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Abstract

Estimating individualized treatment e!ects (ITE) for continuous and multivariate treat-
ments remains a fundamental yet underexplored problem in causal inference, as most ex-
isting methods are confined to binary treatment settings. In this paper, we make two key
theoretical contributions. First, we derive a novel counterfactual error bound based on the
Cauchy–Schwarz (CS) divergence, which is provably tighter than prior bounds derived from
the Kullback–Leibler (KL) divergence. Second, we strengthen this bound by integrating
the Information Bottleneck principle, introducing a compression regularization on latent
representations to enhance generalization. Building on these insights, we propose a new
neural framework that operationalizes our theory. Extensive experiments on three bench-
marks show that our method consistently outperforms state-of-the-art baselines and remains
robust under biased treatment assignments.

1 Introduction

Estimating individual causal e!ects from observational data is inherently di"cult because counterfactual
outcomes are never observed, making direct validation impossible (Imbens & Rubin, 2015). As such, it has
been recognized that robust causal inference methods must exhibit strong theoretical properties to ensure
that treatment-e!ect estimates are well-bounded (Shalit et al., 2017).

In the binary treatment setting (where a certain treatment is either prescribed or not prescribed), the main
objective of much of the theoretical work is to achieve group rebalancing. Group rebalancing is a procedure
which essentially aimed to counter any bias that may occur in observational data due to, for instance,
treatment e!ect bias (e.g., certain groups of patients may receive more treatment T than others). As such,
reducing the e!ect of confounding is a key step toward obtaining more reliable estimates from observational
data. (Holland, 1986; Rubin, 2005).

While traditional causal inference methods such as inverse propensity score weighting (IPW) Austin &
Stuart (2015) to directly re-weight the impact of treatment of the outcome, deep causal machine learning
approaches, such as counterfactual regression methods (e.g., Shalit et al. (2017)), achieve bias reduction by
learning a shared representation that balances the treatment groups in representation space. Under certain
assumptions, it then becomes possible to derive generalization bounds on individual treatment e!ect (ITE)
estimates, limiting potential error and improving performance (Bellot et al., 2022; Shalit et al., 2017). The
key idea behind these methods is that, by using distributional measures such as integral probability metrics
(IPM), one can quantify the distributional shift between the treated and control groups.

Extending counterfactual regression with distributional methods paradigm to the continuous treatment set-
ting, where treatments represent real-valued dosages or multivariate exposures, introduces additional com-
plexity. First, ITEs are now functions over a continuum of treatments, not binary, discrete units. Second,
confounding adjustment requires estimating generalized propensity densities rather than scores (Imbens,
2000). Finally, many existing architectures, such as DRNet (Schwab et al., 2020), scale poorly, requiring a
separate output head per treatment stratum.
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Recent work addresses some of these challenges using adversarial approaches (Bica et al., 2020; Kazemi &
Ester, 2024), extending generative adversarial networks (GANs) for binary treatment e!ect prediction to
the continuous setting. However, these approaches remain adaptations of binary-treatment methods, and
they often struggle with instability, sensitivity to hyperparameters, or poor scalability to high-dimensional
treatment spaces.

In contrast, information bottleneck (IB) methods o!er a theoretically grounded alternative. IB aims to learn
representations Z of covariates X that are maximally predictive of outcomes Y while discarding irrelevant
information in X (Tishby et al., 2000). When applied to causal inference, IB has been shown to reduce
confounding in binary settings (Parbhoo et al., 2020; Lu et al., 2022). Yet, despite their promising properties,
there is a lack of strong theoretical analysis on how IB methods improve counterfactual generalization.
Moreover, IB has never been applied to continuous or multivariate treatment e!ect estimation.

To explore the potential of IB in more complex treatment settings, we propose Information Bottleneck
for Estimating continuous eXposures (IBEX), a novel framework for ITE estimation with continuous and
multivariate treatments. IBEX minimizes the statistical dependence between the learned representation
and the treatment variable using a tractable approximation of mutual information based on the Cauchy-
Schwarz (CS) divergence (Yu et al., 2024). To further encourage invariance and generalization, we apply a
dimensionality bottleneck to the latent space.

Contributions. 1→ We derive novel counterfactual generalization bounds for continuous treatments
using the CS divergence, and show that these bounds are tighter than those based on the Kullback–Leibler
divergence under mild assumptions. 2→ We design a modular architecture with separate covariate and
treatment encoders, incorporating dimensionality regularization to control representation capacity. 3→
We empirically validate IBEX across three benchmarks (MIMIC-IV, TCGA, News), showing state-of-
the-art performance in terms of dose-response estimation and policy regret, and robustness under strong
treatment-assignment bias.

2 Related Work

In this section, we provide a brief overview of relevant prior work on treatment e!ect estimation, with a
particular focus on continuous treatments and representation learning approaches.

2.1 Information Bottleneck and its Application to Causal Inference

The Information Bottleneck (IB) principle, introduced by (Tishby et al., 2000), formulates representation
learning as a trade-o! between extracting information from the input variable x that is relevant for predicting
the target variable y, and discarding nuisance factors in x that are irrelevant to y. Formally, the objective
of IB is to learn a compressed representation z by minimizing the mutual information I(x; z), ensuring the
minimality and compactness of z, while simultaneously maximizing I(z; y), thereby preserving the predictive
information to y. The optimization objective can thus be written as:

min I(x; z) ↑ ωI(z; y), (1)

where ω > 0 controls the trade-o! between compression and prediction. It has been theoretically shown that
Z naturally constitutes the minimal su"cient representation (Gilad-Bachrach et al., 2003).

To make this objective tractable for high-dimensional data and deep learning models, variational approxima-
tions such as the variational information bottleneck (VIB) (Alemi et al., 2016) and the nonlinear information
bottleneck (NIB) (Kolchinsky et al., 2019) have been proposed.

Recent works have applied the IB principle in discrete treatment settings (Kim et al., 2019; Parbhoo et al.,
2020; Lu et al., 2022). In principle, these approaches share a common high-level idea: leveraging the IB
principle to compress high-dimensional covariates x into a low-dimensional representation z that retains
information relevant for treatment e!ects {y, t}. They typically formulate an IB objective of the form:

min I(x; z) ↑ ωI(z; y, t), (2)
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with some methodological di!erences. For instance, the causal e!ect information bottleneck (CEIB) (Parb-
hoo et al., 2020) learns discrete latent representations separately from x0 (covariates of untreated patients)
and x1 (covariates of treated patients). In contrast, causal information bottleneck (CIB) (Kim et al., 2019)
uses two separate heads to estimate I(z; y0) and I(z; y1), where y0 and y1 denote the control and treatment
outcomes, respectively.

However, these methods are limited to binary treatments and rely heavily on variational approximations,
which are known to su!er from loose bounds and biased estimates of mutual information.

In this paper, we extend the IB framework to continuous treatment e!ect estimation by introducing a novel
IB objective that di!ers fundamentally from Eq. (2). What is more, our implementation avoids variational
approximation entirely, thereby mitigating the issues of bound looseness and biased information estimation.
Moreover, we provide a formal analysis of the generalization error bound, which, to the best of our knowledge,
has not been addressed in prior IB-based works.

2.2 Continuous Treatment E!ect Estimation

Recent work has focused on extending methods originally developed for binary treatment estimation to the
more realistic setting of continuous treatments, where dosages or combinations of dosages are considered.
Bellot et al. (2022) derive generalization bounds for continuous treatment e!ect estimation and make use of
a HSIC-type regularization, extending prior literature. Tanimoto et al. (2021) propose a regret-minimization
approach for handling large action spaces. Schweisthal et al. (2023) develop a conformal prediction framework
for estimating generalized propensity scores. Schwab et al. (2020) introduce DRNet, a representation learning
method inspired by counterfactual regression approaches such as Shalit et al. (2017). Another notable line
of work using conformal prediction for continuous treatments is presented by Schröder et al. (2024). Bica
et al. (2020) (SCIGAN) and Kazemi & Ester (2024) (ACFR) adopt adversarial approaches to address the
intractability of posteriors and use a Kullback–Leibler regularizer to correct for distributional shift. In
contrast, we aim to improve robustness by leveraging the more stable Cauchy–Schwarz divergence.

3 Theoretical Preliminaries

The objective of our approach is to estimate individualized treatment e!ects (ITE) in settings with multi-
variate, continuous treatments, such as personalized dosage recommendations in healthcare. In this section,
we introduce the relevant formalizations.

Terminology. Let Df be the factual dataset that contains i.i.d. samples (xi, ti

f , yi

f ) drawn from distribution
pX,Tf ,yf . Let X denote a covariate vector taking values x ↓ X (e.g. age, weight, lab results), and x represents
a realization of X. The treatment variable is in the form Tf = (Wf , Df) ↓ T , where the discrete component
Wf ↓ W = {w1, . . . , wk} denotes the treatment type (e.g. specific combination of medications) and Df ↓ DWf

denotes the associated dosage (e.g. a number in [0, 1] indicating the amount of medication provided). We
denote the factual outcome as Yf = Y (Tf) and the counterfactual (i.e. unobserved) outcome as Ycf .

While there is only one pair of counterfactual treatment and outcome under the binary treatment setting,
there are infinitely many of them in the case of continuous treatment. Therefore, we define the individual
dose-response function.

Definition 1 For any covariate vector x ↓ X , we define the dose–response function as

µ(t, x) := E[Y (t)|X = x], ↔ t ↓ T . (3)

Definition 2 The generalized propensity score (Imbens, 2000) is given by the conditional density

e(x) := pTf |X(t|x), ↔ x ↓ X , (4)

where t may contain a continuous component.

The generalized propensity score generalizes the conventional propensity score to account for continuous
treatment.
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Definition 3 We define the treatment e!ect for a treatment-e!ect pair t1, t2 ↓ T as

εt1,t2(x) := µ(x, t1) ↑ µ(x, t2), ↔ x ↓ X . (5)

Equation equation 5 measures the relative treatment e!ect between di!erent medications administered to
the same subject.

Assumption 1 (Ignorability Assumption) We assume that the potential outcome is independent from
the treatment given the su"cient adjustment set X, i.e. X blocks all non-causal paths between treatment and
outcome, {

Y (w, d)
}

(w,d)→T ↗↗ Tf
∣∣ X. (6)

Assumption 2 (Overlap Assumption) We assume that each individual has a non-zero probability of
receiving each treatment. In other words, for any x ↓ X and t ↓ T , there exists ϑ ↓ (0, 1) such that
ϑ ↘ pTf |X(t|x) < 1 ↑ ϑ.

Going forward, we introduce a stochastic encoder qω which compresses the covariate space X into a low-
dimensional latent space Z and a predictor model f : Z ≃ T ⇐ Y . Additionally, let L : Y ≃ Y ⇐ R+ be a
loss function.

Definition 4 Define the unit loss ϖL,f,ω : X ≃ T ⇐ R+ as

ϖL,f,ω(x, t) = L(f(ϱ(x), t), y). (7)

Unit loss ϖL,f,ω(x, t) measures the loss between the predicted outcome ŷ = f(ϱ(x), t) and the ground-truth
outcome y = µ(x, t).

Definition 5 We define the factual and counterfactual errors at treatment t ↓ T respectively as

ωω
f (t) :=

∫

X
εL,f,ε(x, t) p(x|t) dx, (8)

ωω
cf(t) :=

∫

T →=[0,1]\{t}

∫

X
εL,f,ε(x, t) p(x|t→) dx dt

→

=
∫

X
εL,f,ε(x, t) p(x) dx.

(9)

Essentially, factual error ςε

f (t) is obtained by marginalizing over p(x|t) while the counterfactual error ςε

cf(t)
is obtained by marginalizing over p(x). Furthermore, we define ςf =

∫
T ςε

f (t)p(t)dt and ςcf =
∫

T ςε

cf(t)p(t)dt.

Definition 6 (Cauchy-Schwarz Divergence (Principe et al., 2000; Jenssen et al., 2006)) Let
µ, φ ↓ M

1
+(X ) be probability measures on a Borel subset X ↓ Rd. Assume µ and φ are absolutely

continuous with respect to the Lebesgue measure Leb, and denote their density functions by p = dµ/dLeb
and q = dφ/dLeb. If p, q ↓ L2(Leb), then Cauchy-Schwarz inequality gives

( ∫

X
p(x)q(x) dx

)2
↘

( ∫

X
p2(x) dx

)( ∫

X
q2(x) dx

)
, (10)

with equality holding if and only if p and q are colinear, almost everywhere on X .

The CS divergence defines the distance between p and q by measuring the tightness (or gap) of the two sides
of Eq. equation 10 using the logarithm of their ratio:

DCS(p⇒q) = ↑ log
( (∫

p(x)q(x) dx
)2

∫
p(x)2 dx ·

∫
q(x)2 dx

)
. (11)
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The CS divergence possesses several appealing properties compared to the KL divergence, which is defined
as

DKL(p⇒q) =
∫

p(x) log p(x)
q(x)dx. (12)

In particular, the CS divergence is symmetric and admits closed-form expressions for mixture-of-Gaussians
(MoG) distributions (Tran et al., 2022). In the following subsection, we further demonstrate how the use of
CS divergence leads to a tighter generalization error bound compared to its KL divergence counterpart.

4 Continuous Treatment Generalization Bounds

We first present our generalization error bound in the continuous, multivariate treatment setting. Specifically,
we show that, under mild conditions, employing the CS divergence leads to a tighter bound compared to
recent approaches proposed by (Bellot et al., 2022; Kazemi & Ester, 2024). We then demonstrate how the
IB approach can be used to upper bound the factual error, thereby improving generalization.

4.1 Bounding the Counterfactual Error via CS Divergence–Induced Regularization

Before presenting our main theoretical result, we first introduce Assumptions 3 and 4, following the framework
of Kazemi & Ester (2024).

Assumption 3 The encoder function ϱ : X ⇐ Z is a twice-di!erentiable bijection. The representation
space Z is the image of X under ϱ with the induced distribution pω(z).

Assumption 4 Let G be a class of functions with infinity norm less than 1, F = {f : Z ≃ T ⇐ R+
|

⇒f⇒↑ ↘ 1}. Then, there exists a constant C > 0 such that

ϖL,f,ω(x, t)
C

↓ F.

This means for any (x, t) we have
ϖL,f,ω(x, t)

C
↘ 1.

Theorem 1 (Counterfactual Generalization Bound, Gaussian Scenario) Let ϱ be an encoder X ⇐

Z, and let f be an outcome function Z ≃ T ⇐ Y . Assume that the joint distribution p(z, t) follows a
multivariate Gaussian distribution:

p(z, t) ⇑ N

([
µz

µt

]
, !1

)
, where !1 =

[
!z !z,t

!T

z,t
!t

]
.

Let !2 denote the covariance matrix of the product of marginals p(z)p(t), i.e., the case where z ↗ t. Then,

!2 =
[
!z 0
0 !t

]
.

Under Assumptions 3 and 4, we have:

ςcf ↘ ςf + C


2DCS(pω(z, t) ⇒ pω(z)p(t)), (13)

if
d

i=1
log

(
2 + ↼i + 1/↼i

4

)
⇓ 4,

where ↼i is the i-th eigenvalue of

!↓1
2 !1 =

[
I !↓1

z
!z,t

!↓1
t

!T

z,t
I

]
.
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Proof 1 All the proofs can be found in Appendix A.

The conditions in Theorem 1 are easy to satisfy. In our study, the joint dimension is d = dt + dz = 130, with
treatment dimension dt = 2 and latent dimension dz = 128. Each term log

(
2+ϑi+1/ϑi

4

)
is non-negative,

since ↼ + 1/↼ ⇓ 2 for ↼ ↓ (0, 1]. Thus, when d is large, the total sum easily exceeds the threshold. Even if
most ↼i values are close to 1 (indicating weak correlation between z and t), a small number of moderately
deviating values (e.g., ↼i ↘ 0.7) are su"cient to push the sum above the bound.

In fact, Theorem 1 can be extended to general joint distribution p(z, t) without assuming Gaussianity.

Proposition 1 Let ϱ be an encoder mapping X ⇐ Z, and let f be an outcome function Z ≃T ⇐ Y . Assume
that p(z, t) is an arbitrary joint distribution. Then, we have

ςcf ↭ ςf + C


2DCS(pω(z, t) ⇒ pω(z)p(t)),

where ↭ denotes “less than or approximately equal to," and the precise conditions under which this inequality
holds are discussed in Appendix B.

Theorem 1 and Proposition 1 imply that reducing counterfactual error requires not only minimizing the
factual error (which is intuitive) but also encouraging independence between z and t, since p(z, t) = p(z)p(t)
if and only if z ↗ t.

Remark 1 (Tighter Bound) A similar bound is presented in (Bellot et al., 2022; Kazemi & Ester, 2024),
where the authors independently propose that

ςcf ↘ ςf + C


2DKL(pω(z, t)⇒pω(z)p(t)). (14)

Although our result shares the same high-level intuition (encouraging independence between z and t), our
bound is tighter. Specifically, we establish:

ςcf ↘ ςf + C


2DCS(pω(z, t) ⇒ pω(z)p(t))

↭ ςf + C


2DKL(pω(z, t) ⇒ pω(z)p(t)),
(15)

where the symbol ↭ denotes an approximate upper bound that holds under mild conditions, as discussed in
Appendix B.

We can further provide a bound in terms of the precision estimation of heterogeneous e!ects (PEHE), a
metric commonly used in causal inference to measure the treatment-e!ect error (Hassanpour & Greiner,
2019; Shalit et al., 2017).

Definition 7 We define the expected precision of estimating heterogeneous e!ect (PEHE) between treatment
pairs t1, t2 ↓ T as

↽pehe(t1, t2) :=
∫

X


(µ(x, t1) ↑ µ(x, t2))

↑ (f(ϱ(x), t1) ↑ f(ϱ(x), t2))
2

p(x) dx.

(16)

Following Proposition 1, we can then easily derive the following bound.

Proposition 2 (PEHE Error Bound) Given an encoder ϱ and outcome prediction function f and a unit-
loss function ϖL,f,ω(x, t) that satisfies Assumption 4 and its associated L is squared error ⇒ · ⇒

2, the following
inequality holds:

↽pehe(t1, t2) ↘ ↽ε

f (t1) + ↽ε

f (t2)

+


2DCS (pω(z)⇒pω(z|t1)) +


2DCS (pω(z)⇒pω(z|t2)).
(17)
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The bound e!ectively states that for any pair of treatments t1, t2, minimizing the divergence between the
marginal pω(z) and the conditionals pω(z|ti) reduces the dependence of the learned representation z = ϱ(x)
on the treatment assignment. This encourages the encoder ϱ to learn a balanced representation—that is, one
where the distribution of z is approximately invariant across treatment groups:

pω(z | t1) ⇔ pω(z | t2) ⇔ pω(z),

which implies z ↗ t, i.e., independence of the representation from the treatment assignment.

4.2 Bounding the Factual Error with IB Approach

Theorem 2 (Information Bottleneck Bound on Factual Error (Kawaguchi et al., 2023)) Let ϱ
be a stochastic encoder mapping input x to a representation z = ϱ(x), and let ϖL,h,ω(x, t) be a loss function
that is L-Lipschitz and bounded in [0, 1]. Suppose the training data {(xi, ti)}n

i=1 are drawn i.i.d. from the
joint distribution p(x, t), where t ↓ [0, 1]. Then, with probability at least 1 ↑ ⇀, the expected factual error
satisfies:

ςf ↘ ς̂f + B


I(x; z)

n
+ ϑ

↖
n

,

where ς̂f = 1
n


n

i=1 ϖL,h,ω(xi, ti) is the empirical factual error, is the empirical factual error, B is a constant
depending on the Lipschitz constant of the loss function, ϑ is a vanishing term (e.g., O(


log(1/⇀)/n1/4)) as

n ⇐ ↙.

Remark 2 (E!ect of IB on Counterfactual Error) Beyond its classical role in controlling the general-
ization gap between empirical and factual risk, the IB regularization may also indirectly reduce the counter-
factual error ςcf . Specifically, by limiting the mutual information I(x; z), the learned representation z = ϱ(x)
is encouraged to discard task-irrelevant or treatment-specific features that may not generalize across treatment
regimes.

According to the data processing inequality (Cover & Thomas, 2006), we have the inequality

I(z; t) ↘ I(x; z), (18)

Since the counterfactual error bound includes a KL-divergence term of the form (see Eq. (15)):

ςcf ↘ ςf + C


2DKL(p(z, t)⇒p(z)p(t)) = ςf + C


2I(z; t),

limiting I(x; z) via the IB principle also implicitly bounds the distributional shift term I(z; t), and thus
the counterfactual error gap ςcf ↑ ςf . This suggests that the IB regularization may improve counterfactual
robustness by promoting invariant representations across treatment assignments.

Combining Theorems 1 and 2 yields our final practical bound on the counterfactual error, stated in Theo-
rem 3.

Theorem 3 (Generalization Bound for Counterfactual Error with Information Bottleneck)
Let ϱ : X ⇐ Z be a representation function, and let ϖL,h,ω(x, t) be a loss function that is L-Lipschitz and
bounded in [0, 1]. Let ς̂f denote the empirical factual error, and let ςcf denote the population counterfactual
error. Then, for any treatment assignment t ↓ [0, 1] and under Assumptions 3 and 4, the following
generalization bound holds:

ϑcf → ϑ̂f + B


I(x; z) + C


DCS(p(z, t)↑p(z)p(t)). (19)

5 Methodology

Structural overview. Before delving into the optimisation objective, we first ground the reader in the
structural causal model (SCM) that motivates IBEX.
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Intervention

Figure 1: Structural causal models implementing the IBEX framework: pre-intervention scenario (left panel)
and post-intervention outcome (right panel). The dotted arrow from Z to T indicates statistical dependence
induced via the shared parent X. Note that Z is a function of X via Z = f(X).

Figure 1 contains the SCMs of the IBEX before and after intervention. In the conventional causal e!ect
model, covariates x simultaneously influence the treatment t and the outcome y, while t also a!ects y.
This layout conflates all information in x (both outcome–relevant and nuisance, treatment–specific factors),
making generalisation di"cult when the distribution of t shifts.

On the other hand, IBEX inserts a learned bottleneck variable z = fω(x) between x and the rest of the
system and explicitly regularizes two information pathways: 1→ We maximize I((z, t); y) so that z keeps
precisely the features of x needed, jointly with t, to predict y. 2→ We minimize I(x; z) and drive I(z; t)
toward zero via a CS divergence term, forcing the encoder to forget treatment-specific components that do
not help predict y.

Objective function. The IBEX methodology is characterized by Proposition 1, Remark 2, and the error
bound in Theorem 3. Formulated in the IB terms, the high-level objective function of our approach is given
by

max I((z, t); y) ↑

ωI(x; z) + ⇁I(z; t)


, (20)

where ω, ⇁ > 0 are hyperparameters.

In practice, we control I(X; Z) by regularizing the capacity of the latent space, for example by limiting the
dimensionality of Z (Tao et al., 2020). This aligns with Theorem 3, where a tighter generalization bound is
achieved when the representation Z is more compressed. Similarly, the term I(T ; Z) penalizes treatment-
related confounding, encouraging independence between the representation and treatment assignment in line
with Proposition 1.

5.1 Maximizing Expressiveness Term

We maximize I(z, t); y), which states that the encoding-treatment pair needs to be expressive enough to
predict the outcome Y . This is implemented via standard empirical risk minimization as (Kolchinsky et al.,
2019):

E(x,t,y)↔p(x,t,y)
(

y ↑ f(ϱ(x), t̃)
)2

, (21)

where t̃ is a learned treatment embedding from an embedding function ε : (w, d) ↓ T ⇐ T̃ and f an output
predictor head with the mapping T̃ ≃ Z ⇐ Y. We estimate this expectation using the empirical mean
squared error (MSE) over the training data via 1

N


N

i=1
(
yi ↑ f(ϱ(xi), t̃i)

)2.

5.2 Treatment-Compression Term

Minimizing I(z; t) is achieved by estimating the CS divergence between T and Z. Our approach is concep-
tually similar to existing HSIC-based methods (e.g., Bellot et al. (2022)) which enforce t ↗ z, but replaces
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HSIC with the CS divergence. Formally, we minimize:

DCS(p(z, t)↑p(z)p(t))

= ↓ log

( (∫
p(z, t) p(z)p(t) dzdt

)2

∫
p(z, t)2 dzdt ·

∫
p(z)2p(t)2 dzdt

)
. (22)

Given a batch of data points {(xi, ti)}N

i=1 ⇑ p(x, t), we compute representations via a deterministic encoder
zi = ϱ(xi). This induces joint samples {(zi, ti)}N

i=1 ⇑ p(z, t), which can be used to assess statistical
dependence between z and t. The empirical CS divergence can then be estimated as (Yu et al., 2024):

ICS(z; t) = log

(
1

N2

N

i,j

KijQij

)
+ log

(
1

N4

N

i,j,q,r

KijQqr

)

↓ 2 log

(
1

N3

N

i,j,q

KijQiq

)

= log
( 1

N2 tr(KQ)
)

+ log
( 1

N41
T K11T Q1

)

↓ 2 log
( 1

N31
T KQ1

)
,

(23)

where 1 is a N ≃1 vector of ones, and K and Q denote the Gram matrices for variables z and t, respectively.
Specifically, Ki,j = κ(zi, zj) with κ is a positive-definite kernel, such as the Gaussian RBF kernel. The
second equality of Eq. (23) reduces the complexity to O(N2).

Note that our empirical estimator of ICS is fully non-parametric and does not rely on any parametric distri-
butional assumptions on p(z, t), such as Gaussianity, even though our first theoretical result in Theorem 1
assumes such a form.

5.3 Approximating the Compression Term

To minimize I(x; z), we limit the latent space via a fixed low-dimensional z ↓ Rd and apply regularization.
Group sparsity and entropy-based penalties (e.g., log-det covariance) further reduce z’s capacity (Dai et al.,
2018; Kawaguchi et al., 2023; Tishby et al., 2000). In particular, we have regularization term

Rdim(z) := ↑z
↑↑2,1 + ϖ log det (!z + ωI) , (24)

where ⇒z↗
⇒2,1 =


d

j=1

(
N

i=1 z2
ij

)1/2
is the (2, 1)-norm promoting column sparsity, and !z = 1

N


N

i=1(zi ↑

z̄)(zi ↑ z̄)↗ is the empirical covariance matrix. I denotes the identity matrix of dimension dz ≃ dz with a
scalar ς to ensure numerical stability, z̄ the empirical mean of the batch and κ a hyperparameter which takes
on values in [0, 1] and is used to balances the two terms.

5.4 Model Objectives and Architecture

Our model architecture builds upon existing methodologies such as VCNet Bellot et al. (2022), but separates
the treatment embedding and covariate embedding layers to align with the modelling objectives and the
observational structure. As shown in Figure 2, we learn an embedding of the covariate space via ϱ : X ⇐ Z.
A treatment encoder ε(w, d) learns a mapping T ⇐ T̃ is used to impose a bottleneck in the architecture,
promoting sample e"ciency. Lastly, f predicts outcomes given both t̃ and the covariate representation z. The
network is optimized end-to-end using backpropagation, with gradients flowing through all components of
the architecture.1 The optimization objective consists of the empirical loss term, along with two theoretically

1Note that, following standard practice in continuous causal modeling (e.g., Bellot et al. (2022), Kazemi & Ester (2024)),
we assume ω to be a bijection, but in practice obtain better empirical results when using a neural network encoder.
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Figure 2: Illustration of the IBEX model architecture. IBEX jointly encodes treatment and covariate information
using a Treatment Encoder ϱ(w, d) and a Covariate Encoder ς(x), where w and d denote the treatment identifier and
dosage, respectively. The encoded representations are combined to predict the outcome ŷ using an Outcome Predictor

f(ς(x), ϱ(w, d)).

motivated regularization terms. Formally:

LIBEX(ς, ϱ, f) = E(x,t,y)↓p(x,t,y)

(
y ↓ f(ς(x), t̃)

)2


  
Prediction Term

+ φ · Rdim(z)  
Dimensionality Bottleneck

+ ↼ · DCS (pε(z, t)↑pε(z)p(t))  
Treatment compression Term

,
(25)

where ω and ⇁ are hyperparameters which take on values in [0, 1].

6 Experiments

We conduct a series of experiments following the setups used in previous comparative studies Bellot et al.
(2022); Bica et al. (2020); Kazemi & Ester (2024). We run the experiments on a MacOS M4 system with a
10-core CPU, 32 GB unified RAM, and 120 GB/s memory bandwidth. Our implementation is available at
https://anonymous.4open.science/r/IBEX-D261.

Baselines. We compare with: (1) DRNet (Schwab et al., 2020), with two variants—HSIC (Gretton
et al., 2007) and Wass (Villani et al., 2008) regularization; (2) SCIGAN (Bica et al., 2020), a GAN-based
counterfactual model; (3) Generalised Propensity Score GPS (Imbens, 2000); (4) a two-layer multilayer
perceptron MLP; (5) VCNet (Bellot et al., 2022) with HSIC and Wass variants; (6) ACFR (Kazemi &
Ester, 2024), which uses adversarial KL loss and attention; and (7) GIKS (Nagalapatti et al., 2024), which
uses data-augmentation as a debiasing method.

Benchmark Datasets. We evaluate on three datasets: (1) MIMIC-IV (Johnson et al., 2023) contains
records from 5,476 ICU patients who received mechanical ventilation. Treatment defined as a 2D continuous
vector of ventilator settings (tidal volume and respiratory rate). (2) News (Asuncion et al., 2007) is a
bag-of-words data set of New York Times articles. Lastly, (3) The Cancer Genome Atlas (TCGA) is a gene
expression data for 9,000 cancer patients. We synthetically generate treatments and outcomes in accordance
with previous work (e.g. Bica et al. 2020; Kazemi & Ester 2024; Schwab et al. 2020) (details in Appendix).

Evaluation metrics. We report the square root of the Mean Integrated Squared Error (MISE):
1

N |W|


w→W


N

i=1
∫

Dw
(yi(w, d) ↑ ŷi(w, d))2 dd, which averages squared errors between true and predicted

outcomes over individuals, treatment types W, and dosage ranges Dw and e!ectively compares the true
outcome for a given treatment (and dosage) and the predicted outcome. We also report the square root of the

10
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Method News MIMIC-IV TCGA

SCIGAN 3.71 ± 0.05 2.09 ± 0.12 1.89 ± 0.05
DRNetHSIC 4.98 ± 0.12 4.45 ± 0.07 3.02 ± 0.28
DRNetWass 5.07 ± 0.12 4.47 ± 0.12 1.73 ± 0.26
VCNetHSIC 3.41 ± 0.11 1.15 ± 0.02 0.95 ± 0.02
VCNetWass 3.46 ± 0.04 1.23 ± 0.12 1.06 ± 0.01
GPS 6.97 ± 0.11 7.39 ± 0.00 6.12 ± 0.91
MLP 5.48 ± 0.16 5.34 ± 0.16 2.02 ± 0.33
ACFR 5.44 ± 0.14 2.19 ± 0.19 1.05 ± 0.12
GIKS 3.66 ± 0.04 1.09 ± 0.06 1.25 ± 0.06

IBEX 2.96 ± 0.16 1.05 ± 0.02 0.12 ± 0.09

Table 1: Out-of-sample performance of
↔

MISE on News, MIMIC, and TCGA datasets. Lower is better. Highest
performer (p < 0.05 paired t-test) in bold face.

Method News MIMIC-IV TCGA

SCIGAN 3.90 ± 0.05 0.32 ± 0.05 0.25 ± 0.05
DRNetHSIC 4.17 ± 0.11 1.44 ± 0.05 1.24 ± 0.03
DRNetWass 4.56 ± 0.12 1.37 ± 0.05 1.27 ± 0.05
VCNetHSIC 3.10 ± 0.21 0.63 ± 0.02 0.39 ± 0.01
VCNetWass 2.99 ± 0.12 0.58 ± 0.03 0.44 ± 0.03
GPS 24.1 ± 0.55 20.2 ± 0.01 1.26 ± 0.01
MLP 6.45 ± 0.21 1.65 ± 0.05 1.13 ± 0.17
ACFR 5.11 ± 0.12 0.80 ± 0.02 1.10 ± 0.14
GIKS 2.15 ± 0.09 0.51 ± 0.02 0.95 ± 0.03

IBEX 1.75 ± 0.09 0.31 ± 0.04 0.15 ± 0.03

Table 2: Out-of-sample performance of
↔

PE. Lower is better. Highest performer (p < 0.05 paired t-test) in bold
face.

Policy Error (PE): 1
N


N

i=1(yi(w↘
i
, d↘

i
)↑yi(ŵ↘

i
, d̂↘

i
))2, where (w↘

i
, d↘

i
) is the actual optimal treatment–dosage

and (ŵ↘
i
, d̂↘

i
) is the predicted optimal treatment chosen by the model. PE quantifies regret from suboptimal

policy choices.

6.1 Experimental Results

Tables 1-2 show that IBEX achieves the best performance on MIMIC with
↖

MISE = 1.61 and
↖

PE = 0.12,
showing accurate outcome estimation and strong policy performance in a clinical setting with multivariate
treatments, outperforming or matching VCNet-based approaches. On the News dataset, IBEX leads with
the lowest

↖
MISE = 2.96 and

↖
PE = 1.75. On the TCGA dataset, IBEX again achieves the lowest

(
↖

MISE = 1.01), indicating that our approach allows for precise modelling of gene expression outcomes and
reliable treatment policy learning.

Ablation Results. Table 3 reports MIMIC-IV results for four IBEX variants: using only the dimensionality
regularizer (ω = 0.1), only the Cauchy regularizer (⇁ = 0.01), neither regularizer, or both (full IBEX). Both
regularizers independently improve performance over the unregularized baseline (

↖
MISE = 1.32), with

scores of 1.11 and 1.08, respectively, demonstrating the clear e!ectiveness of including the regularizers in the
optimisation objective, as well as their complementary benefits.

Treatment bias robustness. We assess model robustness to treatment bias on the News and MIMIC-IV
datasets. We vary the assignment bias α from 0 (none) to 10 (strong). As shown in Figure 3, IBEX maintains
generally low

↖
MISE and

↖
PE even under strong bias, highlighting its resilience to confounding. In the

MIMIC-IV setting on
↖

MISE, ACFR also demonstrates a steady performance which eventually matches
ours.
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Method

↖
MISE

↖
PE

IBEXDim. Reg. Only 1.11 ± 0.01 0.57 ± 0.01
IBEXCS. Reg. Only 1.08 ± 0.02 0.59 ± 0.02
IBEXNo regularization 1.32 ± 0.02 0.71 ± 0.01
IBEX 1.05 ± 0.16 0.12 ± 0.09

Table 3: Out-of-sample performance on various versions of the IBEX model on the MIMIC-IV dataset. Lower is
better. In this setting ↼ = 0.01 and φ = 0.1.

Figure 3: Results (out-of-sample) on News for Various Treatment-bias Values. We used DRNetHSIC in this setup.

7 Discussion

IBEX outperforms all baselines across diverse datasets, demonstrating the strength of Cauchy–Schwarz (CS)
divergence-based regularization for estimating continuous treatment e!ects. Its advantage is particularly
evident under treatment-assignment bias, a common challenge in observational data. Beyond its theoretical
grounding, IBEX performs well empirically across domains with di!erent data characteristics, suggesting
that the CS divergence provides a stable and expressive measure for enforcing representation invariance.

Nevertheless, like other causal inference approaches, IBEX relies on standard assumptions such as ignorability
and overlap, which may not always hold in practice.

Future work could explore relaxing theoretical conditions, extending IBEX to dynamic treatment regimes
(e.g., chronic care), and improving scalability. Integrating IBEX with conformal prediction or adversar-
ial debiasing techniques may further enhance its utility in real-world settings with missing covariates or
unmeasured confounding, broadening its impact in precision medicine and policy evaluation.

8 Conclusion

We introduced IBEX, a method for continuous and multivariate treatment e!ect estimation grounded in the
information bottleneck principle. By deriving novel counterfactual generalization bounds and implement-
ing them via two regularization objectives, IBEX improves out-of-sample performance while maintaining
tractability, even with high-dimensional structured treatments.
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