect on incorrect code predictions, whereas we
integrate self-reflection within the generation prompt. Furthermore, LATS lacks specialized prompts
and strategies for fixing buggy programs.

3Due to the timing of our experiments, which were performed in April and May 2024, we replicate the results
from the first version of the WorldCoder paper, which can be found at https://arxiv.org/abs/2402.12275v1. The
authors have since developed a slightly different algorithm for code generation, which was published after we
finalized our experiments. The original code generation algorithm based on Thompson Sampling, which we call
WorldCoder in this work, was later published in Tang et al. [2024a].

3

Previous research has also focused on pseudocode-based reasoning, such as Parsel [Zelikman et al.,
2023], which uses a custom pseudocode language to decompose the program into independent
problems that can be solved separately. In contrast, we focus on the sequential refinement of solutions
using a variant of MCTS and the environment’s feedback to produce directly executable Python code
that can be leveraged in model-based RL.

We refer the reader to Appendix G for further discussion on works that build language-conditioned
world models but do not use code and on works that use programs as policies in RL.

3 Code World Models

In this Section, we first introduce the Code World Models framework and then the proposed Code
World Models Benchmark.

Code World Models framework. Following the model-based Reinforcement Learning problem
setting, we consider an environment represented by a Markov Decision Process with state space
S, action space A, a transition function p(s′|a, s), and a scalar reward function R(s, a, s′), with
s, s′ ∈ S indicating respectively the current and next state, and a ∈ A being the action taken from the
current state. The task of a world model is to accurately represent p and R. We make the following
assumptions: 1) the environments are deterministic and fully observable, and 2) we are provided with
a natural language description of the environment, which is detailed enough to infer the observation
space as well as the logic of the transition and reward functions.

The first assumption implies a deterministic transition function s′ = f(s, a), rather than a probabilistic
one as in the general case; we address this limitation in Section 6.1. The second assumption is akin to
the situation where a human would be provided with an explanation, or a tutorial, about a task that they
need to solve, in order to facilitate the learning process. Crucially, in a model-based scenario, we only
need explanations about how the environment works, rather than requiring instructions about what
to do in order to solve the task. Furthermore, we place ourselves in an offline RL scenario [Levine
et al., 2020], assuming that a dataset D of n one time-step transitions {(s, a, r, s′, d)i}i=1,...,n, where
d stands for the episode termination or done signal, is available, collected with some behavioural
policy πB(a|s) in the environment of interest. However, this last assumption could be lifted, by
using the Code World Model with a suitable planning algorithm to collect more trajectories from the
environment, turning the algorithm into online RL, as done in Tang et al. [2024b].

Code World Models Benchmark. To comprehensively test world model generation for a variety of
environments, we define a novel benchmark consisting of 18 RL environments of varying difficulty.
We focus on commonly used environments of particular relevance to the RL community: classical
control, physics-based PyGame environments and MuJoCo tasks. The environments’ Python imple-
mentations as well as their documentation are adapted from the Gymnasium library [Towers et al.,
2024]. The environments included in the resulting Code World Models Benchmark (CWMB) feature
a mix of continuous and discrete action and observation spaces (more details in Appendix I).

For each environment, we collect a training dataset D of past trajectories. We curate D so that
it includes at least some low-scoring and some relatively high-scoring behavior. However, we
neither attempt to maximally cover the state space nor do we require optimal demonstrations. We
aim to show that relatively low annotation effort is required to build CWMs: for the majority
of environments, we collect just 5 trajectories equivalent to taking random actions and a further 5
suboptimal demonstrations exceeding some return threshold. As part of the benchmark, each transition
(s, a, r, s′, d) in each resulting trajectory is used as an input-output sample to validate the generated
models. The benchmark further includes a language description of each environment, derived from
the documentation written for Gymnasium’s end users (an example is included in Appendix N.3). A
further discussion on how the quality of the collected dataset affects the performance of our method
can be found in Appendix F.

4 GIF-MCTS

In this Section, we first specify the format of the Code World Models that we consider in this work
and how we evaluate their accuracy. We then present Generate, Improve and Fix with Monte Carlo
Tree Search (GIF-MCTS), a novel approach to leverage LLMs for code generation via multiple

4

25% 0%

0%

62%

62%58% 100%

LLM

import numpy as np

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.1, 0.1)
 self.cart_velocity =
 np.random.uniform(-0.1, 0.1)

 self.mass_cart = 1.0
 self.mass_pole = 0.1

 def step(self, action):
 ...
 return next_state, reward, done

Previous
state

Added
lines

Used as
rollout

import numpy as np

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.1, 0.1)
 self.cart_velocity =
 np.random.uniform(-0.1, 0.1)
 self.pole_angle =
 np.random.uniform(-0.1, 0.1)
 self.pole_angular_velocity =
 np.random.uniform(-0.1, 0.1)
 ...

import numpy as np

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.2, 0.2)
 ...

 def step(self, action):
 ...
 return next_state, reward, done

f1

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.1, 0.1)
 ...

 def step(self, action):
 ...
 return next_state, reward, done

LLM

LLM

import numpy as np

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.1, 0.1)
 ...

 def step(self, action):
 ...
 return next_state, reward, done

Prediction failed:
State and
Action: ...
Predicted
output:...
Ground truth:

 ...

g1 g2

f1

g1

i1

i2

Generate new lines

Fix bugs

Improve predictions

import numpy as np

class Environment:
 def __init__(self):
 se lf.cart_position =
 np.random.uniform(-0.1, 0.1)
 self.cart_velocity =
 np.random.uniform(-0.1, 0.1)

NameError: name
'np' is not defined

LEGEND

99%

66%62%
Actual value

backpropagated
after bug is fixed

LLM call and
code evaluation

buggy
node

remaining
‘fix’ attempts

Temporary value
assigned to
buggy nodes

Figure 2: Example of a GIF-MCTS tree for generating a CWM. Starting from the root of the
tree, every action taken corresponds to 1) prompting the LLM to either generate, improve or fix a
CWM, 2) parsing the LLM completion, and 3) evaluating the CWM’s correctness using the available
environment trajectories as unit tests (presented as a percentage inside the nodes). On buggy nodes,
we allow only fix actions for up to f sequential attempts and replace the actual value with a temporary
one, represented in red. In healthy nodes we allow only generate and improve actions. All action
prompts are exemplified on the right. The number of total fix f attempts is a model hyperparameter,
set to three in this Figure and for our method.

sequential attempts in the presence of feedback, specifically tailored to the needs of building Code
World Models.

We formulate the task of synthesizing a Code World Model as that of writing a Python Environment
class with a step() function that jointly implements the transition and reward functions:

(ŝ′, r̂, d̂) = code_environment.step(s, a), (1)

and consider a Code World Model correctly synthesized if it correctly reproduces all transitions in D.
We additionally define the accuracy A of the Code World Model as the fraction of correctly predicted
transitions (weighted uniformly on next state, reward and done signals) from the training dataset D,
or in other words:

A =
1

N

N∑
i=1

(
1

3
1[s′i, ŝ

′
i] +

1

3
1[ri, r̂i] +

1

3
1[di, d̂i]

)
, (2)

where 1 is the indicator function (equals to one if the pair is matching, zero otherwise) and ŝ′i, r̂i and
d̂i are the model’s predictions.

GIF-MCTS takes as input the description of an environment, an LLM, environment trajectories and
builds a tree to construct the code for the environment. Nodes in the tree are programs and edges
are actions. Each action taken from a parent node produces a new complete program, which is split
into a state part and a rollout part and stored in a child node. The child node’s state is formed from
the parent’s state by appending L additional lines of code (we set L = 2 in our work), while the
rollout is the remaining part of the program, and represents one possible completion of the state,
needed to evaluate (i.e., run) the code. This is a novel formulation of the state of a node, as we store

5

in the states partial programs in blocks of multiple lines, whereas previous work either stores only
full programs [Zhou et al., 2023], or single tokens [Zhang et al., 2023]. The state represents the main
flow of information from parent to child, while the rollout is used to estimate the expected accuracy
of the child’s state.

As in the standard MCTS algorithm, we perform multiple sequential iterations consisting of the
following phases: selection, expansion, evaluation and value backpropagation. During the selection
phase, starting from the root node, we use the Upper Confidence Bound for Trees (UCT) formula
[Kocsis and Szepesvári, 2006] to select which action to take. If the corresponding node has never
been expanded, we enter the expansion phase, otherwise we continue to apply the UCT formula to
the actions of the new node. At expansion phase, we call the LLM to produce a program according to
the type of action selected, parse the resulting program into the state and the rollout parts, and store
both in the newly expanded node. We then compute the accuracy, defined above, using the rollout
(evaluation phase), store the resulting value in the node, and backpropagate it to its ancestors. An
example of a GIF-MCTS tree and the corresponding actions can be found in Figure 2.

With GIF-MCTS, we make the following contributions: 1) we present a novel framing of MCTS
nodes and actions for long-form code generation in the presence of unit tests, 2) we propose three
action types, specialised for code, whose added value we demonstrate through an ablation study, and
3) we propose a heuristic that empirically improves the trade-off between exploration and exploitation
in the UCT formula used for action selection, balancing both explored and unexplored actions,
and different action types (Appendix B). All these factors make GIF-MCTS specifically suitable
for generating world models. Next we present the three action types (generate new lines, improve
predictions and fix bugs) used in GIF-MCTS. We point the reader to the Appendix for the full action
prompts, the remaining implementation details, and for the ablation study on the importance of the
three action types.

4.1 GIF-MCTS Actions

Generate new lines. The goal of the generate action is to leverage the stochastic sampling ability of
the LLM by generating varying continuations for a single code snippet in different branches of the
tree, to fully explore the underlying space of possible solutions. The action prompt asks the LLM to
generate the full code required to solve the task starting from the code stored in the node’s state.

Improve predictions. Generating code in sequential blocks of lines can be too rigid if subtle or
interdependent changes need to be made to the full program in order to pass more test cases and
increase the reward. With the improve action, the LLM is prompted with the full program (state plus
rollout) from the parent node, as well as one input example where the code did not behave as intended,
along with the expected output. In the case of a Code World Model, this can be a wrongly predicted
transition, with the input state and action taken by the agent, the ground-truth next state, and the
model’s predicted next state. The improve prompt also asks the LLM to produce a Chain-of-Thought
explanation about where the current code is failing, and to attempt to fix the logic. The inclusion
of both generate and improve actions allows GIF-MCTS to combine the advantages of block-wise
incremental generation with the flexibility to backtrack and edit the whole program if needed.

Fix bugs. The code obtained with a generate or improve action will sometimes not be able to execute
due to a syntax or runtime error, and will thus receive a reward of 0, strongly discouraging further
exploration of the node. This can be wasteful, as sometimes the newly generated program can have
sound logic and would receive a good reward if its bug(s) were removed. The fix action is tasked
with resolving these bugs: the model is given the full program from the parent that encountered a bug
along with feedback about the error and is asked to produce a fixed version of the code, aided by a
Chain-of-Thought reasoning structure. To ensure that buggy nodes are chosen by the UCT formula,
we assign them with temporary value until either the bug is fixed or no more attempts are allowed
(see Appendix B for additional details).

5 Experiments

In this Section, we first describe the baseline code generation methods we compare against and then
present empirical results on the APPS benchmark, the proposed CWMB and perform an additional

6

study on the RTFM environment. Additional ablations and qualitative results on GIF-MCTS are
presented in Appendices C and D.

5.1 Baselines

The first baseline, denoted as Zero-shot CoT and used only for the experiments on APPS, adapts
the work by Kojima et al. [2022] to code generation by appending "Let’s think step by step." to
the prompt and then parsing out from the completion only the code part. To report pass@20, we
generate 20 independent completions for each problem, submit each of them, and count a problem as
completed if at least one solution is correct.

The second baseline adapts the work by Tang et al. [2024b] to make as fair a comparison as possible.
The WorldCoder algorithm calls the LLM with our generate prompt to produce an initial program,
then for each remaining iteration we 1) select one of the previous programs as explained below,
2) refine it by calling the LLM with our fix prompt if the code has a bug, or our improve prompt
otherwise, and 3) evaluate the resulting program against the unit tests. Each program ρ is associated
with a Beta distribution B(α, β) with initial parameters α = 1+C ∗ r(ρ) and β = 1+C(1− r(ρ)),
which are updated every time the program is selected. Here r(ρ) stands for the fraction of unit tests
passed (same metric used in the evaluation phase of GIF-MCTS) and C is a constant set to 5, as in
the original work. To select the next program to be refined, one sample is drawn from each Beta
distribution and the program with the highest score is selected. In all experiments, we use the same
amount of calls of GIF-MCTS.

5.2 APPS

We assess the overall performance of GIF-MCTS for generic code synthesis in the presence of public
unit tests on the APPS benchmark [Hendrycks et al., 2021], which consists of 10,000 Python coding
problems in three categories of increasing difficulty: Introductory, Interview and Competition. We
focus our evaluation on the hardest, Competition level test set comprised of 1000 problems, as it
most closely reflects the challenges found in synthesizing CWMs: the problems tend to have a longer
description, follow a specific format for the input and output, and include challenging logic. Early
experiments on HumanEval [Chen et al., 2021], another popular coding benchmark, did not show a
clear correlation between a model’s performance on the benchmark and its ability to generate CWMs,
as HumanEval problems are typically easier and solvable with much shorter code snippets.

As GIF-MCTS requires a reward signal from the environment, we make use of the suite of unit tests
provided by APPS to evaluate the accuracy of a generated program. However, we note that the ground
truth result from these tests is provided to GIF-MCTS with the improve action, and as such the model
could simply memorize all possible results and return them without actually solving the problem. To
avoid this, while we use all unit tests for computing the reward function, we only use samples from
the first half as input-output examples for the improve action. In general, we use at least a fraction
of the provided unit tests to evaluate every program generated during the GIF-MCTS loop, so our
approach is only eligible for the pass@B metric, where B is the budget for the number of LLM calls
used during the synthesis process. We leave extending the approach for pass@1 eligibility using
self-generated unit tests [Chen et al., 2023] for future work. We report the strict accuracy rate (the
fraction of problems on which all test cases are solved) on APPS for GIF-MCTS and other baselines
in Table 1.

Table 1: APPS competition results: comparison of methods. We report the percentage of problems
with all unit tests passed (Strict Accuracy). For our experiments, we also include the error of the
mean on the percentage.

Method Model Size Strict Accuracy (%) Evaluation Strategy
CodeRL [Le et al., 2022] CodeT5 770M 17.90 pass@1000
Parsel [Zelikman et al., 2023] code-davinci-002 N/A 25.50 pass@any

Zero-shot CoT * [Kojima et al., 2022] Llama 3 70B 23.2±1.3 pass@20
WorldCoder * [Tang et al., 2024b] Llama 3 70B 25.1±1.4 pass@20
GIF-MCTS (ours) Llama 3 70B 28.3±1.4 pass@20
* Our re-implementation.

7

Results. GIF-MCTS outperforms strong previous baselines on the APPS competition split, reaching
a new state of the art to the best of our knowledge. While part of this can be due to advances in the
underlying model, the comparisons with Zero-shot CoT and WorldCoder show improved performance
over either prior method. GIF-MCTS is also markedly more sample efficient compared to established
baselines; Parsel achieves the second best accuracy, but evaluates an exponentially growing number
of solutions4, while GIF-MCTS outperforms it by evaluating only 20 different programs.

5.3 Code World Models Benchmark

We evaluate our proposed GIF-MCTS approach and the WorldCoder baseline on the CWMB (intro-
duced in Section 3). In this setting, we are interested in both the accuracy of the generated CWM, as
well as its performance when actually employed by a planning algorithm. We use as accuracy the
same metric used in the evaluation phase of GIF-MCTS (Section 4). To measure the performance of
planning with the CWM, we define the normalized return R of a CWM as:

R(CWM) =
R(πCWM)−R(πrand)

R(πtrue)−R(πrand)
, (3)

where R(πCWM) represents the return obtained when using the CWM as the internal model for the
planner, R(πtrue) is the return gathered with the true environment as the model while using the same
planner (oracle planner), and R(πrand) is the return from a random policy. This metric is positive
when the performance of the CWM planner is above that of a random policy and reaches one when
the return approaches the value from the oracle planner. We report results for the CWMB in Table 2.
As the planner, we use a vanilla MCTS implementation for the environments with discrete actions
and a Cross Entropy Method (CEM) planner [Rubinstein, 1997] for the ones with continuous action
spaces (full details of the two planning algorithms are reported in Appendix L).

Table 2: CWMB: main results. For each method, we report the CWM accuracy and the normalized
return R, averaged separately across environments with discrete and continuous action spaces. Budget
indicates the number of LLM calls. For each metric, we report the mean value across environments
(and for the return, also across 10 episodes) with its error. For Llama 3, we report an average of three
different random seeds for additional statistical significance.

Model Method Budget Discrete Action Space Continuous Action Space
Accuracy (↑) R(↑) Accuracy (↑) R(↑)

Llama 3 70B (3 seeds) GIF-MCTS (ours) 50 0.84±0.03 0.76±0.03 0.35±0.03 0.22±0.01
WorldCoder * 50 0.79±0.04 0.60±0.04 0.32±0.03 0.19±0.01

GPT-4 Turbo (1 seed) GIF-MCTS (ours) 10 0.91±0.08 0.81±0.06 0.40±0.03 0.26±0.01
WorldCoder * 10 0.87±0.09 0.79±0.06 0.24±0.06 0.20±0.01

* Our re-implementation of [Tang et al., 2024b].

Results. Overall, GIF-MCTS outperforms WorldCoder for all environment splits and backbone
models. For Llama 3, the most significant gains are made on the environments with discrete actions,
while for GPT-4 on those with continuous actions. We speculate that, on discrete environments, Llama
3 makes better use of the budget with GIF-MCTS than with WorldCoder, whereas GPT-4 saturates its
performance in both cases. On the other hand, on the harder environments with continuous actions,
Llama 3 hits a performance ceiling in both cases, while GPT-4 leads to higher improvements with our
method. For example, Llama 3 was unable to generate a fully executable CWM (with either method)
for the two hardest environments, Humanoid-v4 and HumanoidStandup-v4, due to their complexity
and large observation space, while GPT-4 successfully generated a model for each environment in the
benchmark.

5.4 Read to Fight Monsters

We perform an additional experiment on the Read to Fight Monsters (RTFM) grid-world environment,
first introduced by Zhong et al. [2020] for testing grounded language understanding in RL. Every

4Results reported for Parsel use 8 pseudo-codes per problem, each implementing n sub-functions (with n
being problem-dependent) 16 times and then evaluating up to 8 ∗ 16n sub-functions combinations against APPS
unit tests and keeping the best result.

8

episode presents two monsters belonging to two teams, and two items, each effective on a specific
monster. The environment provides the agent with a written descriptions of the task dynamics (also
called manual), describing monsters’ weaknesses and membership to teams, and a goal (which team
of monsters to defeat). Crucially, the agent needs to perform multi-step reasoning between such
information and the current state of the environment to figure out a plan of action (for more details
we refer to the original work by Zhong et al. [2020]). We consider a version of the environment
where we fix the input manual, meaning all relationships between items and monsters are fixed across
episodes, and we don’t allow the monsters to move, as their patterns are stochastic. This isolates the
natural language understanding component of the task, while we leave to future work to demonstrate
the applicability of the CWM framework to the full RTFM task.

We report the results on the simplified RTFM environment in Table 3, using MCTS as a planner for
computing the normalized returns. We further experiment with a higher number of LLM calls for
GPT-4 Turbo, matching the one used for Llama 3, as we couldn’t do this on the full CWMB due to
budget concerns.

Table 3: RTFM results. For each method and computational budget (LLM calls), we report the
CWM accuracy and the normalized return R (computed across 10 episodes), with their errors.

Model Method Budget Accuracy (↑) R(↑)

Llama 3 70B GIF-MCTS (ours) 50 0.58 ± 0.02 -0.11 ± 0.12
WorldCoder * 50 0.23 ± 0.01 -0.11 ± 0.12

GPT-4 Turbo GIF-MCTS (ours) 10 0.71 ± 0.01 0.31 ± 0.19
WorldCoder * 10 0.33 ± 0.01 0.22 ± 0.18

GPT-4 Turbo GIF-MCTS (ours) 50 1.00 ± 0.00 1.00 ± 0.00
WorldCoder * 50 0.64 ± 0.02 -0.06 ± 0.12

* Our re-implementation of [Tang et al., 2024b].

Results. GIF-MCTS outperforms WorldCoder under all settings by a significant margin in terms of
accuracy, but the generated CWM is only able to match the performance of the ground-truth simulator
when the program is perfect. This highlights the necessity of completely accurate predictions, as
further discussed in Section 6, while also providing empirical validation for the scaling properties of
the approach: as GIF-MCTS is allowed more calls, it manages to refine the CWM it generated with a
lower budget. As this version of the RTFM environment has never been published, this experiment
can also alleviate concerns that the final CWM was memorized by the LLM during pre-training. We
present and discuss further evidence against the significance of data contamination in Appendix E.

6 Discussion

In this section, we first discuss some takeaways from the empirical results and then elaborate on some
of the limitations for our method.

GIF-MCTS vs. WorldCoder. We believe that GIF-MCTS outperforms WorldCoder because it
produces a more diverse set of programs. WorldCoder initially generates a single program from
scratch and then samples and refines a complete program in each iteration. In contrast, GIF-MCTS
can generate multiple programs either from scratch or from partial programs by taking the generate
new lines action at the root node or subsequent nodes. This approach better explores the solution
space, leading to improved performance. Our ablation study No Generate action in Table 6 of the
Appendix supports this finding. This study uses a tree search like GIF-MCTS but always refines a
complete program, similar to WorldCoder, and results in lower performance compared to our method.

Accuracy-Return Gap. We observe empirically from Table 2 that the CWM accuracy is always
higher than its normalized return, and the two metrics match only when the CWM is flawless. This is
often due to the incorrect prediction of terminal states: these are rarer in the replay buffer, especially
states that terminate with a success/positive reward. This can cause the planning algorithm to fail, as
it is missing the reward signal. Part of the performance gap could also be due to sparse coverage of
the environment by the collected trajectories. Individual results for each environment elaborating

9

on this are included in Appendix J. Future work could explore retrieving and combining different
CWMs that complement each other to improve the performance on important edge cases.

Sample Efficiency. Generating a CWM requires far less interaction with the environment than
traditional model-based approaches. As the gathered transitions are only used to validate the program
and as in-context examples, a small curated set (enough to cover possible edge cases and different
reward values) is enough to properly validate the generated code. In our experiments we only gather
10 trajectories made up of at most 100 steps as the offline dataset, while benchmarks specifically
designed to challenge for sample efficiency [Bellemare et al., 2013] require agents to use at most
100k frames, which is two orders of magnitude higher. We leave more thorough experiments on
sample efficiency for CWM agents to future work.

Comparison with Offline RL. We expect CWMs to hold advantages over classical RL methods in
regimes with scarce data and environments that can be easily described by language and modeled
with code. We report in Appendix K a preliminary comparison on the CWMB of the return achieved
with our CWMs or with a SOTA offline RL method, Conservative Q-Learning (CQL) [Kumar et al.,
2020], trained on the same amount of trajectories used for synthesizing the CWMs. We find that
CWMs compare favourably against CQL on environments with discrete action spaces, while CQL’s
performance is superior on the continuous action space environments, which are harder to model. RL
methods, including CQL, would likely benefit from more experience, as they overfit with scarce data.

6.1 Limitations

Code World Models. The CWMs framework is an exciting direction for model-based planning,
but we still rely on limiting assumptions of deterministic and fully observable environments. Both
stochasticity and partial observability would pose challenges, especially on the verification of the
CWM prediction, as there is no set result for a given input. We leave extending the approach to
account for both stochastic and partially observable environments to future work.

Another potential issue is providing a description of the environment that can be reasonably converted
to a Python function (e.g. a manual documenting key variables) when such a description is not
available (e.g. when the environment is defined with image observations). Previous work has begun
to tackle this issue [Migimatsu and Bohg, 2022] and preprocessing techniques such as image-to-text
models [Ren et al., 2024] could be used to address this problem in future work.

Code-based models may also be too rigid when the environment requires adapting to changing
dynamics, which would imply rewriting the CWM on the fly. A possible solution could be breaking
down the CWM into smaller functions that can be re-written individually by an LLM, to account
for some changes in the environment, or modeling variable factors as arguments to the step function.
CWMs struggle especially on complex physics-based environments; thus a promising direction could
also be allowing programs generated by GIF-MCTS to make use of external tools and libraries, such
as physics simulators.

GIF-MCTS. We have validated the GIF-MCTS approach as an efficient code synthesis method, with
the key limiting assumption of having available test cases to evaluate code, which could be difficult
to provide in certain tasks. In those cases, it would be possible to use self-generated test cases [Chen
et al., 2023], but since this does not reflect the CWM setting we leave this for future work.

7 Conclusion

We present Code World Models, a general framework to leverage LLMs to build world models for
RL agents. We further show that GIF-MCTS is a strong code synthesis method, able to successfully
integrate external feedback to self-debug and improve code, demonstrating examples of world
modeling and downstream planning for a range of environments. We are confident that the Code
World Models approach will lead to the development of fast, interpretable and sample efficient
model-based RL agents, exploiting the strengths provided by increasingly powerful LLMs, without
directly predicting the environment dynamics with them. We are hopeful that improvements to both
the underlying LLM backbone and refinements to the code generation method itself will result in
powerful Code World Models for even more complex environments than those treated in this work.

10

Acknowledgments and Disclosure of Funding

This work was supported by the Research Council of Finland (Flagship programme: Finnish Center
for Artificial Intelligence FCAI, and grants 352986, 358246) and EU (H2020 grant 101016775
and NextGenerationEU). We acknowledge CSC for awarding this project access to the LUMI
supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC (Finland) and the LUMI
consortium through Finland.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, et al. Do as i can, not as i
say: Grounding language in robotic affordances. In Conference on Robot Learning, 2022.

Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica, Pieter Abbeel, Alberto
Sangiovanni-Vincentelli, and Sanjit A Seshia. Programmatic modeling and generation of real-time
strategic soccer environments for reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 6028–6036, 2022.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Advances in Neural Information Processing Systems, volume 31, 2018.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901, 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, et al. Genie:
Generative interactive environments. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 4603–4623.
PMLR, 21–27 Jul 2024.

Tales Henrique Carvalho, Kenneth Tjhia, and Levi Lelis. Reclaiming the source of programmatic
policies: Programmatic versus latent spaces. In The Twelfth International Conference on Learning
Representations, 2024.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Nicola Dainese, Pekka Marttinen, and Alexander Ilin. Reader: Model-based language-instructed
reinforcement learning. In Proceedings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 16583–16599, Singapore, December 2023. Association for
Computational Linguistics.

Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, and Zenna Tavares. Autumnsynth: Synthesis
of reactive programs with structured latent state. In Advances in Programming Languages and
Neurosymbolic Systems Workshop, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. PDDL, The Planning Domain Definition Language, 1998.

11

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In Advances in Neural Information Processing Systems, volume 36, pages 79081–79094, 2023.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
and José Lezama. Photorealistic video generation with diffusion models. arXiv preprint
arXiv:2312.06662, 2023.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, volume 31, 2018.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, volume 1, 2021.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, 2020.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
Conference on Robot Learning, pages 991–1002. PMLR, 2022.

Siddharth Karamcheti, Suraj Nair, Annie S. Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and
Percy Liang. Language-driven representation learning for robotics. In Robotics: Science and
Systems (RSS), 2023.

Michael N. Katehakis and Arthur F. Veinott. The multi-armed bandit problem: Decomposition and
computation. Mathematics of Operations Research, 12(2):262–268, 1987.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings of the
17th European Conference on Machine Learning, ECML’06, page 282–293, Berlin, Heidelberg,
2006. Springer-Verlag.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pages 22199–22213, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pages
1179–1191, 2020.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning. In
Advances in Neural Information Processing Systems, volume 35, pages 21314–21328, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

12

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 29992–
30017. PMLR, 21–27 Jul 2024.

Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical pro-
grammatic reinforcement learning via learning to compose programs. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 21672–21697. PMLR, 23–29 Jul 2023.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv preprint arXiv:2402.08268, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Advances in Neural Information Processing Systems, volume 36,
pages 46534–46594, 2023.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
In The Eleventh International Conference on Learning Representations, 2023.

Toki Migimatsu and Jeannette Bohg. Grounding predicates through actions. In 2022 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3498–3504. IEEE, 2022.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Is self-repair a silver bullet for code generation? In The Twelfth International Conference on
Learning Representations, 2023.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth
International Conference on Learning Representations, 2022.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Advances in Neural Information Processing
Systems, volume 36, pages 8634–8652, 2023.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logical program policies. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 10251–10258, 2020.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE, 2023.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bulletin, 2(4):160–163, July 1991.

Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng Zhong, Wei-Long Zheng, Xujie Si, and Kevin Ellis.
Code repair with llms gives an exploration-exploitation tradeoff. arXiv preprint arXiv:2405.17503,
2024a.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
models by writing code and interacting with the environment. arXiv preprint arXiv:2402.12275v1,
2024b.

13

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. In Advances in Neural Information Processing Systems,
volume 34, pages 25146–25163, 2021.

Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, Samuel J
Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through theory-based
modeling, exploration, and planning. arXiv preprint arXiv:2107.12544, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pages 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. In Advances in Neural Information Processing Systems, volume 32, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Lionel Wong, Gabriel Grand, Alexander K Lew, Noah D Goodman, Vikash K Mansinghka, Jacob
Andreas, and Joshua B Tenenbaum. From word models to world models: Translating from natural
language to the probabilistic language of thought. arXiv preprint arXiv:2306.12672, 2023.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev, Joshua B.
Tenenbaum, and Jacob Andreas. Learning grounded action abstractions from language. In The
Twelfth International Conference on Learning Representations, 2024.

Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kael-
bling, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In The
Twelfth International Conference on Learning Representations, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural
Information Processing Systems, volume 36, pages 11809–11822, 2023.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions. In Advances in Neural Information
Processing Systems, volume 36, pages 31466–31523, 2023.

Alex Zhang, Khanh Nguyen, Jens Tuyls, Albert Lin, and Karthik Narasimhan. Language-guided
world models: A model-based approach to ai control. arXiv preprint arXiv:2402.01695, 2024.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. RTFM: Generalising to new environment
dynamics via reading. In International Conference on Learning Representations, 2020.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

14

A Broader Impact

The CWM framework enables LLMs to generate world models for model-based Reinforcement
Learning, which could potentially be employed for planning with a real agent. As the code generated
by the LLM is untrusted, it should always be checked by a human expert before it is used under
any circumstances. Alternatively, as CWMs are represented with Python code, this also allows for
interpretable world models, which could be safer for critical applications after being vetted by an
expert.

B Additional GIF-MCTS implementation details

Choice of Actions If a node doesn’t contain a bug, new generate and improve actions should always
be available (with the exception of the root node, which will only have a new generate action, since
there is no pre-existing code to improve). After an action is expanded, we add a new action of the
same type to the parent node, so that the tree can have a variable number of nodes at any level. By
contrast, a buggy node will only ever have a single fix action available, and no new fix actions will
be added to the parent, enforcing the fixes to be applied sequentially (as there is no need to expand
the tree horizontally in a buggy node). To select actions, we follow a modified variant of the Upper
Confidence Bound for Trees (UCT) formula [Kocsis and Szepesvári, 2006] as follows:

UCT(nodei) = vi + C ·

√
lnNi

na=ai
+ ϵ

,

where vi is the value of the node, C is a constant parameter used to balance exploration (empirically
set to 0.1), Ni is the number of visits to the node’s parent and na=ai

is the number of expanded
children with the same action type (relative to the parent). This last parameter is required to avoid
trees that only grow horizontally due to the added actions: if a single action is chosen too many times
from the same parent, the na=ai

term will cause the exploration value for new nodes for the same
action to keep decreasing and therefore encourage more exploration.

Value Estimation for Unexplored Nodes. Nodes that have not yet been visited are missing their
value, which prevents the application of the UCT formula. To circumvent this, we employ a simple
linear model, trained during the overall search, to predict the value of unexplored nodes. This estimate
is specific to an action type, so that each has a separate classifier, and further differentiates local and
global values. We define the global value vG as the average of all values of the nodes with the same
action type at any level of the tree and the local value vL as the average of all expanded children with
the same action type. The linear model then simply learns to predict the value vi of a given action as
a balanced sum of the two values, normalized between zero and one, with the following formula:

vi =
wG · vG + wL · vL

wG + wL
,

where the wG and wL parameters are learned during the search using gradient descent.

Initially, the global average vG will also be empty, which would cause the first values to be ill-defined.
To mitigate this, we initialize the global average with a prior value which we tune empirically. To
ensure a single unlucky generation does not prematurely downweight an action type, this prior is
further assigned an initial count, used to weight the prior when computing the average (effectively
acting as if there were n nodes already discovered with the prior value).

Value Estimation for Buggy Nodes. As mentioned in Sec. 4, buggy nodes will get a reward of 0
and would thus never be explored. To allow the fix action to be chosen, we assign a temporary value to
the buggy node (which is effectively the parent of the fix action nodes). This can be chosen arbitrarily
to trade-off attempting to fix buggy nodes (exploration) and focusing on other already functioning
branches (exploitation). In our implementation, we initially set this value to 0.99, effectively forcing
the model to attempt fixing a buggy node at least once. Naturally, a program can have more than one
bug which could require the method taking multiple fix actions. To account for this, if the outcome
of a fix action is still a bug, we gradually linearly decrease the temporary value of the parent until it
reaches zero after a certain number of allowed fixes f , which we set to three. After f unsuccessful
fixes, the temporary value is set to zero, which strongly discourages the buggy parent node from

15

being selected again. Otherwise, the value of the buggy parent and the fix children are set to the
value received by the newly fixed program. It is also important to note that the temporary values are
excluded from the backtracking step of the MCTS algorithm, to avoid skewing the ancestors’ values.

Hyperparameters We report all hyperparameters used for GIF-MCTS as well as their description
in Table 4, while hyperparameters related to the backbone LLM are reported in Table 5. We refer to
the Huggingface documentation5 for an accurate description of each LLM parameter.

Table 4: GIF-MCTS hyperparameters.
Parameter Description Value

L Number of new lines extracted from a generate action. 2
ϵ Visit count offset. 1.0
C Exploration constant. 0.1
γ Discount factor. 1.0
vg Initial prior for generate actions (with its initial count). 0.5 (2)
vi Initial prior for improve actions (with its initial count). 0.55 (2)
f Number of allowed fixes to a node. 3

Table 5: Llama 3 hyperparameters. Note that for GPT-4 Turbo, the only parameter used was the
number of maximum new tokens, set to the same value used for Llama.

Parameter Value
max_new_tokens 1500
temperature 1.0
top_k 100
top_p 0.8
num_return_sequences 1
num_beams 1

C Ablation Study on GIF-MCTS

We perform an ablation study to validate the individual contribution of each action type of GIF-MCTS.
We run the MCTS procedure on CWMB with only two out of the three actions available and compare
the accuracy with the full method in Table 6. Note that for the Fix and Improve MCTS variant,
one generate action is applied at the root node to obtain an initial program, which the algorithm
expands from with the available budget. All ablations are performed using Llama 3 70B. For budget
constraints, we run a single random seed for each ablation and compare with a single GIF-MCTS run
with the same random seed.

Results. The performance of the method drops after the removal of each action, most significantly
in the harder set of continuous environments (while there is more statistical uncertainty for the discrete
environments). Fixing bugs appears to be the most important action: it is much more efficient to try
fixing a bug aided by external feedback compared to blindly generating the same code snippet until
bug-free. As the complexity of the environment grows, it might also become increasingly challenging
to generate a fully functioning program from the start. On the other hand, improve seems to be the
least impactful: this makes sense, as intuitively improving a code snippet that already works is has
less room for improvement.

D Qualitative Study

To investigate the specific effectiveness of each individual type of action, we analyze the trees
produced by GIF-MCTS and report some statistics of interest in Table 7. We specifically focus on the

5https://huggingface.co/docs/transformers/main_classes/text_generation

16

https://huggingface.co/docs/transformers/main_classes/text_generation

Table 6: CWMB results: ablation study. We compare the full GIF-MCTS method against three
ablated variants, each leaving out one of the three action types. For each method, we report the CWM
accuracy and the normalized return R, averaged separately across environments with discrete and
continuous action spaces. For each metric we report the mean value across environments (and for the
return, also across 10 episodes) with its error.

Method Budget Discrete Action Space Continuous Action Space
Accuracy (↑) R(↑) Accuracy (↑) R(↑)

GIF-MCTS (ours) 50 0.88±0.07 0.83±0.06 0.38±0.04 0.23±0.02
No Generate action 50 0.87±0.07 0.73±0.09 0.25±0.06 0.16±0.01
No Improve action 50 0.85±0.06 0.79±0.07 0.34±0.05 0.17±0.02
No Fix action 50 0.81±0.08 0.55±0.05 0.21±0.08 0.10±0.01

difference in the overall distribution of action types in the tree as a whole compared to the actions
chosen on the path that led to the best result, which can be used to find specific biases towards a
specific action.

Table 7: Qualitative Analysis. We report a qualitative study for the frequency with which GIF-MCTS
chooses each type of action on average. The first section of the table is considering the whole tree,
while the second section (path quantities) only consider the path from the root node to the node with
the highest value (where the code used as the environment was generated).

Quantity Discrete Action Space Continuous Action Space
Llama 3 70B GPT-4 Turbo Llama 3 70B GPT-4 Turbo

% generates 50.0 88.3 18.5 33.4
% improves 44.7 8.3 35.3 34.8
% fixes 5.3 3.4 46.2 31.8

Path length 5.7 2.3 3.2 2.3
% path generates 73.2 100.0 47.0 59.0
% path improves 17.5 0.0 5.0 6.3
% path fixes 9.3 0.0 48.0 34.7

Tree depth 15.6 5.0 10.8 4.5

From the results, the method presents a pretty clear bias towards the generate action at the expense of
the improve action on the optimal path. While the model tries to improve its previous code reasonably
often (more than 35% of the times in most cases) the percentage of these actions that actually led to
the best node drops significantly in the optimal path, which could imply that generate actions are the
most effective.

With a closer inspection into the trees themselves, we find that often there is an initial set of generate
actions that already result in values that are close to the maximum found by the tree, and then later
improve actions are chosen thanks to the same-action penalty term in the modified UCT formula,
which can result in marginal increases (as they are only refining code that is already promising) or
fail to improve the previous program (as the logic might be hard to extrapolate). As such, many
improve actions are needed in order to find a sample that is actually increasing the performance, while
generate actions have the advantage of being chosen at the beginning, where it is possibly easier to
find good programs.

Still, the fact that many improve actions are taken that result in either the same value as the previous
node or at times even in worse accuracy is a potential bottleneck for the method, which seems to
corroborate recent evidence [Olausson et al., 2023] showing that LLMs are often unable to provide
proper feedback on their own code generations. Stronger models might thus be needed to specifically
analyze and criticize the code (e.g. one model specialized in explaining code which provides feedback
to another one specialized in generating it).

17

There is also a clear difference between the set of easier discrete action space problems, for which
the percentage of fix actions is very low (with GPT-4 Turbo only needing generates in order to
synthesize perfect or near-perfect models, as shown in Table 11) and the harder continuous action
space problems, where fixing bugs becomes much more prominent.

E Data Contamination

With any experiment involving LLMs there is a concern about data contamination: the model’s
pre-training corpus could have included the original implementation for the various programs we are
trying to generate, which means that hypothetically the model could simply be memorizing them and
repeating them. To alleviate these concerns, we analyze each experiment individually:

• For the APPS benchmark, the programming problems we used are sourced from three main
websites. The benchmark authors managed to crawl reference solutions for only two of
these sites (AtCoder and Codeforces, which include 264 and 41 problems respectively). This
means that for the third website, Kattis, which makes up a majority of the benchmark with
691 problems, no reference solution can be found online (and thus likely also not in the
training corpus for the LLMs).
Performance across all methods and models in the competition split is correlated with the
source websites of the problems, but not with the availability of the solutions: the highest
results are obtained from Kattis (0.347 strict accuracy rate), the only site where solutions
are not available online. Notably, all methods and models achieve a 0% pass rate for the 41
problems from AtCoder, for which reference solutions are available online. This suggests
that the difficulty of the various sources is more important than the reference solution.

• While we observe that some parts of the generated CWMB environments recall implementa-
tions available online (e.g., constants’ values in the CartPole environment), the logic of the
step function remains distinct from the reference model. Furthermore, the MuJoCo-based
environments used the simulator in the official implementation, which is not available in our
setting, so the code is necessarily different. Examples of generated CWMs along with their
ground-truth implementations can be found in Appendix O for a more thorough comparison.

• As we use a modified version of the RTFM environment (with fixed manuals and no
stochasticity), there is no reference solution for it online, which provides evidence that our
solution is not merely retrieving information from the LLM’s training data.

Generally speaking, there is of course no way to outright dismiss these concerns. However, our
method is compared to baselines using the same underlying models, ensuring that the superior
performance reported for GIF-MCTS is not biased by potential data contamination.

F Data Quality

As part of the CWMB, for each environment the collected dataset D contains both low-scoring and
high-scoring trajectories. As discussed in Section 3, this is fairly standard practice for offline RL, as
the general assumption is that in the real world large datasets can be collected from a very diverse
ensemble of sources. While it would be expected that at least one example for all possible outcomes is
required in order for the world model to be precise and comprehensive, our approach can in principle
learn a fair model even in hard environments when provided with only a few random trajectories by
leveraging the language description provided to the LLM when generating the program. This could
theoretically be used to generalize the rules of the environment outside of the observed transitions:
the model does not need to see what happens if it can read about it.

We performed an additional experiment on RTFM: we collected 10 trajectories all resulting in failures,
so that a reward of +1 is never observed. In other words, this is a worse version of the same buffer
used for the main experiment, which by construction carries less information. We synthesized a
CWM with GIF-MCTS and GPT-4 using 50 calls, which in the original experiment resulted in a
perfect model (Section 5.4). The resulting CWM is 100% accurate on the newly collected dataset and
even correctly predicts a reward of +1 for positive transitions, which are not included in the dataset,
thanks to the language description. When tested on the original dataset D from the CWMB (which

18

contains both positive and negative rewards), the model still scores 100% accuracy, on par with the
model generated with the full range of data.

G Additional Related Work

We expand in the following the Related Work section, covering the works that try to build world
models with language and those who explored using programs to express RL policies.

World Models with Language. Model-based RL methods are built around learning a predictive
model of the environment to inform the agent’s decisions [Sutton, 1991]. A recently growing body of
research is focusing on building world models that can include information in natural language, as
opposed to approaches using only vision or full state observations [Hafner et al., 2021]. Dynalang
[Lin et al., 2024] predicts the future text and image representation of the environment with an encoder-
decoder architecture with a joint input of previous frames and text, while Zhang et al. [2024] formulate
the modeling task as an autoregressive prediction task performed by a Transformer [Vaswani et al.,
2017]. Voltron [Karamcheti et al., 2023] also uses an encoder-decoder model for language-driven
representation learning for robotics. Other promising avenues include predicting the pixels in the
next image observation [Yang et al., 2024, Bruce et al., 2024, Micheli et al., 2023, Liu et al., 2024].

Programmatic RL. Verma et al. [2018, 2019] first introduced Programmatically Interpretable
RL (PIRL), which focuses on representing RL policies as interpretable and verifiable programs by
first learning an oracle policy with deep RL and then distilling a program with a domain specific
language that can model tree-like programs. Similarly, Bastani et al. [2018] focus on extracting
decision trees from an oracle policy with imitation learning and Inala et al. [2020] use finite-state
automata, which can also include advanced control structures such as loops, with Silver et al. [2020]
similarly using a language with a token that can perform loops. The need for an oracle was later
removed by Qiu and Zhu [2022] by directly optimizing differentiable programs. Later, Trivedi et al.
[2021] introduce LEAPS, which uses a Variational Auto-Encoder (VAE) to embed programs into a
latent space and search new programs in the latent space, further extended by Liu et al. [2023] with
the use of Hierarchical RL that composes simple programs together in order to generalize to out of
distribution codes not seen by the VAE. However, Carvalho et al. [2024] has recently shown that the
latent space is actually harder for optimization algorithms, and that simply performing the search in
the program space leads to better results. Azad et al. [2022] instead proposed using a similar domain
specific language to build a world model, with a similar approach presented by EMPA [Tsividis et al.,
2021]. As these methods all use traditional program synthesis methods to generate their code, recent
works have also looked into using LLMs to generate RL policies. Liang et al. [2023] uses Python
code to interface with APIs and generate a robotic policy, with a similar approach concurrently
introduced by Singh et al. [2023]. Voyager [Wang et al., 2023] generates an incrementally growing
skill library using JavaScript code to play Minecraft.

H Comparison of Inference Times

We further demonstrate the efficiency of CWMs compared to directly using an LLM as the world
model in Table 8. On a selection of three environments from the CWMB we ask GPT-4 Turbo to
directly predict the next observation of the environment given its description and some in-context
examples of the task, and compare the inference time with calling the step function of the CWM.
Calling the Python program is four orders of magnitude quicker for the easiest environment and seven
orders of magnitude quicker for the hardest environment. We additionally observe that none of the
predictions made by GPT-4 Turbo were accurate.

I Code World Models Benchmark Details

We include a detailed list of statistics for each environment in the CWMB in Table 9. Notice that when
creating the descriptions from the Gymnasium docstrings, we left out documentation sections that do
not relate to the environment definition itself, such as versioning information, Gymnasium-related
arguments, and external references, from these descriptions. For the reported number of tokens we

19

Table 8: Comparison: inference times between GPT-4 and CWM. Results are calculated from a
sample of 10 transitions from the replay buffer used during GIF-MCTS.

Environment GPT-4 Time (s) CWM Time (s)

CartPole-v1 2.2 0.00005
HalfCheetah-v4 6.1 0.0001
Humanoid-v4 146.7 0.0001

choose OpenAI’s open source tiktoken tokenizer6. The code lines and code tokens are reported
from the corresponding CWM generated by GPT-4 Turbo using GIF-MCTS with a budget of 10. This
is meant to be a general indication of how long a typical implementation of the environment would
be, but can of course vary. All environment descriptions were parsed from Gymnasium v.0.29.1.

Table 9: CWMB details. Detailed statistics for each environment in the CWMB. An Action Space or
Observation Space indicated between bars (|A|, |S| = n) indicate a discrete space with n different
choices. The value intervals for each space are omitted for visual clarity.

Environment Description Description Action Space Observation Space Code Code
Lines Tokens Dimensionality Dimensionality Lines* Tokens*

Blackjack-v1 66 601 |A| = 2 |S| = (32, 11, 2) 94 826
CliffWalking-v0 47 456 |A| = 4 |S| = 48 61 483
Taxi-v3 89 724 |A| = 6 |S| = 500 83 767
Acrobot-v1 66 859 |A| = 3 S ∈ R6 76 794
CartPole-v1 53 663 |A| = 2 S ∈ R4 62 639
MountainCar-v0 47 454 |A| = 3 S ∈ R2 62 426
Ant-v4 148 2983 A ∈ R8 S ∈ R27 33 267
HalfCheetah-v4 86 1674 A ∈ R6 S ∈ R17 58 554
Hopper-v4 87 1529 A ∈ R3 S ∈ R11 91 847
Humanoid-v4 204 4578 A ∈ R17 S ∈ R376 68 617
HumanoidStandup-v4 202 4551 A ∈ R17 S ∈ R376 50 442
InvertedDoublePendulum-v4 84 1364 A ∈ R1 S ∈ R11 54 465
InvertedPendulum-v4 55 683 A ∈ R1 S ∈ R4 66 633
Pendulum-v1 50 545 A ∈ R1 S ∈ R3 58 500
Pusher-v4 98 2035 A ∈ R7 S ∈ R23 76 587
Reacher-v4 87 1472 A ∈ R2 S ∈ R11 78 699
Swimmer-v4 68 1168 A ∈ R2 S ∈ R8 80 700
Walker2d-v4 92 1785 A ∈ R6 S ∈ R17 81 770
* Indicative number sampled from a single result, can vary.

J Results for Individual Environments

We report the individual accuracy and return for each environment in the CWM when using Llama 3
in Table 10 and when using GPT-4 Turbo in Table 11.

K Comparison with Offline RL

We compare the overall performance of a SOTA offline RL method, Conservative Q-Learning (CQL)
[Kumar et al., 2020], against a planning agent using the synthesized CWM with our method. We
report in Table 12 the average raw reward obtained over 10 episodes for a random policy, CQL,
planning agents with the CWM obtained by GIF-MCTS (ours) respectively with Llama 3 and GPT-4,
and a planning agent with oracle access to the true environment. CQL was trained with 10 epochs
for 100 steps per epoch (1000 total) using the same dataset D used to learn our CWMs. We chose
1000 steps to match the data to gradient steps ratio from the original CQL paper. Since our replay
buffers are much smaller (the original paper worked with D4RL [Fu et al., 2020], which provides 1M
transitions per task), we started to observe severe overfitting for CQL with more training steps.

Overall, there is a balance between CQL and CWMs, with CWMs being more suited to discrete tasks
and CQL outperforming CWMs in complex physics tasks, where our method struggles. However,

6https://pypi.org/project/tiktoken/

20

https://pypi.org/project/tiktoken/

Table 10: CWMB results. Individual results for each environment in the CWMB using Llama 3 (we
report the results for the first seed only).

Environment Action Space GIF-MCTS WorldCoder
Accuracy (↑) R(↑) Accuracy (↑) R(↑)

CartPole-v1 Discrete 1.00 1.11 0.92 1.09
CliffWalking-v0 Discrete 1.00 1.01 1.00 0.97
MountainCar-v0 Discrete 1.00 N/A 0.83 N/A
Taxi-v3 Discrete 0.92 0.67 0.44 0.23
Blackjack-v1 Discrete 0.83 0.53 0.85 0.41
Acrobot-v1 Discrete 0.54 N/A 0.73 N/A
InvertedPendulum-v4 Continuous 0.66 0.14 0.66 0.01
Pusher-v4 Continuous 0.41 0.74 0.41 0.77
Pendulum-v1 Continuous 0.34 -0.15 0.31 -0.15
Walker2d-v4 Continuous 0.34 0.07 0.34 0.08
Hopper-v4 Continuous 0.33 0.15 0.00 0.02
Swimmer-v4 Continuous 0.33 0.01 0.33 0.07
HalfCheetah-v4 Continuous 0.33 0.13 0.33 0.15
Ant-v4 Continuous 0.33 0.67 0.33 0.69
InvertedDoublePendulum-v4 Continuous 0.25 0.06 0.34 0.05
Reacher-v4 Continuous 0.13 0.93 0.42 0.67
HumanoidStandup-v4 Continuous N/A 0.00 N/A 0.00
Humanoid-v4 Continuous N/A 0.00 N/A 0.00

Table 11: CWMB results. Individual results for each environment in the CWMB using GPT-4 Turbo.

Environment Action Space GIF-MCTS WorldCoder
Accuracy (↑) R(↑) Accuracy (↑) R(↑)

CartPole-v1 Discrete 1.00 0.99 1.00 1.00
CliffWalking-v0 Discrete 1.00 0.98 1.00 0.89
MountainCar-v0 Discrete 1.00 N/A 1.00 N/A
Taxi-v3 Discrete 0.99 0.87 0.99 0.67
Blackjack-v1 Discrete 0.93 0.41 0.79 0.59
Acrobot-v1 Discrete 0.53 N/A 0.42 N/A
InvertedPendulum-v4 Continuous 0.66 0.08 0.66 0.00
Humanoid-v4 Continuous 0.43 0.01 0.00 0.00
HumanoidStandup-v4 Continuous 0.42 -0.04 0.00 0.00
Reacher-v4 Continuous 0.42 0.88 0.42 0.71
Pusher-v4 Continuous 0.41 0.72 0.41 0.70
InvertedDoublePendulum-v4 Continuous 0.41 0.02 0.00 0.00
Pendulum-v1 Continuous 0.38 0.51 0.38 0.50
Walker2d-v4 Continuous 0.34 0.03 0.01 0.03
Hopper-v4 Continuous 0.34 -0.04 0.33 -0.01
Swimmer-v4 Continuous 0.33 0.04 0.33 0.02
HalfCheetah-v4 Continuous 0.33 0.23. 0.33 0.24
Ant-v4 Continuous 0.33 0.69 0.00 0.20

CWMs also reach competitive results in some of these harder environments, such as Pendulum-v1,
Reacher-v4 and to a lesser extent Ant-v4, Pusher-v4 and HalfCheetah-v4, even without direct
access to the original physics simulator. Particularly in these tasks, but also in general, we observe
severe overfitting happening in CQL almost immediately (for example, CQL performs worse than
random in Pendulum-v1), likely due to the small size of the provided dataset. As mentioned
previously, sample efficiency is one of the main promises of the CWM approach, as very few
trajectories are needed to validate the model, whereas traditional methods are typically designed to
work best with large amounts of data.

21

Table 12: Comparison with CQL. We report the average raw reward obtained over 10 episodes
for a random policy, Conservative Q-Learning (CQL), planning agents with the CWM obtained by
GIF-MCTS (ours) respectively with Llama 3 and GPT-4, and a planning agent with oracle access to
the true environment (Oracle). CQL was trained with 10 epochs for 100 steps per epoch (1000 total
steps) using the same dataset used to learn our CWMs.

Environment Random CQL GIF-MCTS (ours) Oracle
Llama 3 GPT-4

Blackjack-v1 0 -0.3 -0.6 -0.1 1
CliffWalking-v0 -1169.2 N/A* -90.2 -100 -100
Taxi-v3 -798.5 -740 -353.9 -408.8 -124.5
CartPole-v1 24.4 317.6 277.4 310.4 494
MountainCar-v0 -200 -200 -200 -200 -200
Acrobot-v1 -500 -295 -500 -494.2 -500

Pendulum-v1 -1122.8 -1218.2 -1232.2 -739.8 -373.6
Reacher-v4 -43.7 -11.5 -9.2 -11.2 -6.8
Pusher-v4 -149.9 -52.4 -61.1 -63.3 -30.3
InvertedPendulum-v4 8.3 66.7 13.1 10.9 42.5
InvertedDoublePendulum-v4 49 164 60 53.4 241.6
HalfCheetah-v4 -304.5 -1.3 -150.3 -22.8 893.3
Hopper-v4 32.2 137.4 62.6 23.3 229.1
Swimmer-v4 -5.9 28.4 -2.7 8.1 317.8
Walker2d-v4 0 278 22.3 11.5 334.7
Ant-v4 -33.2 998 867.7 896.8 1304.7
Humanoid-v4 139.4 393.3 N/A* 162.3 1860.7
HumanoidStandup-v4 33240.2 51045.7 N/A* 29405.9 138075.6
* N/A for CQL indicates a failed run, while for GIF-MCTS it indicates a failure in
synthesizing a syntactically correct CWM.

It is also worth noting that outperforming state-of-the-art methods for offline RL was not the principal
goal we set out to achieve with our work, and as such many aspects are not specifically tuned for
performance. For instance, we chose very simple planners with default parameters in order to collect
the rewards with the synthesized CWMs, to study the performance of the models in the simplest
possible setting. In general, our main objective is to validate the effectiveness of the framework, and
we leave improvements that can show increased performance over offline RL methods (for instance,
allowing the generated code to call a physics simulator in the continuous environments) to future
work, now that the effectiveness of the method has been proven.

L Planning algorithms details

In this section we report all the parameters used in our implementations of Monte Carlo Tree Search
(MCTS) [Kocsis and Szepesvári, 2006] and Cross Entropy Method (CEM) [Rubinstein, 1997],
together with a brief explanation of the meaning of those parameters within the context of the two
algorithms.

MCTS. At each time-step, we run Imcts simulations with MCTS to select the best action to play.
At every simulation, starting from the root node, we select one action via the Upper-Confidence
Bound formula for Trees (UCT)

UCT(nodei) = vi + C ·
√

lnNi

ni + ϵ
, (4)

where vi is the estimated value of node i, C is the exploration constant, Ni is the visit count of the
parent of node i, ni is the visit count of node i and ϵ is a factor offsetting the visit count. Once
we select an unexplored action at one of the nodes, we expand the node that the action leads to

22

and perform a rollout with a random policy for up to max_actions to estimate its value. The value
backpropagation is done as in standard MCTS and we use a discount factor of γ. The values of all
parameters are reported in Table 13.

Table 13: MCTS planner parameters.
Parameter Description Value

Imcts Number of iterations. 25
max_actions Max actions per rollout. 100

C Exploration constant. 1.0
ϵ Visit count offset. 1
γ Discount factor. 0.99

Tmcts Softmax temperature. 0.01

CEM. In this case, assuming deterministic environments, we plan directly for the next Tcem time-
steps, meaning that we choose the actions for up to Tcem steps ahead, using the CEM algorithm. At
every iteration we sample Ncem action plans from a zero-mean Gaussian with dimensions Tcem ×A
and standard deviation for each dimension given by half the maximum absolute value between the
upper and lower bounds for that action dimension (as it’s always the case that each continuous action
dimension is bounded in a box in the CWMB environments). The action plans are then clipped
in the legal ranges of the action space and scored by their return as rollouts in the environment,
starting from the current state. We then select the top Kcem action plans (elites samples), fit the
Gaussian parameters to them and repeat. At the last iteration, we return the top scoring action plan.
All parameters are reported in Table 14.

Table 14: CEM planner parameters.
Parameter Description Value

Tcem Time horizon. 100
Icem Number of iterations. 20
Ncem Number of samples. 1000
Kcem Number of elites. 100

M Computational Resources

In the following section we report as accurately as possible the computational resources used in this
work. On the high level, the bulk of the computational costs, performed on an AMD cluster, was
comprised of the experiments with Llama 3 on APPS, reported in Table 1. The reported experiments
require running 3 times Llama 3 on 1000 problems, 20 times each, receiving approximately 1000
tokens in input and producing 1500 tokens in output (as the model is not good in using the End-of-
Sequence token to stop earlier). We split the runs in 100 array jobs, each taking approximately 15
hours and requiring 4 AMD MI250x each, for an estimated total of 18000 GPU hours.

Experiments on the CWMB were composed of 18 problems for which we ran our method, one
baseline and 3 ablations, which should be roughly equivalent to a single experiment with 100 APPS
problems, or 10 jobs of 15 hours with 4 GPUs, for a total of 600 GPU hours. The single experiment
performed on RTFM with three different configurations also fits into this budget.

However, many more preliminary attempts were taken, so the full computational budget was of
31.800 GPU hours and a similar amount of CPU hours.

Furthermore, we have paid approximately $62.3 in OpenAI calls to GPT-3.5 Turbo (used only for
prototyping) and GPT-4 Turbo (used with a budget of 10 calls on the CWMB experiments in Table 2,
with 50 calls in some instances (Table 3) and for other preliminary experiments with GIF-MCTS).

Finally, all environment returns for planning were performed on a single consumer CPU in a few
hours.

23

N Prompts

In this section we report the main prompts used for GIF-MCTS. These prompts are also shared by
our WorldCoder implementation, while we avoid reporting explicitly the prompts used for Zero-shot
CoT, as they are simply the problem description followed by "Let’s think step by step".

N.1 APPS Prompts

<system>
You are an experienced Python developer. You will be provided with an incomplete code
snippet from a Python program. The task this program is supposed to perform is described in
the following user prompt. Your task is to complete the code snippet by writing the missing
code so that the program performs the task as expected without any errors. You will be
rewarded based on the number of test cases your code passes.
</system>
<user>
{PROB_DESCRIPTION}
Please read the inputs from the standard input (stdin) and print the outputs to the standard
output (stdout). Output your code solution with the following format: “‘python [your code] “‘
</user>
<assistant>
“‘python
{CODE_SO_FAR}
</assistant>

Figure 3: Prompt on the APPS benchmark for the generate action.

24

<system>
You are an experienced Python developer. You will be provided with an incorrect code snippet
from a Python program. The task this program is supposed to perform is described in the
following user prompt. Your task is to rewrite the program so that it performs the task as
expected without any errors. You will be rewarded based on the number of test cases your
code passes.
</system>
<user>
{PROB_DESCRIPTION}
Please read the inputs from the standard input (stdin) and print the outputs to the standard
output (stdout).
First, write an explanation of the difference between the ground-truth output and the program’s
output in the example provided. Secondly, point out the part of the code responsible for the
incorrect prediction and why its logic is erroneous. Third, suggest a concrete, actionable fix
for it. Finally fix the program in its entirety following the suggestion. The expected output is
in the format:
Error explanation
[your explanation of the error]
Error location and wrong logic
[where the error comes from and why]
Fix suggestion
[how to fix the error]
Correct code
“‘python
[your code]
“‘
Incorrect code
You are provided with the following code snippet to fix.
“‘python
{CODE}
“‘
The code additionally makes a wrong prediction about this input.
Input
{INPUT}
Ground-truth output
{OUTPUT}
Code incorrect outputs
{PREDICTION}
</user>
<assistant>
Error explanation
</assistant>

Figure 4: Prompt on the APPS benchmark for the improve action.

25

<system>
You are an experienced Python developer. You will be provided with an incorrect Python
program. The task this program is supposed to perform is described in the following user
prompt. Your task is to rewrite the program so that it performs the task as expected without
any errors. You will be rewarded based on the number of test cases your code passes.
</system>
<user>
{PROB_DESCRIPTION}
Please read the inputs from the standard input (stdin) and print the outputs to the standard
output (stdout).
First, write an explanation of the error and point out the part of the code responsible for the
error and why its logic is erroneous. Second, suggest how you would fix the error, reasoning
about the problem. Finally fix the program in its entirety following the suggestion. The
expected output is in the format:
Error explanation
[your explanation of the error]
Fix suggestion
[how to fix the error]
Correct code
“‘python
[your code]
“‘
Incorrect code
You are provided with the following code snippet to fix.
“‘python
{CODE}
“‘
{ERROR}
</user>
<assistant>
Error explanation
</assistant>

Figure 5: Prompt on the APPS benchmark for the fix action.

26

N.2 CWMB Prompts

<system>
You are an experienced Python developer. You will be provided with an incomplete code
snippet from a Python program. The task this program is supposed to perform is described in
the following user prompt. Your task is to complete the code snippet by writing the missing
code so that the program performs the task as expected without any errors. You will be
rewarded based on the number of test cases your code passes.
</system>
<user>
{ENV_DESCRIPTION}
Class Definition
The class should be called "Environment". It should have at least:
- an __init__ function to set up the Environment, which defines all the variables described in
the above documentation, plus any additional variables needed to maintain the environment
state or to implement its functionality.
- a set_state function to set a custom value for the environment and its internal representation
(you can assume that when "set_state" is used, the task is not done and internal variables
should be set as a consequence). set_state takes a single argument as input: a state observation
from the observation space defined above.
- a step function to predict a step in the environment. The input parameters for the step function
are:
- An action, which must be contained in the action space described above.
The outputs required by the step function are:
- An observation, which must be contained in the observation space described above.
- The reward for taking the action, as described in the reward definition above.
- A boolean variable indicating if the episode is done.
Important Notes
Only produce the environment class, containing the __init__, set_state and step functions and
any additional functions you may need to complete this task. Do not write an example of
how to use the class or anything else. Be careful about edge cases. Make sure to write all
the required functions and that they have the exact names as specified in the task description.
Missing or incorrectly named functions will not pass the tests and will result in a score of 0. It
is of VITAL importance that you do not leave undefined any function, but implement each of
them completely.
</user>
<assistant>
“‘python
{CODE_SO_FAR}
</assistant>

Figure 6: Prompt on the CWMB for the generate action.

27

<system> You are an experienced Python developer. You will be provided with an incorrect
code snippet from a Python program. The task this program is supposed to perform is
described in the following user prompt. Your task is to rewrite the program so that it performs
the task as expected without any errors. You will be rewarded based on the number of test
cases your code passes. </system>
<user> {ENV_DESCRIPTION}
Class Definition
The class should be called "Environment". It should have at least:
- an __init__ function to set up the Environment, which defines all the variables described in
the above documentation, plus any additional variables needed to maintain the environment
state or to implement its functionality.
- a set_state function to set a custom value for the environment and its internal representation
(you can assume that when "set_state" is used, the task is not done and internal variables
should be set as a consequence). set_state takes a single argument as input: a state observation
from the observation space defined above.
- a step function to predict a step in the environment. The input parameters for the step function
are:
- An action, which must be contained in the action space described above.
The outputs required by the step function are:
- An observation, which must be contained in the observation space described above.
- The reward for taking the action, as described in the reward definition above.
- A boolean variable indicating if the episode is done.
Important Notes
Only produce the environment class, containing the __init__, set_state and step functions and
any additional functions you may need to complete this task. Do not write an example of
how to use the class or anything else. Be careful about edge cases. Make sure to write all
the required functions and that they have the exact names as specified in the task description.
Missing or incorrectly named functions will not pass the tests and will result in a score of 0. It
is of VITAL importance that you do not leave undefined any function, but implement each of
them completely.
First, write an explanation of the difference between the ground-truth transition and the step
function’s outputs in the example provided. Second, point out the part of the code responsible
for the incorrect prediction and why its logic is erroneous. Third, suggest a concrete, actionable
fix for it. Finally, fix the program in its entirety following the suggestion. The expected output
is in the format:
Error explanation
[your explanation of the error]
Error location and wrong logic
[where the error comes from and why]
Fix suggestion
[how to fix the error]
Correct code
“‘python [your code] “‘
Incorrect code
You are provided with the following code snippet to fix.
“‘python {CODE} “‘
The code additionally makes a wrong prediction about this input.
Input
{INPUT}
Ground-truth output
{OUTPUT}
Code incorrect outputs
{PREDICTION} </user>
<assistant> ## Error explanation </assistant>

Figure 7: Prompt on the CWMB for the improve action.

28

<system>
You are an experienced Python developer. You will be provided with an incorrect Python
program. The task this program is supposed to perform is described in the following user
prompt. Your task is to rewrite the program so that it performs the task as expected without
any errors. You will be rewarded based on the number of test cases your code passes.
</system>
<user>
{ENV_DESCRIPTION}
Class Definition
The class should be called "Environment". It should have at least:
- an __init__ function to set up the Environment, which defines all the variables described in
the above documentation, plus any additional variables needed to maintain the environment
state or to implement its functionality.
- a set_state function to set a custom value for the environment and its internal representation
(you can assume that when "set_state" is used, the task is not done and internal variables
should be set as a consequence). set_state takes a single argument as input: a state observation
from the observation space defined above.
- a step function to predict a step in the environment. The input parameters for the step function
are:
- An action, which must be contained in the action space described above.
The outputs required by the step function are:
- An observation, which must be contained in the observation space described above.
- The reward for taking the action, as described in the reward definition above.
- A boolean variable indicating if the episode is done.
Important Notes
Only produce the environment class, containing the __init__, set_state and step functions and
any additional functions you may need to complete this task. Do not write an example of
how to use the class or anything else. Be careful about edge cases. Make sure to write all
the required functions and that they have the exact names as specified in the task description.
Missing or incorrectly named functions will not pass the tests and will result in a score of 0. It
is of VITAL importance that you do not leave undefined any function, but implement each of
them completely.
First, write an explanation of the error and point out the part of the code responsible for the
error and why its logic is erroneous. Second, suggest how you would fix the error, reasoning
about the problem. Finally fix the program in its entirety following the suggestion. The
expected output is in the format:
Error explanation
[your explanation of the error]
Fix suggestion
[how to fix the error]
Correct code
“‘python
[your code]
“‘
Incorrect code
You are provided with the following code snippet to fix.
“‘python
{CODE}
“‘
{ERROR}
</user>
<assistant>
Error explanation
</assistant>

Figure 8: Prompt on the CWMB for the fix action.

29

N.3 Sample Environment Descriptions

For the CWMB we extract the description for each environment directly from the Gymnasium
source code7. We clean the description string found for each environment to remove irrelevant
information (Arguments, Vectorized Environment, Version History, metadata) as well as manually
remove mentions of external links or sources that may provide the LLM with an implementation of
the environment. An example description for the CartPole-v1 environment8 can be seen in Figure 9.

Description
A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track.
The pendulum is placed upright on the cart and the goal is to balance the pole by applying
forces in the left and right direction on the cart.
Action Space
The action is a ‘ndarray‘ with shape ‘(1,)‘ which can take values ‘0, 1‘ indicating the direction
of the fixed force the cart is pushed with.
- 0: Push cart to the left - 1: Push cart to the right
Note: The velocity that is reduced or increased by the applied force is not fixed and it
depends on the angle the pole is pointing. The center of gravity of the pole varies the amount
of energy needed to move the cart underneath it
Observation Space
The observation is a ‘ndarray‘ with shape ‘(4,)‘ with the values corresponding to the following
positions and velocities:
Num	Observation	Min	Max
—–	———————–	———————	——————-
0	Cart Position	-4.8	4.8
1	Cart Velocity	-Inf	Inf
2	Pole Angle	-0.418 rad (-24°)	0.418 rad (24°)
3	Pole Angular Velocity	-Inf	Inf
Note: While the ranges above denote the possible values for observation space of each
element, it is not reflective of the allowed values of the state space in an unterminated episode.
Particularly: - The cart x-position (index 0) can be take values between ‘(-4.8, 4.8)‘, but the
episode terminates if the cart leaves the ‘(-2.4, 2.4)‘ range. - The pole angle can be observed
between ‘(-.418, .418)‘ radians (or **±24°**), but the episode terminates if the pole angle is
not in the range ‘(-.2095, .2095)‘ (or **±12°**)
Rewards
Since the goal is to keep the pole upright for as long as possible, a reward of ‘+1‘ for every
step taken, including the termination step, is allotted. The threshold for rewards is 500 for v1
and 200 for v0.
Starting State
All observations are assigned a uniformly random value in ‘(-0.05, 0.05)‘
Episode End
The episode ends if any one of the following occurs:
1. Termination: Pole Angle is greater than ±12° 2. Termination: Cart Position is greater than
±2.4 (center of the cart reaches the edge of the display) 3. Truncation: Episode length is
greater than 500 (200 for v0)

Figure 9: Example description for the CartPole-v1 environment.

O Examples of Generated Programs

We report examples of Code World Models generated by both Llama 3 and GPT-4 Turbo. We
include CartPole-v1 as an example of a discrete environment, Ant-v4 as an example of a continuous
environment and RTFM.

7https://github.com/Farama-Foundation/Gymnasium/tree/main/gymnasium/envs
8https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/classic_

control/cartpole.py

30

https://github.com/Farama-Foundation/Gymnasium/tree/main/gymnasium/envs
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/classic_control/cartpole.py
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/classic_control/cartpole.py

Figure 10: Code World Model of the CartPole-v1 environment generated by GIF-MCTS with Llama 3.
For reference, the official implementation of the environment can be found at the official Gymnasium
GitHub repository of the Farama Foundation (at gymnasium.envs.classic_control.cartpole).

1 import numpy as np
2

3 class Environment:
4 def __init__(self):
5 self.cart_position = np.random.uniform(-0.05, 0.05)
6 self.cart_velocity = np.random.uniform(-0.05, 0.05)
7 self.pole_angle = np.random.uniform(-0.05, 0.05)
8 self.pole_angular_velocity = np.random.uniform(-0.05, 0.05)
9 self.episode_length = 0

10 self.gravity = 9.8
11 self.mass_cart = 1.0
12 self.mass_pole = 0.1
13 self.length_pole = 0.5
14 self.force_mag = 10.0
15 self.time_step = 0.02 # time step for the simulation
16

17 def set_state(self, state):
18 self.cart_position = state[0]
19 self.cart_velocity = state[1]
20 self.pole_angle = state[2]
21 self.pole_angular_velocity = state[3]
22 self.episode_length = 0
23

24 def step(self, action):
25 force = self.force_mag if action == 1 else -self.force_mag
26 costheta = np.cos(self.pole_angle)
27 sintheta = np.sin(self.pole_angle)
28 temp = (force + self.mass_pole * self.length_pole *

self.pole_angular_velocity**2 * sintheta) / (self.mass_cart +
self.mass_pole)

↪→
↪→

29 angular_acceleration = (self.gravity * sintheta - costheta * temp) /
(self.length_pole * (4/3 - self.mass_pole * costheta**2 /
(self.mass_cart + self.mass_pole)))

↪→
↪→

30 linear_acceleration = temp - self.mass_pole * self.length_pole *
angular_acceleration * costheta / (self.mass_cart +
self.mass_pole)

↪→
↪→

31

32 # Update the state variables using the calculated accelerations
33 new_cart_velocity = self.cart_velocity + linear_acceleration *

self.time_step↪→
34 new_pole_angular_velocity = self.pole_angular_velocity +

angular_acceleration * self.time_step↪→
35 new_cart_position = self.cart_position + self.cart_velocity *

self.time_step↪→
36 new_pole_angle = self.pole_angle + self.pole_angular_velocity *

self.time_step↪→
37

38 self.cart_velocity = new_cart_velocity
39 self.cart_position = new_cart_position
40 self.pole_angular_velocity = new_pole_angular_velocity
41 self.pole_angle = new_pole_angle
42

43 self.episode_length += 1
44 done = abs(self.pole_angle) > 0.2095 or abs(
45 self.cart_position) > 2.4 or self.episode_length > 500
46 reward = 1
47 observation = np.array(
48 [self.cart_position, self.cart_velocity, self.pole_angle,

self.pole_angular_velocity])↪→
49 return observation, reward, done

31

Figure 12: Code World Model of the CartPole-v1 environment generated by GIF-MCTS with GPT-4.
For reference, the official implementation of the environment can be found at the official Gymnasium
GitHub repository of the Farama Foundation (at gymnasium.envs.classic_control.cartpole).

1 import numpy as np
2

3 class Environment:
4 def __init__(self):
5 self.cart_position = 0.0
6 self.cart_velocity = 0.0
7 self.pole_angle = 0.0
8 self.pole_angular_velocity = 0.0
9

10 self.gravity = 9.8
11 self.cart_mass = 1.0
12 self.pole_mass = 0.1
13 self.total_mass = self.cart_mass + self.pole_mass
14 self.pole_length = 0.5 # actually half the pole's length
15 self.force_mag = 10.0
16 self.tau = 0.02 # time step, 20 ms
17

18 self.reset()
19

20 def reset(self):
21 self.cart_position = np.random.uniform(-0.05, 0.05)
22 self.cart_velocity = np.random.uniform(-0.05, 0.05)
23 self.pole_angle = np.random.uniform(-0.05, 0.05)
24 self.pole_angular_velocity = np.random.uniform(-0.05, 0.05)
25 return np.array([self.cart_position, self.cart_velocity,

self.pole_angle, self.pole_angular_velocity])↪→
26

27 def set_state(self, state):
28 self.cart_position, self.cart_velocity, self.pole_angle,

self.pole_angular_velocity = state↪→
29

30 def step(self, action):
31 force = self.force_mag if action == 1 else -self.force_mag
32

33 # Equations for the model
34 costheta = np.cos(self.pole_angle)
35 sintheta = np.sin(self.pole_angle)
36

37 temp = (force + self.pole_mass * self.pole_length *
self.pole_angular_velocity**2 * sintheta) / self.total_mass↪→

38 theta_acc = (self.gravity * sintheta - costheta * temp) /
(self.pole_length * (4.0/3.0 - self.pole_mass * costheta**2 /
self.total_mass))

↪→
↪→

39 x_acc = temp - self.pole_mass * self.pole_length * theta_acc *
costheta / self.total_mass↪→

40

41 # Update the four state variables, using Euler's method
42 self.cart_position += self.tau * self.cart_velocity
43 self.cart_velocity += self.tau * x_acc
44 self.pole_angle += self.tau * self.pole_angular_velocity
45 self.pole_angular_velocity += self.tau * theta_acc
46

47 # Check if the episode is done
48 done = (
49 self.cart_position < -2.4 or self.cart_position > 2.4 or
50 self.pole_angle < -0.2095 or self.pole_angle > 0.2095
51)
52

32

53 # Since the problem specifies to always give a reward of +1
54 reward = 1.0
55

56 return np.array([self.cart_position, self.cart_velocity,
self.pole_angle, self.pole_angular_velocity]), reward, done↪→

Figure 14: Code World Model of the Ant-v4 environment generated by GIF-MCTS with Llama 3.
For reference, the official implementation of the environment can be found at the official Gymnasium
GitHub repository of the Farama Foundation (at gymnasium.envs.mujoco.Ant_v4).

1 import numpy as np
2

3

4 class Environment:
5 def __init__(self,
6 healthy_reward=1.0,
7 forward_reward_weight=1.0,
8 ctrl_cost_weight=0.5,
9 contact_cost_weight=5e-4,

10 contact_force_range=10.0,
11 healthy_z_range=(0.2, 1.0),
12 terminate_when_unhealthy=True,
13 reset_noise_scale=1e-2,
14 exclude_current_positions_from_observation=True):
15 self.healthy_reward = healthy_reward
16 self.forward_reward_weight = forward_reward_weight
17 self.ctrl_cost_weight = ctrl_cost_weight
18 self.contact_cost_weight = contact_cost_weight
19 self.contact_force_range = contact_force_range
20 self.healthy_z_range = healthy_z_range
21 self.terminate_when_unhealthy = terminate_when_unhealthy
22 self.reset_noise_scale = reset_noise_scale
23 self.exclude_current_positions_from_observation =

exclude_current_positions_from_observation↪→
24 self.state = self._reset_state()
25

26 def _reset_state(self):
27 # implement state reset logic here
28 state = np.zeros(27)
29 state[0] = 0.75 # initial z-coordinate
30 state += np.random.normal(0, self.reset_noise_scale, size=27)
31 return state
32

33 def set_state(self, state):
34 self.state = state
35

36 def step(self, action):
37 # implement dynamics model or physics engine to predict next state
38 next_state = self._predict_next_state(self.state, action)
39 observation = next_state
40 reward = self._calculate_reward(action, next_state)
41 done = self._check_episode_end(next_state)
42 return observation, reward, done
43

44 def _predict_next_state(self, state, action):
45 # implement dynamics model or physics engine to predict next state
46 # for example, using a simple integrator
47 # assume velocities are the last 14 components of the state
48 velocities = state[13:]
49 new_velocities = velocities.copy()
50 # update front left leg, front right leg, back left leg, and back

right leg↪→

33

51 new_velocities[:4] += 0.01 * action[:4]
52 # update corresponding body parts
53 new_velocities[4:8] += 0.01 * action[4:]
54 # Fix: slice new_velocities to match shape of state[:13]
55 new_positions = state[:13] + 0.01 * new_velocities[:13]
56 next_state = np.concatenate((new_positions, new_velocities))
57 return next_state
58

59 def _calculate_reward(self, action, next_state):
60 # implement reward calculation logic here
61 healthy_reward = self.healthy_reward
62 forward_reward = self.forward_reward_weight * \
63 (next_state[13] - self.state[13]) # x-coordinate velocity
64 ctrl_cost = self.ctrl_cost_weight * np.sum(np.square(action))
65 contact_cost = 0 # implement contact cost calculation logic here
66 reward = healthy_reward + forward_reward - ctrl_cost - contact_cost
67 return reward
68

69 def _check_episode_end(self, state):
70 # implement episode end check logic here
71 done = not (self.healthy_z_range[0] <=
72 state[0] <= self.healthy_z_range[1])
73 return done

Figure 16: Code World Model of the Ant-v4 environment generated by GIF-MCTS with GPT-4. For
reference, the official implementation of the environment can be found at the official Gymnasium
GitHub repository of the Farama Foundation (at gymnasium.envs.mujoco.Ant_v4).

1 import numpy as np
2

3 class Environment:
4 def __init__(self, exclude_current_positions_from_observation=True,

use_contact_forces=False, terminate_when_unhealthy=True,↪→
5 healthy_z_range=(0.2, 1.0), healthy_reward=1.0,

ctrl_cost_weight=0.5, contact_cost_weight=0.5,↪→
6 contact_force_range=(0, 10), reset_noise_scale=0.01,

frame_skip=5):↪→
7 self.exclude_current_positions_from_observation =

exclude_current_positions_from_observation↪→
8 self.use_contact_forces = use_contact_forces
9 self.terminate_when_unhealthy = terminate_when_unhealthy

10 self.healthy_z_range = healthy_z_range
11 self.healthy_reward = healthy_reward
12 self.ctrl_cost_weight = ctrl_cost_weight
13 self.contact_cost_weight = contact_cost_weight
14 self.contact_force_range = contact_force_range
15 self.reset_noise_scale = reset_noise_scale
16 self.frame_skip = frame_skip
17 self.dt = self.frame_skip * 0.01
18

19 if self.exclude_current_positions_from_observation:
20 self.observation_space_size = 27
21 else:
22 self.observation_space_size = 29
23

24 if self.use_contact_forces:
25 self.observation_space_size += 84 # 14 body parts * 6 contact

force values↪→
26

27 self.state = np.zeros(self.observation_space_size)
28 self.last_x_position = 0.0
29

34

30 def set_state(self, state):
31 self.state = state
32 self.last_x_position = state[0] if not

self.exclude_current_positions_from_observation else 0.0↪→
33

34 def step(self, action):
35 if not (-1 <= action).all() or not (action <= 1).all():
36 raise ValueError("Action must be within the range [-1, 1] for each

element.")↪→
37

38 # Simulate state transition (simplified)
39 self.state += np.random.normal(0, self.reset_noise_scale,

self.observation_space_size)↪→
40

41 x_position = self.state[0] if not
self.exclude_current_positions_from_observation else 0.0↪→

42 z_position = self.state[2] if not
self.exclude_current_positions_from_observation else self.state[0]↪→

43

44 # Calculate reward components
45 forward_reward = (x_position - self.last_x_position) / self.dt
46 ctrl_cost = self.ctrl_cost_weight * np.sum(np.square(action))
47 contact_cost = 0
48

49 if self.use_contact_forces:
50 # Last 84 entries are contact forces
51 contact_forces = self.state[-84:]
52 clipped_forces = np.clip(contact_forces,

self.contact_force_range[0], self.contact_force_range[1])↪→
53 contact_cost = self.contact_cost_weight *

np.sum(np.square(clipped_forces))↪→
54

55 reward = self.healthy_reward + forward_reward - ctrl_cost -
contact_cost↪→

56 self.last_x_position = x_position
57

58 # Determine if the episode is done
59 unhealthy = not (self.healthy_z_range[0] <= z_position <=

self.healthy_z_range[1])↪→
60 done = unhealthy and self.terminate_when_unhealthy
61

62 return self.state, reward, done
63

Figure 18: RTFM environment generated by GIF-MCTS with Llama 3

1 import numpy as np
2

3 class Environment:
4 def __init__(self):
5 self.monster_elements = {'demon': 'fire', 'dragon': 'fire', 'jinn':

'lightning', 'medusa': 'poison', 'bandit': 'cold', 'wolf': 'cold',
'goblin': 'lightning', 'mage': 'lightning', 'spider': 'poison'}

↪→
↪→

6 self.item_modifiers = {'axe': 'grandmasters', 'bow': 'blessed',
'daggers': 'shimmering', 'hammer': 'gleaming', 'polearm':
'fanatical', 'shield': 'mysterious', 'staff': 'arcane', 'sword':
'soldiers'}

↪→
↪→
↪→

7 self.monster_groups = {'demon': 'rebel enclave', 'dragon': 'order of
the forest', 'jinn': 'star alliance', 'medusa': 'order of the
forest', 'bandit': 'rebel enclave', 'wolf': 'order of the forest',
'goblin': 'star alliance', 'mage': 'star alliance', 'spider':
'rebel enclave'}

↪→
↪→
↪→
↪→

8 self.goal_group = 'order of the forest'

35

9 self.element_weaknesses = {'fire': ['grandmasters', 'soldiers'],
'lightning': ['arcane', 'blessed'], 'poison': ['gleaming',
'mysterious'], 'cold': ['fanatical', 'shimmering']}

↪→
↪→

10 self.board = np.full((6, 6, 2), 'empty', dtype=object)
11 self.board[:, 0, :] = 'wall'
12 self.board[:, -1, :] = 'wall'
13 self.board[0, :, :] = 'wall'
14 self.board[-1, :, :] = 'wall'
15 self.inventory = 'empty'
16 self.player_position = (1, 1)
17 self.board[self.player_position[0], self.player_position[1], 0] =

'you'↪→
18

19 def set_state(self, state):
20 self.board = state[0]
21 self.inventory = state[1]
22 for i in range(6):
23 for j in range(6):
24 if self.board[i, j, 0] == 'you':
25 self.player_position = (i, j)
26 break
27

28 def step(self, action):
29 action_dict = {0: "Stay", 1: "Up", 2: "Down", 3: "Left", 4: "Right"}
30 new_player_position = list(self.player_position)
31 if action_dict[action] == "Up":
32 new_player_position[0] -= 1
33 elif action_dict[action] == "Down":
34 new_player_position[0] += 1
35 elif action_dict[action] == "Left":
36 new_player_position[1] -= 1
37 elif action_dict[action] == "Right":
38 new_player_position[1] += 1
39

40 if (0 <= new_player_position[0] < 6 and 0 <= new_player_position[1] <
6 and↪→

41 self.board[new_player_position[0], new_player_position[1], 0]
!= 'wall'):↪→

42 self.board[self.player_position[0],
43 self.player_position[1], 0] = 'empty'
44 self.player_position = tuple(new_player_position)
45 self.board[self.player_position[0],
46 self.player_position[1], 0] = 'you'
47

48 frame = (self.board.copy(), self.inventory)
49 valid_actions = [i for i in range(5) if self._is_valid_action(i)]
50 reward = self._get_reward()
51 done = self._is_done()
52 return frame, valid_actions, reward, done
53

54 def _is_valid_action(self, action):
55 action_dict = {0: "Stay", 1: "Up", 2: "Down", 3: "Left", 4: "Right"}
56 new_player_position = list(self.player_position)
57 if action_dict[action] == "Up":
58 new_player_position[0] -= 1
59 elif action_dict[action] == "Down":
60 new_player_position[0] += 1
61 elif action_dict[action] == "Left":
62 new_player_position[1] -= 1
63 elif action_dict[action] == "Right":
64 new_player_position[1] += 1
65

66 return (0 <= new_player_position[0] < 6 and 0 <=
new_player_position[1] < 6 and↪→

36

67 self.board[new_player_position[0], new_player_position[1], 0]
!= 'wall')↪→

68

69 def _get_reward(self):
70 for i in range(6):
71 for j in range(6):
72 if self.board[i, j, 0] in self.monster_elements and

self.monster_groups[self.board[i, j, 0]] ==
self.goal_group:

↪→
↪→

73 if self.inventory != 'empty':
74 item_name = self.inventory.split(' ')[1]
75 item_modifier = self.item_modifiers[item_name]
76 monster_element = self.monster_elements[self.board[i,

j, 0]]↪→
77 if item_modifier in

self.element_weaknesses[monster_element]:↪→
78 return 1
79 return -1
80 return 0
81

82 def _is_done(self):
83 for i in range(6):
84 for j in range(6):
85 if self.board[i, j, 0] in self.monster_elements and

self.monster_groups[self.board[i, j, 0]] ==
self.goal_group:

↪→
↪→

86 return False
87 return True
88

Figure 20: RTFM environment generated by GIF-MCTS with GPT-4.

1 import numpy as np
2

3

4 class Environment:
5 def __init__(self):
6 self.board = np.full((6, 6, 2), 'empty', dtype=object)
7 self.board[:, 0, :] = 'wall'
8 self.board[:, 5, :] = 'wall'
9 self.board[0, :, :] = 'wall'

10 self.board[5, :, :] = 'wall'
11

12 self.player_pos = (3, 1)
13 self.board[3, 1, 0] = 'you'
14 self.inventory = 'empty'
15

16 self.monster_groups = {
17 'star alliance': ['mage', 'goblin', 'jinn'],
18 'order of the forest': ['dragon', 'medusa', 'wolf'],
19 'rebel enclave': ['demon', 'spider', 'bandit']
20 }
21

22 self.monster_elements = {
23 'dragon': 'cold', 'medusa': 'poison', 'wolf': 'poison',
24 'demon': 'fire', 'spider': 'lightning', 'bandit': 'cold',
25 'mage': 'lightning', 'goblin': 'fire', 'jinn': 'cold'
26 }
27

28 self.item_modifiers = {
29 'grandmasters': 'fire', 'blessed': 'lightning', 'shimmering':

'cold',↪→
30 'gleaming': 'poison', 'fanatical': 'cold', 'mysterious': 'poison',

37

31 'soldiers': 'fire', 'arcane': 'lightning'
32 }
33

34 self.action_dict = {0: "Stay", 1: "Up",
35 2: "Down", 3: "Left", 4: "Right"}
36 self.goal_group = 'order of the forest'
37

38 def set_state(self, state):
39 board, inventory = state
40 self.board = board
41 self.inventory = inventory
42 pos = np.where(self.board[:, :, 0] == 'you')
43 if pos[0].size > 0:
44 self.player_pos = (pos[0][0], pos[1][0])
45

46 def step(self, action):
47 direction = self.action_dict[action]
48 x, y = self.player_pos
49 dx, dy = x, y
50 if direction == "Up":
51 dx = x - 1
52 elif direction == "Down":
53 dx = x + 1
54 elif direction == "Left":
55 dy = y - 1
56 elif direction == "Right":
57 dy = y + 1
58

59 if self.board[dx, dy, 0] == 'wall':
60 dx, dy = x, y
61

62 new_pos = (dx, dy)
63 cell_content = self.board[new_pos[0], new_pos[1], 0]
64 game_done = False
65 reward = 0
66

67 if cell_content != 'empty' and cell_content != 'wall':
68 content_parts = cell_content.split()
69 if len(content_parts) == 2 and content_parts[1] in

self.monster_elements:↪→
70 monster = content_parts[1]
71 monster_element = self.monster_elements[monster]
72 monster_group = next((group for group, monsters in

self.monster_groups.items(↪→
73) if monster in monsters), None)
74 if self.inventory != 'empty':
75 item_modifier, item = self.inventory.split()
76 if self.item_modifiers[item_modifier] == monster_element

and monster_group == self.goal_group:↪→
77 reward = 1
78 game_done = True
79 else:
80 reward = -1
81 game_done = True
82 else:
83 reward = -1
84 game_done = True
85 elif content_parts[0] in self.item_modifiers:
86 self.inventory = cell_content
87

88 if not game_done:
89 self.board[x, y, 0] = 'empty'
90 self.board[new_pos[0], new_pos[1], 0] = 'you'
91 self.player_pos = new_pos

38

92

93 valid_actions = [a for a in self.action_dict if
self.board[self.player_pos[0] + (↪→

94 0, -1, 1, 0, 0)[a], self.player_pos[1] + (0, 0, 0, -1, 1)[a], 0]
!= 'wall']↪→

95

96 return (self.board.copy(), self.inventory), np.array(valid_actions),
reward, game_done↪→

39

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in Abstract and Introduction are backed by experiments found in
the Experiments Section 5 or in the Appendix, and clearly make reference to them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations discussed in the Limitations Section 6.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

40

Justification: No theoretical results are presented in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We comprehensively report, either in the main text of in the appendix, all
parameters, prompts and experimental details to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

41

Answer: [Yes]

Justification: Anonymized code will be provided in zip file together with the submission
and released with URL referenced in the paper upon acceptance of this work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details of our experiments are specified. We will also release, together with
the code, the data collected in RL environments, as they present stochasticity in terms of
initial conditions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Errors are reported on all the main experimental tables. All errors are errors of
the mean value, not standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

42

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All computational resources have been accounted for in Section M of the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors confirm that the research conducted in the paper conforms, in
every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We report a discussion on potential positive and negative impacts in Appendix
A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

43

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, no risk is posed by this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All benchmarks, Reinforcement Learning environments and models used have
been properly cited and were open to use for research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

44

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We do introduce a new benchmark derived from existing openly available
resources, detailing how to re-create it and reporting its details in appendix. The open-
sourcing of the code for this work will contain instructions on how to run the benchmark.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

45

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46

	Introduction
	Related Work
	Code World Models
	GIF-MCTS
	GIF-MCTS Actions

	Experiments
	Baselines
	APPS
	Code World Models Benchmark
	Read to Fight Monsters

	Discussion
	Limitations

	Conclusion
	Broader Impact
	Additional GIF-MCTS implementation details
	Ablation Study on GIF-MCTS
	Qualitative Study
	Data Contamination
	Data Quality
	Additional Related Work
	Comparison of Inference Times
	Code World Models Benchmark Details
	Results for Individual Environments
	Comparison with Offline RL
	Planning algorithms details
	Computational Resources
	Prompts
	APPS Prompts
	CWMB Prompts
	Sample Environment Descriptions

	Examples of Generated Programs

