
SING: A Plug-and-Play DNN Training Technique

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose SING (StabIlized and Normalized Gradient), a plug-and-play tech-1

nique that improves the stability and generalization of the Adam(W) optimizer.2

SING is straightforward to implement and has minimal computational overhead,3

requiring only a layer-wise standardization of the gradients fed to Adam(W) with-4

out introducing additional hyper-parameters. We support the effectiveness and5

practicality of the proposed approach by showing improved results on a wide6

range of architectures, problems (such as image classification, depth estimation,7

and natural language processing), and in combination with other optimizers. We8

provide a theoretical analysis of the convergence of the method, and we show that9

by virtue of the standardization, SING can escape local minima narrower than a10

threshold that is inversely proportional to the network’s depth.11

1 Introduction12

Neural network training is a highly non-convex and stochastic optimization problem, complicated by13

hidden dynamics between the optimization algorithm and the network architecture. Several common14

pitfalls have been identified, such as bad initialization, vanishing and exploding gradients [3, 32],15

abrupt shifts in the distribution of layer inputs (the so-called internal covariate shift [19]). Significant16

progress has been made by tackling these issues either by architectural improvements [1, 17] or with17

better optimizers [21, 28, 39].18

The Adam(W) optimizer [21, 26] is widely adopted for neural network training due to its ability to19

combine first and second-order moments of the gradient, mitigating the sensitivity to the learning20

rate, and providing adaptability to gradient updates of different magnitude or sparsity. It is applicable21

to widely different architectures, from convolutional to transformers, and application domains.22

Nonetheless, it has shown instabilities in specific scenarios, such as large-scale problems [5, 29] or,23

as we demonstrate in this work, some image-to-image tasks. These instabilities manifest as spikes in24

the training loss which might involve a prolonged recovery periods - if it recovers.25

Contributions. In this work we propose a simple layer-wise gradient standardization as a technique26

to improve the stability of existing optimizers. Our technique, SING, is plug-and-play: by simply27

changing the gradient fed to AdamW (or any other “host” optimizer) it integrates seamlessly without28

introducing any additional hyperparameters. As such, it does not require any additional fine-tuning29

apart from that of the host optimization framework. In this way, SING preserves the desirable30

properties of the host optimizer but with increased stability.31

We notably theoretically show that the optimizer is capable to escape narrow local minima within a32

single step, given a sufficiently high learning rate (see Theorem 3.1). Moreover, the magnitude of33

this learning rate is inversely proportional to the depth of the network i.e. for a fixed learning rate,34

the higher the number of layers of the network, the lower the learning rate must be to escape local35

minima. This highlights the compatibility of our technique with deep neural networks. Since narrow36

local minima are often associated with poor generalization in non-convex optimization landscapes37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

−10 −5 0 5
x

0

1

2

3

F(
x)

Initial point
Iterates of SGD
Iterates of SING + SGD
Final point of SGD
Final point of SING + SGD

Figure 1: Optimization of the function with three local minima. A gradient descent (noted SGD) with
the proposed gradient standardization SING can escape narrow local minima (Theorem 3.1). SING
steps jump over narrow local minima in one step. Conversely, SGD without SING steps jump over
the first local minimum but stays blocked in the second one because the gradient amplitude is too
small. The learning rate is reduced using a cosine decay.

[6, 15, 16, 20, 33], it is crucial for an optimizer to avoid such pitfalls. We capitalize on this theoretical38

result and stabilize the gradient using several techniques [18, 57, 40] to reach a step size as large as39

possible, and thus escape from as many local minima as possible.40

Although our initial focus was to address Adam’s limitations, our technique demonstrates robust gen-41

eralization even in tasks where Adam performs well. Notably, we show improvements over AdamW42

on several tasks such as image classification, depth estimation and natural language processing.43

The paper is organized as follows. Section 2 describes the proposed method, followed by its theoretical44

analysis in Section 3 where the properties of SING are presented. We discuss related work in Section45

4. In Section 5 we provide extensive numerical experiments which demonstrate the effectiveness of46

the proposed method on a variety of tasks in natural language processing and computer vision.47

2 Algorithm48

We seek to approximate the solution to the following optimization problem,49

min
x∈Rp

F (x). (1)

We assume there exists a random function f : Rp → R such that E[∇f(x)] = ∇F (x) for all x ∈ Rp,50

and that we have access to an oracle providing i.i.d. samples (fn)n∈N [9].51

In the case of neural networks, the optimization variable x represents the parameters of the network,52

F is the oracle loss and f is the empirical loss evaluated on a random mini-batch. The parameters53

of a neural network have a specific structure. They are made of the concatenation of the parameter54

tensors from each layer of the network. We use D ∈ N to denote the number of these parameters55

tensors and define (Ik)k∈[[1,D]] such that xIk = {xi : i ∈ Ik} represents the k-th parameter tensor. As56

an example, let’s consider the neural network N (·;A, b) = A ·+b. In this case, the network has two57

parameter tensors, hence D = 2. The first parameter tensor is xI1 = A and the second is xI2 = b.58

Our objective is to endow an optimizer with several key properties: 1) stability 2) capacity to59

escape narrow local minima 3) adaptability to geometry of the energy landscape, and 4) convergence.60

Importantly, we want to achieve all of these properties without adding any additional hyper-parameters61

and with minimal computational overhead. We achieve the first property – stability – by dividing the62

gradient by its norm. This prevents vanishing and exploding gradients, which can lead to unstable63

training. This also allows to use fixed gradient steps, which enables the algorithm to move past64

narrow local minima, as we show in the next section.65

2

def optim_step(model, lr, beta, weight_decay, ϵ):
for p in model.parameters():
Standardization
p.grad = centralize(p.grad)
p.grad = normalize(p.grad, ϵ)
Weight decay
p = p * (1 - lr * weight_decay)
Optimizer
update = optimizer(p.grad, beta)
Parameter update
p = p - lr * update

def centralize(grad):
if grad.dim() > 1:

dims = tuple(range(1, grad.dim()))
mean = grad.mean(dims, keepdim=True)
grad = grad - mean
return grad

def normalize(grad, ϵ):
grad = grad / (grad.norm() + ϵ)
return grad

Algorithm 2: PYTORCH implementation of our algorithm. The Γ operator is implemented by
NORMALIZE and ϕ by CENTRALIZE. Our technique can be used within any existing first order
method i.e. the OPTIMIZER function can be any optimizer (see Table 3 for a comparison).

We define the steps taken by our optimizer by66

xt+1 = xt − η
ϕ(∇f(xt))

Γ(ϕ(∇f(xt))
, (2)

where ϕ is the gradient centralization operation [49] and the division is applied element-wise. The67

operator Γ corresponds to the parameter-wise normalization i.e.68

Γ(x)i = ∥xIk∥2, where k ∈ [[1, D]] and i ∈ Ik. (3)

In theory, there could be a division by zero in (2). To avoid this we can add ϵ = 10−8 to the69

denominator although it is not strictly necessary because the gradient norm is large in practice.70

This parametrization naturally arises in usual Deep Learning frameworks, see Algorithm 2 for the71

PYTORCH implementation.72

Our setting differs from regular normalized gradient descent in two ways: we center the gradients73

before normalizing and we perform the normalization on a parameter-wise basis. This is particularly74

important for large networks where the norm of the full gradient can be very large, making it nearly75

impossible to train the network effectively.76

3 Theoretical Analysis77

This section analyzes the key properties of our technique. Theorem 3.1 demonstrates how normaliza-78

tion techniques aid in escaping local minima. Theorem 3.2 establishes stability results, including79

several invariance properties of the algorithm. Moreover, Theorems 3.3 and 3.4 provide insights80

into the rate of convergence of our algorithm in a stochastic setting, under mild assumptions. For81

complete proofs and technical details, please refer to Appendix A.82

3.1 Escaping from narrow local minima83

One of the key properties of our algorithm is its ability to escape from narrow local minima. This is84

crucial because the stochasticity of the optimization landscape often leads to the creation of artificial85

local minima, generally associated with poor generalization performance [6, 15, 16, 20, 33]. To86

achieve this we normalize the gradient to take fixed-size steps during training, where the learning rate87

controls the step size. Doing so allows the escape from narrow local minima provided the steps are88

large enough. This property is central to our algorithm and leads to better generalization performance.89

For simplicity, we assume a deterministic setting in this section. We show that the normalization90

procedure helps the optimizer to escape narrow local minima. To formalize this observation, we first91

define the basin of attraction of a critical point of F .92

Definition 3.1. Let x∗ be a critical point of F . The basin of atraction of x∗ is defined to be the set93

W (x∗) such that94

W (x∗)
def
= {x ∈ Rp : ⟨∇F (x), x− x∗⟩ ≥ 0}.

Moreover, we write B(x∗) to be the largest ball contained within W (x∗), and r its radius.95

3

In the previous definition, if x∗ is a saddle point, A(x∗) = {x∗} and r = 0.96

Theorem 3.1 (Escaping from narrow local minima). Let xt be the sequence of iterates defined by (2)97

and yt the sequence of iterates of gradient descent,98

yt+1 = yt − ηGD∇F (yt). (4)

Assume that xt ∈ B(x∗) (resp. yt ∈ B(x∗)) i.e. the ball contained in the basin of attraction of x∗,99

defined in Definition 3.1. Also, assume that xt (resp. yt) is not a critical point i.e. ∇F (xt) ̸= 0 (resp.100

∇F (yt) ̸= 0). If the stepsize is sufficiently large,101

ηSING ≥ 2r√
D
, ηGD ≥ 2r

∥∇F (yt)∥2
, (5)

then the iterates xt+1 (resp. yt+1) is outside the set B(x∗). See Figure 1 for an illustration.102

We see that GD struggles to escape local minima: under mild assumptions on ∇F , the closer yt is103

to x∗ the higher the learning rate must be to escape from A(x∗). Indeed, for GD there is no finite104

step-size ηGD that guarantees escaping A(x∗). In contrast, Theorem 3.1 tells us that our algorithm105

escapes A(x∗) in a single step, provided the learning rate is sufficiently large. Furthermore, as the106

number of parameter tensors in the model increases, it becomes easier to escape from A(x∗). This is107

an important advantage of our algorithm over GD, especially for large models where the optimization108

landscape can be highly complex and difficult to navigate.109

When the Hessian at x∗ is well conditioned, escaping from A(x∗) is roughly equivalent to escaping110

from the local minimum. Therefore, it is crucial to use the highest possible learning rate. However,111

using a high learning rate can be problematic as the gradients are unstable and tend to oscillate leading112

to suboptimal convergence. To address this issue, several methods have been proposed to stabilize the113

gradients and allow for larger learning rates. Such methods include gradient centralization, LookA-114

head [54], different momentum strategies such as Adam [21], AdaBelief [57] or even AdaFactor115

[37] and larger batch sizes, among others. For this reason, the final implementation of our algorithm116

incorporated within AdamW features LookAhead and softplus calibration [40]. Note however that it117

does not introduce any additional hyper-parameters as the parameters of these stabilization methods118

are fixed once and for all.119

3.2 Invariance properties120

In this section, the setting is considered deterministic for simplicity. This section examines the121

invariance properties of the technique.122

Firstly, we show that a rescaling of the objective function,123

min
x∈Rp

F̃ (x)
def
= αF (x) , α > 0. (6)

does not affect the updates. This property is desirable as the network’s performance is unaffected124

by a scaling of the loss. A similar invariance property applies to changes during training that cause125

a rescaling of the gradients of a layer. If during training, the output of one layer of the network is126

rescaled, it won’t affect the update of the previous layers, thus allievating part of the problem of127

internal covariate shift [19].128

Second, the algorithm presented in this paper preserves the mean i.e.129 ∑p
i=1[xt+1]i =

∑p
i=1[xt]i, (7)

where [x]i corresponds to the i-th component of the vector x.130

Theorem 3.2. The iterates defined by (2) are invariant w.r.t. transformation (6), and preserve the131

mean (7).132

The property of preserving the mean has been demonstrated to improves the stability of the optimiza-133

tion process in deep neural networks [49]. Moreover, it is motivated by the observation that many134

non-linear layers demonstrate a mean-shift behavior [19], which alters their behavior based on the135

sign of input values. This mean-shift behavior is mitigated by the presence of normalization layers,136

that re-scale and shift the weights. Preserving the mean enhances the stability of the optimization137

dynamics when normalization layers are present.138

4

Furthermore, normalizing the centered gradients mitigates a potential pathological scenario where the139

gradient signal is diminished. Indeed, the mean of the gradient can hinder the important signal when140

the mean is too large compared to the centered gradient [49]. However, in such case the amplitude of141

the centered gradient can be relatively small, preventing efficient updates. Normalizing the gradient142

solves this issue by preserving its amplitude.143

3.3 Convergence144

In this section, two theorems of convergence are provided. In the first one, the normalization is145

studied without the centralization. Under mild assumptions, we show the ℓ2-norm of the gradient146

can be reduced to any desired precision. In the second one, we consider the full setting and show the147

same result for the ϕ-norm (which is a pseudo-norm). We assume that the stochastic gradient has a148

σ-bounded variance (σ > 0) i.e.149

∀x ∈ Rp,E
[
∥∇F (x)−∇f(x)∥22

]
≤ σ2, (8)

and the objective function F is positive and L-smooth,150

∀x, y ∈ Rd, ∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2. (9)

Theorem 3.3 (Convergence without gradient centralization). Let assumptions (8) and (9) hold.151

Assume the gradient is computed across a mini-batch of size B = σ2

ϵ2 . Let xt be the sequence of152

iterates (2) with ϕ = I . Then, we have153

1

T

T−1∑
t=0

E[∥∇F (xt)∥2] ≤
F (x0)

ηT
+ (1 +

√
D)ϵ+

ηLD

2
. (10)

If we set τ ∼ U([[0, T − 1]]), η = 2ϵ
L and T = LF (x0)

2ϵ2 , we obtain E[∥∇F (xτ)∥2] ≤ (2+
√
D+D)ϵ.154

Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point are155

O(1/ϵ2) and O(1/ϵ4), respectively.156

Theorem 3.4 (Convergence with gradient centralization). Let assumptions (8) and (9) hold. Assume157

the gradient is computed across a mini-batch of size B = σ2

ϵ2 . Let xt be the sequence of iterates (2).158

Then we have159

1

T

T−1∑
t=0

E[∥∇F (xt)∥ϕ] ≤
F (x0)

ηT
+ (1 +

√
D)ϵ+

ηLD

2
, (11)

where ∥ · ∥2ϕ = ⟨·, ϕ(·)⟩2 is a pseudo-norm. If we set τ ∼ U([[0, T − 1]]), η = 2ϵ
L and T = LF (x0)

2ϵ2 ,160

we obtain E[∥∇F (xτ)∥ϕ] ≤ (2 +
√
D +D)ϵ. Therefore, the iteration complexity and computation161

complexity to achieve an (ϵ, ϕ)-stationary point are O(1/ϵ2) and O(1/ϵ4), respectively.162

Note that Theorem 3.4 only gives us an (ϵ, ϕ)-stationary point i.e. in the limit ϵ → 0, ∇F (xτ)163

converges to a point in Ker(ϕ) = Span((1, . . . , 1)T). Indeed, applying ϕ to the gradients amounts to164

do a projected gradient descent onto the set of weights with the same mean as the initial weights.165

We argue that this “weaker” convergence result it is not problematic. Reaching a point in Ker(ϕ)166

means that the optimization process cannot go any further without violating the constraint. However,167

since neural networks have lots of parameters, adding one constraint to the solution is not likely to168

lead to worse performance [49].169

4 Related Work170

The most-used optimizer nowadays is Adam [21], which computes the entrywise first and second171

order moments of the gradient, and uses them to adaptively normalize the gradient. In contrast, SING172

first removes to the gradient its mean and divides it by its norm (standardization) prior to any further173

computations at the layer level. Furthermore, in Adam the first and second orders are averaged174

temporally while ours is not. Numerous variants of Adam have been proposed, mainly focusing on175

stabilizing the iterations of Adam. Notably, the popular AdamW [26] optimizer corrects how weight176

decay is applied in Adam, yielding a more robust method training larger models, for instance for177

5

SGD AdamW [26] W+GC [49] AdaBelief [57] W+SING

ImageNet ResNet18 72.44% 72.58% 72.31% 72.49% 72.93%
ImageNet ResNet34 75.36% 75.29% 75.26% 75.49% 75.67%

CIFAR100 ResNet18 75.63% 77.95% - - 78.24%

Table 1: Top-1 accuracy classification results of ResNet [17] on CIFAR100 [22] and ImageNet [10]
when trained from scratch. W+GC stands for the combination of AdamW [26] and Gradient
Centralization [49] and W+SING stands for AdamW and SING. For CIFAR100, the results are
averaged across five runs. The standard deviations (reported in the appendix) are sufficiently low to
say that W+SING has a clear edge on AdamW. We do not report the mean and standard deviation on
ImageNet-1K because we only launched each experiment once due to computational constraints but
we can reasonably expect our results to be significant (see Figure 3 for a motivation).

0 20 40 60 80
Epochs

10

20

30

40

50

60

70

To
p-
1
Ac
cu
ra
cy

W+SING
AdamW

Figure 3: Evolution of the accuracy throughout
training on ImageNet-1K with a ResNet18. The
almost-periodic oscillation of the metric is typical
of SING, and could be explained by the large
steps taken by the optimizer. As illustrated in
Figure 1, at the beginning the learning rate is very
high to avoid local minima and is slowly reduced
to reach convergence.

0 20 40 60 80 100
Epochs

10−4

10−3

10−2

10−1

100

101

Tr
ai

n
lo
ss

W+SING, ViT-S
W+SING, ViT-B
AdamW, ViT-S
AdamW, ViT-B

Figure 4: An illustration of a failure case of Adam
when trained on ViT-small. The train loss sud-
denly spikes during training, reducing the final
performance. The learning rate scheduler is a
cosine decay, hence the learning rate is already
small when the explosion occurs.

training (visual) Transformers in practice [41]. Also in the panel of corrections to Adam, RAdam [24]178

proposes to fix the variance of adaptive learning rate by rewriting the update term, AdaBound [27]179

and AdaMod [12] clip the update, and AdaNorm [14] directly clips the gradient instead. Conversely,180

EAdam [52] and SAdam [40] target improving the ϵ term in the denominator. AdaBelief [57] is181

another variant of Adam. It computes an estimate of the standard deviation instead of the second order182

moment. AdaFactor [37] factorizes the elements of the gradient to reduce the memory consumption183

of the optimizer. The authors propose as well an analysis of the instabilities of Adam, and fixes. In184

this work, we also target reducing Adam’s instabilities via gradient standardization.185

The works most closely related to ours are LARS [50] and LAMB [51]. Indeed, both optimizers186

normalize the gradient in a layer-wise fashion like us. However, both methods multiply the normalized187

gradient by the weight norm. This multiplication is undesired in our case as it would tame down188

our main theoretical result in Section 3 (Theorem 3.1) which is central to our work. Indeed, this189

theorem is the keystone to building a stable optimizer able to escape from narrow local minima using190

larger learning rates, whereas these methods leverage very large batch size to improve performance.191

Additionally, our method is hyperparameter-free in contrast to those of [50, 51]. Furthermore, these192

methods are new optimizers to be used as a replacement for Adam(W) whereas SING is a technique193

that can be used within any optimizer.194

Other approaches leverage standardization to better train neural networks: Weight Standardiza-195

tion [34] and Weight Normalization [18, 36] parameterize the weights of the network to allow for a196

smoother training. While this affects the gradients, this approach is orthogonal to ours and could be197

used with our technique.198

6

Maximum LR AdamW [26] AdamW + SING

ViT-S [13] 0.05 78.13% 96.56%
ViT-S [13] (± Normalization) NC 93.00% (+14.87%) NC
ViT-S [13] (± GC [49]) 0.01 (1/5) 77.46% (-0.67%) 93.86% (-2.70%)

ViT-S [13] (± LookAhead [54]) 0.01 (1/5) 54.79% (-23.35%) 95.63% (-0.93%)

ViT-S [13] (± Softplus [40]) 0.005 (1/10) NC 89.38% (-7.18%)

ViT-B [13] 0.05 NC 97.15%

Table 2: Ablation study of the different components of SING using a ViT-S on RDE. The reported
metric is the accuracy. Each component allow for a higher learning rate. For AdamW, we added
the component and studied the convergence. For AdamW + SING, we removed it. As the theory
suggests, the higher the learning rate, the higher the final performance. NC stands for no convergence
i.e. the loss could not be stabilized throughout the iterations. The maximum LR reported corresponds
to the one for AdamW + SING. As displayed in Figure 4, the training of ViT-B spiked resulting in
irrelevant performance. Note that for AdamW, the very unstable nature of the training largely widens
the gaps in performance when adding a component. In all cases, the best learning rate using AdamW
alone was 10−3.

Another part of the literature focuses on improving the stability of training processes to ensure199

smoother convergence. Notably, techniques such as LookAhead [54] adopt an approach where200

weights computed over the previous k iterations are averaged. Similarly, Gradient Centralization [49]201

involves subtracting the mean of the gradient, effectively reducing its ℓ2 norm. In our work, we draw202

upon these techniques, but it is important to highlight that our approach is distinct and independent203

from this line of research.204

Lastly, it is common in non-convex optimization to normalize the gradient descent algorithm [8, 30,205

56]. This line of work supports that the standardization strategies is a simple way to find a better206

minimizer. In this work, we translate this strategy to deep learning.207

5 Experiments208

In this section, we evaluate SING on classification, depth estimation and natural language processing.209

We run all the experiments on a single Tesla V100 GPU with 32GB of VRAM. The code to reproduce210

the results will be made available upon publication.211

5.1 Image classification212

We evaluate our technique on the large-scale ImageNet-1K dataset [10] which consists of 1.28 million213

images for training and 50K images for validation from 1000 categories. We use the FFCV library214

[23] and its recipe: the data augmentation consists in random horizontal flips and random resized215

crops. Notably, the downsampling layers are replaced by BlurPool [55]. The size of the images is216

192× 192 during training and 224× 224 at evaluation [42]. Our networks are trained for 88 epochs217

with a batch size of 1024. The loss to be minimized is the cross-entropy with a label smoothing [38]218

of 0.1. For all networks, there is a 5-epoch linear warmup and a cosine decaying schedule afterward.219

We carefully design our hyper-parameter tuning strategy to ensure a fair comparison. First, we220

tune the learning rate among limited values: {5 × 10−4, 10−3, 5 × 10−3, 10−2} for AdamW and221

{5× 10−3, 10−2, 5× 10−2, 10−1} for SING used within AdamW. In the rare cases where the best222

learning rate found is one of the extreme value of the set, additional learning rates were tested. For223

all networks and optimizers the best learning rate found is the last one before the training explodes.224

Then, we tune the weight decay using the best learning rate found. The values assessed for the weight225

decay are {5× 10−4, 5× 10−3, 5× 10−2, 5× 10−1}. Finally, the results are reported in Table 1. We226

notice that SING combined with AdamW systematically outperforms AdamW. The evolution of the227

accuracy throughout training can be seen in Figure 3. SING seems to outperform AdamW during228

the entire training, but seem to loose its edge at the end of the training. We leave the study of this229

phenomena for future works.230

7

SGD AdamW [26] AdaBelief [57] AdaFactor [37]

w/o SING 0.25% 78.13% 60.26% 74.98%
w/ SING 94.25% (+94.23%) 96.56% (+18.43%) 96.70% (+36.44%) 76.26% (+1.28%)

Table 3: Combination of SING with other optimizers for training a ViT-S [13] model on RDE. Note
that SGD barely works on this task and model despite the hyper-parameter tuning. We argue that its
performance could be further improved by tuning the momentum hyper-parameter. See the Appendix
for more details. We notice that for three out of four optimizers, incorporating SING helps improve
the performance. See the Appendix for more details.

Additionally, we trained a ResNet18 on CIFAR100 [22], which consists of 50K training images and231

10K testing images from 100 classes. The images are of size 32× 32. The network was trained for232

300 epochs using a batch size of 128. The learning rate scheduler and the tuning strategy are the same233

than for ImageNet. The results are visible in Table 1. We see that even in this challenging setting, the234

combination of AdamW and SING outperforms AdamW and SGD.235

5.2 Depth Estimation236

In this section, we investigate the performance of our optimizer on a depth estimation task using a237

synthetic dataset. The RDE dataset [7] consists of 50K 128× 128 images of rectangles randomly238

placed within an image. Depth naturally arises as rectangles are placed on top of each other. The239

goal is to predict the depth for each pixel in the image, depending on which rectangle it belongs too.240

This task is interesting because although there exists a simple algorithm that computes the desired241

depth with 100% accuracy, neural networks struggle to get good performance. Notably, we found242

training a ViT-small [13] on this task in an image-to-image fashion to be particularly challenging243

using AdamW. For usual learning rates, the loss spikes randomly during training, largely lowering244

the final performance. See Figure 4 for more details. For very small learning rates, the training245

loss doesn’t decrease fast enough to get results in a reasonable amount of time. In this case, we246

found using SING with AdamW to be a good choice as the normalization prevents the gradient from247

exploding during training. As a result, the combination of AdamW and SING outperformed AdamW248

by a large margin. The larger the assessed model, the worse the instabilities. ViT-big [13] does not249

converge when using AdamW. We tried several sets of hyper-parameters to draw this conclusion.250

We used the same hyper-parameter tuning strategy and learning rate scheduler as for ImageNet-1K.251

The network was trained for 100 epochs using a batch size of 512. The loss we minimized was252

the MSE. See Table 2 for the results and an ablation study. The ablation study shows that each253

component of SING helps to achieve a higher learning rate and therefore higher performance. Notably,254

softplus [40] seems to largely help SING while it is detrimental for AdamW. The normalization seems255

to be a determining factor for reaching convergence although it does not fully explain the success of256

SING. We also studied the impact of SING when combined with other optimizers. The results are257

visible in Table 3. We used all methods with their default hyper-parameters except for SGD where258

we tried different values for the momentum. We see that for three out of the four assessed optimizers,259

the variant with SING significantly outperforms its counterpart. For AdaFactor [37] there is barely260

any performance gain. We claim this is due to the numerous tweaks within the optimizer that have261

been tailored for a gradient descent without SING.262

5.3 Natural language processing263

In this section, we evaluate the performance of our optimizer on natural language processing tasks.264

First, we trained a Transformer with pre-norm convention [45] on the IWSLT14 German-to-English265

(De-En) dataset [4] using the FAIRSEQ [31] library. We used the code of AdaHessian [48] as is but266

surprisingly we were not able to reproduce the results reported for AdamW. Instead, we used the267

hyper-parameters reported in [46] and found them to be better, but still below the announced results.268

Then, we used Hugging Face TRANSFORMERS library [44] to fine-tune Bert [11] on the SQuAD269

dataset [35] and RoBERTa on SWAG [53]. The results are reported in Table 4. In all cases, the270

combination of AdamW and SING outperforms a well-tuned AdamW.271

8

AdamW [26] AdamW + SING

IWSLT14 From scratch Transformer [43] 34.76 35.41

SQuAD1 Fine-tuning Bert [11] 80.53% / 88.39% 81.00% / 88.34%

SWAG1 Fine-tuning RoBERTa [25] 80.45% 83.33%

Table 4: First line: BLUE score on the IWSL14 task, when training a SMALL Transformer [31] from
scratch. Second line: Fine-tuning results on the SQuAD dataset [35]; the reported values are the
proportion of exact matches and the F1 score. Third line: Fine-tuning results on the SWAG dataset
[53]; the reported value is the accuracy.

We noticed that the gradient norm was increasing throughout training. After investigation, it turned272

out the culprits were the weights and biases of the Layer Normalization [2] layers. We decided to273

disable the learning of these weights and found the performance of both optimizers to be improved.274

We claim doing so is not problematic in practice as disabling the learning of these parameters have275

been pointed out as beneficial in the literature [47].276

6 Limitations277

We tried SING on other tasks such as image denoising, where the models trained with SING attained278

the same performance of AdamW, but did not result in improved results. This suggests SING’s279

effectiveness can vary depending on the task and architecture. Additionally, we found our optimizer to280

not work well when used in conjunction with LayerNorm [2] or LayerScale [41]. While a simple fix281

is to disable the learning of these weights, it raises the question of why and calls for a better solution.282

Finally, we propose a convergence proof of the iterates defined in 2, which does not incorporate283

AdamW even though we mainly used their combination in the paper.284

7 Conclusion285

We introduced SING, a plug-and-play technique that improves the stability and generalization of the286

Adam(W) optimizer in deep learning, and can be used with any optimizer. By leveraging layer-wise287

gradient standardization, SING enhances the performance of the optimizer without introducing addi-288

tional hyperparameters. Extensive experimentation across various tasks demonstrates its effectiveness289

compared to the original AdamW optimizer. Theoretical analysis reveals that SING enables the290

optimizer to escape narrow local minima within a single step, with the required learning rate inversely291

proportional to the network’s depth. This compatibility with deep neural networks highlights its292

practicality. The analysis also provides valuable insights into the behavior of SING, such as its293

convergence rate or stability, and its advantages over traditional optimization techniques.294

In conclusion, our proposed SING technique offers a practical and effective upgrade to the Adam(W)295

optimizer in deep learning. By enhancing stability and generalization, it contributes to the improve-296

ment of optimization algorithms in neural network training. The results of our research, combined297

with the theoretical analysis, open avenues for further exploration, including investigating the com-298

patibility of SING with other optimization frameworks and addressing the challenges associated with299

specific normalization techniques.300

1We took the code of Hugging Face (https://huggingface.co/transformers/v2.3.0/examples.html) as is and
launched it, and found the performance to be lower than announced. More details in Appendix.

9

References301

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint302

arXiv:1803.08375, 2018.303

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint304

arXiv:1607.06450, 2016.305

[3] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplification: An efficient306

way to train deep neural networks. Big Data Mining and Analytics, 3(3):196–207, 2020.307

[4] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report308

on the 11th iwslt evaluation campaign. In Proceedings of the 11th International Workshop on309

Spoken Language Translation: Evaluation Campaign, pages 2–17, 2014.310

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam311

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:312

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.313

[6] Yaim Cooper. The loss landscape of overparameterized neural networks. arXiv preprint314

arXiv:1804.10200, 2018.315

[7] Adrien Courtois, Jean-Michel Morel, and Pablo Arias. Investigating neural architectures by316

synthetic dataset design. In Proceedings of the IEEE/CVF Conference on Computer Vision and317

Pattern Recognition, pages 4890–4899, 2022.318

[8] Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International319

conference on machine learning, pages 2260–2268. PMLR, 2020.320

[9] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence321

proof of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.322

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-323

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern324

recognition, pages 248–255. Ieee, 2009.325

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of326

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,327

2018.328

[12] Jianbang Ding, Xuancheng Ren, Ruixuan Luo, and Xu Sun. An adaptive and momental bound329

method for stochastic learning. arXiv preprint arXiv:1910.12249, 2019.330

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,331

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.332

An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint333

arXiv:2010.11929, 2020.334

[14] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Adanorm: Adaptive335

gradient norm correction based optimizer for cnns. In Proceedings of the IEEE/CVF Winter336

Conference on Applications of Computer Vision, pages 5284–5293, 2023.337

[15] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural338

network optimization problems. arXiv preprint arXiv:1412.6544, 2014.339

[16] Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local340

minima. Advances in neural information processing systems, 32, 2019.341

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image342

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,343

pages 770–778, 2016.344

[18] Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered weight normaliza-345

tion in accelerating training of deep neural networks. In Proceedings of the IEEE International346

Conference on Computer Vision, pages 2803–2811, 2017.347

10

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training348

by reducing internal covariate shift. In International conference on machine learning, pages349

448–456. pmlr, 2015.350

[20] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping351

Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.352

arXiv preprint arXiv:1609.04836, 2016.353

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua354

Bengio and Yann LeCun, editors, Int. Conf. on Learning Representations, 2015.355

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,356

2009.357

[23] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and358

Aleksander Madry. FFCV: Accelerating training by removing data bottlenecks. https:359

//github.com/libffcv/ffcv/, 2022. commit 2544abd.360

[24] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,361

and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint362

arXiv:1908.03265, 2019.363

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike364

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining365

approach. arXiv preprint arXiv:1907.11692, 2019.366

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint367

arXiv:1711.05101, 2017.368

[27] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic369

bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.370

[28] Agnes Lydia and Sagayaraj Francis. Adagrad—an optimizer for stochastic gradient descent. Int.371

J. Inf. Comput. Sci, 6(5):566–568, 2019.372

[29] Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal,373

Punit Singh Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam374

instability in large-scale machine learning. arXiv preprint arXiv:2304.09871, 2023.375

[30] Ryan Murray, Brian Swenson, and Soummya Kar. Revisiting normalized gradient descent: Fast376

evasion of saddle points. IEEE Transactions on Automatic Control, 64(11):4818–4824, 2019.377

[31] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,378

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint379

arXiv:1904.01038, 2019.380

[32] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent381

neural networks. In International conference on machine learning, pages 1310–1318. Pmlr,382

2013.383

[33] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random384

matrix theory. In International Conference on Machine Learning, pages 2798–2806. PMLR,385

2017.386

[34] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with387

batch-channel normalization and weight standardization. arXiv preprint arXiv:1903.10520,388

2019.389

[35] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions390

for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.391

[36] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to392

accelerate training of deep neural networks. Advances in neural information processing systems,393

29, 2016.394

11

[37] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory395

cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.396

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-397

thinking the inception architecture for computer vision. In Proceedings of the IEEE conference398

on computer vision and pattern recognition, pages 2818–2826, 2016.399

[39] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera: Neural networks for machine400

learning. Technical report, 2012.401

[40] Qianqian Tong, Guannan Liang, and Jinbo Bi. Calibrating the adaptive learning rate to improve402

convergence of adam. Neurocomputing, 481:333–356, 2022.403

[41] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Go-404

ing deeper with image transformers. In Proceedings of the IEEE/CVF International Conference405

on Computer Vision, pages 32–42, 2021.406

[42] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test407

resolution discrepancy. Advances in neural information processing systems, 32, 2019.408

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,409

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-410

tion Processing Systems, 2017.411

[44] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony412

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,413

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain414

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-415

art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods416

in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.417

Association for Computational Linguistics.418

[45] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,419

Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.420

In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.421

[46] Haoran Xu, Benjamin Van Durme, and Kenton Murray. Bert, mbert, or bibert? a study on422

contextualized embeddings for neural machine translation. arXiv preprint arXiv:2109.04588,423

2021.424

[47] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and425

improving layer normalization. Advances in Neural Information Processing Systems, 32, 2019.426

[48] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.427

Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the428

AAAI conference on artificial intelligence, volume 35, pages 10665–10673, 2021.429

[49] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization:430

A new optimization technique for deep neural networks. In Computer Vision–ECCV 2020:431

16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages432

635–652. Springer, 2020.433

[50] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.434

arXiv preprint arXiv:1708.03888, 2017.435

[51] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,436

Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for437

deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.438

[52] Wei Yuan and Kai-Xin Gao. Eadam optimizer: How ϵ impact adam. arXiv preprint439

arXiv:2011.02150, 2020.440

[53] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial441

dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.442

12

[54] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps443

forward, 1 step back. Advances in neural information processing systems, 32, 2019.444

[55] Richard Zhang. Making convolutional networks shift-invariant again. In International confer-445

ence on machine learning, pages 7324–7334. PMLR, 2019.446

[56] Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. On the convergence and improvement of stochastic447

normalized gradient descent. Science China Information Sciences, 64:1–13, 2021.448

[57] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon449

Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in450

observed gradients. Advances in neural information processing systems, 33:18795–18806,451

2020.452

13

