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Abstract
We study indiscriminate poisoning for linear learn-
ers where an adversary injects a few crafted exam-
ples into the training data with the goal of forcing
the induced model to incur higher test error. In-
spired by the observation that linear learners on
some datasets are able to resist the best known at-
tacks even without any defenses, we further inves-
tigate whether datasets can be inherently robust to
indiscriminate poisoning attacks for linear learn-
ers. For theoretical Gaussian distributions, we
rigorously characterize the behavior of an optimal
poisoning attack, defined as the poisoning strat-
egy that attains the maximum risk of the induced
model at a given poisoning budget. Our results
prove that linear learners can indeed be robust
to indiscriminate poisoning if the class-wise data
distributions are well-separated with low variance
and the size of the constraint set containing all
permissible poisoning points is also small. These
findings largely explain the drastic variation in
empirical attack performance of the state-of-the-
art poisoning attacks across benchmark datasets,
making an important initial step towards under-
standing the underlying reasons some learning
tasks are vulnerable to data poisoning attacks.

1. Introduction
Machine learning models require large amounts of labeled
training data that often collected from untrusted third par-
ties (Carlini et al., 2023). Training models on these poten-
tially malicious data poses security risks. In spam filtering
scenario, where the spam detector is trained using data (i.e.,
emails) that are generated by users with labels provided of-
ten implicitly by user actions. In this setting, spammers can
generate spam messages that inject benign words likely to
occur in spam emails such that models trained on these spam
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messages will incur significant drops in filtering accuracy
as benign and malicious messages become indistinguish-
able (Nelson et al., 2008; Huang et al., 2011). These kinds
of attacks are known as poisoning attacks. In a poisoning at-
tack, the attacker injects a relatively small number of crafted
examples into the original training set such that the resulting
trained model (known as the poisoned model) performs in a
way that satisfies certain attacker goals.

One commonly studied poisoning attacks in the literature
are indiscriminate poisoning attacks (Biggio et al., 2012;
Xiao et al., 2012; Mei & Zhu, 2015b; Steinhardt et al., 2017;
Billah et al., 2021; Suya et al., 2021; Koh et al., 2022; Lu
et al., 2022; Demontis et al., 2019), in which the attackers
aim to let induced models incur larger test errors compared
to the model trained on a clean dataset. Other poisoning
goals, including targeted (Shafahi et al., 2018; Zhu et al.,
2019; Koh & Liang, 2017; Huang et al., 2020; Geiping et al.,
2021) and subpopulation (Jagielski et al., 2021; Suya et al.,
2021) attacks, are also worth studying and may correspond
to more realistic attack goals. We focus on indiscriminate
poisoning attacks as these attacks interfere with the funda-
mental statistical properties of the learning algorithm (Stein-
hardt et al., 2017; Koh et al., 2022), but include a summary
of prior work in other attack settings in the related work.

Indiscriminate poisoning attack methods have been devel-
oped that achieve empirically strong poisoning attacks in
many settings (Steinhardt et al., 2017; Suya et al., 2021; Koh
et al., 2022; Lu et al., 2022), but the reasons why attacks are
sometimes ineffective have not been previously studied. In
addition, the evaluations of these attacks can be deficient in
some aspects (Biggio et al., 2011; 2012; Steinhardt et al.,
2017; Billah et al., 2021; Koh et al., 2022; Lu et al., 2022)
(see Section 3) and hence, may not be able to provide an
accurate picture on the current progress of indiscriminate
poisoning attacks on linear models. The goal of our work is
to understand the properties of the learning tasks that help
render attack effectiveness under linear models. An attack is
considered ineffective if the increased risk from poisoning
is roughly equal to or smaller than the injected poisoning
ratio (Lu et al., 2022; Koh et al., 2022).

In this paper, we consider indiscriminate data poisoning
attacks for linear models, the most commonly studied vic-
tim models in the literature (Biggio et al., 2011; 2012; Koh
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& Liang, 2017; Steinhardt et al., 2017; Demontis et al.,
2019). Attacks on linear models are also studied very re-
cently (Suya et al., 2021; Koh et al., 2022; Billah et al.,
2021; Cinà et al., 2021) and we limit our scope to linear
models because attacks on the simplest linear models are
still not well understood, despite extensive prior empirical
work in this setting. Linear models continue to garner signif-
icant interest due to their simplicity and high interpretability
in explaining predictions (Liu et al., 2022; Ribeiro et al.,
2016). Linear models also achieve competitive performance
in many security-critical applications for which poisoning is
relevant, including training with differential privacy (Tramèr
& Boneh, 2021), recommendation systems (Ferrari Dacrema
et al., 2019) and malware detection (Chen et al., 2023; 2021;
Salah et al., 2020; Demontis et al., 2016; Šrndic & Laskov,
2013; Arp et al., 2014). From a practical perspective, lin-
ear models continue to be relevant—for example, Amazon
SageMaker (Amazon, Inc.), a scalable framework to train
ML models intended for developers and business analysts,
provides linear models for tabular data, and trains linear
models (on top of pretrained feature extractors) for images.

Contributions. We observe the state-of-the-art poisoning
strategies for linear models have similar attack effectiveness
on the given dataset, whereas their performance varies signif-
icantly across different datasets (Section 3). All of the tested
poisoning attacks are very effective on benchmark datasets
such as Dogfish and Enron, while none of them are effec-
tive on other datasets, such as selected MNIST digit pairs
(e.g., 6–9) and Adult, even when the victim does not employ
any defenses (Figure 1). To understand whether this obser-
vation means there are datasets that are inherently robust
to poisoning attacks or just that state-of-the-art attacks are
suboptimal, we first introduce general definitions of optimal
poisoning attacks for both finite-sample and distributional
settings (Definitions 4.1 and 4.2). We prove that under cer-
tain regularity conditions, the performance achieved by an
optimal poisoning adversary with finite-samples converges
asymptotically to the actual optimum with respect to the un-
derlying distribution (Theorem 4.3), and the best poisoning
performance is always achieved at the maximum allowable
poisoning ratio under mild conditions (Theorem 4.4).

With these definitions, we rigorously characterize the opti-
mal poisoning attacks under a theoretical Gaussian mixture
model (Theorem 5.3), and derive upper bounds on their ef-
fectiveness for general data distributions (Theorem 5.7). In
particular, we discover that a larger projected constraint size
(Definition 5.5) relates to a higher inherent vulnerability,
whereas projected data distributions with a larger separa-
bility and smaller standard deviation (Definition 5.6) are
fundamentally less vulnerable to poisoning attacks (Sec-
tion 5.2). Empirically, we find the discovered learning task
properties largely explain the drastic difference in attack per-

formance observed for state-of-the-art indiscriminate poi-
soning attacks on linear models across benchmark datasets
(Section 6). We also provide initial results on implication of
our results in designing better defenses (Appendix E).

Related Work. Our works related to existing indiscriminate
poisoning attacks that inject poisoning by leveraging these
attacks (Biggio et al., 2011; Mei & Zhu, 2015b;a; Steinhardt
et al., 2017; Suya et al., 2021; Lu et al., 2022; 2023) to
empirically estimate the inherent vulnerabilities of bench-
mark datasets, but focus on providing explanations for the
disparate poisoning vulnerability across the datasets. The
recently proposed Lethal Dose Conjecture (LDC) (Wang
et al., 2022a) also shares similar goal to us by studying the
inherent vulnerabilities of datasets to targeted data poison-
ing attacks. LDC is a more general result than ours as it
applies for different attack goals and poisoning generation
setups while we only consider injection only indiscriminate
attacks. However, the general setting for LDC can result in
overly pessimistic estimates on the power of insertion-only
indiscriminate poisoning attacks while our work comple-
ments LDC by making an initial step towards finding factors
at a finer-granularity under a particular attack scenario to
better understand the power of indiscriminate data poisoning
attacks. Appendix F provides more details.

2. Preliminaries
We consider binary classification tasks. Let X ⊆ Rn be the
input space and Y = {−1,+1} be the label space. Let µc be
the joint distribution of clean inputs and labels. For standard
classification tasks, the goal is to learn a hypothesis h : X →
Y that minimizes Risk(h;µc) = P(x,y)∼µc

[
h(x) ̸= y

]
. In-

stead of directly minimizing risk, typical machine learning
methods find an approximately good hypothesis h by re-
stricting the search space to a specific hypothesis class H,
then optimizing h by minimizing some convex surrogate
loss: minh∈H L(h;µc). In practical applications with only
a finite number of samples, model training replaces the pop-
ulation measure µc with its empirical counterpart. The surro-
gate loss for h is defined as L(h;µ) = E(x,y)∼µ

[
ℓ(h;x, y)

]
,

where ℓ(h;x, y) denotes the non-negative individual loss of
h incurred at (x, y). We focus on linear hypothesis class and
hinge loss, which is a common setting considered in prior
works (Biggio et al., 2011; 2012; Steinhardt et al., 2017;
Koh et al., 2022; Suya et al., 2021). Our results can be
extended to other linear methods such as logistic regression
(LR).

Threat Model. We consider indiscriminate data poisoning
attacks, which can be formulated as a game between an
attacker and a victim in practice (Steinhardt et al., 2017):

1. A clean training dataset Sc is produced, where each



When Can Linear Learners be Robust to Indiscriminate Poisoning Attacks?

data point is i.i.d. sampled from µc.
2. The attacker generates a poisoned dataset Sp using

some poisoning strategy A, which aims to reduce the
performance of the victim model by injecting Sp into
the training dataset.

3. The victim minimizes empirical surrogate loss L(·) on
Sc ∪ Sp and produces a model ĥp.

The attacker’s goal is to find a poisoning strategy A such
that the risk of the final induced classifier Risk(ĥp;µc) is as
high as possible. We assume the attacker has full knowledge
of the learning process, including the clean distribution µc

or the clean training dataset Sc, the hypothesis class H, the
surrogate loss function ℓ and the learning algorithm adopted
by the victim. Typically, Risk(ĥp;µc) is estimated on a
set of test data i.i.d. sampled from µc, where ĥp is learned
by some supervised method to minimize L(·) with both
clean and poisoned data Sc ∪ Sp. In addition, we impose
two restrictions to the poisoning adversary: |Sp| ≤ ϵ · |Sc|
and Sp ⊆ C, where ϵ ∈ [0, 1] is the poisoning budget
and C ⊆ X × Y is a bounded subset that captures the
feasibility constraints for poisoned data. We assume C is
specified in advance with respect to different applications
(e.g., normalized pixel values of images can only be in
[0, 1]) and possible defenses the victim may choose (e.g.,
points with larger Euclidean distance from center will be
removed) (Steinhardt et al., 2017; Koh et al., 2022). We
focus on undefended models, i.e., C is specified based on
application constraints, so as to better assess the inherent
vulnerabilities without active protections.

3. Disparate Poisoning Vulnerability of
Benchmark Datasets

Prior evaluations of poisoning attacks on convex models are
inadequate in some aspects, either being tested on very small
datasets (e.g., significantly subsampled MNIST 1–7 dataset)
without competing baselines (Biggio et al., 2011; Demontis
et al., 2019; Mei & Zhu, 2015a;b), generating invalid poi-
soning points (Steinhardt et al., 2017; Koh et al., 2022) or
lacking diversity in the evaluated models/datasets (Lu et al.,
2022; 2023). This motivates us to carefully evaluate repre-
sentative attacks for linear models on various benchmark
datasets without additional defenses.

Experimental Setup. We evaluate the representative attacks
for linear models: Influence Attack (Koh & Liang, 2017;
Koh et al., 2022), KKT Attack (Koh et al., 2022), Min-Max
Attack (Steinhardt et al., 2017; Koh et al., 2022), and Model-
Targeted Attack (MTA) (Suya et al., 2021). We consider
linear SVM and LR models and evaluate on benchmark
datasets including different MNIST (LeCun et al., 1998)
digit pairs (MNIST 1–7, as used in prior evaluations (Stein-
hardt et al., 2017; Koh et al., 2022; Biggio et al., 2011; Suya

et al., 2021), in addition to MNIST 4–9 and MNIST 6–9
which were picked to represent datasets that are relatively
easier/harder to poison), and other benchmark datasets used
in prior evaluations including Dogfish (Koh & Liang, 2017),
Enron (Metsis et al., 2006) and Adult (Jagielski et al., 2021;
Suya et al., 2021). Filtered Enron is obtained by filtering
out 3% of near boundary points from Enron. We choose
3% as the poisoning rate following previous works (Stein-
hardt et al., 2017; Koh et al., 2022; Lu et al., 2022; 2023).
Appendix D.1 provides details on the experimental setup.

Results. Figure 1 shows the highest error from across the
tested poisoning attacks (in most cases, all of the attacks
perform similarly). At the 3% poisoning ratio, the (absolute)
increased test errors of datasets such as MNIST 6–9 and
MNIST 1–7 are less than 4% for both SVM and LR while
for other datasets such as Dogfish, Enron and Filtered Enron,
the increased error is much higher than the injected poison-
ing ratio, indicating that these datasets are more vulnerable
to poisoning. Dogfish is moderately vulnerable (≈ 8% in-
creased error) while Enron and Filtered Enron are highly
vulnerable with over 30% of increased error. Consistent
with prior work (Steinhardt et al., 2017; Koh et al., 2022;
Lu et al., 2023), throughout this paper, we measure the in-
creased error to determine whether a dataset is vulnerable to
poisoning attacks. However, in some security-critical appli-
cations, the ratio between the increased error and the initial
error might matter more but leave its exploration as future
work. These results reveal a drastic difference in robustness
of benchmark datasets to state-of-the-art indiscriminate data
poisoning attacks which has not been explained in prior
works. A natural question to ask from the above observation
is are datasets like MNIST digits inherently robust to poison-
ing attacks or just resilient to state-of-the-art attacks? Since
directly estimating the performance of optimal poisoning
attacks for benchmark datasets is very challenging, we first
explore and characterize optimal poisoning attacks for the-
oretical distributions and then study their implications for
general data distributions in Section 5.

4. Defining Optimal Poisoning Attacks
First, we introduce a notion of finite-sample optimal poison-
ing to define the optimal poisoning attack in the practical
finite-sample setting with respect to our threat model:

Definition 4.1 (Finite-Sample Optimal Poisoning). Con-
sider input space X and label space Y . Let µc be the un-
derlying data distribution of clean inputs and labels. Let Sc

be a set of examples sampled i.i.d. from µc. Suppose H
is the hypothesis class and ℓ is the surrogate loss function
that are used for learning. For any ϵ ≥ 0 and C ⊆ X × Y , a
finite-sample optimal poisoning adversary Âopt is defined
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Figure 1: Performance of the best current indiscriminate poisoning attacks for linear models with ϵ = 3% across different
benchmark datasets. Each bar denotes the test error of a given linear model on a given dataset. For fixed dataset and model,
the errors with (trained on Sc ∪ Sp) and without (trained on Sc) poisoning are distinguished using different colors. Datasets
are sorted from the lowest to highest base error rate and the orders of datasets in linear SVM and LR are the same.

to be able to generate some poisoned dataset S∗p such that:

S∗p = argmax
Sp

Risk(ĥp;µc) s.t. Sp ⊆ C, |Sp| ≤ ϵ · |Sc|,

where ĥp = argminh∈H
∑

(x,y)∈Sc∪Sp ℓ(h;x, y).

Definition 4.1 suggests that no poisoning strategy can
achieve a better attack performance than that achieved by
Âopt. If we denote by ĥ∗p the hypothesis produced by mini-
mizing the empirical loss on Sc∪S∗p , then Risk(ĥ∗p;µc) can
be regarded as the maximum achievable attack performance.
Next, we introduce a more theoretical notion of distribu-
tional optimal poisoning, which generalizes Definition 4.1
from finte-sample datasets to data distributions.

Definition 4.2 (Distributional Optimal Poisoning). Con-
sider the same setting as in Definition 4.1. A distributional
optimal poisoning adversary Aopt is defined to be able to
generate some poisoned data distribution µ∗p such that:

(µ∗p, δ
∗) = argmax

(µp,δ)

Risk(hp;µc),

s.t. supp(µp) ⊆ C, 0 ≤ δ ≤ ϵ,

where hp = argminh∈H {L(h;µc) + δ · L(h;µp)}.

Similar to the finite-sample case, Definition 4.2 implies that
there is no feasible poisoned distribution µp such that the
risk of its induced hypothesis is higher than that attained
by µ∗p. Theorem 4.3, proven in Appendix A.1, connects
Definition 4.1 and Definition 4.2. The formal definitions
of uniform convergence, strong convexity and Lipschitz
continuity are given in Appendix A.1.

Theorem 4.3. Consider the same settings as in Defini-
tions 4.1 and 4.2. Suppose H satisfies the uniform con-
vergence property with function mH(·, ·), ℓ is b-strongly
convex, and Risk(h;µc) is ρ-Lipschitz continuous for some
b, ρ > 0. Let ĥ∗p = argminh∈H

∑
(x,y)∈Sc∪S∗

p
ℓ(h;x, y),

h∗p = argminh∈H{L(h;µc)+δ∗L(h;µ∗p)}. For any ϵ′, δ′ ∈
(0, 1), if |Sc| ≥ mH(ϵ

′, δ′), with probability at least 1− δ′,

∣∣Risk(ĥ∗p;µc)− Risk(h∗p;µc)
∣∣ ≤ 2ρ

√
ϵ′

b
.

We remark the three regularity conditions hold for most
(properly regularized) convex problems and input distri-
butions with bounded densities, such as the linear models
considered in this paper, and the asymptotic convergence
rate is determined by mH related to the complexity of H
and surrogate loss ℓ. When the assumed conditions are satis-
fied, Theorem 4.3 indicates the results for optimal poisoning
from distributional settings can transfer to finite-samples. In
addition, δ∗ represents the ratio of injected poisoned data
that achieves the optimal attack performance. In general,
δ∗ can be any value in [0, ϵ], but we show in Theorem 4.4,
proven in Appendix A.2, that optimal poisoning is always
achieved with ϵ-poisoning under mild conditions.

Theorem 4.4. The optimal poisoning attack performance
defined in Definition 4.2 can always be achieved by choosing
δ = ϵ, if either of the following conditions is satisfied:

1. The support of the clean distribution supp(µc) ⊆ C.
2. H is a convex hypothesis class, and for any hθ ∈

H, there always exists a distribution µ such that
supp(µ) ⊆ C and ∂

∂θ
L(hθ;µ) = 0.

Remark 4.5. Theorem 4.4 characterizes conditions when
optimal performance is guaranteed at the maximum ratio ϵ.
Note that the first condition supp(µc) ⊆ C is mild because
it typically holds for poisoning attacks against undefended
classifiers. For classifiers that employ some defenses such
as data sanitization, the condition supp(µc) ⊆ C might not
hold, as defenses may falsely reject some clean data points
as outliers. The second condition complements the first one
by not requiring the victim model to be undefended, instead
only needs H to be convex. We prove in Appendix A.3
that any linear hypothesis with hinge loss, such a µ can be
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easily constructed. The theorem enables us to conveniently
characterize the optimal poisoning attacks in Section 5.1 by
directly using ϵ. When the required conditions are satisfied,
this theorem also provides a simple sanity check on whether
a poisoning attack is optimal: the risk of the induced model
from optimal poisoning attacks should be monotonically
non-decreasing with respect to the poisoning ratio.

5. Characterizing Optimal Poisoning Attacks
This section characterizes the distributional optimal poi-
soning attacks with respect to linear hypothesis class. We
first consider a theoretical 1-dimensional Gaussian mixture
model and exactly characterize optimal poisoning attack and
then discuss the implications on the underlying factors that
potentially cause the inherent vulnerabilities to poisoning
attacks for general high-dimensional distributions.

5.1. One-Dimensional Gaussian Mixtures

Consider binary classification tasks with one-dimensional
inputs, where X = R and Y = {−1,+1}. Let µc be the un-
derlying clean data distribution, where each example (x, y)
is assumed to be i.i.d. sampled according to the following
Gaussian mixture model:{

y = −1, x ∼ N (γ1, σ
2
1) with prob. p,

y = +1, x ∼ N (γ2, σ
2
2) with prob. 1− p,

(1)

where σ1, σ2 > 0 and p ∈ (0, 1). Without loss of generality,
we assume γ1 ≤ γ2 and let ϵ ≥ 0 be the maximum poison-
ing ratio and C = Q(u) := [−u, u]× Y for some u > 0 be
the constraint set. Let HL = {hw,b : w ∈ {−1, 1}, b ∈ R}
be the linear hypothesis class. Note that we consider a sim-
plified setting where the weight parameter w ∈ {−1, 1}.
To begin, we introduce two definitions which will be used
when characterizing the optimal poisoning attacks.

Definition 5.1 (Two-point Distribution). For any α ∈ [0, 1],
να is defined as a two-point distribution, if for any (x, y)
sampled from να,

(x, y) =

{
(−u,+1) with probability α,
(u,−1) with probability 1− α.

(2)

Definition 5.2 (Weight-Flipping Condition). Consider the
Gaussian mixture model (1) and the linear hypothesis class
HL. Let g be an auxiliary function such that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the cumulative distribution function (CDF) of
N (0, 1). Let ϵ > 0 and g−1 be the inverse of g, then the
weight-flipping condition is defined as:

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0, (3)

where ∆(s) = L(h1,g−1(s);µc) − minb∈R L(h−1,b;µc) +
ϵ · (1 + u)− s · g−1(s).

Theorem 5.3. Suppose the clean distribution µc follows the
Gaussian mixture model (1) with p = 1/2, γ1 ≤ γ2, and
σ1 = σ2 = σ. Assume u ≥ 1 and |γ1 + γ2| ≤ 2(u − 1).
There always exists some α ∈ [0, 1] such that the optimal at-
tack performance defined in Definition 4.2 is achieved with
δ = ϵ and µp = να, where να is defined by (2). More specifi-
cally, if denote h∗p = argminh∈HL

{L(h;µc)+ϵ·L(h; να)},
then when (3) is satisfied, Risk(h∗p;µc) = Φ

(
γ2−γ1

2σ

)
. Oth-

erwise, Risk(h∗p;µc) =
1
2Φ

(
γ1−γ2+2s

2σ

)
+ 1

2Φ
(
γ1−γ2−2s

2σ

)
,

where s = max{g−1(ϵ)−g−1(0), g−1(0)−g−1(−ϵ)} and
g(·) is defined in Definition 5.2.

The proof of Theorem 5.3 is given in Appendix B.1. At
a high level, we first show that in order to understand the
optimal poisoning attacks, it is sufficient to study the family
of two-point distributions (Definition 5.1) as the poisoned
data distribution. Based on this reduction and specifying
the weight flipping condition (Definition 5.2), we rigorously
characterize the optimal attack performance with respect to
different configurations of task-related parameters.

Remark 5.4. Theorem 5.3 characterizes the exact behav-
ior of Aopt for typical combinations of hyperparameters,
including distribution-related parameters such as γ1, γ2, σ
and poisoning-related parameters such as ϵ, u. A larger u
suggests the weight-flipping condition (3) is more likely
to be satisfied, as an attacker can generate poisoned data
with larger hinge loss to flip the weight parameter w. Class
separability |γ1 − γ2| and within-class variance σ also play
an important role in affecting the optimal attack perfor-
mance. If the ratio |γ1 − γ2|/σ is large, then we know the
initial risk Risk(hc;µc) = Φ(γ1−γ2

2σ ) will be small. Con-
sider the scenario where condition (3) is met. Note that
Φ(γ2−γ1

2σ ) = 1 − Φ(γ1−γ2

2σ ) implies an improved perfor-
mance of optimal poisoning attack thus a higher inherent
vulnerabilities to data poisoning attacks. However, there
is an implicit assumption in condition (3) that the weight
parameter can be flipped from w = 1 to w = −1. A large
value of |γ1 − γ2|/σ also implies that flipping the weight
parameter becomes more difficult, since the gap between the
hinge loss with respect to µc for a hypothesis with w = −1
and that with w = 1 becomes larger. Moreover, if condition
(3) cannot be satisfied, then a larger ratio of |γ1−γ2|/σ sug-
gests that it is more difficult to move the decision boundary
to incur an increase in test error, as the number of correctly
classified boundary points will increase at a faster rate. In
summary, Theorem 5.3 suggests a smaller value of u and a
larger ratio of |γ1 − γ2|/σ increases the inherent robustness
to poisoning for typical configurations under our model (1).
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Robust Moderately Vulnerable Highly Vulnerable
Metric MNIST 6–9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron

Errors +2.7 (0.3) +2.4 (1.2) +3.2 (21.5) +7.9 (0.8) +6.6 (4.3) +33.1 (0.2) +31.9 (2.9)
Factors 6.92, 0.24 6.25, 0.23 9.65, 0.33 5.14, 0.05 4.44, 0.14 1.18, 0.01 1.18, 0.01

Table 1: Explaining disparate poisoning vulnerability under linear SVM. Errors are in the form of +Error increase from
poisoning (Base Error without poisoning) and identified factors in this paper are in the form of Sep/SD, Sep/Size.

5.2. General Distributions

Recall that we have identified several key factors (i.e., u,
|γ1−γ2| and σ) for 1-D Gaussian distributions in Section 5.1
which are highly related to the performance of an optimal
distributional poisoning adversary Aopt. In this section, we
demonstrate how to generalize the definition of these factors
to high-dimensional datasets and illustrate how they affect
an inherent robustness upper bound to indiscriminate poi-
soning attacks for linear learners. We first project the clean
distribution µc and the constraint set C onto some vector w,
then compute those factors based on the projections.

Definition 5.5 (Projected Constraint Size). Let C ⊆ X ×Y
be the constraint set for poisoning. For any w ∈ Rn, the
projected constraint size of C with w is defined as:

Sizew(C) = max
(x,y)∈C

w⊤x− min
(x,y)∈C

w⊤x.

According to Definition 5.5, Sizew(C) characterizes the size
of the constraint set C when projected onto the (normalized)
projection vector w/∥w∥2 then scaled by ∥w∥2, the ℓ2-
norm of w. In theory, the constraint sets conditioned on
y = −1 and y = +1 can be different, but for simplicity
and practical considerations, we simply assume they are the
same in the following discussions.

Definition 5.6 (Projected Separability and Standard Devia-
tion). Let X ⊆ Rn, Y = {−1,+1}, and µc be the underly-
ing distribution. Let µ− and µ+ be the input distributions
with labels of −1 and +1 respectively. For any w ∈ Rn,
the projected separability of µc with w is defined as:

Sepw(µc) =
∣∣Ex∼µ− [w

⊤x]− Ex∼µ+
[w⊤x]

∣∣.
Similarly, the projected standard deviation is defined as:

SDw(µc) =
√
p−Varx∼µ− [w

⊤x] + p+Varx∼µ+
[w⊤x],

where p− and p+ denote the sampling probabilities, i.e.,
p− = Pr(x,y)∼µc

[y = −1] and p+ = Pr(x,y)∼µc
[y = +1].

For finite-sample settings, we simply replace the input dis-
tributions with their empirical counterparts to compute the
sample statistics of Sepw(µc) and SDw(µc). Note that the
above definitions are specifically for linear models, but out
of curiosity, we also provide initial thoughts on how to ex-
tend these metrics to neural networks (see Appendix G for

preliminary results). Below, we provide relation of the three
factors to the optimal poisoning attacks.

Theorem 5.7. Consider input space X ⊆ Rn, label space
Y , clean distribution µc and linear hypothesis class H. For
any hw,b ∈ H, let ℓ(hw,b;x, y) = ℓM(−y(w⊤x + b))
be a margin-based loss adopted by the victim, where ℓM
is convex and non-decreasing. Let C ⊆ X × Y be the
constraint set and ϵ > 0 be the poisoning budget. Suppose
hc = argminh∈H L(h;µc) has weight wc and h∗p is the
poisoned model induced by Aopt, then we have

Risk(h∗p;µc) ≤ min
h∈H

[
L(h;µc) + ϵ · L(h;µ∗p)

]
≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)). (4)

Remark 5.8. Theorem 5.7 proves an upper bound on the
inherent vulnerability to indiscriminate poisoning for linear
learners, which can be understood as a necessary condition
for optimal poisoning attacks. A smaller upper bound likely
suggests a higher inherent robustness to poisoning attacks.
In particular, the right hand side of (4) consists of two terms:
the clean population loss of hc and a term related to the
projected constraint size. Intuitively, the projected separa-
bility and standard deviation metrics highly affect the first
term, since data distribution with a higher Sepwc

(µc) and
a lower SDwc

(µc) implies a larger averaged margin with
hc, further suggesting a smaller L(hc;µc). The second term
is determined by the poisoning budget ϵ and the projected
constraint size, or more precisely, a larger ϵ and a larger
Sizewc(C) indicate a higher upper bound on Risk(h∗p;µc).
Note that we set h = hc and the projection vector as wc

in the last inequality of (4), because hc achieves the small-
est population surrogate loss with respect to µc. However,
choosing h = hc may not always produce a tighter upper
bound on Risk(h∗p;µc) since there is no guarantee that the
projected constraint size Sizewc(C) will be small. An in-
teresting future direction is to find a projection vector that
returns a tighter upper bound on Risk(h∗p;µc) for any µc

and see Appendix D.2 for preliminary experiments on this.

6. Experiments
Recall that Theorem 4.3 proves the finite-sample optimal
poisoning attack is a consistent estimator for linear learn-
ers. In this section, we demonstrate the theoretical insights
gained from Section 5, despite proven only for distributional
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optimal attacks, still appear to largely explain the empirical
performance of best attacks across different benchmarks.

Given a clean training data Sc, we empirically estimate the
three distributional metrics defined in Section 5.2 on the
clean test data with respect to the weight wc. Since ∥wc∥2
may vary across different datasets while the predictions of
linear models (i.e., the classification error) are invariant to
the scaling of ∥wc∥2, we use ratios to make their metrics
comparable: Sepwc

(µc)/SDwc
(µc) (denoted as Sep/SD in

Table 1) and Sepwc
(µc)/Sizewc(C) (Sep/Size). According

to our theoretical results, we expect datasets that are less
vulnerable to poisoning have higher values for both metrics.

Table 1 summarizes the results on linear SVM (see Ap-
pendix D.2 for similar results on LR), showing that the
Sep/SD and Sep/Size metrics can largely explain why
datasets such as MNIST 1–7 and MNIST 6–9 are harder to
poison than others. These datasets are more separable and
impacted less by the poisoning points. In contrast, datasets
such as Enron and Filtered Enron are highly vulnerable
because they are the least separable and also impacted the
most by poisoning points. The empirical metrics are indeed
highly correlated to the error increase (and also the final poi-
soned error) when the base error is small, which is the case
for all tested benchmark datasets except Adult. The results
of Filtered Enron (low base error, high increased error) and
Adult (high base error, low increased error) demonstrate
the poisoning vulnerability cannot be trivially inferred from
the initial base error. When the base error is high as it is
for Adult, the empirical metrics are highly correlated to the
final poisoned error, but not the error increase. For the error
increase, computing the metrics on clean test points that
are correctly classified by wc is more informative. There-
fore, we report metrics based on correctly-classified test
points in Table 1 and provide results of the whole test data
in Appendix D.2. For datasets except Adult, both ways of
computing the metrics produce similar results. The Adult
dataset is interesting in that it is robust to poisoning (i.e.,
small error increase) despite with a very high base error.

7. Conclusion
Motivated by the observation that different datasets show
disparate vulnerabilities to state-of-the-art poisoning attacks
for linear learners, we rigorously characterized the optimal
poisoning attacks for Gaussian distributions. The insights
from the theoretical analysis largely explain the vulnerabili-
ties of benchmark datasets. We made an initial but important
step towards understanding the inherent learning task prop-
erties that correlate with vulnerability to poisoning attacks.
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A. Proofs of Main Results in Section 4
A.1. Proof of Theorem 4.3

We first introduce the formal definitions of strong convexity and Lipschitz continuity conditions with respect to a function,
and the uniform convergence property respect to a hypothesis class. These definitions are necessary for the proof of Theorem
4.3.
Definition A.1 (Strong Convexity). A function f : Rn → R is b-strongly convex for some b > 0, if f(x1) ≥ f(x2) +
∇f(x2)

⊤(x1 − x2) +
b
2∥x1 − x2∥22 for any x1,x2 ∈ Rn.

Definition A.2 (Lipschitz Continuity). A function f : Rn → R is ρ-Lipschitz for some ρ > 0, if |f(x1) − f(x2)| ≤
ρ∥x1 − x2∥2 for any x1,x2 ∈ Rn.
Definition A.3 (Uniform Convergence). Let H be a hypothesis class. We say that H satisfies the uniform convergence
property with a loss function ℓ, if there exists a function mH : (0, 1)2 → N such that for every ϵ′, δ′ ∈ (0, 1) and for every
probability distribution µ, if S is a set of examples with m ≥ mH(ϵ

′, δ′) samples drawn i.i.d. from µ, then

PS←µm

[
sup
h∈H

∣∣L(h; µ̂S)− L(h;µ)
∣∣ ≤ ϵ′

]
≥ 1− δ′.

Such a uniform convergence property, which can be achieved using the VC dimension or the Rademacher complexity of
H, guarantees that the learning rule specified by empirical risk minimization always returns a good hypothesis with high
probability (Shalev-Shwartz & Ben-David, 2014). Similar to PAC learning, the function mH measures the minimal sample
complexity requirement that ensures uniform convergence.

Now, we are ready to prove Theorem 4.3

Proof of Theorem 4.3. First, we introduce the following notations to simplify the proof. For any Sp, µp and δ ≥ 0, let

ĝ(Sp,Sc) = argmin
h∈H

∑
(x,y)∈Sc∪Sp

ℓ(h;x, y),

g(δ, µp, µc) = argmin
h∈H

{L(h;µc) + δ · L(h;µp)}.

According to the definitions of ĥ∗p and h∗p, we know ĥ∗p = ĝ(S∗p ,Sc) and h∗p = g(δ∗, µ∗p, µc).

Now we are ready to prove Theorem 4.3. For any Sc sampled from µc, consider the empirical loss minimizer ĥ∗p = ĝ(S∗p ,Sc)
and the population loss minimizer g(δS∗

p
, µ̂S∗

p
, µc), where δS∗

p
= |S∗p |/|Sc|. Then S∗p ∪ Sc can be regarded as the i.i.d.

sample set from (µc+δS∗
p
· µ̂S∗

p
)/(1+δS∗

p
). According to Definition A.3, since H satisfies the uniform convergence property

with respect to ℓ, we immediately know that the empirical loss minimization is close to the population loss minimization if
the sample size is large enough (see Lemma 4.2 in (Shalev-Shwartz & Ben-David, 2014)). To be more specific, for any
ϵ′, δ′ ∈ (0, 1), if |Sc| ≥ mH(ϵ

′, δ′), then with probability at least 1− δ′, we have

L
(
ĝ(S∗p ,Sc);µc

)
+ δS∗

p
· L

(
ĝ(S∗p ,Sc); µ̂S∗

p

)
≤ argmin

h∈H
{L(h;µc) + δS∗

p
· L(h; µ̂S∗

p
)}+ 2ϵ′

= L
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
+ δS∗

p
· L

(
g(δS∗

p
, µ̂S∗

p
, µc); µ̂S∗

p

)
+ 2ϵ′.

In addition, since the surrogate loss ℓ is b-strongly convex and the population risk is ρ-Lipschitz, we further know the clean
risk of ĝ(S∗p ,Sc) and g(δS∗

p
, µ̂S∗

p
, µc) is guaranteed to be close. Namely, with probability at least 1− δ′, we have∣∣Risk(ĝ(S∗p ,Sc);µc

)
− Risk

(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S∗p ,Sc)− g(δS∗

p
, µ̂S∗

p
, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.

Note that δS∗
p
∈ [0, ϵ] and supp(µ̂S∗

p
) ⊆ C. Thus, according to the definition of h∗p = g(δ∗, µ∗p, µc), we further have

Risk(h∗p;µc) ≥ Risk
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
≥ Risk

(
ĝ(S∗p ,Sc);µc

)
− 2ρ

√
ϵ′

b

= Risk(ĥ∗p;µc)− 2ρ

√
ϵ′

b
. (5)
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So far, we have proven one direction of the asymptotic for results Theorem 4.3.

On the other hand, we can always construct a subset S̃p with size |S̃p| = δ∗ · |Sc| by i.i.d. sampling from µ∗p. Consider the
empirical risk minimizer ĝ(S̃p,Sc) and the population risk minimizer h∗p = g(δ∗, µ∗p, µc). Similarly, since H satisfies the
uniform convergence property, if |Sc| ≥ mH(ϵ

′, δ′), then with probability at least 1− δ′,we have

L
(
ĝ(S̃p,Sc);µc

)
+ δ∗ · L

(
ĝ(S̃p,Sc);µ

∗
p

)
≤ argmin

h∈H
{L(h;µc) + δ∗ · L(h;µ∗p)}+ 2ϵ′

= L
(
g(δ∗, µ∗p, µc);µc

)
+ δ∗ · L

(
g(δ∗, µ∗p, µc);µ

∗
p

)
+ 2ϵ′.

According to the strong convexity of ℓ and the Lipschitz continuity of the population risk, we further have∣∣Risk(ĝ(S̃p,Sc);µc

)
− Risk

(
g(δ∗, µ∗p, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S̃p,Sc)− g(δ∗, µ∗p, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.

Note that S̃p ⊆ C and |S̃p| = δ∗ · |Sc| ≤ ϵ · |Sc|. Thus according to the definition of ĥ∗p = ĝ(S∗p ,Sc), we have

Risk(ĥ∗p;µc) ≥ Risk
(
ĝ(S̃p,Sc);µc

)
≥ Risk

(
g(δ∗, µ∗p, µc);µc

)
− 2ρ

√
ϵ′

b

= Risk(h∗p;µc)− 2ρ

√
ϵ′

b
. (6)

Combining (5) and (6), we complete the proof of Theorem 4.3.

A.2. Proof of Theorem 4.4

Proof of Theorem 4.4. We prove Theorem 4.4 by construction.

We start with the first condition supp(µc) ⊆ C. Suppose δ∗ < ϵ, since the theorem trivially holds if δ∗ = ϵ. To simplify
notations, define hp(δ, µp) = argminh∈H {L(h;µc) + δ · L(h;µp)} for any δ and µp. To prove the statement in Theorem
4.4, it is sufficient to show that there exists some µ

(ϵ)
p based on the first condition such that

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
≥ Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C. (7)

We construct µ(ϵ)
p based on µc and µ∗p as follows:

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ(1 + δ∗)
· (µc + δ∗ · µ∗p)

=
ϵ− δ∗

ϵ(1 + δ∗)
· µc +

δ∗(1 + ϵ)

ϵ(1 + δ∗)
· µ∗p.

We can easily check that µ(ϵ)
p is a valid probability distribution and supp(µ

(ϵ)
p ) ⊆ C. In addition, we can show that

hp(ϵ, µ
(ϵ)
p ) = argmin

h∈H
{L(h;µc) + ϵ · L(h;µ(ϵ)

p )}

= argmin
h∈H

{
E(x,y)∼µc

ℓ(h;x, y) + ϵ · E
(x,y)∼µ(ϵ)

p
ℓ(h;x, y)

}
=

1 + ϵ

1 + δ∗
· argmin

h∈H

{
E(x,y)∼µc

ℓ(h;x, y) + δ∗ · E(x,y)∼µ∗
p
ℓ(h;x, y)

}
=

1 + ϵ

1 + δ∗
· hp(δ

∗, µ∗p)

> hp(δ
∗, µ∗p),

where the third equality holds because of the construction of µ(ϵ)
p . Therefore, we have proven (7), which further implies the

optimal attack performance can always be achieved with ϵ-poisoning as long as the first condition is satisfied.
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Next, we turn to the second condition of Theorem 4.4. Similarly, it is sufficient to construct some µ
(ϵ)
p for the setting where

δ∗ < ϵ such that

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
≥ Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C.

We construct µ(ϵ)
p based on µ∗p and the assumed data distribution µ. More specifically, we construct

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ
· µ. (8)

By construction, we know µ
(ϵ)
p is a valid probability distribution. In addition, according to the assumption of supp(µ) ⊆ C,

we have supp(µ
(ϵ)
p ) ⊆ C. According to the assumption that ∂

∂θ
L(hθ;µ) = 0 holds for any θ and the first-order optimality

condition for convex loss, we know hp(ϵ, µ
(ϵ)
p ) = hp(δ

∗, µ∗p) holds for any possible hp(δ
∗, µ∗p), which suggests (8).

Therefore, we complete the proof of Theorem 4.4.

A.3. Proofs of the Statement about Linear Models in Remark 4.5

Proof. We provide the construction of µ with respect to the second condition of Theorem 4.4 for linear models and hinge
loss. Since for any hw,b ∈ HL and any (x, y) ∈ X × Y , we have

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)}+ λ

2
∥w∥22.

Let θ = (w, b), then the gradient with respect to w can be written as:

∂

∂w
ℓ(hw,b;x, y) =

{
−y · x+ λw if y(w⊤x+ b) ≤ 1,
0 otherwise.

Similarly, the gradient with respect to b can be written as:

∂

∂b
ℓ(hw,b;x, y) =

{
−y if y(w⊤x+ b) ≤ 1,
0 otherwise.

Therefore, we can simply construct µ by placing all the probability mass of µ at (x, y) such that y(w⊤x+ b) > 1. If no
such (x, y) exists, we can construct µ as a two-point distribution based on w such that the derivatives of ℓ with respect to w
and b are all zero, which completes the proof.

B. Proofs of Main Results in Section 5
B.1. Proof of Theorem 5.3

To prove Theorem 5.3, we need to make use of the following three auxiliary lemmas, which are related to the maximum
population hinge loss with w = 1 (Lemma B.1), the weight-flipping condition (Lemma B.2) and the risk behaviour of any
linear hypothesis under (1) (Lemma B.3). For the sake of completeness, we present the full statements of Lemma B.1 and
Lemma B.2 as follows. In particular, Lemma B.1, proven in Appendix C.1, characterizes the maximum achievable hinge
loss with respect to the underlying clean distribution µc and some poisoned distribution µp conditioned on w = 1.

Lemma B.1. Suppose the underlying clean distribution µc follows the Gaussian mixture model (1) with p = 1/2 and
σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2u. For any ϵ ≥ 0, consider the following maximization problem:

max
µp∈Q(u)

[
L(h1,bp ;µc) + ϵ · L(h1,bp ;µp)

]
, (9)

where bp = argminb∈R[L(h1,b;µc) + ϵ · L(h1,b;µp)]. There exists some α ∈ [0, 1] such that the optimal value of (9) is
achieved with µp = να, where να is a two-point distribution with some parameter α ∈ [0, 1] defined according to (2).

Lemma B.1 suggests that it is sufficient to study the extreme two-point distributions να with α ∈ [0, 1] to understand the
maximum achievable population hinge loss conditioned on w = 1. Lemma B.2, proven in Appendix C.2, characterizes the
sufficient and necessary conditions in terms of ϵ, u and µc, under which there exists a linear hypothesis with w = −1 that
achieves the minimal value of population hinge loss with respect to µc and some µp.
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Lemma B.2. Suppose the underlying clean distribution µc follows the Gaussian mixture model (1) with p = 1/2 and
σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2(u− 1) for some u ≥ 1. Let g be an auxiliary function such that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the CDF of standard Gaussian. For any ϵ > 0, there exists some µp ∈ Q(u) such that
argminhw,b∈HL

[L(hw,b;µc) + ϵ · L(hw,b;µp)] outputs a hypothesis with w = −1, if and only if

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0,

where ∆(s) = L(h1,g−1(s);µc)−minb∈R L(h−1,b;µc) + ϵ(1 + u)− s · g−1(s), and g−1 denotes the inverse of g.

Lemma B.2 identifies sufficient and necessary conditions when a linear hypothesis with flipped weight parameter is possible.
Note that we assume γ1 ≤ γ2, thus flipping the weight parameter of the induced model from w = 1 to w = −1 is always
favorable from an attacker’s perspective. In particular, if the population hinge loss with respect to µc and some µp achieved
by the loss minimizer conditioned on w = 1 is higher than that achieved by the loss minimizer with w = −1, then we
immediately know that flipping the weight parameter is possible, which further suggests the optimal poisoning attack
performance must be achieved by some poisoned victim model with w = −1.

Finally, we introduce Lemma B.3, proven in Appendix C.3, which characterizes the risk behavior of any linear hypothesis
with respect to the assumed Gaussian mixture model (1).

Lemma B.3. Let µc be the clean data distribution, where each example is sampled i.i.d. according to the data generating
process specified in (1). For any linear hypothesis hw,b ∈ HL, we have

Risk(hw,b;µc) = p · Φ
(
b+ w · γ1

σ1

)
+ (1− p) · Φ

(
−b− w · γ2

σ2

)
,

where Φ denotes the CDF of standard Gaussian distribution N (0, 1).

Now we are ready to prove Theorem 5.3 using Lemmas B.1, B.2 and B.3.

Proof of Theorem 5.3. According to Theorem 4.4 and Remark 4.5, we note that the optimal poisoning performance in
Definition 4.2 is always achieved with δ = ϵ. Therefore, we will only consider δ = ϵ in the following discussions.

Since the optimal poisoning performance is defined with respect to clean risk, it will be useful to understand the properties
of Risk(hw,b;µc) such as monotonicity and range. According to Lemma B.3, for any hw,b ∈ HL, we have

Risk(hw,b;µc) =
1

2
Φ

(
b+ w · γ1

σ

)
+

1

2
Φ

(
−b− w · γ2

σ

)
.

To understand the monotonicity of risk, we compute its derivative with respect to b:

∂

∂b
Risk(hw,b;µc) =

1

2σ
√
2π

[
exp

(
− (b+ w · γ1)2

2σ2

)
− exp

(
− (b+ w · γ2)2

2σ2

)]
.

If w = 1, then Risk(hw,b;µc) is monotonically decreasing when b ∈ (−∞,−γ1+γ2

2 ) and monotonically increasing when
b ∈ (−γ1+γ2

2 ,∞), suggesting that minimum is achieved at b = −γ1+γ2

2 and maximum is achieved when b goes to infinity.
To be more specific, Risk(h1,b;µc) ∈ [Φ(γ1−γ2

2σ ), 1
2 ]. On the other hand, if w = −1, then Risk(hw,b;µc) is monotonically

increasing when b ∈ (−∞, γ1+γ2

2 ) and monotonically decreasing when b ∈ (γ1+γ2

2 ,∞), suggesting that maximum is
achieved at b = γ1+γ2

2 and minimum is achieved when b goes to infinity. Thus, Risk(h−1,b;µc) ∈ [ 12 ,Φ(
γ2−γ1

2σ )].

Based on the monotonicity analysis of Risk(hw,b;µc), we have the following two observations:

1. If there exists some feasible µp such that h−1,bp = argminh∈HL
{L(h;µc) + ϵL(h;µp)} can be achieved, then the

optimal poisoning performance is achieved with w = −1 and b close to γ1+γ2

2 as much as possible.
2. If there does not exist any feasible µp that induces h−1,bp by minimizing the population hinge loss, then the optimal

poisoning performance is achieved with w = 1 and b far from −γ1+γ2

2 as much as possible (conditioned that the
variance σ is the same for the two classes).
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Recall that we prove in Lemma B.2 specifies a sufficient and necessary condition for the existence of such h−1,bp , which
is equivalent to the condition (3) presented in Lemma B.2. Note that according to Lemma C.1, b = γ1+γ2

2 also yields the
population loss minimizer with respect to µc conditioned on w = −1. Thus, if condition (3) is satisfied, then we know there
exists some α ∈ [0, 1] such that the optimal poisoning performance can be achieved with µp = να. This follows from the
assumption |γ1 + γ2| ≤ 2(u− 1), which suggests that for any (x, y) ∼ να, the individual hinge loss at (x, y) will be zero.
In addition, we know that the poisoned hypothesis induced by Aopt is h−1, γ1+γ2

2
, which maximizes risk with respect to µc.

On the other hand, if condition (3) is not satisfied, we know that the poisoned hypothesis induced by any feasible µp has
weight parameter w = 1. Based on our second observation, this further suggests that the optimal poisoning performance
will always be achieved with either µp = ν0 or µp = ν1. According to the first-order optimality condition and Lemma C.1,
we can compute the closed-form solution regarding the optimal poisoning performance. Thus, we complete the proof.

B.2. Proof of Theorem 5.7

Proof of Theorem 5.7. Consider linear hypothesis class H and the poisoned distribution µ∗p generated by the optimal
poisoning adversary Aopt in Definition 4.1. Given clean distribution µc, poisoning ratio ϵ and constraint set C, the inherent
vulnerability to indiscriminate poisoning is captured by the optimal attack performance Risk(h∗p;µc), where h∗p denotes the
poisoned linear model induced by µ∗p. For any h ∈ H, we have

Risk(h∗p;µc) ≤ L(h∗p;µc) ≤ L(h∗p;µc) + ϵ · L(h∗p;µ∗p) ≤ L(h;µc) + ϵ · L(h;µ∗p) (10)

where the first inequality holds because the surrogate loss is defined to be not smaller than the 0-1 loss, the second
inequality holds because the surrogate loss is always non-negative, and the third inequality holds because h∗p minimizes
the population loss with respect to both clean distribution µ and optimally generated poisoned distribution µ∗p. Consider
hc = argminh∈H L(h;µc) (with weight parameter wc and bias parameter bc), which is the linear model learned from the
clean data. Therefore, plugging h = hc into the right hand side of (10), we further obtain

Risk(h∗p;µc) ≤ L(hc;µc) + ϵ · L(hc;µ
∗
p) ≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)), (11)

where the last inequality holds because for any poisoned data point (x, y) ∼ µ∗p, the surrogate loss at (x, y) with respect to
hc is ℓM

(
y · (w⊤c x+ bc)

)
, and y · (w⊤c x+ bc) ≤ max(x,y)∈C |w⊤c x+ bc|. Under the condition that min(x,y)∈C w

⊤
c x ≤

−bc ≤ max(x,y)∈C w
⊤
c x which means the decision boundary of hc falls into the constraint set C when projected on to

the direction of wc, we further have max(x,y)∈C |w⊤c x+ bc| ≤ Sizewc(C), which implies the validity of (11). We remark
that the condition min(x,y)∈C w

⊤
c x ≤ −bc ≤ max(x,y)∈C w

⊤
c x typically holds for margin-based loss in practice, since the

support of the clean training data belongs to the constraint set for poisoning inputs (for either undefended victim models or
models that employ some unsupervised data sanitization defense). Therefore, we leave this condition out in the statement of
Theorem 5.7 for simplicity.

C. Proofs of Technical Lemmas used in Appendix B.1
C.1. Proof of Lemma B.1

To prove Lemma B.1, we need to make use of the following general lemma which characterizes the population hinge loss
and its derivative with respect to clean data distribution µc. For the sake of completeness, we provide the proof of Lemma
C.1 in Appendix C.4.
Lemma C.1. Let µc be data distribution generated according to (1). For any hw,b ∈ HL, the population hinge loss is:

L(hw,b;µc) = p

∫ ∞
−b−w·γ1−1

σ1

(b+ w · γ1 + 1 + σ1z) · φ(z)dz

+ (1− p)

∫ −b−w·γ2+1
σ2

−∞
(−b− w · γ2 + 1− σ2z) · φ(z)dz,

and its gradient with respect to b is:

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ w · γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− w · γ2 + 1

σ2

)
,
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where φ and Φ denote the PDF and CDF of standard Gaussian distribution N (0, 1), respectively.

Next, let us summarize several key observations based on Lemma C.1 (specifically for the setting considered in Lemma
B.1). For any w ∈ {−1, 1}, ∂

∂bL(hw,b;µc) is a monotonically increasing with b, which achieves minimum − 1
2 when b

goes to −∞ and achieves maximum 1
2 when b goes to ∞. If w = +1, then L(hw,b;µc) is monotonically decreasing when

b ∈ (−∞,−γ1+γ2

2 ) and monotonically increasing when b ∈ (−γ1+γ2

2 ,∞), reaching the minimum at b = b∗c(1) := −γ1+γ2

2 .
On the other hand, if w = −1, then L(hw,b;µc) is monotonically decreasing when b ∈ (−∞, γ1+γ2

2 ) and monotonically
increasing when b ∈ (γ1+γ2

2 ,∞), reaching the minimum at b = b∗c(−1) := γ1+γ2

2 .

As for the clean loss minimizer conditioned on w = 1, we have

L(h1,b∗c(1)
;µc) =

1

2

∫ ∞
γ2−γ1−2

2σ

(
γ1 − γ2

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ1−γ2+2
2σ

−∞

(
γ1 − γ2

2
+ 1− σz

)
· φ(z)dz

=
(γ1 − γ2 + 2)

2
· Φ

(
γ1 − γ2 + 2

2σ

)
+

σ√
2π

· exp
(
− (γ1 − γ2 + 2)2

8σ2

)
,

whereas as for the clean loss minimizer conditioned on w = −1, we have

L(h−1,b∗c(−1);µc) =
1

2

∫ ∞
γ1−γ2−2

2σ

(
γ2 − γ1

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ2−γ1+2
2σ

−∞

(
γ2 − γ1

2
+ 1− σz

)
· φ(z)dz

=
(γ2 − γ1 + 2)

2
· Φ

(
γ2 − γ1 + 2

2σ

)
+

σ√
2π

· exp
(
− (γ2 − γ1 + 2)2

8σ2

)
.

Let f(t) = t · Φ( t
σ ) +

σ√
2π

· exp(− t2

2σ2 ), we know L(h1,b∗c(1)
;µc) = f(γ1−γ2+2

2 ) and L(h−1,b∗c(−1);µc) = f(γ2−γ1+2
2 ).

We can compute the derivative of f(t): f ′(t) = Φ( t
σ ) ≥ 0, which suggests that L(h1,b∗c(1)

;µc) ≤ L(h−1,b∗c(−1);µc).

Now we are ready to prove Lemma B.1.

Proof of Lemma B.1. First, we prove the following claim: for any possible bp, linear hypothesis h1,bp can always be
achieved by minimizing the population hinge loss with respect to µc and µp = να with some carefully-chosen α ∈ [0, 1]
based on bp.

For any µp ∈ Q(u), according to the first-order optimality condition with respect to bp, we have

∂

∂b
L(h1,bp ;µc) = −ϵ · ∂

∂b
L(h1,bp ;µp) = −ϵ · ∂

∂b
E(x,y)∼µp

[
ℓ(h1,bp ;µp)

]
∈ [−ϵ, ϵ], (12)

where the last inequality follows from ∂
∂bℓ(hw,b;x, y) ∈ [−1, 1] for any (x, y). Let Bp be the set of any possible bias

parameters bp. According to (12), we have

Bp =

{
b ∈ R :

∂

∂b
L(h1,b;µc) ∈ [−ϵ, ϵ]

}
.

Let b∗c(1) = argminb∈R L(h1,b;µc) be the clean loss minimizer conditioned on w = 1. According to Lemma C.1 and the
assumption |γ1 + γ2| ≤ 2u, we know b∗c(1) =

γ1+γ2

2 ∈ [−u, u]. For any bp ∈ Bp, we can always choose

α =
1

2
+

1

2ϵ
· ∂

∂b
L(h1,bp ;µc) ∈ [0, 1], (13)

such that
h1,bp = argmin

b∈R
[L(h1,b;µc) + ϵ · L(h1,b; να)],
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where να is defined according to (2). This follows from the first-order optimality condition for convex function and the
closed-form solution for the derivative of hinge loss with respect to να:

∂

∂b
L(h1,bp ; να) = α · ∂

∂b
ℓ(h+1,bp ;−u,+1) + (1− α) · ∂

∂b
ℓ(h+1,bp ;u,−1) = 1− 2α.

Thus, we have proven the claimed presented at the beginning of the proof of Lemma B.1.

Next, we show that for any bp ∈ Bp, among all the possible choices of poisoned distribution µp that induces bp, choosing
µp = να with α defined according to (13) is the optimal choice in terms of the maximization objective in (9). Let µp ∈ Q(u)
be any poisoned distribution that satisfies the following condition:

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b;µp)].

According to the aforementioned analysis, we know that by setting α according to (13), να also yields bp. Namely,

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b; να)].

Since the population losses with respect to µc are the same at the induced bias b = bp, it remains to prove να achieves a
larger population loss with respect to the poisoned distribution than that of µp, i.e., L(h1,bp ; να) ≥ L(h1,bp ;µp).

Consider the following two probabilities with respect to bp and µp:

p1 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = −1

]
, p2 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 1

]
.

Note that the derivative of hinge loss with respect to the bias parameter is ∂
∂bℓ(hw,b;x, y) ∈ {−1, 0, 1}, thus we have

P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 0

]
= 1− (p1 + p2).

Moreover, according to the first-order optimality of bp with respect to µp, we have

∂

∂b
L(h1,bp ;µc) = −ϵ · ∂

∂b
L(h1,bp ;µp) = ϵ · (p1 − p2),

If we measure the sum of the probability of input having negative gradient and half of the probability of having zero gradient,
we have:

p1 +
1− (p1 + p2)

2
=

1

2
+

p1 − p2
2

=
1

2
+

1

2ϵ
· ∂

∂b
L(h1,bp ;µc) = α.

Therefore, we can construct a mapping g that maps µp to να: by moving any (x, y) ∼ µp that contributes p1 (negative
derivative) and any (x, y) ∼ µp that contributes p2 (positive derivative) to extreme locations (−u,+1) and (u,−1),
respectively, and move the remaining (x, y) that has zero derivative to (−u,+1) and (u,−1) with equal probabilities (i.e.,
1−p1−p2

2 ), and we can easily verify that the gradient of bp with respect to µp is the same as να.

In addition, note that hinge loss is monotonically increasing with respect to the ℓ2 distance of misclassified examples to the
decision hyperplane, and the initial clean loss minimizer b∗c(1) ∈ [−u, u], we can verify that the constructed mapping g will
not reduce the individual hinge loss. Namely, ℓ(h1,bp ;x, y) ≤ ℓ(h1,bp ; g(x, y)) holds for any (x, y) ∼ µp. Therefore, we
have proven Lemma B.1.

C.2. Proof of Lemma B.2

Proof of Lemma B.2. First, we introduce the following notations. For any µp ∈ Q(u) and any w ∈ {−1, 1}, let

b∗c(w) = argmin
b∈R

L(hw,b;µc), bp(w;µp) = argmin
b∈R

[L(hw,b;µc) + ϵ · L(hw,b;µp)].

According to Lemma B.1, we know that the maximum population hinge loss conditioned on w = 1 is achieved when
µp = να for some α ∈ [0, 1]. To prove the sufficient and necessary condition specified in Lemma B.2, we also need to
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consider w = −1. Note that different from w = 1, we want to specify the minimum loss that can be achieved with some µp

for w = −1. For any µp ∈ Q(u), we have

L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp) ≥ min
b∈R

L(h−1,b;µc) = L(h−1,b∗c(−1);µc). (14)

According to Lemma C.1, we know b∗c(−1) = γ1+γ2

2 , which achieves the minimum clean loss conditioned on w = −1.
Since we assume γ1+γ2

2 ∈ [−u + 1, u − 1], according to the first-order optimality condition, the equality in (14) can be
attained as long as µp only consists of correctly classified data that also incurs zero hinge loss with respect to b∗c(−1) (not
all correctly classified instances incur zero hinge loss). It can be easily checked that choosing µp = να based on (2) with
any α ∈ [0, 1] satisfies this condition, which suggests that as long as the poisoned distribution µp is given in the form of να
and if the w = −1 is achievable (conditions on when this can be achieved will be discussed shortly), then the bias term
that minimizes the distributional loss is equal to b∗c(−1), and is the minimum compared to other choices of bp(−1;µp).
According to Lemma B.1, it further implies the following statement: there exists some α ∈ [0, 1] such that

να ∈ argmax
µp∈Q(u)

{
[L(h1,bp(1;µp);µc) + ϵ · L(h1,bp(1;µp);µp)]

− [L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp)]

}
.

For simplicity, let us denote by ∆L(µp; ϵ, u, µc) the maximization objective regarding the population loss difference between
w = 1 and w = −1. Thus, a necessary and sufficient condition such that there exists a h−1,bp(−1;µp) as the loss minimizer is
that maxα∈[0,1] ∆L(να; ϵ, u, µc) ≥ 0. This requires us to characterize the maximal value of loss difference for any possible
configurations of ϵ, u and µc. According to Lemma C.1 and the definition of να, for any α ∈ [0, 1], we denote the above
loss difference as

∆L(να; ϵ, u, µc) = L(h1,bp(1;να);µc) + ϵ · L(h1,bp(1;να); να)︸ ︷︷ ︸
I1

−L(h−1,b∗c(−1);µc)︸ ︷︷ ︸
I2

.

The second term I2 is fixed (and the loss on να is zero conditioned on w = −1), thus it remains to characterize the maximum
value of I1 with respect to α for different configurations. Consider auxiliary function

g(b) =
1

2
Φ
(b+ γ1 + 1

σ

)
− 1

2
Φ
(−b− γ2 + 1

σ

)
.

We know g(b) ∈ [− 1
2 ,

1
2 ] is a monotonically increasing function by checking with derivative to b. Let g−1 be the inverse

function of g. Note that according to Lemma C.1 and the first-order optimality condition of bp(1; να), we have

∂

∂b
L(h+1,b;µc)

∣∣
b=bp(1;να)

= g
(
bp(+1; να)

)
= −ϵ · ∂

∂b
L(h+1,bp(1;να); να) = ϵ · (2α− 1), (15)

where the first equality follows from Lemma C.1, the second equality follows from the first-order optimality condition and
the last equality is based on the definition of να. This suggests that bp(1; να) = g−1

(
ϵ · (2α− 1)

)
for any α ∈ [0, 1].

Consider the following two configurations for the term I1: 0 ̸∈ [g−1(−ϵ), g−1(ϵ)] and 0 ∈ [g−1(−ϵ), g−1(ϵ)]. Consider the
first configuration, which is also equivalent to g(0) /∈ [−ϵ, ϵ]. We can prove that if γ1 + γ2 < 0 meaning that b∗c(1) > 0,
choosing α = 0 achieves the maximal value of I1; whereas if γ1 + γ2 > 0, choosing α = 1 achieves the maximum. Note
that it is not possible for γ1 + γ2 = 0 under this scenario. The proof is straightforward, since we have

I1 = L(h1,g−1(2ϵα−ϵ);µc) + ϵ · L(h1,g−1(2ϵα−ϵ); να)

= L(h1,g−1(2ϵα−ϵ);µc) + ϵ ·
[
1 + u+ (1− 2α) · g−1(2ϵα− ϵ)

]
= L(h1,t;µc) + ϵ · (1 + u)− t · g(t),

where t = g−1(2ϵα− ϵ) ∈ [g−1(ϵ), g−1(ϵ)]. In addition, we can compute the derivative of I1 with respect to t:

∂

∂t
I1 = g(t)− g(t)− t · g′(t) = −t · g′(t),
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which suggests that I1 is a concave function with respect to t. If 0 ∈ [g−1(−ϵ), g−1(ϵ)], we achieve the global maximum of
I1 at t = 0 by carefully picking α0 = 1

2 + 1
2ϵ · g(0). If not (i.e., g−1(−ϵ) > 0 or g−1(ϵ) < 0), then we pick t that is closer

to 0, which is either g(−ϵ) or g(ϵ) by setting α = 0 or α = 1 respectively. Therefore, we can specify the sufficient and
necessary conditions when the weight vector w can be flipped from 1 to −1:

1. When g(0) ̸∈ [−ϵ, ϵ], the condition is max{∆L(ν0; ϵ, u, µc),∆L(ν1; ϵ, u, µc)} ≥ 0.
2. When g(0) ∈ [−ϵ, ϵ], the condition is ∆L(να0 ; ϵ, u, µc) ≥ 0, where α0 = 1

2 + 1
2ϵ · g(0).

Plugging in the definition of g and ∆L, we complete the proof of Lemma B.2.

C.3. Proof of Lemma B.3

Proof of Lemma B.3. Let µ1, µ2 be the probability measures of the positive and negative examples assumed in (1), respec-
tively. Let φ(z; γ, σ) be the PDF of Gaussian distribution N (γ, σ2). For simplicity, we simply write φ(z) = φ(z; 0, 1)
for standard Gaussian. For any hw,b ∈ HL, we know w can be either 1 or −1. First, let’s consider the case where w = 1.
According to the definition of risk and the data generating process of µc, we have

Risk(hw,b;µc) = p · Risk(hw,b;µ1) + (1− p) · Risk(hw,b;µ2)

= p ·
∫ ∞
−b

φ(z; γ1, σ1)dz + (1− p) ·
∫ −b
−∞

φ(z; γ2, σ2)dz

= p ·
∫ ∞

−b−γ1
σ1

φ(z)dz + (1− p) ·
∫ −b−γ2

σ2

−∞
φ(z)dz

= p · Φ
(
b+ γ1
σ1

)
+ (1− p) · Φ

(
−b− γ2

σ2

)
.

Similarly, when w = −1, we have

Risk(hw,b;µc) = p ·
∫ b

−∞
φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b

φ(z; γ2, σ2)dz

= p ·
∫ b−γ1

σ1

−∞
φ(z)dz + (1− p) ·

∫ ∞
b−γ2
σ2

φ(z)dz

= p · Φ
(
b− γ1
σ1

)
+ (1− p) · Φ

(
−b+ γ2

σ2

)
.

Combining the two cases, we complete the proof.

C.4. Proof of Lemma C.1

Proof of Lemma C.1. We use similar notations such as µ1, µ2 and φ as in Lemma B.3. For any hw,b ∈ HL with w = 1,
then according to the definition of population hinge loss, we have

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(x+ b)}

]
= p

∫ ∞
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(
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)
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2π

exp

(
− (b+ γ1 + 1)2

2σ2
1

)
+ (1− p)(−b− γ2 + 1)Φ

(
−b− γ2 + 1

σ2

)
+ (1− p)σ2

1√
2π

exp

(
− (−b− γ2 + 1)2

2σ2
2

)
.
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Taking the derivative with respect to parameter b and using simple algebra, we have

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− γ2 + 1

σ2

)
.

Similarly, for any hw,b ∈ HL with w = −1, we have

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(−x+ b)}

]
= p ·

∫ b+1

−∞
(1 + b− z)φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b−1

(1− b+ z)φ(z; γ2, σ2)dz

= p ·
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− (b− γ1 + 1)2

2σ2
1

)
+ (1− p)(−b+ γ2 + 1)Φ
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Taking the derivative, we have

∂

∂b
L(hw,b;µc) = p · Φ

(
b− γ1 + 1

σ1

)
− (1− p) · Φ

(
−b+ γ2 + 1

σ2

)
.

Combining the two scenarios, we complete the proof.

D. Additional Experimental Results and Details
In this section, we provide details on our experimental setup (Appendix D.1) and then provide additional results (Ap-
pendix D.2).

D.1. Details on Experimental Setup in Section 3

Details on datasets and training configurations. In the main paper, we used different public benchmark datasets including
MNIST (LeCun, 1998) digit pairs (i.e., 1–7. 6–9, 4–9) and also the Enron dataset, which is created by Metsis et al. (Metsis
et al., 2006), Dogfish (Koh & Liang, 2017) and Adult (Dua & Graff, 2017), which are all used in the evaluations of prior
works except MNIST 6–9 and MNIST 4–9. In the appendix, we additionally present the results of the IMDB dataset (Maas
et al., 2011), which has also been used in prior evaluations (Koh & Liang, 2017; Koh et al., 2022). We did not include
the IMDB results in the main paper because we could not run the existing state-of-the-art poisoning attacks on IMDB
because the computation time is extremely slow. Instead, we directly quote the poisoned error of SVM from Koh et al. (Koh
et al., 2022) and then present the computed metrics. For the Dogfish and Enron dataset, we construct the constraint set C in
the no defense setting by finding the minimum (ui

min) and maximum (ui
max) values occurred in each feature dimension

i for both the training and test data, which then forms a box constraint [ui
min, u

i
max] for each dimension. This way of

construction is also used in the prior work (Koh et al., 2022). Because we consider linear models, the training (Pedregosa
et al., 2011) of linear models and the attacks on them are stable (i.e., less randomness involved in the process) and so, we get
almost identical results when feeding different random seeds. Therefore, we did not report error bars in the results. The
regularization parameter λ for training the linear models (SVM and LR) are configured as follows: λ = 0.09 for MNIST
digit pairs, Adult, Dogfish, SVM for Enron; λ = 0.01 for IMDB, LR for Enron. Overall, the results and conclusions in this
paper are insensitive to the choice of λ. The computation of the metrics in this paper are extremely fast and can be done
on any laptop. The poisoning attacks can also be done on a laptop, except the Influence Attack (Koh et al., 2022), whose
computation can be accelerated using GPUs.

Attack details. The KKT, MTA and Min-Max attacks evaluated in Section 3 require a target model as input. This target
model is typically generated using some label-flipping heuristics (Koh et al., 2022; Suya et al., 2021). In practice, these
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(a) Test Data (b) Train Data

Figure 2: Comparisons of training and test errors of existing data poisoning attacks on Dogfish. Poisoning ratios are 0.1%,
0.2%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, 2%, 3%.

attacks are first run on a set of carefully-chosen target models, then the best attack performance achieved by these target
models is reported. We generate target models using the improved procedure described in Suya et al. (Suya et al., 2021)
because their method is able to generate better target models that induce victim models with a higher test error compared
with the method proposed in Koh et al. (Koh et al., 2022). We generate target models with different error rates, ranging from
5% to 70% using the label-flipping heuristics, and then pick the best performing attack induced by these target models.

Following the prior practice (Koh et al., 2022), we consider adversaries that have access to both the clean training and
test data, and therefore, adversaries can design attacks that can perform better on the test data. This generally holds true
for the Enron and MNIST 1–7 datasets, but for Dogfish, we find in our experiments that the attack “overfits” to the test
data heavily due to the small number of training and test data and also the high dimensionality. More specifically, we find
that the poisoned model tends to incur significantly higher error rates on the clean test data compared to the clean training
data. Since this high error cannot fully reflect the distributional risk, when we report the results in Section 3 we report the
errors on both the training and the testing data to give a better empirical sense of what the distributional risk may look like.
This also emphasizes the need to be cautious on the potential for “overfitting” behavior when designing poisoning attacks.
Figure 2 shows the drastic differences between the errors of the clean training and test data after poisoning.

D.2. Supplementary Results

In this section, we provide additional results results that did not fit into the main paper, but further support the observations
and claims made in the main paper. We first show the results of LR model and IMDB dataset, and the metrics computed
on the whole clean test data in Appendix D.2.2 to complement Table 1 in the main paper. Next, we provide the metrics
computed on selective benchmark datasets using a different projection vector from the clean model weight in Appendix D.3
to support the results in Table 1 in the main paper. Lastly, we show the performance of different poisoning attacks at various
poisoning ratios in Appendix D.4, complementing Figure 1 in the main paper.

D.2.1. IMDB AND LR RESULTS

Table 1 in the main paper presents the metrics that are computed on the correctly classified test samples by the clean model
wc for linear SVM. In Table 2, we additionally include the results of IMDB dataset and LR model to Table 1 in the main
paper. From the table, we can still see that the observation on LR is similar to the linear SVM case—robust datasets
resist poisoning attacks because they are more separable and impacted less by the poisoning points and vice-versa for the
highly vulnerable datasets. We can also see that IMDB is still highly vulnerable to poisoning because its separability is low
compared to datasets that are moderately vulnerable or robust, and impacted the most by the poisoning points compared to
all other benchmark datasets. Note that, the increased error from IMDB is directly quoted from Koh et al. (Koh et al., 2022),
which considers data sanitization defenses. Therefore, we expect the attack effectiveness might be further improved when
we do not consider any defenses, as in our paper.
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Robust Moderately Vulnerable Highly Vulnerable
Metric MNIST 6–9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†

Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9
Sep/SD 6.92 6.25 9.65 5.14 4.44 1.18 1.18 2.57
Sep/Size 0.24 0.23 0.33 0.05 0.14 0.01 0.01 0.002

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 6.28 6.13 4.62 5.03 4.31 1.11 1.10 2.52
Sep/Size 0.27 0.27 0.27 0.09 0.16 0.01 0.01 0.003

Table 2: Explaining disparate poisoning vulnerability under linear models by computing the metrics on the correctly
classified clean test points. The top row for each model gives the increase in error rate due to the poisoning, over the base
error rate in the second row. The error increase of IMDB (marked with †) is directly quoted from Koh et al. (Koh et al.,
2022) as running the existing poisoning attacks on IMDB is extremely slow. LR results are missing as they are not contained
in the original paper. The explanatory metrics are the scaled (projected) separability, standard deviation and constraint size.

Models Metrics Robust Moderately Vulnerable Highly Vulnerable
MNIST 6-9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†

Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9
Sep/SD 6.70 5.58 1.45 4.94 3.71 1.18 1.15 1.95
Sep/Size 0.23 0.23 0.18 0.05 0.13 0.01 0.01 0.001

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 5.97 5.17 1.64 4.67 3.51 1.06 1.01 1.88
Sep/Size 0.26 0.26 0.16 0.08 0.15 0.01 0.01 0.002

Table 3: Explaining the different vulnerabilities of benchmark datasets under linear models by computing metrics on the
whole data. The error increase of IMDB (marked with †) is directly quoted from Koh et al. (Koh et al., 2022).

D.2.2. METRICS COMPUTED USING ALL TEST DATA

Table 3 shows the results when the metrics are computed on the full test data set (including misclassified ones), rather than
just on examples that were classified correctly by the clean model. The metrics are mostly similar to Table 2 when the initial
errors are not high. For datasets with high initial error such as Adult, the computed metrics are more aligned with the final
poisoned error, not the error increase.

D.3. Using different projection vectors

In the main paper, we used the weight of the clean model as the projection vector and found that the computed metrics are
highly correlated with the empirical attack effectiveness observed for different benchmark datasets. However, there can also
be other projection vectors that can be used for explaining the different vulnerabilities, as mentioned in Remark 5.8.

We conducted experiments that use the projection vector that minimizes the upper bound on optimal poisoning attacks,
given in Equation 4. The upper-bound minimization corresponds to a min-max optimization problem. We solve it using the
online gradient descent algorithm (alternatively updating the poisoning points and model weight), adopting an approach
similar to the one used by Koh et al. for the i-Min-Max attack (Koh et al., 2022). We run the min-max optimization for
30,000 iterations with learning rate of 0.03 for the weight vector update, and pick the weight vector that results in the lowest
upper bound in Equation 4.

The results on two of the benchmark datasets, MNIST 1–7 and Dogfish, are summarized in Table 4. From the table, we can
see that, compared to the clean model, the new projection vector reduces the projected constraint size (increases Sep/Size),
which probably indicates the weight vector obtained from minimizing the upper bound focuses more on minimizing the
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Base Error (%) Error Increase (%) Sep/SD Sep/Size
wc wU wc wU

MNIST 1–7 1.2 2.4 6.25 6.51 0.23 0.52
Dogfish 0.8 7.9 5.14 4.43 0.05 0.19

Table 4: Using the projection vector that minimizes the upper bound on the risk of optimal poisoning attacks for general
distributions. wc denotes the clean weight vector and wU denotes weight vector obtained from minimizing the upper bound.

(a) MNIST 1-7 (b) Dogfish (c) Enron

Figure 3: Comparisons of the attack performance of existing data poisoning attacks on different benchmark datasets.
Poisoning ratios are 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, 2%, 3%.

term ℓM(Sizewc(C)) in Equation 4. Nevertheless, projecting onto the new weight vector can still well explain the difference
between the benchmark datasets.

D.4. Performance of different attacks are similar

Last, we show the attack performance of different attacks on the selected benchmark datasets of MNIST 1–7, Dogfish, and
Enron. Figure 3 summarizes the results. The main observation is that different attacks perform mostly similarly for a given
dataset, but their performance varies a lot across datasets. Also, from the attack results on Enron (Figure 3c), we can see that
several of the attacks perform worse at higher poisoning ratios. Although there is a chance that the attack performance can
be improved by careful hyperparameter tuning, it also suggests that these attacks are suboptimal. Optimal poisoning attacks
should never get less effective as the poisoning ratio increases, according to Theorem 4.4.

E. Implications for Future Defenses
Our results imply future defenses by explaining why candidate defenses work and motivating defenses to improve separability
and reduce projected constraint size. We present two ideas—using better features might improve separability and using data
filtering might reduce projected constraint size.

Better feature representation. We consider a transfer learning scenario where the victim trains a linear model on a
clean pretrained model. As a preliminary experiment, we train LeNet and ResNet18 models on the CIFAR-10 dataset till
convergence, but record the intermediate models of ResNet18 to produce models with different feature extractors (R-X
denotes ResNet18 trained for X epochs). We then use the feature extraction layers of these models (including LeNet) as the
pretrained models and obtain features of CIFAR10 images with labels “Truck” and “Ship”, and train linear models on them.

We evaluate the robustness of this dataset against poisoning attacks and set C as dimension-wise box-constraints, whose
values are the minimum and maximum values of the clean data points for each dimension when fed to the feature extractors.
This approach corresponds to the practical scenario where the victim has access to some small number of clean samples so
that they can deploy a simple defense of filtering out inputs that do not fall into a dimension-wise box constraint that is
computed from the available clean samples of the victim. Figure 4 shows that as the feature extractor becomes better (either
using deep architecture or training it for more epochs), both the Sep/SD and Sep/Size metrics increase, leading to reduced
error increase. This suggests better feature representations (trained on clean data) might help in resisting poisoning attacks.
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Figure 4: Impact of different neural network based feature extractors on indiscriminate data poisoning attacks.

Dataset Error Increase Base Error Sep/SD Sep/Size
w/o w/ w/o w/ w/o w/ w/o w/

MNIST 1–7 (10%) 7.7 1.0 1.2 2.4 6.25 6.25 0.23 0.43
Enron (3%) 31.9 25.6 2.9 3.2 1.18 1.18 0.01 0.11

Table 5: Understanding impact of data sanitization defenses on poisoning attacks. w/o and w/ denote without defense and
with defense respectively. MNIST 1–7 is evaluated at 10% poisoning ratio due to its strong robustness at ϵ = 3% and Enron
is still evaluated at ϵ = 3% because it is highly vulnerable.

Reduced projected constraint size. The commonly used data sanitization defense works by filtering out bad points. We
speculate it works because it effectively limits the projected constraint size of C. To test this, we picked the combination of
Sphere and Slab defenses considered in prior works (Koh et al., 2022; Steinhardt et al., 2017) to protect the vulnerable Enron
dataset at 3% poisoning ratio and the MNIST 1–7 at a much higher poisoning ratio of 10%. We considered a significantly
higher poisoning ratio for MNIST 1–7 because at the original 3% poisoning, the dataset can well resist existing attacks and
hence there is no point in protecting the dataset with sanitization defenses. This attack setting is just for illustration purpose
and attackers in practice may be able to manipulate such a high number of poisoning points. Following the main result in
the paper, we still compute the metrics based on the correctly classified samples in Sc, so as to better depict the relationship
between the increased errors and the computed metrics. The results are summarized in Table 5. On Enron, we find that,
with defense, the test error is increased from 3.2% to 28.8% while without defense, the error can be increased from 2.9% to
34.8%. Although limited in effectiveness, the defense still mitigates the poisoning to some degree mostly by shrinking the
projected constraint size Sizewc

(C) that leads to higher value of the Sep/Size metric: 0.11 with defense and 0.01 without
defense. For MNIST 1-7, equipping with data sanitization defense will make the dataset even more robust (robust even at
the high 10% poisoning rate), which is consistent with the findings in prior work (Steinhardt et al., 2017).

F. Comparison to LDC and Aggregation Defenses
We first provide a more thorough discussion on the differences between our work and the Lethal Dose Conjecture (LDC)
(Wang et al., 2022a) from NeurIPS 2022, which had similar goals in understanding the inherent vulnerabilities of datasets but
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focused on targeted poisoning attacks (Appendix F.1). Then, we discuss how our results can also be related to aggregation
based defenses whose asymptotic optimality on robustness against targeted poisoning attacks is implied by the LDC
conjecture (Appendix F.2).

F.1. Relation to LDC

As discussed in Section 1, LDC is a more general result and covers broader poisoning attack goals (including indiscriminate
poisoning) and is agnostic to the learning algorithm, dataset and also the poisoning generation setup. However, this general
result may give overly pessimistic estimates on the power of optimal injection-only poisoning attacks in the indiscriminate
setting we consider. We first briefly mention the main conjecture in LDC and then explain why the LDC conjecture
overestimated the power of indiscriminate poisoning attacks, followed by a discussion on the relations of the identified
vulnerability factors in this paper and the key quantity in LDC.

The main conjecture in LDC. LDC conjectures that, given a (potentially poisoned) dataset of size N , the tolerable sample
size for targeted poisoning attacks (through insertion and/or deletion) by any defenses and learners, while still predicting
a known test sample correctly, is an asymptotic guarantee of Θ(N/n), where n < N is the sample complexity of the
most data-efficient learner (i.e., a learner that uses smallest number of clean training samples to make correct prediction).
Although it is a conjecture on the asymptotic robustness guarantee, it is rigorously proven for cases of bijection uncovering
and instance memorization, and the general implication of LDC is leveraged to improve existing aggregation based certified
defenses against targeted poisoning attacks.

Overestimating the power of indiscriminate poisoning. LDC conjectures the robustness against targeted poisoning
attacks, but the same conjecture can also be used in indiscriminate setting straightforwardly by taking the expectation over
the tolerable samples for each of the test samples to get the expected tolerable poisoning size for the entire distribution (as
mentioned in the original LDC paper) or by choosing the lowest value to give a worst case certified robustness for the entire
distribution. The underlying assumption in the reasoning above is that individual samples are independently impacted by
their corresponding poisoning points while in the indiscriminate setting, the entire distribution is impacted simultaneously
by the same poisoning set. The assumption on the independence of the poisoning sets corresponding to different test
samples might overestimate the power of indiscriminate poisoning attacks as it might be impossible to simultaneously
impact different test samples (e.g., test samples with disjoint poisoning sets) using the same poisoning set. In addition,
the poisoning generation setup also greatly impacts the attack effectiveness—injection only attacks can be much weaker
than attacks that modify existing points, but LDC provides guarantees against this worst case poisoning generation of
modifying points. These general and worst-case assumptions mean that LDC might overestimate the power of injection-only
indiscriminate poisoning attacks considered in this paper.

In practice, insights from LDC can be used to enhance existing aggregation based defenses. If we treat the fraction of
(independently) certifiable test samples by the enhanced DPA (Levine & Feizi, 2020) in Figure 2(d) (using k = 500
partitions) in the LDC paper as the certified accuracy (CA) for the entire test set in the indiscriminate setting, the CA against
indiscriminate poisoning attack is 0% at the poisoning ratio of ϵ = 0.5% (250/50000). In contrast, the best indiscriminate
poisoning attacks (Lu et al., 2023) on CIFAR10 dataset reduces the model accuracy from 95% to 81% at the much higher
ϵ = 3% poisoning ratio using standard training (i.e., using k = 1 partition). Note that using k = 1 partition is a far less
optimal choice than k = 500 as k = 1 will always result in 0% CA for aggregation based defenses. Our work explicitly
considers injection only indiscriminate poisoning attacks so as to better understand its effectiveness.

While it is possible that current indiscriminate attacks for neural networks are far from optimal and there may exist a very
strong (but currently unknown) poisoning attack that can reduce the neural network accuracy on CIFAR10 to 0% at a 0.5%
poisoning ratio, we speculate such likelihood might be low. This is because, neural networks are found to be harder to
poison than linear models (Lu et al., 2022; 2023) while our empirical findings in the most extensively studied linear models
in Section 3 indicate some datasets might be inherently more robust to poisoning attacks.

Providing finer analysis on the vulnerability factors. As mentioned above, LDC might overestimate the power of
indiscriminate poisoning attacks. In addition, the key quantity n is usually unknown and hard to estimate accurately in
practice and the robustness guarantee is asymptotic while the constants in asymptotic guarantees can make a big difference
in practice. However, the generic metric n still offers critical insights in understanding the robustness against indiscriminate
poisoning attacks. In particular, our findings on projected separability and standard deviation can be interpreted as the
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Scale Factor c Error Increase (%) Sep/Size

1.0 2.2 0.27

2.0 3.1 0.15

3.0 4.4 0.10

Table 6: Impact of scale factor c on poisoning effectiveness for C in the form of dimension-wise box-constraint as [0, c].
Base Error is 1.2%. Base Error and Sep/SD will be the same for all settings because support set of the clean distribution is
the strict subset of C.

first step towards understanding the dataset properties that can be related to the (more general) metric n (and maybe also
the constant in Θ(1/n)) in LDC for linear learners. Indeed, it is an interesting future work to identify the learning task
properties that impact n at the finer-granularity.

As for the projected constraint size (Definition 5.5), we believe there can be situations where it may be independent from n.
The main idea is that in cases where changing C arbitrarily will not impact the clean distribution (e.g., when the support
set of the clean distribution is a strict subset of C, arbitrarily enlarging C will still not impact the clean distribution), the
outcomes of learners trained on clean samples from the distribution will not change (including the most data-efficient
learner) and hence n will remain the same for different permissible choices of C, indicating that the vulnerability of the
same dataset remains the same even when C changes drastically without impacting the clean distribution. However, changes
in C (and subsequently changes in the projected constraint size) will directly impact the attack effectiveness, as a larger C is
likely to admit stronger poisoning attacks.

To illustrate how much the attack power can change as C changes, we conduct experiments on MNIST 1–7 and show that
scaling up the original dimension-wise box-constraint from [0, 1] to [0, c] (where c > 1 is the scale factor) can significantly
boost attack effectiveness. Table 6 summarizes the results and we can observe that, as the scale factor c increases (enlarged
C, increased projected constraint size and reduced Sep/Size), the attack effectiveness also increases significantly. Note that
this experiment is an existence proof and MNIST 1–7 is used as a hypothetical example. In practice, for normalized images,
the box constraint cannot be scaled beyond [0,1] as it will result in invalid images.

F.2. Relation to Aggregation-based Defenses

Aggregation-based (provable) defenses, whose asymptotic optimality is implied by the LDC, work by partitioning the
potentially poisoned data into k partitions, training a base learner on each partition and using majority voting to obtain
the final predictions. These defenses provide certified robustness to poisoning attacks by giving the maximum number of
poisoning points that can be tolerated to correctly predict a known test point, which can also be straightforwardly applied to
indiscriminate setting by treating different test samples independently, as mentioned in the discussion of LDC.

Because no data filtering is used for each partition of the defenses, at the partition level, our results (i.e., the computed
metrics) obtained in each poisoned partition may still be similar to the results obtained on the whole data without partition
(i.e., standard training, as in this paper), as the clean data and C (reflected through the poisoning points assigned in each
partition) may be more or less the same. At the aggregation level, similar to the discussion on LDC, these aggregation
defenses may still result in overly pessimistic estimates on the effectiveness of injection only indiscriminate poisoning
attacks as the certified accuracy at a particular poisoning ratio can be very loose, and the two possible reasons are: 1)
straightforwardly applying results in targeted poisoning to indiscriminate poisoning might lead to overestimation and 2)
considering the worst case adversary of modifying points might overestimate the power of injection only attacks in each
poisoned partition. Therefore, our work can be related to aggregation defenses via reason 2), as it might be interpreted as the
first step towards identifying factors that impact the attack effectiveness of injection only indiscriminate attacks in each
poisoned partition, which may not always be highly detrimental depending on the learning task properties in each partition,
while these aggregation defenses assume the existence of a single poisoning point in a partition can make the model in that
partition successfully poisoned.

Loose certified accuracy in indiscriminate setting. Given a poisoning budget ϵ, aggregation based defenses give a certified
accuracy against indiscriminate poisoning attacks by first computing the tolerable fraction of poisoning points for each test
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sample and all the test samples with tolerable fraction smaller than or equal to ϵ are certifiably robust. Then, the fraction of
those test samples to the total test samples gives the certified accuracy for the test set. Similar to the result of CIFAR10
shown in LDC, here, we provide an additional result of certified accuracy for neural networks trained on the MNIST dataset:
the state-of-the-art finite aggregation (FA) method (Wang et al., 2022b) gives a certified accuracy of 0% at 1% poisoning
ratio (600/60,000) using k = 1200 partitions while at the much higher 3% poisoning ratio, the current state-of-the-art
indiscriminate poisoning attack (Lu et al., 2023) can only reduce the accuracy of the neural network trained on MNIST
without partitioning (i.e., k = 1, a far less optimal choice from the perspective of aggregation defenses) from over 99% to
only around 90%.

G. Extension to Multi-class Settings and Non-linear Learners
In this section, we first provide the high-level idea of extending the metric computation from binary setting to multi-class
setting and then provide empirical results on multi-class linear models and show that these metrics can still well-explain
the observations in multi-class linear classifiers (Appendix G.1). Then, we provide the idea of extending the metrics from
linear models to neural networks (NNs) and also the accompanying experimental results (Appendix G.2). In particular, we
find that, for the same learner (e.g., same or similar NN architecture), our metrics may still be able to explain the different
dataset vulnerabilities. However, the extended metrics cannot explain the vulnerabilities of datasets that are under different
learners (e.g., NN with significantly different architectures), whose investigation is a very interesting future work, but is out
of the scope of this paper.

G.1. Extension to Multi-class Linear Learners

Multi-class classifications are very common in practice and therefore, it is important to extend the computation of the
metrics from binary classification to multi-class classification. For linear models, k-class classification (k > 2) is handled
by treating it as binary classifications in the "one vs one" mode that results k(k − 1)/2 binary problems by enumerating
over every pair of classes or in the "one vs rest" mode that results in k binary problems by picking one class as the positive
class and the rest as the negative class. In practice, the "one vs rest" mode is preferred because it requires training smaller
number of classifiers. In addition, the last classification layer of neural networks may also be roughly viewed as performing
multi-class classification in “one vs rest" mode. Therefore, we only discuss and experiment with multi-class linear models
trained in “one vs rest" mode in this section, consistent with the models in prior poisoning attacks (Koh et al., 2022; Lu
et al., 2023), but classifiers trained in “one vs one" mode can also be handled similarly.

Computation of the metrics. Although we consider linear models in “one vs rest" mode, when computing the metrics, we
handle it in a way similar to the “one vs one" mode – when computing the metrics, given a positive class, we do not treat all
the remaining k-1 classes (constitute the negative class) as a whole, instead, for each class in the remaining classes, we treat
it as a “fake" negative class and compute the metrics as in the binary classification setting. Then from the k − 1 metrics
computed, we pick the positive and “fake" negative pair with smallest separability metric and use it as the metric for the
current positive and negative class (includes all remaining k − 1 classes)1. Once we compute the metrics for all the k binary
pairs, we report the lowest metrics obtained. The reasoning behind computing the metrics in (similar to) “one vs one" mode
is, for a given positive class, adversaries may target the most vulnerable pair from the total k − 1 (positive, negative) pairs to
cause more damage using the poisoning budget. Therefore, treating the remaining k − 1 pairs as a whole when computing
the metrics will obfuscate this observation and may not fully reflect the poisoning vulnerabilities of a dataset.

We provide a concrete example on how treating the remaining classes as a whole can lead to wrong estimates on the dataset
separability: we first train simple CNN models on the full CIFAR-10 (Krizhevsky et al., 2009) and MNIST datasets and
achieve models with test accuracies of ≈ 70% and > 99% respectively. When we feed the MNIST and CIFAR-10 test data
through the model and inspect the feature representations, the t-SNE graph indicate that the CIFAR-10 dataset is far less
separable than the MNIST, which is expected as CIFAR-10 has much lower test accuracy compared to MNIST. However,
when we compute the separability metrics in our paper by considering all k − 1 classes in the negative class, the separability
of CIFAR-10 is similar to the separability of MNIST, which is inconsistent with drastic differences in the test accuracies
of the respective CNN models. In contrast, if we treat each class in the remaining k − 1 classes separately and pick the

1We still use the same projected constraint size for the k − 1 positive and “fake" negative pairs because, the projected constraint size
measures how much the decision boundary can be moved in presence of clean data points, which do not distinguish the points in the
“fake" netgative class and the remaining k − 1 classes.
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Datasets Base Error (%) Poisoned Error (%) Increased Error (%) Sep/SD Sep/Size

SVM 7.4% 15.4% 8.0% 2.23/2.73 0.06/0.03
LR 7.7% 30.6% 22.9% 1.15 0.02

Table 7: Results of Linear Models on MNIST using 3% poisoning ratio. The “Poisoned Error" is directly quoted from Lu et
al. (Lu et al., 2022) and SVM one is quoted from Koh et al. (Koh et al., 2022). SVM contains two values for Sep/SD and
Sep/Size because there are two binary pairs with the lowest value for each of the two metrics (lowest value is made bold).

Datasets Base Error (%) Poisoned Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 1.9% 1.1% 4.58 0.10
CIFAR-10 31.0% 35.3% 4.3% 0.24 0.01

Table 8: Results on Simple CNN Models for MNIST and CIFAR-10 datasets using 3% poisoning ratio. The “Poisoned
Error" of both datasets are directly quoted from Lu et al. (Lu et al., 2022)

smallest value, we will again see the expected result that CIFAR-10 is far less separable than MNIST. Therefore, for the
following experiments, we will compute the metrics by treating the remaining k − 1 classes individually. We first provide
the results of multi-class linear models for MNIST dataset below and then discuss our initial findings on the neural networks
for CIFAR-10 and MNIST in Appendix G.2.

Results on multi-class linear learners. As explained above, when checking the k-binary pairs for a k-class problem, we
report the lowest values for the Sep/SD and Sep/Size metrics. However, in some cases, the lowest values for the two metrics
might be in two different pairs and in this case, we will report the results of both pairs. Table 7 summarizes the results,
where the poisoned errors are directly quoted from the prior works—LR error is from Lu et al. (Lu et al., 2022) and the
SVM error is from Koh et al. (Koh et al., 2022). We can see that MNIST dataset is indeed more vulnerable than the selected
MNIST 1–7 and MNIST 6–9 pairs because it is less separable and also impacted more by the poisoning points. We also
note that the poisoned error of SVM is obtained in the presence of data sanitization defenses and hence, the poisoned error
may be further increased when there are no additional defenses. We also see that, for SVM, although the lowest values for
Sep/SD and Sep/Size are in two different pairs, their results do not differ much, indicating that either of them can be used to
represent the overall vulnerability of MNIST.

G.2. Extension to Multi-class Neural Networks

We first note that the insights regarding the separability and constraints set C can be general, as the the first metric measures
the sensitivity of the dataset against misclassification when the decision boundary is perturbed slightly. The latter captures
how much the decision boundary can be moved by the poisoning points once injected into the clean training data. The
Sep/SD and Sep/Size metrics used in this paper are the concrete substantiations of the two metrics under linear models.
Specific ways to compute the metrics in non-linear settings should still (approximately) reflect the high level idea above.
Below, we use neural network (NN) as an example.

High level idea. We may partition the neural network into two parts of feature extractor and linear classification module
and we may view the feature representations of the input data as a "new" data in the corresponding feature space, and so
that we can convert the metric computations for non-linear neural network into metric computations (on feature space) for
linear models. To be more concrete, we propose to use a fixed feature extractor, which can be extractors inherited from
pretrained models (e.g., in transfer learning setting) or trained from scratch on the clean data, to map the input data to the
feature space. Here, if the victim also uses the same pretrained feature extractor (as in the transfer learning setting), then our
metrics can have higher correlation with the poisoned errors from existing attacks because the non-linear feature extractor is
now independent from the poisoned points used in the victim’s training. Below, we consider the from-scratch training case
as it is more challenging.

Computation of the metrics. Although the feature extractor will also be impacted by the poisoning points now, in our
preliminary experiment, we will still use the extractor trained on the clean data and leave the exploration of other better
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Datasets Base Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 9.6% 4.58 0.10
CIFAR-10 4.8% 13.7% 6.36 0.24

Table 9: Results on Simple CNN Model for MNIST and ResNet18 model for CIFAR-10 datasets using 3% poisoning ratio.
The “Poisoned Error" of both datasets are directly quoted from Lu et al. (Lu et al., 2023).

feature extractors as future work. Using the transformation from the clean feature extractor, the projected separability and
standard deviation can be easily computed. But the computation of the projected constraint size can be tricky, because the
set C after transforming through the feature extractor can be non-convex and sometimes, for complicated C, computing such
transformation can be very challenging (can be a case even for linear models), but is a very interesting direction to explore.
For the simple forms of C such as the dimension-wise box constraints considered in this paper, we may leverage the convex
outer polytope method (Wong & Kolter, 2018) to bound the activation in each layer till the final feature layer so that we can
obtain a final transformed convex set C′

using the feature extractor, which is a set that contains the original C. However,
due to time limitation, when computing the projected constraint size in the following experiments, we simply set C as the
dimension-wise box-constraints, whose minimum and maximum values are computed from the feature representations of
the clean data points, similar to the transfer-learning experiment in Appendix E.

Results under similar learners. For the experiments, we use the simple CNN models presented in Lu et al. (Lu et al.,
2022) for MNIST and CIFAR-10 datasets (similar architecture). We directly quote the attack results of TGDA attack by
Lu et al. (Lu et al., 2022) for both the CIFAR-10 and MNIST datasets. Note that, very recently, a stronger GC attack is
also proposed by Lu et al. (Lu et al., 2023) and outperforms the TGDA attack. However, we could not include the newer
result because the code is not published and the evaluation in the original paper also did not include the simple CNN for
CIFAR-10 dataset. The results are shown in Table 8. From the table, we can see that CIFAR-10 tends to be more vulnerable
than MNIST as the Sep/SD and Sep/Size metrics (in neural networks) are all much lower than those of MNIST. These
significantly lower values of CIFAR-10 may also suggest that the poisoned error for CIFAR-10 with simple CNN maybe
increased further (e.g., using the stronger attack in Lu et al. (Lu et al., 2023)).

Results under different learners. Above, we only showed results when the MNIST and CIFAR-10 datasets are compared
under similar learners. However, in practical applications, one might use deeper architecture for CIFAR-10 and so, we
computed the metrics for CIFAR-10 using ResNet18 model. Then we compare the metrics of MNIST under simple CNN
and the metrics of CIFAR-10 under ResNet18 in Table 9, where the poisoned errors are quoted from the more recent GC
attack (Lu et al., 2023) because the attack results are all available in the original paper. However, from the table we can see
that, although MNIST is less separable and impacted more by the poisoning points, the error increase is still slightly smaller
than CIFAR-10, which is not consistent with our metrics. If the current attacks are already performing well and the empirical
poisoned errors are indeed good approximations to the inherent vulnerabilities, then we might have to systematically
investigate the comparison of vulnerabilities of different datasets under different learners.

H. Evaluation on Synthetic Datasets
In this section, we empirically test our theory on synthetic datasets that are sampled from the considered theoretical
distributions in Section 5.1.

H.1. Synthetic Datasets

According to Remark 5.4, there are two important factors to be considered: (1) the ratio between class separability and
within-class variance |γ1 − γ2|/σ, denoted by β for simplicity; (2) the size of constraint set u. We conduct synthetic
experiments in this section to study the effect of these factors on the performance of (optimal) data poisoning attacks.

More specifically, we generate 10,000 training and 10,000 testing data points according to the Gaussian mixture model (1)
with negative center γ1 = −10 and positive center γ2 = 0. Throughout our experiments, γ1 and γ2 are kept fixed, whereas
we vary the variance parameter σ and the value of u. The default value of u is set as 20 if not specified. Evaluations of
empirical poisoning attacks require training linear SVM models, where we choose λ = 0.01. The poisoning ratio is still set
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as 3%, consistent with evaluations on the benchmark datasets.

Impact of β. First, we show how the optimal attack performance changes as we increase the value of β. We report the risk
achieved by the OPT attack based on Theorem 5.3. Note that we can only obtain approximations of the inverse function g−1

using numerical methods, which may induce a small approximation error for evaluating the optimal attack performance.
For the finite-sample setting, we also report the empirical test error of the poisoned models induced by the empirical OPT
attack and the best current poisoning attack discussed in Section 3, where the latter is termed as Best Heuristic for simplicity.
Since the poisoned models induced by these empirical attacks do not restrict w ∈ {−1, 1}, we normalize w to make the
empirical results comparable with our theoretical results.

Figure 5a summarizes the attack performance when we vary β. As the ratio between class separability and within-class
variance increases, the risk of the OPT attack and empirical test errors of empirical OPT and best heuristic attacks gradually
decrease. This is consistent with our theoretical results discussed in Section 5.1. Note that there exists a minor difference
between these attacks when the value of β is small, where the test error attained by the best current heuristic poisoning
attack is slightly higher than that achieved by the empirical OPT attack. This is due to the small numerical error induced by
approximating the inverse function g−1.

Impact of u. Our theoretical results assume the setting where w ∈ {−1, 1}. However, this restriction makes the impact
of the constraint set size u less significant, as it is only helpful in judging whether flipping the sign of w is feasible and
becomes irrelevant to the maximum risk after poisoning when flipping is infeasible. In contrast, if w is not restricted, the
impact of u will be more significant as larger u tends to reduce the value of w, which in turn makes the original clean data
even closer to each other and slight changes in the decision boundary can induce higher risks (further discussions on this are
found in Appendix H.2).

To illustrate the impact of u in a continuous way, we allow w to take real numbers. Since this relaxation violates the
assumption of our theory, the maximum risk after poisoning can no longer be characterized based on Theorem 5.3. Instead,
we use the poisoning attack inspired by our theory to get an empirical lower bound on the maximum risk. Since γ1+ γ2 < 0,
Theorem 5.3 suggests that optimal poisoning should place all poisoning points on u with label −1 when w ∈ {1,−1}. We
simply use this approach even when w can now take arbitrary values. We vary the value of u gradually and record the test
error of the induced hypothesis, We repeat this procedure for different configurations (i.e., fixing γ1, γ2 and varying σ).

The results are summarized in Figure 5b. There are two key observations: (1) once w is no longer constrained, if u is
large enough, the vulnerability of all the considered distributions gradually increases as we increase the value of u, and
(2) datasets with smaller β are more vulnerable with the increased value of u compared to ones with larger β, which has
larger increased test error under the same class separability and box constraint (choosing other values of β also reveals a
similar trend). Although not backed by our theory, it makes sense as smaller β also means more points might be closer to
the boundary (small margin) and hence small changes in the decision boundary can have significantly increased test errors.

H.2. Relationship Between Box Constraint Size and Model Weight

Our theory assumes that the weight vector of w can only take normalized value from {−1, 1} for one-dimensional case,
while in practical machine learning applications, convex models are trained by optimizing the hinge loss with respect to both
parameters w and b, which can result in w as a real number. And when w takes real numbers, the impact of u becomes
smoother: when poisoning with larger u, the poisoning points generated can be very extreme and forces the poisoned
model to have reduced w (compared to clean model wc) in the norm so as to minimize the large loss introduced by the
extreme points. Figure 6 plots the relationship between u and w of poisoned model, and supports the statement above. When
the norm of w becomes smaller, the original clean data that are well-separated also becomes less separable so that slight
movement in the decision boundary can cause significantly increased test errors. This makes the existence of datasets that
have large risk gap before and after poisoning more likely, which is demonstrated in Figure 5b.

I. Broader Impact and More Discussions
In this section, we provide discussions on broader impact and other limitations in our work.

Broader impact. Our work analyzes the impact of learning task properties on the effectiveness of indiscriminate poisoning
attacks. Therefore, on the negative side, active poisoning attackers may leverage this insights to target more vulnerable
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(a) Separability Ratio β (b) Constraint Size u

Figure 5: Measuring the performance of optimal poisoning attacks with (a) different values of β; (b) different values of u
and β. Here, u = 0 means the test error before poisoning.

Figure 6: Impact of box constraint u on the value of w after poisoning.

datasets and models in some applications. On the positive side, we also provide some potential ways to improve the
robustness to poisoning by leveraging better feature transformations.

Extension to other poisoning settings. Although we focus on indiscriminate data poisoning attacks in this paper, we
believe our results can also generalize to subpopulation or targeted poisoning settings. In particular, the specific learning
task properties identified in this paper may still be highly correlated, but now additional factors of the relative distance
between subpopulation/individual test samples to the decision boundary will also play an important role. Interesting future
works include characterizing the properties of known test samples/subpopulations and the learning task that impact the
effectiveness of the optimal attacks under the targeted or subpopulation settings.

Limitation and future work. Besides what are mentioned in Section 7, we provide additional discussions on the limitations
of our work and future directions. (1) Even for the linear models, the identified metrics cannot quantify the actual increased
errors from optimal poisoning attacks, which itself is an interesting future work and one possible approach might be to
tighten the upper bound in Theorem 5.7 using better optimization methods. (2) The metrics identified in this paper are
learner dependent, depending on the properties of the learning algorithm, dataset and domain constraints (mainly reflected
through C). In certain applications, one might be interested in understanding the impact of learner agnostic dataset properties
on poisoning effectiveness—a desired dataset has such properties that any reasonable learners trained on the dataset can
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be robust to poisoning attacks. One likely application scenario is, the released data from the owner will be used in many
different learners in various applications and these applications can be prone to poisoning. (3) We did not systematically
investigate how to compare the vulnerabilities of different datasets under different learning algorithms. Identifying the
underlying learner-specific properties that affect the performance of (optimal) data poisoning attacks is a challenging but
interesting future work.


