
Under review as a conference paper at ICLR 2024

GENERATION OF GEODESICS WITH ACTOR-CRITIC
REINFORCEMENT LEARNING TO PREDICT MIDPOINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Various tasks in the real world, such as path planning, can be reduced to the gener-
ation of geodesics on manifolds. For reinforcement learning to generate geodesics
sequentially, we need to define rewards appropriately. To generate geodesics with-
out any adjustment of rewards, we propose to use a modified version of sub-goal
trees, called midpoint trees. While sub-goal trees consist of arbitrary intermediate
points, midpoint trees consist of midpoints. In addition, we propose an actor-critic
method to learn to predict midpoints and theoretically prove that, under mild as-
sumptions, when the learning converges at the limit of infinite tree depth, the
resulting policy generates exact midpoints. We show experimentally that our pro-
posed method outperforms existing methods in a certain path planning task.

1 INTRODUCTION

Figure 1: Midpoint tree generation of a geodesic (dotted curve)

On Riemannian manifolds, or more generally on Finsler manifolds, geodesics are curves connecting
points locally with minimum lengths. Various tasks in the real world can be reduced to the genera-
tion of geodesics on manifolds. An example is time-optimal path planning on sloping ground (Mat-
sumoto, 1989). A framework for robot motion planning by formulating it using Riemannian geome-
try has also been studied (Ratliff et al., 2015). Typically, metrics are only known infinitesimally (i.e.,
a form of a Riemannian or Finsler metric) and their distance functions are not known beforehand.
To compute geodesics by optimizing curves or solving differential equations is generally computa-
tionally costly and needs an explicit form of the metric or, at least, its differentials. When we want
to find geodesics for various pairs of endpoints in a fixed manifold, it is more efficient to use a policy
that has learned to generate geodesics for arbitrary pairs.

Goal-conditioned reinforcement learning (Schaul et al., 2015) to generate waypoints of geodesics
sequentially from start to goal points suffers from the sparseness of reward if an agent gets rewards
only when it reaches a goal. To overcome this, a typical strategy is to give the agent rewards when
it gets near its goal. However, to define the values of rewards, we must know some appropriate ap-
proximation of the distance function between two points beforehand. When metrics of manifolds are
complex, it may be difficult to find an appropriate approximation of the distance function. Further-
more, when trying to generate numerous waypoints, the long horizon makes learning difficult (Wang
et al., 2020).

To overcome these difficulties, we propose a framework called the midpoint tree, a modification of
the sub-goal tree framework proposed by Jurgenson et al. (2020). In the sub-goal tree framework,
a policy learns to predict an intermediate point between two given points, instead of the next point
as in the sequential framework. Paths between the start and goal points are generated by recursively
applying this prediction to adjacent pairs of previously generated waypoints. In our midpoint tree

1

Under review as a conference paper at ICLR 2024

framework, as shown in Fig. 1, instead of an arbitrary intermediate points, the policy predicts a
midpoint, which is an intermediate point whose distances from two given points are equal. This
modification enables appropriate generation when metrics are only locally known. Compared to
sequential generation, these recurrent generation methods also have the advantage that they can be
naturally parallelized.

The original learning method used to predict sub-goals using policy gradient in Jurgenson et al.
(2020) has poor sample efficiency when trees are deep. To improve upon this, we also pro-
pose an actor-critic learning method for predicting midpoints, which is similar to the actor-critic
method (Konda & Tsitsiklis, 1999) for conventional reinforcement learning. We prove theoretically
that, under mild assumptions, if the training converges in the limit of infinite recursion depth, the
resulting predictions will coincide with the true midpoints. This result does not hold for generation
by arbitrary intermediate points.

Experimentally, we compared our proposed method with sequential generation with goal-
conditioned reinforcement learning and midpoint tree generation trained by a policy gradient method
without a critic in two practical path planning problems. The first considers a sloped ground and the
second consider non-holonomic vehicles. In the latter task, our method clearly outperformed base-
line methods. In addition, we ran our method and baselines on a motion planning task for a 7 DoF
robotic arm in an obstacle environment to confirm the effectiveness of our method for collision-free
motion planning of robots.

2 RELATED WORKS

2.1 PATH PLANNING WITH REINFORCEMENT LEARNING

One of the most popular approaches for path planning via reinforcement learning is to use a Q-
table (Haghzad Klidbary et al., 2017; Low et al., 2022). However, such an approach depends on the
finiteness of state spaces and computational costs grow with respect to the sizes of these spaces.

Several studies have been conducted on path planning in continuous space using deep reinforcement
learning (Zhou et al., 2019; Wang et al., 2019; Kulathunga, 2022). In these works, methods depend
on custom rewards.

2.2 GOAL-CONDITIONED REINFORCEMENT LEARNING AND SUB-GOALS

Goal-conditioned reinforcement learning (Kaelbling, 1993; Schaul et al., 2015) trains a universal
policy for various goals. It learns a value function that inputs both current and goal states. Kaelbling
(1993) and Dhiman et al. (2018) pointed out that goal-conditioned value functions are related to the
Floyd-Warshall algorithm for the all pairs shortest path problem (Floyd, 1962), as this function can
be updated by finding intermediate states. They proposed methods that use brute force to search for
intermediate states, which depend on the finiteness of state spaces. The idea of using sub-goals for
reinforcement learning is suggested by Sutton et al. (1999) as options, and Jurgenson et al. (2020)
linked this notion to the aforementioned intermediate states. Wang et al. (2023) drew attention
to the quasi-metric structure of goal-conditioned value functions and suggested using quasi-metric
learning (Wang & Isola, 2022) to learn these functions.

The idea of generating paths by predicting sub-goals recursively has been proposed in three papers
with different problem settings and methods. The problem setting for goal-conditioned hierarchi-
cal predictors by Pertsch et al. (2020) differs from ours because they use an approximate distance
function learned from given training data, where no training data are given in our setting. While the
divide-and-conquer Monte Carlo tree search by Parascandolo et al. (2020) is similar to our method
because they train both the policy prior and the approximate value function, which correspond to the
actor and critic in our method, their algorithm depends on the finiteness of the state spaces.

The problem setting in Jurgenson et al. (2020) is most similar to ours but different. In their setting,
the costs of direct edges between two points are given, which are upper bounds for distances. In
our setting, we can only approximate distances between two points when they are close. Therefore,
we must find waypoints such that the adjacent points are close. This is one of the reasons why we
use midpoint trees instead of sub-goal trees. In addition, because they focus on high-level planning,

2

Under review as a conference paper at ICLR 2024

their trees are not as deep as ours. This is one of the reasons why we propose an actor-critic method
while they use a policy gradient method without a critic.

3 PRELIMINARY

3.1 QUASI-METRIC SPACE

We follow the notation in Kim (1968). Let X be a space. A pseudo-quasi-metric on X is a function
d : X ×X → [0,∞) such that d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X . A
topology on X is induced by d, which has the collection of all open balls {y ∈ X|d(x, y) < r} as a
base. A pseudo-quasi-metric d is called a quasi-metric if d(x, y) > 0 for any x, y ∈ X with x ̸= y.

A pseudo-quasi-metric d is called weakly symmetric if d(x, yi) → 0 indicates d(yi, x) → 0, for
any x ∈ X and any sequence (yi)i (Arutyunov et al., 2017). When d is weakly symmetric, d is
continuous as a function with respect to the topology induced by d.

For two points x, y ∈ X , a point z ∈ X is called a midpoint between x and y if d(x, z) = d(z, y) =
d(x, y)/2. (X, d) is said to have the midpoint property if there exists at least one midpoint for every
pair of points. (X, d) is said to have the continuous midpoint property if there exists a continuous
map m : X ×X → X such that m(x, y) is a midpoint between x and y for any x, y ∈ X (Horvath,
2009).

3.2 FINSLER GEOMETRY

An important family of quasi-metric spaces is the Finsler manifolds. A Finsler manifold is a differ-
ential manifold M equipped with a function F : TM → [0,∞), where TM =

⋃
x∈M TxM is the

tangent bundle of M , satisfying the following conditions (Bao et al., 2000).

1. F is smooth on TM \ 0.
2. F (x, λv) = λF (x, v) for all λ > 0 and (x, v) ∈ TM .
3. The Hessian matrix of F (x,−)2 is positive definite at every point of TMx\0 for all x ∈M .

Let γ : [0, 1]→M be a piecewise smooth curve on M . The length of γ is defined as

L(γ) :=

∫ 1

0

F

(
γ(t),

dγ

dt
(t)

)
dt. (1)

For two points x, y ∈M , the distance d(x, y) is defined as

d(x, y) := inf {L(γ)|γ : [0, 1]→M,γ(0) = x, γ(1) = y} . (2)

Then, d is a weakly symmetric quasi-metric (Bao et al., 2000). A curve γ : [0, 1] → M is called a
minimizing geodesic if L(γ) = d(γ(0), γ(1)).

The following fact is known (Bao et al., 2000; Amici & Casciaro, 2010). For any point of M , there
exists its neighborhood U ⊆M such that any two points p, q ∈ U can be connected by a minimizing
geodesic inside U uniquely. Note that (U, d) has the continuous midpoint property.

4 LEARNING METHOD

In this section, we describe our proposed learning method for predicting midpoints.

4.1 SETTING

Let (X, d) be a pseudo-quasi-metric space. We assume that d is not known, but the metric is known
infinitesimally, i.e., we have a continuous function C : X ×X → R such that C(x, y)/d(x, y)→ 1
when d(x, y)→ 0 or C(x, y)→ 0. Formally, we assume the following conditions.

1. For x ∈ X and a series (yi)i on X , d(x, yi)→ 0 if C(x, yi)→ 0.

3

Under review as a conference paper at ICLR 2024

2. For x ∈ X and ε > 0, there exists δ > 0 such that for any y, z ∈ X ,
d(x, y) < δ ∧ d(x, z) < δ =⇒ (1− ε)d(y, z) ≤ C(y, z) ≤ (1 + ε)d(y, z). (3)

We want to find a function m : X ×X → X such that d(x,m(x, y)) = d(m(x, y), y) = d(x, y)/2
for any x, y ∈ X .

We mainly consider cases where (X, d) is a Finsler manifold (M,F) with a global coordinate system
(diffeomorphism to a subset) f : M ↪→ Rd. We can define C as

C(x, y) := F
(
x, df−1

x (f(y)− f(x))
)
, (4)

where dfx : TxM → Tf(x)Rd = Rd is the differential of f at x.
Proposition 1. C satisfies the aforementioned conditions.

See Appendix A.1 for the proof.
Remark 1. When M is compact, once a wanted function m : M ×M → M is found, we can
construct minimizing geodesics for all pairs of points. Let A := {N/2n|n ≥ 0, 0 ≤ N ≤ 2n}. For
any x, y ∈ M , by applying m recursively, we can construct γ : A → M such that d(x, γ(a)) =
ad(x, y) and d(γ(a), y) = (1 − a)d(x, y) for any a ∈ A. For any r ∈ [0, 1], we can take a non-
decreasing sequence a1, a2, . . . ∈ A such that limi ai = r. Then, since γ(ai) is a forward Cauchy
sequence with respect to d, it converges (Bao et al., 2000). Therefore, we can extend the domain of
γ to [0, 1].

For further remarks on this setting, see Appendix C.

4.2 ALGORITHM

We simultaneously train two networks called the actor and the critic. The actor πθ predicts mid-
points between two given points and the critic Vϕ predicts distances of two given points, where θ and
ϕ are their parameters. The critic learns to predict distances from lengths of sequences generated by
the actor, and the actor learns to predict midpoints from predictions by the critic.

The network for actor πθ has a form for which the reparametrization trick (Haarnoja et al., 2018)
can be used, i.e., a sample is drawn by computing a deterministic function of input, parameters θ,
and independent noise. Therefore, we abuse symbols and a sampled prediction from πθ(·|s, g) is
simply denoted by πθ(s, g) even if it is not deterministic.

Alg. 1 shows the pseudocode of our methods. We define the loss Lcritic for a critic V and s, g ∈ X
with an estimated distance c as

Lcritic(V, s, g, c) := (V (s, g)− c)
2
. (5)

The loss Lactor for an actor π with a critic V and s, g ∈ X is defined as
Lactor(π, V, s, g) := V (s, π(s, g))2 + V (π(s, g), g)2. (6)

The expression is intended to make π(s, g) a midpoint between s and g. Note that d(x, z)2+d(z, y)2

takes the minimum value when z is a midpoint between x and y since

d(x, z)2 + d(z, y)2 =
1

2

(
(d(x, z) + d(z, y))2 + (d(x, z)− d(z, y))2

)
≥ 1

2
d(x, y)2. (7)

The data for training is collected using the actor πθ with the current parameters. We sample two
points from X and generate a sequence of points by repeatedly inserting points between adjacent
points with πθ. Adjacent pairs of points at each iteration are collected as data. The depth of iteration
is not necessarily constant and can be scheduled. The estimated distances of collected pairs are
simply calculated as sums of values of C for adjacent pairs in the final sequence between them. In
other words, we use a Monte Carlo method.

After collecting data, we split them to mini-batches and repeat Nepochs times, update the parameters
of the actor and critic in accordance with gradients of the aforementioned losses for each mini-batch,
using an optimization algorithm. We repeat this process of data collection and optimization enough
times.
Remark 2. Instead of the Monte Carlo method, we may use TD(λ) (Sutton & Barto, 2018) for
0 ≤ λ ≤ 1 as cD,j := C(pD,j , pD,j+1) and, for i = D − 1, . . . , 0,

ci,j := (1− λ)(Vϕ(pi,j , pi+1,2j+1) + Vϕ(pi+1,2j+1, pi,j+1)) + λ(ci+1,2j + ci+1,2j+1). (8)

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Actor-Critic Midpoint Learning

1: Initialize θ, ϕ
2: while learning is not done do
3: data ← ∅
4: while data is not enough do
5: data ← data ∪ COLLECTDATA(πθ)
6: end while
7: Split data to batches
8: for epoch = 1, . . . , Nepochs do
9: for all b ∈ batches do

10: Update ϕ in accordance with∇ϕ

∑
(s,g,c)∈b Lcritic(Vϕ, s, g, c)

11: Update θ in accordance with∇θ

∑
(s,g,c)∈b Lactor(πθ, Vϕ, s, g)

12: end for
13: end for
14: end while
15:
16: procedure COLLECTDATA(π)
17: Sample two points p0,0, p0,1
18: Decide the depth D
19: for i = 1, . . . , D do
20: pi,0, . . . , pi,2i ← pi−1,0, π(pi−1,0, pi−1,1), pi−1,1, π(pi−1,1, pi−1,2), . . . , pi−1,2i−1

21: end for
22: c0, . . . , c2D−1 ← C(pD,0, pD,1), C(pD,1, pD,2), . . . , C(pD,2D−1, pD,2D)
23: data ← {(pD,0, pD,0, 0), (pD,1, pD,1, 0), . . . , (pD,2D , pD,2D , 0)}
24: for i = D, . . . , 0 and j = 0, . . . , 2i − 1 do
25: ci,j ← c2D−ij + c2D−ij+1 + · · ·+ c2D−i(j+1)−1

26: data ← data ∪ {(pi,j , pi,j+1, ci,j)}
27: end for
28: return data
29: end procedure

4.3 UNIQUENESS OF SOLUTION

Obtaining our desired outcome after the convergence of our learning method is a non-trivial achieve-
ment. Strictly speaking, our method can not converge completely for finite depth D. Instead, we
assume that D is sufficiently large and consider the limit for D →∞. Instead of a single actor and
critic, we consider the optimal π∗

i and V ∗
i dependent on the recursion depth i (how many times the

recursion follows) as in Jurgenson et al. (2020). V ∗
i represents the sum of the values of C at two

consecutive points for the sequence obtained by applying policies π∗
i−1, . . . , π

∗
0 , while π∗

i is a policy
to minimize V ∗

i (x, π
∗
i (x, y))

2 + V ∗
i (π

∗
i (x, y), y)

2. In other words,

V ∗
0 (x, y) = C(x, y), (9)

π∗
i (x, y) ∈ argmin

z

(
V ∗
i (x, z)

2 + V ∗
i (z, y)

2
)
, (10)

V ∗
i+1(x, y) = V ∗

i (x, π
∗
i (x, y)) + V ∗

i (π
∗
i (x, y), y). (11)

Under mild assumptions, the limits of (π∗
i)i and (V ∗

i)i coincide with our desired outcome.

Proposition 2. We assume that (X, d) is a compact weakly symmetric pseudo-quasi-metric space
with the midpoint property and there exists a series of functions π∗

i : X × X → X and V ∗
i :

X ×X → R satisfying (9), (10), and (11). We also assume that (V ∗
i)i are equicontinuous, i.e., for

any x, y ∈ X and ε > 0, there exists δ > 0 such that for any x′, y′ ∈ X and i,

d(x, x′) < δ ∧ d(y, y′) < δ =⇒ |V ∗
i (x, y)− V ∗

i (x
′, y′)| < ε. (12)

Then, if π∗ : X × X → X and V ∗ : X × X → R are continuous functions such that
d(π∗(x, y), π∗

i (x, y)) → 0 and V ∗
i (x, y) → V ∗(x, y) when i → ∞ for any x, y ∈ X , V ∗ = d

and π∗(x, y) is a midpoint between x and y for any x, y ∈ X .

5

Under review as a conference paper at ICLR 2024

For the proof, see Appendix A.2.
Remark 3. If (10) is replaced with

π∗
i (x, y) ∈ argmin

z
(V ∗

i (x, z) + V ∗
i (z, y)) , (13)

the conclusion does not follow. Let f : [0,∞) → [0,∞) be a non-decreasing subadditive function
such that limh→+0 f(h)/h = 1 (For example, f(h) := 2

√
h+ 1 − 2) and let C := f ◦ d. We

consider the case where V ∗
i = V ∗ = C and π∗

i (x, y) = π∗(x, y) = x. Then, (13) and the conditions
of Proposition 2 except (10) hold. However, V ∗ ̸= d generally.

Note that V ∗ ≤ d follows even from these conditions. This fact supports our following insights. If
upper bounds of distances are given, the approach to predict arbitrary intermediate points can work
as in Jurgenson et al. (2020). However, if distances can be approximated for only two close points,
it is necessary to avoid generating points near endpoints.

5 EXPERIMENTS

We compared our method, which generates geodesics by policies trained by the method in the previ-
ous section, with baseline methods in two path planning tasks. In addition, we also ran the proposed
and baseline methods in a robot motion planning task.

5.1 TASKS AND EVALUATION METHOD

We compared methods by the success rate of solving the following task. A Finsler manifold (M,F)
with a global coordinate system f : M ↪→ Rd is given as an environment. The number n of
segments to approximate curves and a threshold for proximity ε > 0 are also fixed. For our method,
n must be a power of two: n = 2Dmax , where Dmax is the depth of midpoint trees. When two points
s, g ∈ M are given, we want to generate a sequence s = p0, p1, . . . , pn = g of points such that all
values of C (4) for two consecutive points are not greater than ε. If the points generated by a method
satisfy this condition, it is considered successful in solving this task, otherwise, it is considered to
have failed.1

For each environment, we generated 100 pairs of points randomly before the experiment. During
training, we evaluated models regularly by solving the aforementioned tasks for generated pairs and
recorded the success rate. For the environments in § 5.3.1 and § 5.3.2, we ran each method 10 times
with different random seeds. For the environment in § 5.3.3, only one run was performed for each
method, for reasons of computational cost.

5.2 BASELINE METHODS

The baseline methods are as follows:

• Sequential Reinforcement Learning (Seq): We formulated a sequential generation of
waypoints as a conventional goal-conditioned reinforcement learning environment. The
agent moves to the goal step by step in M . If the agent is at p, it can move to q such that
C(p, q) = ε. The reward R is defined as

R := F
(
g, df−1

g (f(g)− f(p))
)
− F

(
g, df−1

g (f(g)− f(q))
)
− ε, (14)

where g is the goal. The reason that we do not define reward by using C is that C(p, g)
does not necessarily decrease when p gets closer to g. The discount factor is set to one. An
episode ends and is considered as success when the agent reaches a point p close enough
to the goal as C(p, g) < ε. When the episode duration reaches n steps without satisfying
the aforementioned condition, the episode ends and considered a failure.
We used Proximal Policy Optimization (PPO) (Schulman et al., 2017) to solve reinforce-
ment learning problems with this formulation.

1The reason we do not use the lengths of paths for evaluation is that, since the metric can only be calculated
locally, lengths cannot be calculated unless the success condition is satisfied. Furthermore, this evaluation
scheme allows for fair comparisons with the baseline method with sequential generation.

6

Under review as a conference paper at ICLR 2024

• Policy Gradient (PG): We modified the method in Jurgenson et al. (2020) to predict mid-
points by changing values to optimize while training. For each D = 1, . . . , Dmax, a
stochastic policy πD is trained to predict midpoints on the depth D. To generate of way-
points, we apply policies in descending order of index. We train policies in ascending order
of index by policy gradient.
Let ρ(π1, . . . , πD) be the distribution of τ := (p0, . . . , p2D), where p0 and p2D is sampled
from the predefined distribution on M and p2i−1(2j+1) is sampled from the distribution
πi

(
·
∣∣p2ij , p2i(j+1)

)
. Let θD denote the parameters of πD. Instead of minimizing the ex-

pected value of
∑2D−1

i=0 C(pi, pi+1) as in the original method, we train πD to minimize the
expected value of

cτ :=

2D−1−1∑
i=0

C(pi, pi+1)

2

+

 2D−1∑
i=2D−1

C(pi, pi+1)

2

, (15)

using
∇θDEτ∼ρ(π1,...,πD) [cτ] = Eτ∼ρ(π1,...,πd) [(cτ − b (p0, p2D))∇θD log πd (p2D−1 |p0, p2D)] ,

(16)
where b is a baseline function.
When the model is evaluated while training, if the current trained policy is πD (1 ≤ D ≤
Dmax), the evaluation is done with depth D (2D segments), while other methods are always
evaluated with n = 2Dmax segments.

In addition to our proposed method (Ours) described in §4.2, we ran its following variants.

• Intermediate Point (Inter): Instead of (6), we use the following actor loss:
Lactor(π,Q, s, g) := V (s, π(s, g)) + V (π(s, g), g). (17)

This means that π learns to predict intermediate points that are not necessary midpoints.
• 2:1 Point (2:1): Instead of (6), we use the following actor loss:

Lactor(π,Q, s, g) := V (s, π(s, g))2 + 2V (π(s, g), g)2. (18)
This means that π learns to predict 2 : 1 points instead of midpoints since

d(x, z)2 + 2d(z, y)2 =
1

3

(
2(d(x, z) + d(z, y))2 + (d(x, z)− 2d(z, y))2

)
. (19)

For all methods, timesteps are measured by counting the evaluation of C while training. In other
words, for sequential RL, timesteps have the conventional meaning. For other methods, the evalua-
tion of a generated path with depth D is counted as 2D timesteps.

5.3 ENVIRONMENTS

We experimented in the following three environments.

5.3.1 MATSUMOTO METRIC

Matsumoto metric is an asymmetric Finsler metric considering times to move in inclined planes, in-
troduced by Matsumoto (1989). Let M ⊆ R2 be a region on the plane with standard coordinates x, y
and let h : M → R be a differentiable function, which means heights of the field. The Matsumoto
metric F : TM → [0,∞) is defined as follows:

F (p, vxdx+ vydy) :=
α2

α− β
(20)

where,

β := vx
∂h

∂x
(p) + vy

∂h

∂y
(p), α :=

√
v2x + v2y + β2. (21)

We take a unit disk as M and h(p) := −∥p∥2. Intuitively, we consider a round field with a mountain
at the center. We set the number of segments n = 64 (depth Dmax = 6) and ε = 0.1. We trained all
methods with approximately 2× 107 timesteps.

7

Under review as a conference paper at ICLR 2024

Remark 4. This environment seems not have the continuous midpoint property since minimizing
geodesics can switch between counterclockwise and clockwise routes. However, our method can
work as shown in § 5.4.

5.3.2 UNIDIRECTIONAL CAR-LIKE CONSTRAINTS

Inspired by a cost function for trajectories of car-like non-holonomic vehicles in Rösmann et al.
(2017), we define a quasi-metric for unidirectional car-like vehicles.

Let M := U × [−π, π] ⊆ R3 be a configuration space for car-like vehicles, where U ⊆ R2 is
a region with a standard coordinate system x, y. Let θ denotes the third coordinate representing
angles. We define F : TM → [0,∞) as follows:

F ((p, θ), vxdx+ vydy + vθdθ) :=
√

v2x + v2y + cp(h2 + ξ2), (22)

where
h := −vx sin(θ) + vy cos(θ), (23)

ξ := max {rmin|vθ| − vx cos(θ)− vy sin(θ), 0} , (24)
cp is a penalty coefficient, and rmin is a lower bound of radius of curvature. The term h penalizes
moving sideways, and the term ξ penalizes moving backward and sharp turns. Note that, since we
do not identify U × {−π} and U × {π}, the path traversing the angle corresponding −π and π
cannot be considered.

Strictly speaking, this metric is not a Finsler metric, since F is not smooth on the entire TM \ 0.
See Appendix D.

In this experiment, we take a unit disk as U and set cp := 100, rmin := 0.5. We set the number
of segments n = 256 (depth Dmax = 8) and ε = 0.1. We trained all methods with approximately
8× 107 timesteps.

5.3.3 7-DOF ROBOTIC ARM MOTION PLANNING WITH A COLUMNAR OBSTACLE

This environment is defined for motion planning in an environment with a columnar obstacle for
Franka Panda robotic arm, which has 7 degrees of freedom (DoF). The space is the configuration
space of the robot. The metric is warped around the obstacle for avoiding it (Mainprice et al., 2016).
For the detail, see Appendix E.1.

We set the number of segments n = 32 (depth Dmax = 5). We trained all methods with approxi-
mately 2× 107 timesteps.

5.4 RESULTS AND DISCUSSION

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Matsumoto Metric

0 2 4 6 8
Timesteps 1e7

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

Car-Like Metric

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Robotic Arm

Ours Seq PG Inter 2:1

Figure 2: Plots of success rate

Fig. 2 shows the learning curves of success rate for all methods. Error bars represent standard errors
of means. In the Matsumoto metric environment, the success rates for Ours and Seq approximately

8

Under review as a conference paper at ICLR 2024

75%. Standard errors are smaller for Ours, which means it is more stable for random seeds. This
may be due to differences in the lengths of the horizons. The success rate for Inter decreases slightly
from a certain point, which may be occurred by convergence to biased generation as in Remark 3.
The success rate for 2:1 reaches only approximately 30%. PG was unable to solve most tasks. In the
car-like metric environment, for Ours and Inter, the success rates reach approximately 40% and are
likely to increase more if they keep learning. The success rates for other methods are low. Note that,
while changing the reward definition (14) could possibly make learning successful in the sequential
RL method, our method was successful without adjusting rewards. In the robotics arm environment,
the success rates for our method and its variants exceed 80%, while that for PG is about 20% and that
for Seq is zero. In the car-like metric environment and the robotic arm environment, Inter reaches
about the same success rate as Ours, probably because points that minimize sums of approximated
distances happen to be close to midpoints in these environments. Note that this is not always the
case, as shown in Remark 3.

−0.4 −0.2 0.0 0.2

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0.0
0.1
0.2

Truth
Ours

Seq
PG

Inter
2:1

Figure 3: Generated paths

Fig. 3 shows examples of paths in the Matsumoto environment
generated by the trained policy for each method. Every eight
points are marked. Circles represent contours. The ’Truth’
curve represents the ground truth of the minimizing geodesic
with points dividing eight equal-length parts. In this example,
all method except PG were able to generate curves close to the
ground truth. While Ours generated waypoints near to the points
dividing equally in the true curve, both Inter and 2:1 generation
produced non-uniform waypoints. PG even failed to generate a
smooth curve. This may be simply due to insufficient training.
Note that PG gets only one training data per path generation,
while our method gets several data on the scale of two to the
power of the depth per path generation.

For an example of generated motion in the robotic arm environ-
ment, see Appendix E.2.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework, called midpoint tree, to generate geodesics by recursively
predicting midpoints. We also propose an actor-critic learning method for learning to predict mid-
points and theoretically prove its soundness. Experimentally, we show that our method can solve a
path planning task that existing reinforce learning methods fail to solve.

In this paper, we tried only a straightforward actor-critic learning algorithm, while algorithms for
actor-critic reinforcement learning have been intensively researched. The investigation into more
efficient algorithms is left for future work. In particular, while our algorithm is an on-policy one,
off-policy algorithms (Degris et al., 2012) may be useful in our framework. While the architectures
we used for both actors and critics were also simple, the quasi-metric learning method (Wang &
Isola, 2022; Wang et al., 2023) may be useful for critics in our method.

One limitation of our method is that the policy has to be learned for each environment. By modifying
our method so that the actor and critic input information on environments, it may be possible to learn
a policy applicable to different environments. While we assume the continuity of policy function to
prove the theoretical soundness of our method, the continuous midpoint property may be satisfied
only locally. Further research is needed on the actual necessity of this assumption. Even if our
method only work well locally, we could consider dividing manifolds, training policies for each
region, and then connecting locally generated geodesics.

One possible extension of this work is the search for applications. While our experiment is focused
on path planning tasks, Finsler geometry appears in several fields. For example, Finsler geometry
is used in describing various physical systems (Pfeifer, 2019). Thus, our method may be useful
for physical simulations. The Wasserstein distance, which is a metric for probabilistic distributions
and used in several fields of computer science, is a Finsler metric (Agueh, 2012). Our method may
have several applications where Wasserstein distance appears. Our method may be used for image
morphing since it can be formulated as geodesics (Michelis & Becker, 2021; Effland et al., 2021).

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

The complete proofs of propositions we claim in this paper are provided in Appendix A. The im-
plementation details and hyperparameter settings for both the proposed and baseline methods in
our experiments are provided in Appendix B. In addition, the scripts for our experiments, including
the designation of random seeds, and a dockerfile to reproduce the experimental environment are
submitted as supplementary materials.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Martial Agueh. Finsler structure in the p-wasserstein space and gradient flows. Comptes Rendus.
Mathématique, 350(1-2):35–40, 2012.

OM Amici and BC Casciaro. Convex neighbourhoods and complete finsler spaces. arXiv preprint
arXiv:1006.0851, 2010.

AV Arutyunov, AV Greshnov, LV Lokutsievskii, and KV Storozhuk. Topological and geometrical
properties of spaces with symmetric and nonsymmetric f-quasimetrics. Topology and its Applica-
tions, 221:178–194, 2017.

David Bao, S-S Chern, and Zhongmin Shen. An introduction to Riemann-Finsler geometry, volume
200. Springer Science & Business Media, 2000.

Herbert Busemann and Walther Mayer. On the foundations of calculus of variations. Transactions
of the American Mathematical Society, 49(2):173–198, 1941.

Peter Corke and Jesse Haviland. Not your grandmother’s toolbox–the robotics toolbox reinvented
for python. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
11357–11363. IEEE, 2021.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Vikas Dhiman, Shurjo Banerjee, Jeffrey M Siskind, and Jason J Corso. Floyd-warshall re-
inforcement learning: Learning from past experiences to reach new goals. arXiv preprint
arXiv:1809.09318, 2018.

Alexander Effland, Erich Kobler, Thomas Pock, Marko Rajković, and Martin Rumpf. Image morph-
ing in deep feature spaces: Theory and applications. Journal of mathematical imaging and vision,
63:309–327, 2021.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

Ryuichi Fukuoka and Anderson Macedo Setti. Mollifier smoothing of c 0-finsler structures. Annali
di Matematica Pura ed Applicata (1923-), 200(2):595–639, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Sajad Haghzad Klidbary, Saeed Bagheri Shouraki, and Soroush Sheikhpour Kourabbaslou. Path
planning of modular robots on various terrains using q-learning versus optimization algorithms.
Intelligent Service Robotics, 10:121–136, 2017.

Charles Horvath. A note on metric spaces with continuous midpoints. Annals of the academy of
Romanian Scientists, Series on mathematics and its applications, 1(2), 2009.

Miguel Angel Javaloyes and Miguel Sánchez. On the definition and examples of finsler metrics.
arXiv preprint arXiv:1111.5066, 2011.

10

Under review as a conference paper at ICLR 2024

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for goal-
based reinforcement learning. In International Conference on Machine Learning, pp. 5020–5030.
PMLR, 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

Yong-Woon Kim. Pseudo quasi metric spaces. Proceedings of the Japan Academy, 44(10):1009–
1012, 1968.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Geesara Kulathunga. A reinforcement learning based path planning approach in 3d environment.
Procedia Computer Science, 212:152–160, 2022.

Ee Soong Low, Pauline Ong, Cheng Yee Low, and Rosli Omar. Modified q-learning with distance
metric and virtual target on path planning of mobile robot. Expert Systems with Applications, 199:
117191, 2022.

Jim Mainprice, Nathan Ratliff, and Stefan Schaal. Warping the workspace geometry with elec-
tric potentials for motion optimization of manipulation tasks. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3156–3163. IEEE, 2016.

Makoto Matsumoto. A slope of a mountain is a finsler surface with respect to a time measure.
Journal of Mathematics of Kyoto University, 29(1):17–25, 1989.

Mike Yan Michelis and Quentin Becker. On linear interpolation in the latent space of deep generative
models. In Proceedings of ICLR 2021 Workshop on Geometrical and Topological Representation
Learning, number CONF, 2021.

Giambattista Parascandolo, Lars Buesing, Josh Merel, Leonard Hasenclever, John Aslanides, Jes-
sica B Hamrick, Nicolas Heess, Alexander Neitz, and Theophane Weber. Divide-and-conquer
monte carlo tree search for goal-directed planning. arXiv preprint arXiv:2004.11410, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. Ad-
vances in Neural Information Processing Systems, 33:17321–17333, 2020.

Christian Pfeifer. Finsler spacetime geometry in physics. International Journal of Geometric Meth-
ods in Modern Physics, 16(supp02):1941004, 2019.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3, 2019.

Nathan Ratliff, Marc Toussaint, and Stefan Schaal. Understanding the geometry of workspace obsta-
cles in motion optimization. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4202–4209. IEEE, 2015.

Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Kinodynamic trajectory optimization
and control for car-like robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5681–5686. IEEE, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

Under review as a conference paper at ICLR 2024

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Chao Wang, Jian Wang, Yuan Shen, and Xudong Zhang. Autonomous navigation of uavs in large-
scale complex environments: A deep reinforcement learning approach. IEEE Transactions on
Vehicular Technology, 68(3):2124–2136, 2019.

Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learn-
ing more difficult than short horizon reinforcement learning? arXiv preprint arXiv:2005.00527,
2020.

Tongzhou Wang and Phillip Isola. On the learning and learnablity of quasimetrics. arXiv preprint
arXiv:2206.15478, 2022.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. arXiv preprint arXiv:2304.01203, 2023.

Sheng Zhong, Thomas Power, and Ashwin Gupta. PyTorch Kinematics, 3 2023.

Xinyuan Zhou, Peng Wu, Haifeng Zhang, Weihong Guo, and Yuanchang Liu. Learn to navigate:
cooperative path planning for unmanned surface vehicles using deep reinforcement learning. Ieee
Access, 7:165262–165278, 2019.

A PROOFS

A.1 PROOF OF PROPOSITION 1

To prove that the first condition is satisfied, it is sufficient to show f(yi)→ f(x) when C(x, yi)→ 0
because the topology induced by d coincides with the topology of the underlying manifold (Bao
et al., 2000). We can take the minimum value c > 0 of F

(
x, f−1

x (v)
)

for v ∈ Sd−1 := {v ∈
Rd|∥v∥ = 1} since Sd−1 is compact. Then C(x, y) ≥ c∥f(y)− f(x)∥ for any y ∈ X , from which
what we want to show follows.

We prove that the second condition is satisfied. We fix x ∈ X . For a curve γ : [0, 1]→M , let

L′(γ) :=

∫ 1

0

F

(
x, f−1

x

(
df ◦ γ
dt

(t)

))
dt (25)

and let E(γ) be the Euclidean length of f ◦ γ. We can take B > 0 such that, when a curve γ is
contained in a sufficiently small neighborhood of x, L(γ) ≥ BE(γ) (Busemann & Mayer, 1941).

Since F is continuous and Sd−1 is compact, for any ε > 0, we can take η > 0 such that for any y ∈
Bx(η) := {p ∈ M |d(x, p) < η} and v ∈ Sd−1,

∣∣F (x, f−1
x (v)

)
− F

(
y, f−1

y (v)
)∣∣ < ε′ := εB/2.

Then, for any curve γ contained in Bx(η),

|L(γ)− L′(γ)| ≤
∫ 1

0

∣∣∣∣F (γ(t), dγdt (t)
)
− F

(
x, f−1

x

(
df ◦ γ
dt

(t)

))∣∣∣∣ dt
≤ ε′

∫ 1

0

∣∣∣∣df ◦ γdt
(t)

∣∣∣∣ dt
= ε′E(γ).

(26)

We can take δ ≤ η such that for any y, z ∈ Bx(δ), there exists a minimizing geodesic γ(y, z) from
y to z contained in Bx(η) (Bao et al., 2000). Note that d(y, z) = L(γ(y, z)). After retaking δ to
be smaller if necessary, we can also assume that the inverse image l(y, z) by f of the segment from
f(y) to f(z) is also contained in Bx(η). Note that |C(y, z)− L′(l(y, z))| ≤ ε′∥f(y)− f(z)∥.

12

Under review as a conference paper at ICLR 2024

Since L′ is a Minkowskian metric, L′(l(y, z)) ≤ L′(γ(y, z)) (Busemann & Mayer, 1941). There-
fore, for any y, z ∈ Bx(δ),

d(y, z)− 2ε′∥f(y)− f(z)∥ ≤ L(l(y, z))− 2ε′∥f(y)− f(z)∥
≤ L′(l(y, z))− ε′∥f(y)− f(z)∥
≤ C(x, y)

≤ L′(l(y, z)) + ε′∥f(y)− f(z)∥
≤ L′(γ(y, z)) + ε′∥f(y)− f(z)∥
≤ d(y, z) + ε′E(γ(y, z)) + ε′∥f(y)− f(z)∥.

(27)

Since ∥f(y)− f(z)∥ ≤ E(γ(y, z)) ≤ B−1d(y, z), the condition is satisfied.

A.2 PROOF OF PROPOSITION 2

To prove Proposition 2, we prove the following lemmas.

Lemma 1. Let (X, d) be a pseudo-quasi-metric space. Let πi : X ×X → X and Vi : X ×X → R
be two series of functions indexed by i ∈ N, such that for any x, y ∈ X ,

πi(x, y) ∈ argmin
z

(
Vi(x, z)

2 + Vi(z, y)
2
)

(28)

and
Vi+1(x, y) = Vi(x, πi(x, y)) + Vi(πi(x, y), y). (29)

Let π∞ : X×X → X and V∞ : X×X → R be two functions such that d(π∞(x, y), πi(x, y))→ 0
and Vi(x, y)→ V∞(x, y) when i→∞ for any x, y ∈ X .

1. We assume that the series of functions (Vi)i is equicontinuous, i.e., for any x, y ∈ X and
ε > 0, there exists δ > 0 such that for any x′, y′ ∈ X and i ∈ N

d(x, x′) < δ ∧ d(y, y′) < δ =⇒ |Vi(x, y)− Vi(x
′, y′)| < ε. (30)

Then, for any x, y ∈ X ,

π∞(x, y) ∈ argmin
z

(
V∞(x, z)2 + V∞(z, y)2

)
, (31)

and
V∞(x, y) = V∞(x, π∞(x, y)) + V∞(π∞(x, y), y). (32)

2. We assume that (X, d) is weakly symmetric and V0(x, x) = 0, V0(x, y) ≥ 0, and
V0(x, y) = 0 =⇒ d(x, y) = 0 for any x, y ∈ X . Then, for any x ∈ X ,

d(x, π∞(x, x)) = d(π∞(x, x), x) = 0. (33)

3. For any ε, δ > 0, if, for any x, y ∈ X ,

V0(x, y) < δ =⇒ d(x, y) ≤ (1 + ε)V0(x, y), (34)

for any x, y ∈ X ,

V∞(x, y) < δ =⇒ d(x, y) ≤ (1 + ε)V∞(x, y), (35)

4. We assume that (X, d) has the midpoint property. For any ε, δ > 0, if, for any x, y ∈ X ,

d(x, y) < δ =⇒ V0(x, y) ≤ (1 + ε)d(x, y), (36)

for any x, y ∈ X ,

d(x, y) < δ =⇒ V∞(x, y) ≤ (1 + ε)d(x, y), (37)

13

Under review as a conference paper at ICLR 2024

Proof. We prove 1. For any sequence xi and yi that converges x∞ and y∞ respectively,

|V∞(x∞, y∞)− Vi(xi, yi)| ≤ |V∞(x∞, y∞)− Vi(x∞, y∞)|+ |Vi(x∞, y∞)− Vi(xi, yi)| (38)

and the first term can be bound by convergence Vi → V∞ at (x∞, y∞) and the second term can be
bound by equicontinuity of (Vi)i. Thus, limi→∞ Vi(xi, yi) = V∞(x∞, y∞). In particular,

lim
i→∞

Vi(x, πi(x, y)) = V∞(x, π∞(x, y)), (39)

lim
i→∞

Vi(πi(x, y), y) = V∞(π∞(x, y), y). (40)

By (28), for any x, y, z ∈ X ,

Vi(x, πi(x, y))
2 + Vi(πi(x, y), y)

2 ≤ Vi(x, z)
2 + Vi(z, y)

2. (41)

When taking a limit for i→∞,

V∞(x, π∞(x, y))2 + V∞(π∞(x, y), y)2 ≤ V∞(x, z)2 + V∞(z, y)2. (42)

Thus, (31) follows. We can also show (32) by taking a limit of both sides in (29).

We prove 2. When Vi(x, x) = 0, since Vi(x, πi(x, x)) = Vi(πi(x, x), x) = 0 by (28),
Vi+1(x, x) = 0 by (29). Thus, Vi(x, x) = Vi(x, πi(x, x)) = Vi(πi(x, x), x) = 0 for all i by
induction. Since we can also show Vi(x, y) ≥ 0 for all i by (29) and induction, Vi+1(x, y) = 0
indicates Vi(x, πi(x, y)) = Vi(πi(x, y), y) = 0 by (29). Using this, Vi(x, y) = 0 =⇒ d(x, y) = 0
for all i is proven by induction. Therefore, d(x, πi(x, x)) = d(πi(x, x), x) = 0 for all i. By the
assumption that d is weakly symmetric, (33) is proven.

We prove 3. Since this assumption indicates V0(x, y) ≥ 0, by (29) and induction, Vi(x, y) ≥ 0 for all
i. Thus, Vi+1(x, y) < δ indicates Vi(x, πi(x, y)) < δ and Vi(πi(x, y), y) < δ by (29). We assume
that Vi(x, y) < δ =⇒ d(x, y) ≤ (1 + ε)Vi(x, y) for all x, y ∈ X . Then, when Vi+1(x, y) < δ,
since d(x, πi(x, y)) ≤ (1+ ε)Vi(x, πi(x, y)) and d(πi(x, y), y) ≤ (1+ ε)Vi(πi(x, y), y), d(x, y) ≤
d(x, πi(x, y)) + d(πi(x, y), y) ≤ (1 + ε)Vi+1(x, y). Therefore, Vi(x, y) < δ =⇒ d(x, y) ≤
(1 + ε)Vi(x, y) for all i by induction, which leads (35).

We prove 4. We assume that d(x, y) < δ =⇒ Vi(x, y) ≤ (1 + ε)d(x, y) for all x, y ∈ X . Let
x, y ∈ X be a pair such that d(x, y) < δ. By assumption, there exists their midpoint m. Then,

Vi+1(x, y)
2 = (Vi(x, πi(x, y)) + Vi(πi(x, y), y))

2

≤ 2Vi(x, πi(x, y))
2 + 2Vi(πi(x, y), y)

2

≤ 2Vi(x,m)2 + 2Vi(m, y)2

≤ 2(1 + ε)2
(
d(x,m)2 + d(m, y)2

)
= (1 + ε)2d(x, y)2,

(43)

where the first inequality comes from (a + b)2 ≤ 2a2 + 2b2, the second comes from (29), and the
third comes from the induction hypothesis and d(x,m) = d(m, y) < δ. Thus, d(x, y) < δ =⇒
Vi(x, y) ≤ (1 + ε)d(x, y) for all i by induction, which leads (37).

Lemma 2. Let (X, d) be a pseudo-quasi-metric space with the midpoint property. Let π : X×X →
X and V : X ×X → R be functions satisfying the following conditions.

1. For any x, y ∈ X ,
V (x, y) = V (x, π(x, y)) + V (π(x, y), y). (44)

2. For any x, y ∈ X ,
π(x, y) ∈ argmin

z

(
V (x, z)2 + V (z, y)2

)
, (45)

3. For any x ∈ X ,
d(x, π(x, x)) = d(π(x, x), x) = 0. (46)

14

Under review as a conference paper at ICLR 2024

4. For any α > 0, there exists β > 0 such that for any x, y, z ∈ X ,

d(y, z) < β =⇒ d(π(x, y), π(x, z)) < α ∧ d(π(y, x), π(z, x)) < α. (47)

For a sufficient small ε > 0, if there exists δ > 0 such that for any x, y ∈ X ,

d(x, y) < δ =⇒ (1− ε)d(x, y) ≤ V (x, y) ≤ (1 + ε)d(x, y), (48)

for any x, y ∈ X , (1− ε)d(x, y) ≤ V (x, y) ≤ (1 + ε)d(x, y).

In particular, if there exists such δ > 0 for any ε > 0, V = d and π(x, y) is a midpoint between x
and y for any x, y ∈ X .

Proof. We first prove |V (x, y)| ≤ (1 + ε)d(x, y) for any x, y ∈ X . We prove |V (x, y)| ≤ (1 +
ε)d(x, y) when d(x, y) < 2nδ by induction for n ∈ N. This is clear when n = 0. We assume it is
true for n and take x, y ∈ X such that d(x, y) < 2n+1δ. Let m be the midpoint between x and y.
Then, by a similar calculation with (43),

V (x, y)2 = (V (x, π(x, y)) + V (π(x, y), y))
2

≤ 2V (x, π(x, y))2 + 2V (π(x, y), y)2

≤ 2V (x,m)2 + 2V (m, y)2

≤ 2(1 + ε)2
(
d(x,m)2 + d(m, y)2

)
= (1 + ε)2d(x, y)2

(49)

where the first equality comes from (44), the second inequality comes from (45), and the third
inequality comes from the induction hypothesis and d(x,m) = d(m, y) < 2nδ. Thus, |V (x, y)| ≤
(1 + ε)d(x, y). Consequently, |V (x, y)| ≤ (1 + ε)d(x, y) for all x, y ∈ X .

Next, we prove (1 − ε)d(x, y) ≤ V (x, y) for any x, y ∈ X . By (46) and (47), we can take δ′ ≤ δ
such that

d(x, y) < δ′ =⇒ d(x, π(x, y)) ≤ δ ∧ d(π(x, y), y) ≤ δ. (50)

By (47), we can take 0 < η < δ′ such that d(π(x, y), π(x, z)) < δ′/3 and d(π(y, x), π(z, x)) <
δ′/3 when d(y, z) < 2η. We prove by induction for n ∈ N that

d(x, y) < δ′ + nη =⇒ (1− ε)d(x, y) ≤ V (x, y)

∧ (1− ε)d(x, π(x, y)) ≤ V (x, π(x, y))

∧ (1− ε)d(π(x, y), y) ≤ V (π(x, y), y).

(51)

The case n = 0 follows from the conditions of δ and δ′. We assume that it is true for n and
take x, y such that δ′ + nη ≤ d(x, y) < δ′ + (n + 1)η. By taking midpoints recursively, we can
take z ∈ X such that d(x, z) + d(z, y) = d(x, y) and η ≤ d(z, y) < 2η. Let w := π(x, z),
a := V (x,w), b := V (w, z), and l := d(x, z). By (44) and the equality we previously proved,
a + b = V (x, z) ≤ (1 + ε)l. On the other hand, since l < δ′ + nη, by the induction hypothesis,
a+ b = V (x, z) ≥ (1− ε)l. Let m be a midpoint between x and z. Then, by (45) and the equality
we previously proved,

a2 + b2 ≤ V (x,m)2 + V (m, z)2 ≤ (1 + ε)2
(
d(x,m)2 + d(m, z)2

)
=

(1 + ε)2l2

2
. (52)

Thus,

a ≤ 1

2
(a+ b+ |a− b|)

=
1

2

(
a+ b+

√
2(a2 + b2)− (a+ b)2

)
≤ 1

2

(
(1 + ε)l +

√
(1 + ε)2l2 − (1− ε)2l2

)
= cεl,

(53)

15

Under review as a conference paper at ICLR 2024

where cε := (1 + 3ε) /2. By the induction hypothesis, d(x,w) ≤ (1−ε)−1a ≤ (1−ε)−1cεl. Since
ε is a sufficiently small value, we can assume that (1− ε)−1cε < 2/3. Let p := π(x, y). Then,

d(x, p) ≤ d(x,w) + d(w, p) <
2

3
(δ′ + nη) +

1

3
δ′ < δ′ + nη, (54)

where the second inequality comes from d(z, y) < 2η and the way η is taken. Thus, by the induction
hypothesis, (1 − ε)d(x, p) ≤ V (x, p). By the symmetrical argument, we can also prove (1 −
ε)d(p, y) ≤ V (p, y). Then,

(1− ε)d(x, y) ≤ (1− ε)(d(x, p) + d(p, y)) ≤ V (x, p) + V (p, y) = V (x, y). (55)

Therefore, (1− ε)d(x, y) ≤ V (x, y) for any x, y ∈ X .

Thus, if the assumption holds for any ε > 0, V = d. Then, by (45) and the midpoint property,
π(x, y) is a midpoint between x and y for any x, y ∈ X .

By the aforementioned lemmas, it is sufficient to show the following to prove Proposition 2.

1. The condition 4 in Lemma 2 holds for π∗, i.e., π∗ is uniformly continuous.
2. For any ε > 0, there exists δ > 0 such that the assumptions of 3 and 4 in Lemma 1 are

satisfied for V ∗
0 = C, i.e., the convergence C(x, y)/d(x, y)→ 1 is uniform.

These two properties follow from the following lemma, which is a generalization of a well-known
fact for metric spaces to weakly symmetric pseudo-quasi-metric spaces.
Lemma 3. Let (X, dX) be a compact pseudo-quasi-metric space and (Y, dY) be a weakly symmet-
ric pseudo-quasi-metric space. If a function f : X → Y is continuous, f is uniformly continuous,
i.e., for any ε > 0, there exists δ > 0 such that dY (f(x), f(y)) < ε for any x, y ∈ X such that
dX(x, y) < δ.

Proof. We take ε > 0 arbitrarily. Since Y is weakly symmetric, for any x ∈ X , we can take
ε(x) ≤ ε/2 such that for any z ∈ Y , dY (f(x), z) < ε(x) indicates dY (z, f(x)) < ε/2. Since
f is continuous, we can take δ(x) > 0 such that for any y ∈ X , dX(x, y) < 2δ(x) indicates
dY (f(x), f(y)) < ε(x). Let B(x) := {y ∈ X|dX(x, y) < δ(x)}. Since X is compact, we can take
a finite x1, . . . , xN such that B(x1), . . . , B(xN) covers X . Let δ := mini δ(xi).

Then, for any x, y ∈ X , dX(x, y) < δ indicates dY (f(x), f(y)) < ε. For we can take xi such
that dX(xi, x) < δ(x). Since dY (f(xi), f(x)) < ε(xi) follows from this, dY (f(x), f(xi)) <
ε/2. If dX(x, y) < δ, since dX(xi, y) < 2δ(x), dY (f(xi), f(y)) < ε(xi) ≤ ε/2. Therefore,
dY (f(x), f(y)) < ε.

When (X, d) is a pseudo-quasi-metric space, a pseudo-quasi-metric d can be defined on X ×X by
d((x1, x2), (y1, y2)) := d(x1, y1)+d(x2, y2) and the induced topology coincides with the topology
as a direct product. Therefore, The condition 4 in Lemma 2 is a direct consequence of Lemma 3.

We define a function r : X ×X → R as

r(x, y) =

{
C(x,y)
d(x,y) d(x, y) ̸= 0,

1 d(x, y) = 0.
(56)

Then, r is continuous. When we take x, y ∈ X and series (xi)i and (yi)i that converge x and y,
respectively, if d(x, y) ̸= 0, since d(xi, yi) ̸= 0 for a sufficient large i, r(xi, yi) → r(x, y) by
continuity of C and d. Otherwise, since xi → x and yi → x, r(xi, yi) → 1 by the assumption of
C. By Lemma 3, r is uniformly continuous. The existence of δ for the assumption of 4 in Lemma 1
follows from this.

To prove the existence of δ for the assumption of 3 in Lemma 1, it is sufficient to show that uniformly
d(x, y) → 0 when C(x, y) → 0, i.e., for any ε > 0, there exists δ > 0 such that C(x, y) < δ
indicates d(x, y) < ε.

Take ε > 0 arbitrarily. For any x ∈ X , we can take δ(x) > 0 such that for any y ∈ X , C(x, y) <
δ(x) indicates d(x, y) < ε/2. Since C is uniformly continuous by Lemma 3, we can take η(x) > 0

16

Under review as a conference paper at ICLR 2024

such that for any y, z ∈ X , d(x, z) < η(x) indicates |C(x, y)− C(z, y)| < δ(x)/2. Since X is
weakly symmetric, after retaking η(x) to be smaller if necessary, we can also assume that, for any
z ∈ X , d(x, z) < η(x) indicates d(z, x) < ε/2. Since X is compact, we can take a finite x1, . . . , xN

such that for any x ∈ X , there exists xi such that d(xi, x) < η(xi). Let δ := mini δ(xi)/2.

We prove that C(x, y) < δ indicates d(x, y) < ε for any x, y ∈ X . We can take xi such that
d(xi, x) < η(xi), which indicates d(x, xi) < ε/2 and |C(xi, y)− C(x, y)| < δ(xi)/2. When
C(x, y) < δ ≤ δ(xi)/2, since C(xi, y) < δ(xi), d(xi, y) < ε/2. Thus, d(x, y) < ε.

B IMPLEMENTATION DETAILS

Table 1: Values of Hyperparameters

Ours Seq PG

Learning rate for § 5.3.1 3× 10−5 3× 10−3 5× 10−3

Learning rate for § 5.3.2 and § 5.3.3 10−6 3× 10−3 5× 10−3

Batch size 256 128 300
Number of epochs 10 10 1
Hidden layer sizes [64, 64] [64, 64] [64, 64]
Activation function ReLU Tanh Tanh
λ for GAE - 0.95 -
Clipping parameter - 0.2 0.2
Entropy coefficient - 0 1
VF coefficient - 0.5 -
Max gradient norm - 0.5 -
Base standard derivation - - 0.05
Number of samples per episode - - 10
Number of episodes per cycle - - 30
Total timesteps for § 5.3.1 2× 107 2× 107 20,613,600
Total timesteps for § 5.3.2 8× 107 8× 107 82,591,200
Total timesteps for § 5.3.3 2× 107 2× 107 20,032,200

Table 1 shows values of hyperparameters we used for our method and the baselines.

B.1 OUR METHOD

At Line 2 of Alg. 1, we continue learning until the number of timesteps reach the defined value T . At
Line 18, we gradually increase the depth of collecting data to the defined depth Dmax while learning.
The depth for the c-th call of the data collection procedure is ⌊c/cd⌋, where cd := ⌊T/(2Dmax+1 −
1)⌋+1. At Line 4, if the size of the data returned from one running of the data collection procedure
is larger than the batch size, it is called once. Otherwise, it is called until one mini-batch is filled. At
Line 17, two points are sampled uniformly randomly from the coordination space of the manifold.
We set the number of epochs Nepochs to 10 and the batch size to 256.

The actor network outputs a Gaussian distribution with a diagonal covariant matrix on the coordinate
space. While data collecting or training, a prediction of the actor is sampled from the distribution
with the mean and derivations output by the network. While evaluating, the means is returned as a
prediction. We use a reparametrization trick to train the actor as in SAC (Haarnoja et al., 2018). If
the prediction is outside valid coordinates, it is projected to the nearest one.

Both the actor and critic networks are multilayer perceptrons with two hidden layers of size 64.
ReLU was selected as the activation function after trying ReLU and Tanh. The size of the output
layer in the actor network is twice the dimension of the manifold, one half represents a mean and
the other half represents logarithms of standard derivations. Adam (Kingma & Ba, 2014) is used
as the optimizer. The learning rate is tuned to 3 × 10−5 for § 5.3.1 and to 10−6 for § 5.3.2 and
§ 5.3.3. PyTorch (Paszke et al., 2019) is used for implementation. The environments are also imple-

17

Under review as a conference paper at ICLR 2024

mented using PyTorch. For the implementation of the robotics arm environment, we use PyTorch
Kinematics (Zhong et al., 2023).

B.2 SEQUENTIAL REINFORCEMENT LEARNING

Let d be the dimension of the manifold. In the environment for reinforcement learning, the ob-
servation space is 2d dimensional and represents pairs of current and goal states. Whenever an
episode starts, a start and goal point are sampled uniformly randomly from the coordination space
of the manifold. The action space is d dimensional. If v is output by the agent for an observation
(f(p), f(g)), the coordination of the next state f(q) is calculated as

f(q) := f(p) +
ε

F (p, f−1
p (v))

v. (57)

If f(q) is outside valid coordinates, it is projected to the nearest one. Since q cannot be calculated
when v = 0 exactly, in such a case, q is set to p and the agent receives reward R := −100 as a
penalty. Otherwise, the reward is calculated by (14).

We use PPO implemented in stable baseline3 (Raffin et al., 2019), which uses PyTorch. The discount
factor is set to one. The learning rate and batch size are tuned to 3 × 10−3 and 128 after searching
in {3× 10−2, 3× 10−3, 3× 10−4} and {64, 128, 256}, respectively. Other hyperparameters are set
to the default values in the library. Note that, the default architecture of networks for both the actor
and critic are multilayer perceptrons with two hidden layers of size 64, which are the same as those
of the proposed method. Tanh was selected as the activation function after trying ReLU and Tanh.

B.3 POLICY GRADIENT

We modified the author’s implementation of subgoal-tree policy gradient (SGT-PG) available at
https://github.com/tomjur/SGT-PG, which uses TensorFlow (Abadi et al., 2016). The
hyperparameters values except the sizes of the hidden layers are the same as those in the original
paper description.

The hidden layers of the policy networks are changed from the original to two of size 64 to be the
same as those of the other methods. Tanh is used as the activation function. The policy network
outputs a Gaussian distribution with a diagonal covariant matrix on the coordinate space. The size
of the output layers is 2d, where d is the dimension of the manifold. Let m1, . . . , ,md, σ1, . . . , σd

be the output for input s, g. The distribution mean is (s + g)/2 + (m1, . . . ,md)
T and the standard

derivation for the i-th coordinate is Softplus(σi) + (0.05 + Softplus(ci))∥s − g∥, where ci is a
learnable parameter. While predictions are sampled from distributions during the training of the
policy, we take the means as predictions during the evaluation or training of other policies with
higher indexes. If a prediction is outside valid coordinates, it is projected to the nearest one.

When we train πD, we sample 30 values of (p0, p2D), start and goal points, uniformly randomly from
the coordinate space of the manifold per training cycle. For each sampled pair, we sampled 10 values
of p2D−1 from the distribution outputted by πD and generated other waypoints deterministically by
πD−1, . . . , π1 for each sampled value. The average of the cost cτ is used as the baseline b(p0, p2D)
in (16). The objective is that of PPO with an entropy coefficient of 1 and clipping parameter of 0.2.
The optimizer is Adam with the learning rate set to 5× 10−3.

In the environments for § 5.3.1 and § 5.3.2, we train π1 for 1000 cycles and other πD for 538 cycles;
In the environment for § 5.3.3, we train each policy for 1077 cycles. Note that the total timesteps for
§ 5.3.1 is 2× 300× 1000 + (4 + 8 + 16 + 32 + 64)× 300× 538 = 20613600 ≈ 2× 107, that for
§ 5.3.2 is 2×300×1000+(4+8+16+32+64+128+256)×300×538 = 82591200 ≈ 8×107,
and that for § 5.3.3 is (2 + 4 + 8 + 16 + 32) ∗ 300 ∗ 1077 = 20032200.

C REMARKS ON THE SETTING

Remark 5. Instead of (4), if we set as

C(x, y) :=

∫ 1

0

F
(
f−1((1− t)f(x) + tf(y)), df−1

f−1((1−t)f(x)+tf(y))(f(y)− f(x))
)
dt, (58)

18

https://github.com/tomjur/SGT-PG

Under review as a conference paper at ICLR 2024

which is the length of the curve connecting points as a segment in the coordinate space, C gives
upper bounds of distances. Thus, we can use the setting of Jurgenson et al. (2020). However, the
integration (58) is not always computable efficiently.

Remark 6. Instead of (4), we may define C as

C(x, y) :=
1

2

(
F
(
x, df−1

x (f(y)− f(x))
)
+ F

(
y, df−1

y (f(y)− f(x))
))

. (59)

Since it is not biased toward the x side, it might be more appropriate for approximating distances.
The main reason we do not adopt this definition in this paper is the difficulty in using it in sequential
reinforcement learning, one of the baseline methods in our experiments.

Remark 7. For pseudo-Finsler manifolds, which are similar to Finsler manifolds but do not nec-
essarily satisfy the condition of positive definiteness, the distance function d can be defined and is
a weakly symmetric quasi-metric (Javaloyes & Sánchez, 2011). However, we do not expect that
Proposition 1 holds for pseudo-Finsler manifolds generally.

D REMARKS ON UNIDIRECTIONAL CAR-LIKE CONSTRAINTS

While the metric we have defined in § 5.3.2 is not strictly a Finsler metric, we define distances d and
the function C using F in the same way as Finsler metrics. To make it a Finsler metric, we have to
replace the definition of ξ with their smooth approximations. Note that F ((p, θ),−)2 is convex and
its Hessian matrix is positive definite where it is smooth.

In terms of Fukuoka & Setti (2021), F is a C0-Finsler structure, which can be approximated by
Finsler structures.

Remark 8. While the vehicle model in Rösmann et al. (2017) is bidirectional, i.e., it can
move backward, our model is unidirectional, i.e., it can only move forward. Unidirectional-
ity seems to be essential for modeling by a Finsler metric. If we replace (24) with ξ :=
max {rmin|vθ| − |vx cos(θ) + vy sin(θ)|, 0}, F cannot be approximated by Finsler structures since
it does not satisfy the subadditivity (F (x, v + w) ≤ F (x, v) + F (x,w)).

E MORE ON THE ROBOTIC ARM MOTION PLANNING TASK

E.1 DEFINITION OF ENVIRONMENT

Let x, y, z be the coordinate system of the workspace. Suppose there is an obstacle parallel to the
z-axis at x = ox, y = oy .

Let M be the configuration space for Franka Panda robotic arm. Each component of a state in M
represents an angle of the corresponding joint. Franka Panda robotic arm has 10 links including
panda link0 and panda hand. For s ∈ M , let pi(s) be the position of the i-th link, where
0 ≤ i ≤ 9. We define F as

F (s, v) :=

(
1 +

9∑
i=0

(
(pi(s)x − ox)

2
+ (pi(s)y − oy)

2
)−1/2

)
∥v∥. (60)

That is, if any one of the links gets closer to the obstacle, the value of the metric increases. Thus,
geodesics can be expected to avoid the obstacle.

We set (ox, oy) := (0.4, 0.0) and ε = 20.

E.2 EXAMPLE OF GENERATED MOTION

The middle row in Fig. 4 shows an example of a motion generated by the policy learned by our
proposed method. For comparison, the motion generated by linear interpolation in the configuration
space and the ground truth of the geodesic with the same endpoints are also drawn. We used Robotics
Toolbox for Python (Corke & Haviland, 2021) for visualization.

19

Under review as a conference paper at ICLR 2024

Figure 4: Examples of motions. The first row shows linear interpolation. The second row shows a
generated motion by learned policy. The third row shows the true geodesic. The pole is an obstacle.

In this example, the motion by mere linear interpolation causes the arm to hit the obstacle. The
motion generated by the learned policy succeeds in avoiding the obstacle. This shows that the
proposed method is effective for collision-free motion planning of a robotic arm.

However, depending on endpoints, non-joint parts of the arm sometimes collide with the obstacle in
generated motions. This is due to the fact that the metric (60) only considers distances between the
joints and the obstacle, and needs to be improved to also consider parts between joints.

20

	Introduction
	Related Works
	Path Planning with Reinforcement Learning
	Goal-Conditioned Reinforcement Learning and Sub-Goals

	Preliminary
	Quasi-Metric Space
	Finsler Geometry

	Learning Method
	Setting
	Algorithm
	Uniqueness of Solution

	Experiments
	Tasks and Evaluation Method
	Baseline Methods
	Environments
	Matsumoto Metric
	Unidirectional Car-Like Constraints
	7-DoF Robotic Arm Motion Planning with a Columnar Obstacle

	Results and Discussion

	Conclusion and Future Work
	Reproducibility Statement
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Implementation Details
	Our Method
	Sequential Reinforcement Learning
	Policy Gradient

	Remarks on the Setting
	Remarks on Unidirectional Car-Like Constraints
	More on the Robotic Arm Motion Planning Task
	Definition of Environment
	Example of Generated Motion

