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 Abstract 
 Accurately predicting genetic or other cellular vulnerabilities of unscreened, or difficult to 
 screen, cancer samples will allow vast advancements in precision oncology. We re-analyzed a 
 recently published deep learning method for predicting cancer genetic dependencies from their 
 omics profiles. After implementing a ridge regression baseline model with an alternative, 
 simplified problem setup, we achieved a model that outperforms the original deep learning 
 method. Our study demonstrates the importance of problem formulation in machine learning 
 applications and underscores the need for rigorous comparisons with baseline approaches. 

 Main 
 Precision oncology methods rely on the ability to accurately translate molecular measurements of 
 tumors to insights about their genetic dependencies or other cellular vulnerabilities, ultimately 
 dictating targeted therapeutics. Through genome-wide CRISPR-Cas9 knockout screens, the 
 Cancer Dependency Map  (  1  –  5  )  (DepMap) has characterized  the genetic dependency profiles of 
 over 1000 cancer cell lines (CCLs). Using the DepMap 2018Q2 release, Chiu  et al.  recently 
 developed DeepDEP, a deep learning method for predicting genetic dependency profiles of CCLs 
 given their multi-omics  (  6  )  . DeepDEP was reported to  vastly outperform baseline conventional 
 machine learning models. However, we argue here that this result can be attributed to aspects of 
 its problem formulation. 

 Notably, DeepDEP does not jointly predict the entire genetic dependency profile of an input 
 CCL at once. Instead, the model takes as input both multi-omics of a CCL and a functional 
 fingerprint of a single gene dependency of interest (DepOI, as abbreviated by Chiu  et al.  ), and 
 outputs the predicted score of that specific gene DepOI for that CCL (Fig. 1A). Functional 
 fingerprints were defined as binary vectors encoding a gene’s involvement in 3115 chemical and 
 genetic perturbations (CGPs) from MSigDB v6.2  (  7  )  , potentially facilitating the model to learn 
 relationships between genes with functional similarities. 

 We recognized that this problem formulation, while likely beneficial for embedding prior 
 knowledge about a gene DepOI’s function in a deep learning context, could be problematic for 
 simpler baseline models as it requires a model to learn highly non-linear relationships between 
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 input omics features and dependency scores. Because this formulation requires a singular model 
 to predict the score of any gene DepOI (given its functional fingerprint representation), the 
 model is unable to directly relate input omics features to dependency scores. Instead, an optimal 
 model must first generate intermediate representations composed of both a CCL’s input omics 
 features and the DepOI’s fingerprint vector. Because Chiu  et al.  evaluated baseline model 
 performances using this setup, we were skeptical about the degree by which DeepDEP truly 
 outperforms baseline methods. 

 To evaluate this, we implemented a ridge regression baseline model using a simplified problem 
 formulation (Fig. 1B). Instead of outputting a single gene dependency score for a CCL and gene 
 DepOI combination, our baseline jointly outputs predictions of an input CCL’s genetic 
 dependency profile across 1298 cancer relevant genes (defined by Chiu  et al.  ), the same gene 
 DepOI set on which DeepDEP was trained and evaluated. 

 Fig. 1. Comparison of DeepDEP and baseline setups. (A)  DeepDEP architecture (taken directly from Chiu  et al.  ). 
 DeepDEP takes as input a CCL’s DNA mutation, gene expression, DNA methylation, and copy number alteration 
 profiles. In addition, a functional fingerprint of a gene dependency of interest (DepOI) is supplied. Dimensionality 
 of each input is displayed. DeepDEP performs dimensionality reduction using an autoencoder pretrained on 8238 
 TCGA tumors. The model then merges the dimensionality-reduced data into a prediction network to predict the 
 score of the gene DepOI (corresponding to the input functional fingerprint) for a given CCL.  (B)  Baseline  model 
 setup. A multioutput ridge regression model takes as input omics data (in this illustration, just gene expression) from 
 a CCL, and predicts its genetic dependency profile across 1298 cancer relevant gene DepOIs, as defined by Chiu  et 
 al. 

 We compared 10-fold cross validation results of DeepDEP and a ridge regression baseline using 
 the aforementioned simplified setup. The ridge regression baseline here uses all input omics 
 features, but no functional fingerprints. Across 278 CCLs and 1298 gene DepOIs, DeepDEP and 
 the ridge regression baseline achieved similar predictive performances (DeepDEP: Fig. 2A, 
 Pearson correlation coefficient ρ = 0.87; ridge regression baseline: Fig. 2B, ρ = 0.88 ). However, 
 because of the existence of pan-essential genes, for which dependency score predictions are 
 mostly constant across CCLs and thus easy to predict, analyzing correlation results across all 
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 genes likely yields an overly-optimistic estimate of model performances. Thus, we next 
 evaluated the results by computing correlations per-gene-DepOI. DeepDEP achieved a mean 
 per-gene-DepOI ρ of 0.137 (Fig. 2C), while the ridge regression baseline achieved a ρ of 0.276 
 (Fig. 2E). The ridge regression baseline (with this simplified setup) not only achieved a result 
 higher than that of any baseline machine learning methods evaluated by Chiu  et al.  (not shown 
 here)  ,  but also outperformed the full DeepDEP model. 

 Fig. 2. Ridge regression baseline outperforms DeepDEP. (A  and  B)  Scatterplots of DeepDEP (x-axis,  A  ) and 
 ridge baseline (x-axis,  B  ) predicted dependency scores  vs the correct dependency scores (y-axis) across 278 CCLs 
 and 1298 gene DepOIs. 10-fold cross-validation, where CCLs are held out, was used to generate predictions for both 
 models. DeepDEP achieves ρ = 0.87 and mean squared error (MSE) = 0.047. The ridge baseline achieves ρ = 0.88 
 and MSE = 0.044. (  C  and  E  ) Histogram of per-gene-DepOI  ρ for DeepDEP and the ridge baseline. DeepDEP 
 achieves a mean ρ of 0.137, and the ridge baseline achieves a mean ρ of 0.276.  (D)  Mean per-gene-DepOI  ρ for (as 
 defined in Chiu  et al.  ) highly variable dependency score genes (n = 61), high variance dependency score genes (n = 
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 506), and the entire gene set (n = 1298). The ridge regression baseline model outperforms DeepDEP on all gene sets. 
 (F)  Simplified models trained on subsets of the omics  data. Mut = mutation, Exp = gene expression, Methyl = 
 methylation, and CNA = copy number alteration. For all simplified models except that trained on just CNA data, the 
 ridge regression baseline achieves a higher mean per-gene-DepOI ρ than DeepDEP does. 

 Chiu  et al.  also analyzed mean per-gene-DepOI ρ on  two subsets of genes that were observed to 
 have high variance dependency scores and thus were likely cancer-relevant genes. The ridge 
 regression baseline model outperformed DeepDEP on both of these gene sets (Fig. 2D). 

 We next constructed several simplified ridge models using subsets of the omics data types (for 
 example, Fig. 1B depicts an expression-only ridge model), similarly as done in Chiu  et al  . These 
 simplified models were compared with DeepDEP results. In all instances except when using only 
 copy number alteration data, the ridge regression baseline achieves a higher mean 
 per-gene-DepOI ρ than DeepDEP does (Fig. 2F). 

 These results demonstrate how machine learning problem formulations dramatically impact the 
 performance of baseline approaches. We show that a problem formulation that is convenient for 
 embedding information into deep learning models may not always be the ideal formulation for 
 baseline approaches. To truly evaluate the degree by which novel methods outperform baselines, 
 it is necessary to rigorously evaluate baselines using different, potentially simpler, problem 
 formulations. Moreover, many of our simplified ridge regression baselines, trained on subsets of 
 the data types (Mut/Exp, Exp, Methyl), outperformed DeepDEP trained on all input genomic 
 features. This demonstrates that the proposed deep learning model was not able to benefit from 
 integrating information from a diverse set of data modalities. We also demonstrate how the use 
 of gene functional fingerprints is not important for achieving an elevated prediction performance 
 over DeepDEP. These results bring into question the strength of the results obtained from 
 downstream analyses using the DeepDEP model, such as the pan-cancer tumor dependency map 
 that Chiu  et al.  generated by applying DeepDEP on TCGA data. 

 Overall, we demonstrate the importance of conducting rigorous baselines when evaluating the 
 performance of novel methods, and the importance of considering the implications of different 
 machine learning problem formulations. 

 Data and code availability 
 All data was obtained from the Code Ocean compute capsule accompanying Chiu  et al.,  the 
 supplementary tables of Chiu  et al  ., and  from the  DepMap portal. Machine learning tasks were 
 performed using Scikit-learn v1.2.2  (  8  )  . All code and data for this analysis can be found at: 
 https://github.com/danielchang2002/deepdep_reanalysis  . 
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 Methods 
 DeepDEP CCL dependency score predictions from 10-fold cross-validation (where CCLs are 
 held out) were obtained from Supplementary Table S8 of Chiu  et al  . Ground truth gene effect 
 scores of the 278 CCLs were obtained from the DepMap 2018Q2 release. The DeepDEP 10-fold 
 cross-validation dependency score predictions were compared with the ground truth in Fig. 2A 
 and 1C. 

 DNA mutation, gene expression, DNA methylation, and copy number alteration data of the 278 
 CCLs were obtained from the Code Ocean compute capsule accompanying Chiu  et al. 
 Functional fingerprints were not used in our analysis. Ridge regression 
 (sklearn.linear_model.Ridge) with default parameters was then used to predict an input CCL’s 
 genetic dependency profile across 1298 cancer relevant genes (defined by Chiu  et al.  ), the same 
 gene DepOI set on which DeepDEP was trained and evaluated, given a flattened vector of the 
 four data types concatenated together for an input CCL. Ridge regression baseline prediction 
 scores were obtained via 10-fold cross-validation (where CCLs are held out). Notably, the CCL 
 fold partitioning is not identical to that used to generate DeepDEP cross-validation results in 
 Supplementary Table S8 of Chiu  et al.  , but generated  independently in this analysis 
 (sklearn.model_selection.KFold; random_state = 42). Ridge regression baseline 10-fold 
 cross-validation scores were compared with the ground truth in Fig. 2B and 2E. 

 The gene set of 61 “highly variable” genes was obtained by locating genes with dependency 
 score standard deviations greater than 0.3, as defined by Chiu  et al  . The gene set of 506 “high 
 variance” genes was obtained using the “Achilles_high_variance_genes.csv” file provided by the 
 DepMap portal. The 10-fold cross-validation results on these two gene subsets, for both the 
 Ridge regression baseline and DeepDEP, are detailed in Fig. 2D. 

 Results for simplified ridge regression baseline models were obtained using subsets of the CCL 
 omics data. This was performed identically as before, using 10-fold cross-validation. However, 
 for DeepDEP, the 10-fold cross-validation prediction scores were only available (in the 
 supplementary of Chiu  et al.  ) for the model using  all omics features (i.e. the “All” model), and 
 not for the simplified models. Thus, in Fig. 2F, simplified DeepDEP model performances were 
 obtained using data from Supplementary Fig. S5 of Chiu  et al.  , which details per-gene-DepOI ρ 
 for simplified models using 10 independent train-test subsampling (i.e., a slightly different 
 evaluation method than 10-fold cross-validation). 
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