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ABSTRACT

Diffusion models achieve high-quality sample generation at the cost of a lengthy
multistep inference procedure. To overcome this, diffusion distillation techniques
produce student generators capable of matching or surpassing the teacher in a
single step. However, the student model’s inference speed is limited by the size
of the teacher architecture, preventing real-time generation for computationally
heavy applications. In this work, we introduce Multi-Student Distillation (MSD),
a framework to distill a conditional teacher diffusion model into multiple single-
step generators. Each student generator is responsible for a subset of the con-
ditioning data, thereby obtaining higher generation quality for the same capacity.
MSD trains multiple distilled students allowing smaller sizes and, therefore, faster
inference. Also, MSD offers a lightweight quality boost over single-student dis-
tillation with the same architecture. We demonstrate MSD is effective by training
multiple same-sized or smaller students on single-step distillation using distribu-
tion matching and adversarial distillation techniques. With smaller students, MSD
gets competitive results with faster inference for single-step generation. Using 4
same-sized students, MSD sets a new state-of-the-art for one-step image genera-
tion: FID 1.20 on ImageNet-64×64 and 8.20 on zero-shot COCO2014.

1 INTRODUCTION

Diffusion models are the dominant generative model in image, audio, video, 3D assets, protein de-
sign, and more (Ho et al., 2020; Kong et al., 2022; Blattmann et al., 2023; Anand and Achim, 2022;
Nichol et al., 2022). They allow different conditioning inputs – such as class labels, text, or images
– and achieve high-quality generated outputs. However, their inference process typically requires
hundreds of model evaluations – with an often slow and bulky network – for a single sample. This
procedure costs millions of dollars per day (Valyaeva, 2024; Google, 2024). It also prohibits appli-
cations requiring rapid synthesis, such as augmented reality. Real-time, low-cost, and high-quality
generation will have huge financial and operational impacts while enabling new usage paradigms.

There has been a flurry of work on diffusion-distillation techniques to address the slow sampling
of diffusion models (Luhman and Luhman, 2021; Song et al., 2023; Yin et al., 2024a). Inspired
by knowledge distillation (Hinton et al., 2015), these methods use the trained diffusion model as a
teacher and optimize a student model to match its generated output in as few as a single step. How-
ever, most diffusion distillation methods use the same student and teacher architecture. This prevents
real-time generation for applications with bulky networks, such as video synthesis (Blattmann et al.,
2023). While reducing model size can reduce inference time, it typically yields worse generation
quality, thus presenting a speed-to-quality tradeoff dilemma with existing distillation methods.

We tackle this dilemma with our method, Multi-Student Distillation (MSD), that introduces multiple
single-step student generators distilled from the pretrained teacher. Each student is responsible for
a subset of conditioning inputs. We determine which student to use during inference and perform
a single-model evaluation to generate a high-quality sample. This way, MSD enjoys the benefit of
a mixture of experts (Jordan and Jacobs, 1994): it increases the model capacity without incurring
more inference cost, thereby effectively pushing the limit of the speed-quality tradeoff.
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When distilling into the same-sized students, MSD has the flexibility of being conceptually appli-
cable to any distillation method for a performance boost. In addition, MSD allows distilling into
multiple smaller students for reduced single-step generation time. Using smaller students prevents
one from initializing a student from teacher weights, posing an additional technical challenge. We
solve this challenge by adding a relatively lightweight score-matching pretraining stage before dis-
tillation (Sec. 4.3), and demonstrating its necessity and efficiency via extensive experiments.

We validate our approaches by applying MSD to distill the teacher into 4 same-sized students using
distribution matching and adversarial distillation procedures (Yin et al., 2024a;b). The resulting stu-
dents collectively outperform single-student counterparts, setting new state-of-the-art FID scores of
1.20 on one-step ImageNet-64×64 generation (Tab. 1) and 8.20 on one-step zero-shot COCO2014
generation (Tab. 2). We also distill the same teacher into 4 smaller students, which achieve a com-
petitive FID of 2.88 on ImageNet (Tab. 1), with 42% less parameters per student.

We summarize our contributions below, which include:

• A new framework, MSD, that upgrades existing single-step diffusion distillation methods
(Sec. 4.1) by increasing the effective model capacity without changing inference latency.

• Demonstrating the effectiveness of MSD by training multiple same sized students using
SOTA distillation techniques (Yin et al., 2024a;b) in Sec. 4.2, resulting in new record FID
scores in ImageNet-64×64 (Sec. 5.2) and zero-shot text-to-image generation (Sec. 5.3).

• A successful scheme to distill multiple smaller single-step students from the teacher model,
achieving comparable generation quality with reduced inference time.

2 RELATED WORK

Diffusion Sampling Acceleration. While a line of work aims to accelerate diffusion models via
fast numerical solvers for the PF-ODE (Lu et al., 2022a;b; Zheng et al., 2024; Karras et al., 2022;
Liu et al., 2022), they usually still require more than 10 steps. Training-based methods that usually
follow the knowledge distillation pipeline can achieve low-step or even one-step generation. Luh-
man and Luhman (2021) first used the diffusion model to generate a noise and image pair dataset
that is then used to train a single-step generator. DSNO (Zheng et al., 2023) precomputes the denois-
ing trajectory and uses neural operators to estimate the whole PF-ODE path. Progressive distillation
(Salimans and Ho, 2022; Meng et al., 2023) iteratively halves the number of sampling steps re-
quired without needing an offline dataset. Rectified Flow (Liu et al., 2023a) and follow-up works
(Liu et al., 2023b; Yan et al., 2024) straighten the denoising trajectories to allow sampling in fewer
steps. Another approach uses self-consistent properties of denoising trajectories to inject additional
regularization for distillation (Gu et al., 2023; Berthelot et al., 2023; Song et al., 2023; Song and
Dhariwal, 2024; Luo et al., 2023; Ren et al., 2024; Kim et al., 2024).

The methods above require the student to follow the teacher’s trajectories. Instead, a recent line of
works aims to only match the distribution of the student and teacher output via variational score
distillation (Yin et al., 2024a;b; Salimans et al., 2024; Xie et al., 2024a; Luo et al., 2024; Zhou et al.,
2024a; Nguyen and Tran, 2024). The adversarial loss (Goodfellow et al., 2014), often combined
with the above techniques, has been used to enhance the distillation performance further (Xiao et al.,
2022; Zheng and Yang, 2024; Sauer et al., 2023a; 2024; Wang et al., 2023; Xu et al., 2024; Lin et al.,
2024; Kim et al., 2024). Although MSD is conceptually compatible and offers a performance boost
to all of these distillation methods, in this work, we demonstrate two specific techniques: distribution
matching (Yin et al., 2024a) and adversarial distillation (Yin et al., 2024b).

Mixture of experts training and distillation. Mixture of Experts (MoE), first proposed in Jordan
and Jacobs (1994), has found success in training very large-scale neural networks (Shazeer et al.,
2017; Lepikhin et al., 2021; Fedus et al., 2022; Lewis et al., 2021; Borde et al., 2024). Distilling a
teacher model into multiple students was explored by Hinton et al. (2015), and after that, has been
further developed for supervised learning (Chen et al., 2020; Ni and Hu, 2023; Chang et al., 2022)
and language modeling (Xie et al., 2024b; Kudugunta et al., 2021; Zuo et al., 2022). Although sev-
eral works (Hoang et al., 2018; Park et al., 2018; Ahmetoğlu and Alpaydın, 2021) have proposed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

MoE training schemes for generative adversarial networks, they train the MoE from scratch. This re-
quires carefully tuning the multi-expert adversarial losses. eDiff-I (Balaji et al., 2022) uses different
experts in different denoising timesteps for a multi-step diffusion model. A recent work (Zhou et al.,
2024b) proposes to distill a pretrained diffusion model into an MoE for policy learning, which shares
similar motivations with our work. However, to the best of our knowledge, MSD is the first method
to distill multi-step teacher diffusion models into multiple one-step students for image generation.

Efficient architectures for diffusion models. In addition to reducing steps, an orthogonal approach
aims to accelerate diffusion models with more efficient architectures. A series of works (Bao et al.,
2022; Peebles and Xie, 2023; Hoogeboom et al., 2023) introduces vision transformers to diffusion
blocks and trains the diffusion model with new architectures from scratch. Another line of work
selectively removes or modifies certain components of a pretrained diffusion model and then either
finetunes (Kim et al., 2023; Li et al., 2024; Zhang et al., 2024) or re-trains (Zhao et al., 2023) the
lightweight diffusion model, from which step-distillation can be further applied (Li et al., 2024;
Zhao et al., 2023). Our approach is orthogonal to these works in two regards: 1) In our method,
each student only handles a subset of data, providing a gain in relative capacity. 2) Instead of
obtaining a full diffusion model, our method employs a lightweight pretraining stage to obtain a
good initialization for single-step distillation. Combining MSD with more efficient architectures is
a promising future direction.

3 PRELIMINARY

We introduce the background on diffusion models in Sec. 3.1 and distribution matching distillation
(DMD) in Sec. 3.2. We discuss how applying adversarial losses to improve distillation in Sec. 3.3.

3.1 DIFFUSION MODELS

Diffusion models learn to generate data by estimating the score functions (Song et al., 2021)
of the corrupted data distribution on different noise levels. Specifically, at different timesteps
t, the data distribution preal is corrupted with an independent Gaussian noise: pt,real(xt) =∫
preal(x)qt(xt|x)dx where qt(xt|x) ∼ N (αtx, σ

2
t I) with predetermined αt, σt following a

forward diffusion process (Song et al., 2021; Ho et al., 2020). The neural network learns the
score of corrupted data sreal := ∇xt

log pt,real(xt) = −(xt − αtx)/σ
2
t by equivalently pre-

dicting the denoised x: µ(xt, t) ≈ x. After training with the denoising score matching loss
Ex,t,xt [λt∥µ(xt, t) − x∥22], where λt is a weighting cofficient, the model generates the data by
an iterative denoising process over a decreasing sequence of time steps.

3.2 DISTRIBUTION MATCHING DISTILLATION

Inspired by Wang et al. (2024), the works of Luo et al. (2024); Yin et al. (2024a); Ye and Liu
(2024); Nguyen and Tran (2024) aim to train the single-step distilled student to match the generated
distribution of the teacher diffusion model. This is done by minimizing the following reverse KL
divergence between teacher and student output distributions, diffused at different noise levels for
better support over the ambient space:

EtDKL(pt,fake∥pt,real) = Ext

(
log

(
pt,fake(xt)

pt,real(xt)

))
. (1)

The training only requires the gradient of Eq. (1), which reads (with a custom weighting wt):
∇θLKL(θ) := ∇θEtDKL ≃ Ez,t,xt

[wtαt(sfake(xt, t)− sreal(xt, t))∇θGθ(z)], (2)

where z ∼ N (0, I), t ∼ Uniform[Tmin, Tmax], and xt ∼ q(xt|x), the noise injected version of
x = Gθ(z) generated by the one-step student. Here, we assume the teacher denoising model
accurately approximates the score of the real data, and a “fake” denoising model approximates the
score of generated fake data:

sreal(xt, t) ≈ −xt − αtµteacher(xt, t)

σ2
t

, sfake(xt, t) ≈ −xt − αtµfake(xt, t)

σ2
t

. (3)
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Figure 1: We visualize distilling into multiple students, where each student handles a subset of the
input condition. At training, students are trained separately with filtered data. At inference, a single
student is retrieved for generation given the corresponding input condition.

The “fake” denoising model is trained with the denoising objective with weighting λt:

Ldenoise(ϕ) = Ez,t,xt [λt∥µϕ
fake(xt, t)− x∥22]. (4)

The generator and the “fake” denoising model are updated alternatively. To facilitate better con-
vergence of the KL divergence, Distribution Matching Distillation (DMD) and DMD2 (Yin et al.,
2024b) used two distinct strategies, both significantly improving the generation performance. DMD
proposes to complement the KL loss with a regression loss to encourage mode covering:

Lreg(θ) = E(z,y)∼Dpairedℓ(Gθ(z), y), (5)

where Dpaired is a dataset of latent-image pairs generated by the teacher model offline, and ℓ is the
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018). DMD2 instead applies
a two-timescale update rule (TTUR), where they update the “fake” score model for N steps per
generator update, allowing more stable convergence. We use distribution matching (DM) to refer to
all relevant techniques introduced in this section.

3.3 ENHANCING DISTILLATION QUALITY WITH ADVERSARIAL LOSS

The adversarial loss, originally proposed by Goodfellow et al. (2014), has shown a remarkable capa-
bility in diffusion distillation to enhance sharpness and realism in generated images, thus improving
generation quality. Specifically, DMD2 (Yin et al., 2024b) proposes adding a minimal discriminator
head to the bottleneck layer of the “fake” denoising model µfake, which is naturally compatible with
DMD’s alternating training scheme and the TTUR. Moreover, they showed that one should first train
the model without GAN to convergence, then add the GAN loss and continue training. This yields
better terminal performance than training with the GAN loss from the beginning. We use adversarial
distribution matching (ADM) to refer to distribution matching with added adversarial loss.

4 METHOD

In Sec. 4.1, we introduce the general Multi-Student Distillation (MSD) framework. In Sec. 4.2,
we show how MSD is applied to distribution matching and adversarial distillation. In Sec. 4.3, we
introduce an additional training stage enabling distilling into smaller students.

4.1 DISTILLING INTO MULTIPLE STUDENTS

We present Multi-Student Distillation (MSD), a general drop-in framework to be combined with
any conditional single-step diffusion distillation method that enables a cheap upgrade of model
capacity without impairing the inference speed. We first identify the key components of a single-
step diffusion distillation framework and then present the modification of MSD.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Teacher

Multi-step 

student

Stage 0

One-step 

student

Stage 1

One-step 

student

Stage 2

Teacher

Teacher

TSM

DM

ADM

Figure 2: Three-stage training scheme in Eq. 9. Acronym meanings: TSM: teacher score matching
(Eq. 8 & Eq. 9); DM: distribution matching (Eq. 9 & Sec. 3.2); ADM: adversarial distribution
matching (Eq. 9 and Sec. 3.3). Stage 1 and Stage 2 are techniques from previous works that help
with same-sized students; Stage 0 is our contribution, which is required for smaller students who
cannot initialize with teacher weights.

In the vanilla one-student distillation, we have a pretrained teacher denoising diffusion model
µteacher, a training dataset D, and a distillation method. The distillation yields a single-step gen-
erator G(z; y ∈ Y) via G = Distill(µteacher;D). The obtained generator G maps a random latent z
and an input condition y into an image. In comparison, in an MSD scheme, we instead distill the
teacher into K different one-step generators {Gk(z; y ∈ Yk)}Kk=1 via

Gk = Distill(µteacher,Dk = F (D,Yk)), k = 1, ...,K (6)

Specifically, each distilled student Gk is specialized in handling a partitioned subset Yk of the whole
input condition set Y . So, it is trained on a subset of the training data Dk ⊂ D, determined by Yk

via a filtering function F . Fig. 1 illustrates this idea.

The partition of Y into {Yk}Kk=1 determines the input condition groups for which each student is
responsible. As a starting point, we make the following three simplifications for choosing a partition:

• Disjointness: This prevents potential redundant training and redundant usage of model capacity.

• Equal size: Since students have the same architecture, the partitions {Yk}Kk=1 should be of equal
size that require similar model capacity.

• Clustering: Conditions within each partition should be more semantically similar than those in
other partitions, so networks require less capacity to achieve a set quality on their partition.

The first two conditions can be easily satisfied in practice, while the third is not straightforward. For
a class-conditional generation, partitioning by semantically similar and equal-sized classes serves
a straightforward strategy, though extending it to text-conditional generation is nontrivial. Another
promising strategy uses pretrained embedding layers such as the CLIP (Radford et al., 2021) embed-
ding layer or the teacher embedding layer. One could find embeddings of the input conditions and
then perform clustering on those embeddings, which are fixed-length numerical vectors containing
implicit semantic information. We ablate partition strategies in Sec. 5.4.

The data filtering function F determines the training subset data Dk from Yk. For example, a vanilla
filtering strategy could set F (D,Yk) = Dk := DYk

, where DYk
denotes the subset of the training

dataset D that contains the desired condition Yk. Empirically, we found that this filtering works in
most cases, although sometimes a different approach is justified, as demonstrated in Sec. 4.2.
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4.2 MSD WITH DISTRIBUTION MATCHING

As a concrete example, we demonstrate the MSD framework using distribution matching (DM) and
adversarial distillation techniques. Inspired by the two-stage framework in Yin et al. (2024b), each
of our students is trained with a distribution matching scheme at the first stage and finetuned with
an additional adversarial loss at the second stage (adversarial distribution matching, or ADM):

G
(1)
k = DistillDM (µteacher, FDM(DDM,Yk)) , k = 1, ...,K,

G
(2)
k = DistillADM

(
µteacher, FADM(DADM,Yk);G

(1)
k

)
, k = 1, ...,K,

(7)

where we recall that µteacher is the teacher diffusion model, G(i)
k is the k-th student generator at

the i-th stage, F is the data filtering function, D is the training data, and Yk is the set of labels
that student k is responsible of. The first stage DistillDM uses distribution matching with either a
complemented regression loss or the TTUR, with details in Sec. 3.2. These two methods achieve
optimal training efficiency among other best-performing single-step distillation methods (Xie et al.,
2024a; Zhou et al., 2024a; Kim et al., 2024) without an adversarial loss, with a detailed comparison
in App. B.3. The second stage DistillADM adds an additional adversarial loss (details in Sec. 3.3,
which introduces minimal additional computational overhead and allows resuming from the first
stage checkpoint, making it a natural choice.

Designing the training data From Sec. 3, the data required for DM and ADM are DDM =
(Dpaired, C) and DADM = (Dreal, C), where Dpaired,Dreal, C represents generated paired data, real
data and separate conditional input, respectively. We now discuss choices for the filtering function.

For the first stage data filtering FDM, we propose FDM(DDM,Yk) = (Dpaired, CYk
), where CYk

de-
notes the subset of condition inputs C that contains Yk. In other words, we sample all input condi-
tions only on the desired partition for the KL loss but use the whole paired dataset for the regression
loss. This special filtering is based on the observation that the size of Dpaired critically affects the
terminal performance of DMD distillation: using fewer pairs causes mode collapse, whereas using
more pairs challenge the model capacity. Naı̈vely filtering paired datasets by partition reduces the
paired dataset size for each student and leads to worse performance, as in our ablation in App. B.2.
Instead of generating more paired data to mitigate this imbalance, we simply reuse the original
paired dataset for the regression loss. This is remarkably effective, which we hypothesize is because
paired data from other input conditions provides effective gradient updates to the shared weights in
the network.

For the second stage, we stick to the simple data filtering FADM(DADM,Yk) = (Dreal,Yk
, CYk

), so
that both adversarial and KL losses focus on the corresponding partition, given that each student has
enough mode coverage from the first stage.

4.3 DISTILLING SMALLER STUDENTS FROM SCRATCH

Via the frameworks presented in the last two sections, MSD enables a performance upgrade over
alternatives for one student with the same model architecture. In this section, we investigate training
multiple students with smaller architectures – and thus faster inference time – without impairing
much performance. However, this requires distilling into a student with a different architecture, pre-
venting initialization from pretrained teacher weights. Distilling a single-step student from scratch
has previously been difficult (Xie et al., 2024a), and we could not obtain competitive results with
the simple pipeline in Eq. 7. Therefore, we propose an additional pretraining phase DistillTSM, with
TSM denoting Teacher Score Matching, to find a good initialization for single-step distillation. TSM
employs the following score-matching loss:

LTSM = Et[λt∥µφ
TSM(xt, t)− µteacher(xt, t)∥22], (8)

where the smaller student with weights φ is trained to match the teacher’s score on real images at
different noise levels. This step provides useful initialization weights for single-step distillation and

6
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Figure 3: A 2D toy model. From left to right: teacher (multi-step) generation and student, one-step
generation with 1 and 8 distilled students, the ℓ1 distance of generated samples between teacher and
students. Takeaway: More students improve distillation quality on this easy-to-visualize setup.

is crucial to ensure convergence. With TSM added, the whole pipeline now becomes:

µ(0) = DistillTSM (µteacher,Dreal) ,

G
(1)
k = DistillDM

(
µteacher, FDM(DDM,Yk);µ

(0)
)
, k = 1, ...,K,

G
(2)
k = DistillADM

(
µteacher, FADM(DADM,Yk);G

(1)
k

)
, k = 1, ...,K.

(9)

Although a smaller student may not perfectly match the teacher’s score, it still provides a good
initialization for stages 1 and 2. The performance gap is remedied in the latter stages by focusing on
a smaller partition for each student. This three-stage training scheme is illustrated in Fig. 2.

5 EXPERIMENTS

To evaluate the effectiveness of our approach, we trained MSD with different design choices and
compared against competing methods, including other single-step distillation methods.

In Sec. 5.1, we compare single vs multiple students on a 2D toy problem for direct visual compari-
son. For these experiments, we used only the DM stage. In Sec. 5.2, we investigate class-conditional
image generation on ImageNet-64×64 (Deng et al., 2009) where we have naturally defined classes
to partition. Here we explored training with the DM stage only, with both DM and ADM stages,
and with all three stages for smaller students. We then evaluate MSD for a larger model in Sec. 5.3.
We explored text-to-image generation on MS-COCO2014 (Lin et al., 2014) with varying training
stages. We use the standard Fréchet Inception Distance (FID) (Heusel et al., 2017) score to mea-
sure generation quality. Comprehensive comparisons confirm that MSD outperforms single-student
counterparts and achieves state-of-the-art performance in single-step diffusion distillation. Finally,
in Sec. 5.4, we summarize our ablation experiments over design choices.

To focus on the performance boost from multi-student distillation, we applied minimal changes to
the hyperparameters used by Yin et al. (2024a;b) for their distribution matching distillation imple-
mentations. More details on training and evaluation can be found in the App. D and E.

5.1 TOY EXPERIMENTS

In Fig. 3, we show the sample density of MSD with DM stage for a 2D toy experiment, where
the real data distribution has 8 classes, and each class is a mixture of 8 Gaussians. We used a
simple MLP with EDM schedules to train the teacher and then distill into 1, 2, 4, and 8 students for
comparison. From the displayed samples and the ℓ1 distance from teacher generation, we observe
that the collective generation quality increases as the number of students increases.

5.2 CLASS-CONDITIONAL IMAGE GENERATION

Student architecture the same as the teacher: We trained K = 4 students using the MSD frame-
work and the EDM (Karras et al., 2022) teacher on class-conditional ImageNet-64×64 generation.

7
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Table 1: Comparing class-conditional genera-
tors on ImageNet-64×64. The number of func-
tion evaluations (NFE) for MSD is 1 as a single
student is used at inference for the given input.

Method NFE (↓) FID (↓)
Multiple Steps
RIN (Jabri et al., 2023) 1000 1.23
ADM (Dhariwal and Nichol, 2021) 250 2.07
DPM Solver (Lu et al., 2022a) 10 7.93
Multistep CD (Heek et al., 2024) 2 2.0
Single Step, w/o GAN
PD (Salimans and Ho, 2022) 1 15.39
DSNO (Zheng et al., 2023) 1 7.83
Diff-Instruct (Luo et al., 2024) 1 5.57
iCT-deep (Song and Dhariwal, 2024) 1 3.25
Moment Matching (Salimans et al., 2024) 1 3.0
DMD (Yin et al., 2024a) 1 2.62
MSD (ours): 4 students, DM only 1 2.37
EMD (Xie et al., 2024a) 1 2.20
SiD (Zhou et al., 2024a) 1 1.52
Single Step, w/ GAN
Post-distillation, 4, 42% smaller students 1 11.67
MSD (ours): 4, 42% smaller students, ADM 1 2.88
StyleGAN-XL (Sauer et al., 2022) 1 1.52
CTM (Kim et al., 2024) 1 1.92
DMD2 (Yin et al., 2024b) 1 1.28
MSD (ours): 4 students, ADM 1 1.20
teacher
EDM (teacher, ODE) (Karras et al., 2022) 511 2.32
EDM (teacher, SDE) (Karras et al., 2022) 511 1.36

Table 2: Comparing MSD to other methods
on zero-shot text-to-image generation on MS-
COCO2014. We measure speed with sampling
time per prompt (latency) and quality with FID.

Method Latency (↓) FID (↓)
Unaccelerated
DALL·E 2 (Ramesh et al., 2022) - 10.39
LDM (Rombach et al., 2022) 3.7s 12.63
eDiff-I (Balaji et al., 2022) 32.0s 6.95
GANs
StyleGAN-T (Sauer et al., 2023b) 0.10s 12.90
GigaGAN (Yu et al., 2022) 0.13s 9.09
Accelerated
DPM++ (4 step) (Lu et al., 2022b) 0.26s 22.36
InstaFlow-0.9B (Liu et al., 2023b) 0.09s 12.10
UFOGen (Xu et al., 2024) 0.09s 12.78
DMD (Yin et al., 2024a) 0.09s 11.49
EMD (Xie et al., 2024a) 0.09s 9.66
DMD2 (w/o GAN) 0.09s 9.28
MSD (ours): 4 students, DM only 0.09s 8.80
DMD2 (Yin et al., 2024b) 0.09s 8.35
MSD (ours): 4 students, ADM 0.09s 8.20
teacher
SDv1.5 (50 step, CFG=3, ODE) 2.59s 8.59
SDv1.5 (200 step, CFG=2, SDE) 10.25s 7.21

We applied the simplest strategy for splitting classes among students: Each student is responsible
for 250 consecutive classes in numerical order (i.e., 1/K of the 1000 classes). We compare the
performance with previous methods and display the results in Tab. 1. Our DM stage, which uses
the complementary regression loss, surpasses the one-student counterpart DMD (Yin et al., 2024a),
achieving a modest drop of 0.25 in FID score, making it a strong competitor in single-step distilla-
tion without an adversarial loss. We then took the best pretrained checkpoints and trained with the
ADM stage. The resulting model achieved the current state-of-the-art FID score of 1.20. It surpasses
even the EDM teacher, StyleGAN-XL (Sauer et al., 2022), the multi-step RIN (Jabri et al., 2023)
due to the adversarial loss. Fig. 4(a) and (b) display a comparison of sample generations, showing
that our best students have comparable generation quality as the teacher.

Student architecture smaller than the teacher: Next, we trained 4 smaller student models with
the prepended teacher score matching (TSM) stage from Sec. 4.3. This achieved a 42% reduction
in model size and a 7% reduction in latency, with a slight degradation in FID score, offering a
flexible framework to increase generation speed by reducing student size, and increasing generation
quality by training more students. Fig. 4(c) displays sample generation from these smaller students,
whereas Fig. 4(d) shows sample generations from an even smaller set of students, with a 71% percent
reduction in model size and a 23% percent reduction in latency. We observed slightly degraded but
still competitive generation qualities. Using more and larger students will further boost performance,
as shown by ablations in Sec. 5.4 and App. B.4. Smaller students without the TSM stage fail to reach
even proper convergence. Moreover, instead of the TSM stage, we performed post output distillation
on best single-step checkpoints, and observed significant drop in performance. Hence the TSM stage
is both necessary and efficient.

5.3 TEXT-TO-IMAGE GENERATION

Student architecture the same as the teacher: We evaluated the performance of text-to-image
generation using the MS-COCO2014 (Lin et al., 2014) evaluation dataset. We distilled 4 students
from Stable Diffusion (SD) v1.5 (Rombach et al., 2022) on a 5M-image subset of the COYO dataset
(Byeon et al., 2022). For splitting prompts among students, we again employed a minimalist design:
pass the prompts through the pre-trained SD v1.5 text encoder, pool the embeddings over the tempo-
ral dimension, and divide into 4 disjoint subsets along 4 quadrants. We trained with a classifier-free
guidance (CFG) scale of 1.75 for best FID performance. Tab. 2 compares the evaluation results
with previous methods. Our baseline method with only the DM stage again achieved a performance
boost with a 0.48 drop in FID over the single-student counterpart DMD2 without adversarial loss
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(a) Teacher (multistep) (b) Same-sized students (c) 42% smaller students (d) 71% smaller students
Figure 4: Sample generations on ImageNet-64×64 from the teacher and different sized students,
with architecture and latency details in App. D. The same-size students have comparable or slightly
better generation quality than the teacher. Smaller students achieve faster generation while still
having decent qualities. Same-sized students are trained with DM and ADM stages, whereas smaller
students are trained with all three stages (see Fig. 2).

(a) Teacher (multistep) (b) Same-sized student (c) 83% smaller student

Figure 5: Samples on high guidance-scale text-to-image generations from the SD v1.5 teacher and
different sized students, with full training details in App. D. The same-sized student has comparable
quality to the teacher. The smaller student, trained on a subset of dog-related data, achieves faster
generation while still having decent qualities. The same-sized student is trained with DM stage only,
whereas the smaller student is trained with TSM and DM stages (see Fig. 2).

(Yin et al., 2024b). Continuing the ADM stage from the best checkpoint yielded a terminal FID of
8.20, again surpassing the single-student counterpart and achieving the current state-of-the-art FID
score. In addition, for better visual quality, we also train with a larger CFG scale of 8, and display
corresponding samples in Fig. 5(b) and App. F.2.

Student architecture smaller than the teacher: As a preliminary exploration, with the prepended
teacher score matching (TSM) stage, we train a 83% smaller and 5% faster student on a dog-related
prompt subset of COYO (containing ∼ 1 210 000 prompts). We trained with a CFG scale of 8 and
display the samples in Fig. 5. We observed fair generation quality despite a significant drop in model
size. Improved training is likely to obtain better sample quality and generalization power. Due to
limited computational resources and the complete coverage of the prompt set by the 4-student model,
we did not train the full set of students at this size.

5.4 ABLATION STUDIES

Here, we ablate the effect of different components in MSD and offer insight into scaling. Unless oth-
erwise mentioned, all experiments are conducted for class-conditional generation ImageNet-64×64,
using only the DM stage for computational efficiency.

MSD is still better with the same effective batch size. To investigate if the performance boost from
MSD comes from only a batch size increase over single student distillation, we make a comparison
with the same effective batch size. As showcased in Tab. 3, MSD with 4 students and a batch
size of 32 per student performs slightly better than the single-student counterpart with a batch size
of 128, indicating that MSD likely benefits from a capacity increase than a batch size increase.
As a takeaway, with a fixed training resource measured in processed data points, users are better off
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distilling into multiple students with partitioned resources each than using all resources to distill into
a single student. This is also reflected in our previous experiments, where we used significantly less
resources per student than the single-student counterparts (see details in App. D). Although multiple
students means multiple model weights to save, storage is often cheap, so in many applications, this
cost is outweighed by our improved quality or latency.

Table 3: Ablation studies on different compo-
nents of MSD. All experiments are done on
ImageNet-64×64, trained with only the DM
stage for 20k iterations, where B is the batch
size per student. See App. B.1.

Method FID (↓)
4 students, B = 32 2.53
1 students, B = 128 2.60
2 students, B = 128 2.49
4 students, B = 128 (baseline) 2.37
8 students, B = 128 2.32
4 students, B = 128, K-means splitting 2.39
4 students, B = 128, random splitting 2.45

Simple splitting works surprisingly well. We
used consecutive splitting of classes in Sec. 5.2.
Although it shows obvious advantage over ran-
dom splitting, as shown in Tab. 3, it does not use
the embedding information from the pretrained
EDM model. Therefore, we investigated another
strategy where we performed a K-means cluster-
ing (K = 4) on the label embeddings, resulting in
4 clusters of similar sizes: (230, 283, 280, 207).
However, MSD trained with these clustered par-
titions performs similarly to sequential partition,
as shown in Tab. 3. For text-to-image generation,
we performed K-means clustering on the pooled
embeddings of prompts in the training data, re-
sulting in clusters of vastly uneven sizes. Due to computational limitations, we opted for the simpler
partition strategies outlined in Sec. 5.

Effect of scaling the number of students. In Tab. 3, we study the effect of increasing K, the
number of distilled students. We kept the per-student batch size fixed so more students induce
a larger effective batch size. We observe better FID scores for more students. We hypothesize
that better training strategies, such as per-student tuning, will further improve the quality. Optimal
strategies for scaling to ultra-large numbers of students is an interesting area for future work.

6 DISCUSSION

6.1 LIMITATIONS

MSD is the first work to explore diffusion distillation with multiple students, and it admits a few
limitations that call for future work. 1) Further explorations could offer more insights into optimal
design choices for a target quality and latency on various datasets, such as the number of students,
input condition size for each student, and other hyperparameters. This is especially beneficial if
the training budget is limited. 2) We apply simple partitioning for both class- and text-conditions
and assign them disjointly to different students. Although our empirical study shows that simple
alternatives do not offer obvious advantages, more sophisticated routing mechanisms may help.
3) We use simple channel reduction when designing smaller students to demonstrate feasibility.
This results in a significantly smaller latency reduction than sample size reduction. Exploring other
designs of smaller students will likely increase their quality and throughput. 4) We train different
students separately, but we expect that carefully designed weight-sharing, loss-sharing, or other
interaction schemes can further enhance training efficiency. 5) We hypothesize that MSD can be
applied to other diffusion distillation methods and other modalities for similar benefits, but leave
this for future work.

6.2 CONCLUSION

This work presented Multi-Student Distillation, a simple yet efficient method to increase the ef-
fective model capacity for single-step diffusion distillation. We applied MSD to the distribution
matching and adversarial distillation methods. We demonstrated their superior performance over
single-student counterparts in both class-conditional generation and text-to-image generation. Par-
ticularly, MSD with DMD2’s the two-stage training achieves state-of-the-art FID scores. Moreover,
we successfully distilled smaller students from scratch, demonstrating MSD’s potential in further
reducing the generation latency with multiple smaller student distillations. We envision building on
MSD to enable generation in real-time, enabling many new use cases.
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REPRODUCIBILITY

All implementation details are provided in App. D, and all evaluation details are provided in App. E.

ETHICS STATEMENTS

Our work aims to improve the quality and speed of diffusion models, thus we may inherit ethics
concerns from diffusion models and generative models in general. Potential risks include fabricating
facts or profiles that could mislead public opinion, displaying biased information that may amplify
social biases, and displacing creative jobs from artists and designers.
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Table 4: Glossary and notation

MSD Multi-student distillation
DM Distribution Matching

ADM Distribution Matching with Adversarial loss
TSM Teacher Score Matching
MoE Mixture of experts
DMD Distribution Matching Distillation (Yin et al., 2024a)

DMD2 Improved Distribution Matching Distillation (Yin et al., 2024b)
SOTA State-of-the-art
FID Fréchet Inception Distance
NFE Number of Function Evaluations
SD Stable Diffusion

TTUR Two-Timescale Update Rule
CFG Classifier-free guidance
MLP Multi-layer Perceptron
GAN Generative Adversarial Network

SDE/ODE Stochastic/Ordinary Differential Equation
i, j, k, n ∈ N Indices
I, J,K,N ∈ N Sizes
x, y, z ∈ R Scalars

x,y, z ∈ RN Vectors
X,Y ,Z ∈ RN×N Matrices

X ,Y,Z Sets / domains
I The identity matrix
G Single-step generator
φ Student network weights
ϕ “fake” score network weights
ℓ1 Manhattan distance

Distill Distillation method
µ Denoising network
K Number of students
k Student index
(i) Distillation stage
D Dataset
C Condition dataset (without images)
Y The abstract condition set
F Filtering function on input conditions

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 CLIP-SCORE FOR HIGH GUIDANCE SCALE

Table 5: CLIP-Score comparison for high guidance scale on MS-COCO2014. LCM-LoRA is trained
with a guidance scale of 7.5, while all other methods use a guidance scale of 8.

Method Latency (↓) CLIP-Score (↑)
DPM++ (4 step) Lu et al. (2022b) 0.26s 0.309
UniPC (4 step) Zhao et al. (2024) 0.26s 0.308
LCM-LoRA (1 step) Luo et al. (2023) 0.09s 0.238
LCM-LoRA (4 step) Luo et al. (2023) 0.19s 0.297
DMD2 (our reimplementation) Yin et al. (2024b) 0.09s 0.306
MSD4-ADM (ours) 0.09s 0.308
DMD Yin et al. (2024a) 0.09s 0.320
SDv1.5 (teacher) Rombach et al. (2022) 2.59s 0.322

Tab. 5 shows the CLIP-Score of MSD and some single-student methods. MSD4-ADM achieves a
competitive CLIP-Score, and beats the single student counterpart, DMD2. We believe the CLIP-
Score can be further increased if one trains on the LAION dataset Schuhmann et al. (2022) instead
of the COYO dataset Byeon et al. (2022).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 4 8
3.05

3.10

3.15

3.20

3.25

3.30

ℓ 1
di

st
an

ce

Teacher 1 student 8 students Number of students

Figure 6: A 2D toy model, consistency distillation. From left to right: teacher (multi-step) gener-
ation and student, one-step generation with 1 and 8 distilled students, the ℓ1 distance of generated
samples between teacher and students. Takeaway: More students improve distillation quality on
this easy-to-visualize setup.

A.2 CONSISTENCY DISTILLATION, TOY EXPERIMENTS

In order to show the wider applicability of MSD, we apply another distillation method, Consistency
Distillation (Song et al., 2023), on the toy experiment setting in Sec. 5.1. Fig. 6 displays generated
samples and the ℓ1 distance from teacher generation. While noting that consistency distillation
achieves a weaker distillation of the teacher in general, we again observe better performance for
more students. This indicates the generality of MSD.

B ADDITIONAL ABLATION STUDIES

B.1 TRAINING CURVES FOR SEC. 5.4
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Figure 7: FID comparisons during training for ablations in Table 3.

Fig. 7 displays the training curves for the ablation studies shown in Tab. 3. The relative terminal
performances are also reflected in the training process.

B.2 THE EFFECT OF PAIRED DATASET SIZE ON DMD

In Sec. 4.2, we mentioned the special filtering strategy for MSD at DM stage: instead of partitioning
the paired dataset for corresponding classes, we choose to keep the same complete dataset for each
student. Fig. 8 demonstrates that the alternative strategy discourages mode coverage and leads to a
worse terminal performance.
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Figure 8: Comparison of paired dataset filtering strategies for MSD4-DM. Partitioning the paired
dataset for each student discourages mode coverage, which results in worse terminal performance.
In comparison, keeping the same paired dataset for each student achieves better performance without
impairing the convergence speed.

B.3 SINGLE-STEP DISTILLATION METHODS COMPARISON

Table 6: Comparison of various aspects of single-step distillation methods.

Method on ImageNet Terminal FID Iterated Images
DMD (Yin et al., 2024a) (our reimplementation) 2.54 ∼ 130M
DMD2 (w/o GAN) (Yin et al., 2024b) 2.61 ∼ 110M
EMD (Xie et al., 2024a) 2.20 ∼ 600M
SiD (α = 1.0) (Zhou et al., 2024a) 2.02 ∼ 500M
CTM (Kim et al., 2024) >5 ∼ 3M

Table 6 justifies our choice of DMD/DMD2 as our first-stage training without adversarial loss. Com-
petitor methods either need larger training data size (EMD, SiD), or have worse quality (CTM and
other CM-based methods). DMD/DMD2, on the other hand, strike a good balance. We noticed
DMD exhibits more stability for MSD on ImageNet, whereas DMD2 performs better for SD v1.5,
which leads to our respective choices. As pointed out in App. D, we used a smaller-sized paired
dataset (10 000 images) than the original DMD paper (25 000 images) for ImageNet, which signif-
icantly accelerated convergence without impairing the final performance. Moreover, as pointed out
in Sec. 4.2, the same paired dataset can be used for all students, eliminating potential additional
computation.

B.4 MORE RESULTS ON DISTILLING INTO SMALLER STUDENTS

In Sec. 5.2, we trained MSD4-ADM on smaller students to demonstrate the tradeoff between gen-
eration quality and speed. Here, we make a more comprehensive ablation study on the interplay
between student size, number of classes covered, and training stage, with results displayed in Fig. 9.
We observe that generation quality increases with student size and decreases with more classes cov-
ered. MSD offers great flexibility for users to make these choices based on computational resources,
generation quality, and inference speed requirements.

C DEPLOYMENT SUGGESTIONS

Here we discuss some MSD deployment options for practitioners.

A naive option for deployment is to use increased GPU memory to host all models simultaneously.
However, this is impractical and wasteful as only a single student model needs to be used for each
user request. In settings with less GPU memory than all students’ sum memory requirement, we
must swap student models on and off GPUs. This incurs extra latency, however, in the few-GPU
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Figure 9: The effect of student size, number of classes covered, and training stage on the perfor-
mance of a single smaller student. XS, XXS, and B refer to model sizes, with precise definitions
provided in Tab. 7. Also, see special evaluation details in App. E.

many-users setting, there are already prominent latency issues, such as users needing to queue for
usage. In few-user settings, resources are likely being taken offline to save cost and thus there is
start-up latency for fresh requests too. Therefore, we argue that the more interesting setting is in
large distributed deployment.

For settings with more GPU memory than all students’ sum memory requirements, we can distribute
the student models among a cluster of GPUs (as one would the teacher) and route each generation
request to the appropriate student node. The routing layer is lightweight compared to the inference
cost, so we pay little for it.

If the data has been partitioned uniformly according to user demand then the incoming requests are
distributed uniformly among the student nodes. Therefore, we achieve equal throughput compared
to the teacher without more overall model storage. However, finding such a partition is challenging,
and user demand may change over time. This leaves finding the optimal allocation of resources to
the student nodes an open problem. In practice, we expect that a reduced student model size would
lead to an overall reduction in storage requirements compared to the teacher alone.
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D IMPLEMENTATION DETAILS

D.1 TOY EXPERIMENTS

The real dataset is a mixture of Gaussians. The radius for the outer circle is 0.5, the radius for
the 8 inner circles is 0.1, and the standard deviation for each Gaussian (smallest circle) is 0.005.
The teacher is trained with EDM noise schedule, where use (σmin, σmax) = (0.002, 80) and dis-
cretized the noise schedule into 1000 steps. We train the teacher for 100 000 iterations with AdamW
(Loshchilov, 2017) optimizer, setting the learning rate at 1e-4, weight decay to 0.01, and beta param-
eters to (0.9, 0.999). For distillation, we first generated dataset of 1000 pairs, then used DMD (Yin
et al., 2024a) to train 1, 2, 4, and 8 students, respectively, all for 200 000 iterations, with reduced
learning rate at 1e-7. We only sample the first 750 of the 1000 steps for distillation.

Each subfigure of Fig. 3 is a histogram with 200 bins on 100 000 generated samples, using a custom
colormap. The loss is the mean absolute difference of binned histogram values.

D.2 IMAGENET

D.2.1 SAME-SIZED STUDENTS

Our ImageNet experiments setup closely follows DMD (Yin et al., 2024a) and DMD2 (Yin et al.,
2024b) papers. We distill our one-step generators using the EDM (Karras et al., 2022) checkpoint
“edm-imagenet-64x64-cond-adm”. We use σmin = 0.002 and σmax = 80 and discretize the noise
schedules into 1000 bins. The weight wt in Eq. (2) is set to σ2

t

αt

CS
∥µteacher(xt,t)−x∥1

where S is the
number of spatial locations and C is the number of channels, and the weight λt in Eq. (4) is set to
(σ2

t + 0.52)/(σt · 0.5)2.

For the DM stage, we prepare a distillation dataset by generating 10 000 noise-image pairs using
the deterministic Heun sampler (with Schurn = 0 over 256 steps. We use the AdamW optimizer
(Loshchilov, 2017) with learning rate 2e-6, weight decay 0.01, and beta parameters (0.9,0.999). We
compute the LPIPS loss using a VGG backbone from the LPIPS library (Zhang et al., 2018), and
we upscale the image to 224 × 224 using bilinear upsampling. The regression loss weight is set to
0.25. We use mixed-precision training and a gradient clipping with an ℓ2 norm of 10. We partition
the 1000 total classes into consecutive blocks of 250 classes and trained 4 specialized students using
DistillDM and FDM defined in Sec. 7. Each student is trained on 4 A100 GPUs, with a total batch
size of 128, for 200 000 iterations. This yields the MSD4-DM checkpoint in Tab. 1.

For the ADM stage, we attach a prediction head to the middle block of the fakescore model. The
prediction head consists of a stack of 4 × 4 convolutions with a stride of 2, group normalization,
and SiLU activations. All feature maps are downsampled to 4 × 4 resolution, followed by a single
convolutional layer with a kernel size and stride of 4. The final output linear layer maps the given
vector to a scalar predicted probability. We load the best generator checkpoint from DM stage,
but re-initialize the fakescore and GAN classifier model from teacher weights, as we observed this
leads to slightly better performance. We set the GAN generator loss weight to 3e-3 and the GAN
discriminator loss weight to 1e-2, and reduce the learning rate to 5e-7. Each student is trained on
4 A100 GPUs, with a total batch size of 192, for 150 000 iterations. This yields the MSD4-ADM
checkpoint in Tab. 1.

D.2.2 SMALLER STUDENTS

Following a minimalist design, we pick our smaller student’s architecture by changing hyperparam-
eter values of the “edm-imagenet-64x64-cond-adm” checkpoint architecture. See details in Tab. 7.

For the MSD4-ADM-S checkpoint in Tab. 1, we train the TSM stage using the model architecture
S with the continuous EDM noise schedule with (Pmean, Pstd) = (−1.2, 1.2) and the weighting
λt = (σ2

t + 0.52)/(σt · 0.5)2. We use a learning rate of 1e-4. Each student is trained on 4 A100
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Table 7: Hyperparameter details for different sized student models of the ADM architecture. Un-
specified hyperparameters remain the same as the teacher. Latency is measured on a single NVIDIA
RTX 4090 GPU.

Model identifier # channels Channel multipliers # Residual blocks # parameters latency
B (teacher) 192 [1,2,3,4] 3 296M 0.0271s

S 160 [1,2,2,4] 3 173M 0.0253s
XS 128 [1,2,2,4] 2 86M 0.0209s

XXS 96 [1,2,2,2] 2 26M 0.0192s

GPUs, with a total batch size of 576, for 400 000 iterations. Then DM and ADM stages were trained
using a total batch size of 160, following otherwise the same setup as Sec. D.2.1.

For the ablation study in B.4, we instead train a common TSM stage for all students for computa-
tional efficiency. We train this common stage using 16 A100 GPUs, with a total batch size of 3584
and 4864 for architecture XS and XXS, respectively. The DM and ADM stages are followed by
specialized students with filtered data and 4 A100 GPUs each, with a total batch size of 224 and 256
for architecture XS and XXS, respectively, and using the same learning rate of 2e-6.

D.3 SD V1.5

D.3.1 SAME-SIZED STUDENTS, CFG=1.75

Our SD v1.5 experiments setup closely follows DMD2 (Yin et al., 2024b) paper. We distill our
one-step generators from the SD v1.5 (Rombach et al., 2022) model, using a classifier-free guidance
scale of 1.75 for the teacher model to obtain the best FID score. We use the first 5M prompts from the
COYO dataset (Byeon et al., 2022), and the corresponding 5M images for the GAN discriminator.
We apply the DDIM noise schedule with 1000 steps for sampling t. The weight wt in Eq. 2 is set
to σ2

t

αt

CS
∥µteacher(xt,t)−x∥1

where S is the number of spatial locations and C is the number of channels,
and the weight λt in Eq. 4 is set to α2

t /σ
2
t .

For the DM stage, we use the AdamW optimizer (Loshchilov, 2017) with learning rate 1e-5, weight
decay 0.01, and beta parameters (0.9,0.999). We use gradient checkpointing, mixed-precision train-
ing, and a gradient clipping with an ℓ2 norm of 10. We partition the prompts and corresponding
images by the 4 quadrants formed by the first 2 entries of the embeddings, where the embeddings
are pooled from the outputs of the SD v1.5 text embedding layers. We choose not to include a re-
gression loss but instead use a TTUR, which updates the fakescore model 10 times per generator
update. Each of the 4 students is trained on 32 A100 GPUs, with a total batch size of 1536, for
40 000 iterations. This yields the MSD4-DM checkpoint in Tab. 2.

For the ADM stage, we attach a prediction head that has the same architecture (though with a
different input size) as Sec. D.2. We load both the best generator checkpoint and the corresponding
fakescore checkpoint from DM stage. We set the GAN generator loss weight to 1e-3 and the GAN
discriminator loss weight to 1e-2, and reduce the learning rate to 5e-7. Each student is trained on
32 A100 GPUs, with a total batch size of 1024, for 5000 iterations. This yields the MSD4-ADM
checkpoint in Tab. 2.

D.3.2 SAME-SIZED STUDENTS, CFG=8

The above CFG=1.75 setting yields sub-optimal image quality. Similar to previous works (Yin et al.,
2024a; Lin et al., 2024; Rombach et al., 2022), we choose CFG=8 for enhanced image quality. Due
to time and computational resource limitations, we only train with the ADM stage. Each of the 4
students is trained on 32 A100 GPUs, with a learning rate of 1e-5 and a batch size of 1024 for both
the fake and the real images, for 6000 iterations. This yields the checkpoint that is used to generate
Fig. 5 (b) and Fig .12. Longer training with the added DM stage can likely further improve the
generation quality.
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D.3.3 SMALLER STUDENT, CFG=8

We again pick our smaller student’s architecture by changing the hyperparameter values of the SD
v1.5 architecture. See details in Tab. 8.

Table 8: Hyperparameter details for different sized student models of the SD v1.5 architecture. Only
the diffusion model part is measured since the text encoder and the VAE remain frozen. Unspecified
hyperparameters remain the same as the teacher. Latency is measured on a single NVIDIA RTX
4090 GPU.

Model identifier # block out channels # parameters latency
B (teacher) [320,640,1280,1280] 860M 0.041s

S [160,320,320,640] 142M 0.039s

To create a subset of dog-related data, we first selected ∼ 1 210 000 prompts in the COYO Byeon
et al. (2022) dataset whose embeddings are closest to “a dog.” We then created an equal number of
noise-image pairs from the SD v1.5 teacher using these prompts with CFG=8. We train the TSM
stage using the model architecture S with the 1000-step DDIM noise schedule and the weighting
λt = α2

t /σ
2
t . We use a learning rate of 1e-4. We then continue to the DM stage with the paired

regression loss, using a learning rate of 1e-5, and finally continue to the ADM stage using generated
paired images as ”real” images with a learning rate of 5e-7. We use 16 A100 GPUs. The TSM stage
is trained with a total batch size of 1536 for 240 000 iterations. The DM stage is trained with a total
batch size of 512 for both the paired and the fake images for 20 000 iterations, and the ADM stage
is trained with the same batch size for 6000 iterations. This yields the checkpoint used to generate
Fig. 5(c). Longer training and better tuning are again likely to improve the generation quality further.
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E EVALUATION DETAILS

For zero-shot COCO evaluation, we use the exact setup as GigaGAN (Yu et al., 2022) and DMD2
(Yin et al., 2024b). Specifically, we generate 30 000 images using the prompts provided by DMD2
code. We downsample the generated images using PIL to 256×256 Lanczos resizer. We then use the
clean-fid (Parmar et al., 2022) to compute the FID score between generated images and 40 504 real
images from the COCO 2014 validation dataset. Additionally, we use the OpenCLIP-G backbone to
compute the CLIP score. For ImageNet, we generate 50 000 images and calculate FID using EDM
(Karras et al., 2022) evaluation code. When selecting the best checkpoints for partitioned students,
the same procedure is applied only for prompts/classes within respective partitions. For the ablation
study in Sec. B.4, 10 000 images are generated for only the first 10 classes for an apple-to-apple
comparison.

F ADDITIONAL QUALITATIVE RESULTS

F.1 ADDITIONAL IMAGENET-64×64 RESULTS

Figure 10: Collective one-step samples from 4 same-sized students trained with MSD-ADM on
ImageNet (FID=1.20).
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Figure 11: Collective one-step samples from 4 smaller students trained with MSD-ADM on Ima-
geNet (FID=2.88).

In Fig. 10, we present more ImageNet-64×64 qualitative results collectively generated by our 4
same-sized students trained with MSD-ADM. In Fig. 11, we display corresponding generations
from 4 smaller students with architecture S (see Tab. 7).

F.2 ADDITIONAL TEXT-TO-IMAGE SYNTHESIS RESULTS

In Fig. 12, we present more text-to-image qualitative results collectively generated by our 4 students
trained on the COYO dataset with MSD-ADM. These students are trained with a teacher classifier-
free guidance (CFG) scale of 1.75, which yields sub-optimal visual qualities despite having a good
FID score. Generation with better qualities can be obtained with a higher CFG scale.
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Figure 12: Collective one-step samples from 4 SD v1.5 students trained with MSD-ADM on COYO
with CFG=8.
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G PROMPT DETAILS

G.1 PROMPTS FOR FIG. 12

We use the following prompts for Fig. 12, from left to right, top to bottom:

• wise old man with a white beard in the enchanted and magical forest
• a high-resolution photo of an orange Porsche under sunshine
• Astronaut on a camel on mars
• a hot air balloon in shape of a heart. Grand Canyon
• transparent vacation pod at dramatic scottish lochside, concept prototype, ultra clear plastic

material, editorial style photograph
• penguin standing on a sidewalk
• border collie surfing a small wave, with a mountain on background
• an underwater photo portrait of a beautiful fluffy white cat, hair floating. In a dynamic

swimming pose. The sun rays filters through the water. High-angle shot. Shot on Fujifilm
X

• 3D animation cinematic style young caveman kid, in its natural environment
• robot with human body form, robot pieces, knolling, top of view, ultra realistic
• 3D render baby parrot, Chibi, adorable big eyes. In a garden with butterflies, greenery,

lush, whimsical and soft, magical, octane render, fairy dust
• a chimpanzee sitting on a wooden bench
• a capybara made of voxels sitting in a field
• a cat reading a newspaper
• a squirrell driving a toy car
• close-up photo of a unicorn in a forest, in a style of movie still

G.2 PROMPTS FOR FIG. 5

We use the following prompts (same for all three models), from left to right, top to bottom:

• dog on a bed
• Your Puppy Your Dog
• Trained Happy Dog
• Very handsome dog.
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