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Abstract

Contrastive learning has shown effectiveness in improving sequential recommen-
dation models. However, existing methods still face challenges in generating
high-quality contrastive pairs: they either rely on random perturbations that corrupt
user preference patterns or depend on sparse collaborative data that generates
unreliable contrastive pairs. Furthermore, existing approaches typically require
predefined selection rules that impose strong assumptions, limiting the model’s abil-
ity to autonomously learn optimal contrastive pairs. To address these limitations,
we propose a novel approach named Semantic Retrieval Augmented Contrastive
Learning (SRA-CL). SRA-CL leverages the semantic understanding and reason-
ing capabilities of LLMs to generate expressive embeddings that capture both
user preferences and item characteristics. These semantic embeddings enable the
construction of candidate pools for inter-user and intra-user contrastive learning
through semantic-based retrieval. To further enhance the quality of the contrastive
samples, we introduce a learnable sample synthesizer that optimizes the contrastive
sample generation process during model training. SRA-CL adopts a plug-and-play
design, enabling seamless integration with existing sequential recommendation
architectures. Extensive experiments on four public datasets demonstrate the ef-
fectiveness and model-agnostic nature of our approach. Our code is available at
https://github.com/ziqiangcui/SRA-CL

1 Introduction

Sequential recommendation aims to model user preferences based on historical behavior sequences,
a task of significant value for online platforms like YouTube and Amazon. However, accurate
preference modeling faces a fundamental challenge: data sparsity, as most users have only limited
interaction records and most items receive little attention. To address this issue, numerous self-
supervised learning techniques [39, 46, 34] have been proposed, leveraging auxiliary tasks to improve
data utilization efficiency. Among these, contrastive learning has emerged as a predominant approach
due to its conceptual simplicity and proven effectiveness [34, 24, 3, 22, 47]. Typically, it constructs
positive sample pairs from the data and maximizes their agreement in the representation space [2].

As illustrated in Figure 1, existing contrastive learning approaches for sequential recommendation can
be broadly classified into two categories: (1) inter-user contrastive learning, which contrasts sequences
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Figure 1: Illustration of existing contrastive learning methods in sequential recommendation, catego-
rized into two main types: (1) inter-user contrastive learning and (2) intra-user contrastive learning.

from different users, and (2) intra-user contrastive learning, which contrasts different augmented
views of a single user’s sequence. In the inter-user paradigm, user sequence representations are
clustered using K-means, and users within the same cluster are treated as positive samples for
each other [3, 17, 23]. In the intra-user paradigm, perturbations are applied to a user’s sequence to
generate augmented views, and the similarity between these views is maximized [34, 21, 24, 22].
These contrastive learning methods are typically employed as auxiliary tasks alongside the primary
recommendation objective and have been demonstrated to enhance recommendation performance by
improving user representation learning [24, 36].

Despite their empirical success, existing methods suffer from several limitations in contrastive pair
construction, which may undermine their effectiveness in recommendation scenarios. 1) Semantic
Divergence. Many existing methods construct contrastive pairs through random augmentation opera-
tions such as random masking [34, 21] and Dropout [24]. However, in sequential recommendation
where data is inherently sparse and exhibits sequential patterns, such random operations may lead
to a complete change in the sequence’s semantics (i.e., user preferences). Bringing semantically
different sequences closer together in embedding space may diminish the model’s ability to discrim-
inate among distinct user preferences. Additionally, some methods determine contrastive pairs by
clustering user representations derived from collaborative signals [3, 23], where users within the
same cluster are considered positive pairs. However, the sparse ID signals can lead to low-quality
representations and inaccurate clustering results. 2) Unlearnability. Existing methods rely on
predefined rules to construct positive pairs, such as directly selecting users from the same cluster
[3, 23, 21], or treating sequences sharing the same next item as positive pairs [24, 23]. These rigid
heuristics impose strong assumptions that constrain models from autonomously learning optimal
contrastive pairs. Moreover, the approach of using sequences with identical next items as positive
pairs essentially replicates the recommendation objective (i.e., next-item prediction), providing no
additional information gain. Therefore, the suboptimal construction of contrastive pairs in existing
methods limits their effectiveness and hinders contrastive learning’s full potential.

Given these limitations, constructing high-quality contrastive samples remains a critical challenge.
Semantic information, which is readily available in textual data such as product categories, brands, and
descriptions, provides a promising solution. Unlike sparse behavior signals, semantic data maintains
validity regardless of data volume or training dynamics, as it derives from structured knowledge rather
than co-occurrence patterns [46]. Additionally, semantic features offer complementary information
beyond collaborative signals. Motivated by these advantages, we propose leveraging semantic
information to construct superior contrastive pairs. However, accurately capturing user preferences
requires models with powerful understanding and reasoning capabilities. Recent research has
shown that large language models (LLMs) can effectively understand user preferences and achieve
competitive performance on sequential recommendation tasks [35]. Inspired by this, we propose to
enhance contrastive learning through LLM-powered semantic retrieval.

In this paper, we propose SRA-CL (Semantic Retrieval-Augmented Contrastive Learning), a novel
framework with two key innovations: 1) Semantic-based Retrieval. We develop a semantic-based
retrieval mechanism that operates at both inter-user and intra-user levels. For inter-user contrastive
learning, we leverage LLMs to process sequential user interaction histories. Each sequence is fed to
the LLM in chronological order of item interactions, where each item consists of both its attributes
and textual description, enabling the model to generate preference-aware semantic embeddings
through comprehensive understanding of user behavior patterns. For intra-user contrastive learning,
we enhance item understanding by providing LLMs with both item attributes and their contextual
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sequence information, producing context-aware semantic embeddings that capture both intrinsic
item properties and their relevance within the recommendation context. Subsequently, we leverage
the semantic embeddings to retrieve the top-k most similar users and items, constructing candidate
positive sample pools for contrastive learning. 2) Learnable Sample Synthesis. To construct
more effective contrastive samples, our framework incorporates a learnable sample synthesizer. For
inter-user contrastive learning, the synthesizer dynamically generates positive samples for each user
sequence by selectively combining elements from the candidate pool. This generation process is
jointly optimized with the model training, ensuring the synthesized samples effectively improve
representation learning.

Our main contributions are summarized as follows.

• We propose a model-agnostic framework, SRA-CL, which leverages semantic information and
the capabilities of LLMs to construct better contrastive pairs, thereby improving the contrastive
learning in sequential recommendation.

• We propose a semantic-based retrieval approach for contrastive pair construction that integrates
dual retrieval mechanisms: user retrieval for inter-user contrastive learning and item retrieval for
intra-user contrastive learning, with each mechanism maintaining its dedicated candidate pool. To
further enhance this framework, we introduce a learnable sample synthesizer that optimizes the
contrastive sample generation process during model training.

• We conduct extensive experiments on four public datasets to validate the superiority and model-
agnostic nature of our approach, as well as to confirm the efficacy of each module.

2 Preliminary
2.1 Sequential Recommendation Task

We denote the sets of users and items by U and V , respectively. Each user u ∈ U has a chronological
sequence of interacted items Su = [vu1 , v

u
2 ..., v

u
n], where vut indicates the item that u interacted with

at step t, and n is the predefined maximum sequence length. For user sequences longer than n, we
retain only the most recent n items. The goal of sequential recommendation is to predict the next
item v+ according to Su, which can be formulated as:

argmax
v∈V

P (v+ = v|Su), (1)

where the probability P represents the likelihood of item v being the next item, conditioned on Su.

2.2 Sequential Recommendation Backbone

Our method is model-agnostic and can be integrated with various sequential recommendation models,
as demonstrated in Section 4.3. To facilitate the introduction of our approach, we adopt the transformer
architecture [28] as the backbone recommendation model following previous studies [22–24].

Embedding Layer. We initialize an embedding matrix M ∈ R|V|×d to encode item IDs, where
|V| represents the size of the item set and d denotes the dimensionality of the latent space. Given
a user interaction sequence Su, we obtain item embeddings Eu ∈ Rn×d and position embeddings
P ∈ Rn×d. Consequently, the input sequence Su can be represented as Hu = Eu +P.
Sequence Encoder. The representation of the input sequence is then fed into L Transformer layers
[28] to capture complex sequential patterns, which can be defined as follows:

H(L)
u = Transformer(Hu), hu = H(L)

u [−1]. (2)

Here, hu ∈ Rd represents the last position of H(L)
u and is selected as the final representation of Su.

Prediction and Objective Function. During prediction, we calculate the probability of each item
using ŷ = softmax(huM

T), where ŷ ∈ R|V| and ŷv represents the likelihood of item v being the
next item. For training, we adopt the same cross-entropy loss function as our baseline methods
[22–24] to ensure fairness, where v+ denotes the ground truth item for user u.

LRec = −ŷv+ + log

(∑
v∈V

exp(ŷv)

)
. (3)
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Figure 2: Overview of the proposed SRA-CL Framework.

3 The Framework of SRA-CL

In this section, we provide a detailed introduction to SRA-CL, which is shown in Figure 2. SRA-CL
integrates inter-user contrastive learning via user semantic retrieval and intra-user contrastive learning
via item semantic retrieval. To further enhance the framework, we introduce a learnable sample
synthesizer that optimizes the contrastive sample generation process during model training.

3.1 Inter-User Contrastive Learning via User Semantic Retrieval
SRA-CL employs semantic retrieval to generate reliable supervision signals for inter-user contrastive
learning. Leveraging the advanced reasoning capabilities of LLMs, we first derive a comprehensive
representation of user preferences, which are then encoded as semantic embeddings. Based on the
similarity of these embeddings, we introduce a semantic-based retrieval mechanism to construct a
candidate sample pool. Subsequently, a learnable contrastive sample synthesis method is employed
to generate effective contrastive pairs.

User Preference Understanding with LLMs. Textual data (e.g., product categories, brands, and
descriptions) plays a pivotal role in recommender systems by encoding rich semantic signals that
reflect user preferences. Given user u’s interaction sequence Su, we extract textual attributes for
each item in chronological order, preserving both content and sequential context. These features
are structured into a prompt Pu, where item attributes and their order explicitly guide the LLM in
inferring user preferences Au = LLM(Pu). The prompt template is detailed in Figure 6.
Next, we employ a pretrained text embedding model M to extract and convert the semantic informa-
tion contained in the textual responses of LLMs into embeddings, which is formatted as:

h̃u = M(Au), (4)

where h̃u ∈ Rd̃ represents the semantic embedding of user preferences and d̃ is the embedding size
of the text embedding model M. Specifically, M indicates SimCSE-RoBERTa [8] in this paper due
to its open-source availability and excellent sentence semantic extraction capabilities. The generated
semantic embeddings are cached and remain fixed throughout the whole training process.

Semantic-based User Retrieval. Once the semantic embeddings of user sequences are obtained,
similar users can be retrieved based on semantic similarity. For a given user sequence Su, we calculate
the cosine similarity between its semantic embedding h̃u and the semantic embeddings of other users.
Users are then ranked in descending order according to the computed semantic similarity. The top k
users are retrieved to construct the homogeneous user pool for user u, denoted as Nu.

Nu = {u′ ∈ U \ {u} | rank(cosine_similarity(h̃u, h̃u′)) ≤ k}, (5)

where U \ {u} denotes the set of all users except u.
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Learnable Contrastive Sample Synthesis. Sole reliance on hard rules, such as selecting a user
from the current user’s dedicated candidate pool as the positive sample, often yields suboptimal
solutions (as shown in Table 2). To enhance contrastive sample construction, we introduce a learnable
sample synthesizer that optimizes the contrastive sample generation process during model training.
Specifically, we first map the semantic representations of user sequences through a learnable adapter.
Then, in the mapped space, we employ an attention mechanism, where the current user serves as a
query to compute the probability pu,u′ that each candidate user u′ ∈ Nu is suitable as the positive
sample for the current user u. This process is formulated as:

wu,u′ = LeakyReLU(a⊤[Wh̃u∥Wh̃u′ ]), (6)

pu,u′ = softmaxu′(wu,u′) =
exp(wu,u′)∑

uk∈Nu
exp(wu,uk

)
, (7)

where W ∈ Rd×d̃ is a learnable weight matrix, and ∥ denotes the concatenation operation. a ∈ R2d

represents a single-layer neural network used to generate the attention score, with the LeakyReLU
activation function adopted [29]. The softmax function is employed to transform the coefficients into
probabilities. Based on this, we generate the composite positive contrastive sample h+

u for hu by:

h+
u =

∑
u′∈Nu

pu,u′hu′ , (8)

where hu′ ∈ Rd is the recommendation model’s output sequence representation for u′, as defined in
Equation (2). This operation enables a fine-grained learnable selection of contrastive samples.

Inter-User Contrastive Loss. For each user u, hu is the sequence representation obtained from the
recommendation model. The synthetic representation h+

u is regarded as the positive sample for hu,
while the remaining N − 1 synthetic representations within the same batch are treated as negative
samples for hu, where N is the batch size. We compute the inter-user contrastive loss LCS as follows:

LCS = − log
exp

(
hu · h+

u )

exp
(
hu · h+

u ) +
∑

h−
u ∈H−

u
exp

(
hu · h−

u

) , (9)

where (·) represents the inner product operation, H−
u denotes the set of negative samples for hu.

3.2 Intra-User Contrastive Learning via Item Semantic Retrieval

For intra-user contrastive learning, most existing methods apply predefined random perturbations to
the original sequence to generate augmented views, which are treated as a pair of positive samples
[34, 24]. A significant limitation of them is the introduction of considerable uncertainty in the
semantic similarity between positive samples. This substantial variation in user sequence semantics
among positive samples undermines the reliability of the contrastive learning process. To address this
issue, we leverage a comprehensive understanding of both the semantic information of the item itself
and the typical contexts in which the item appears. Based on this understanding, we replace certain
items in the sequence with similar ones, resulting in semantic-consistent positive samples.

Item Understanding with LLMs. To enhance the LLM’s comprehension of items, we provide two
types of input information: (1) textual attributes of the item, including category, brand, and description,
which supply fundamental information and enable the LLM to perform a coarse-grained assessment
of item similarity; and (2) user sequences containing the given item. By analyzing the typical contexts
in which an item appears, the LLM can infer the characteristics of its potential audience. This
methodology facilitates more accurate evaluations of the relationships between items in the context of
sequential recommendation. Given the token limit for LLM input, we have constrained the maximum
number of item-related sequences in the prompt to 10, leaving the exploration of this value for future
research. Next, these two types of information for item v are integrated into a structured prompt
Pv , which is processed by the language model to generate the item summary Av = LLM(Pv). The
detailed prompt template is illustrated in Figure 6. Then, the pretrained text embedding model M is
used to convert the textual responses of LLMs into embeddings: ẽv = M(Av).
Semantic-based Item Retrieval. Similar to user retrieval, we compute the cosine similarity between
the semantic embedding of an item and those of other items. Next, Top-k most semantically relevant
items for item v are retrieved, which is formulated as:

Nv = {v′ ∈ V \ {v} | rank(cosine_similarity(ẽv, ẽv′)) ≤ k}, (10)
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Contrastive Sample Selection. For intra-user contrastive learning, generating two semantic-
consistent augmented views of the same user sequence is crucial. Here, we employ a semantic-based
item substitution approach. Specifically, for each sequence Su, we randomly select 20% of the items.
For each selected item v, we substitute it with a semantically similar item sampled from its candidate
pool Nv . This operation yields an augmented sequence S ′

u derived from the original Su. By repeating
this process, we obtain two augmented views, denoted as S ′

u and S ′′
u , which form a positive sample

pair. Critically, the substitution is not entirely random but is guided by semantic similarity, which
accounts for both item attribute similarity and contextual relevance in the recommendation scenario.
This reduces uncertainty and enhances semantic consistency between augmented views.
Our preliminary experiments also explored the use of learnable synthesizers (analogous to inter-
contrastive learning approaches) for generating substitute items, yet yielded no measurable perfor-
mance improvements (shown in Table 4). This can be attributed to the inherently higher interpretability
and quantifiability of item semantics relative to user preferences. Therefore, directly identifying
appropriate substitutes from semantically similar candidate pools is simpler and more reliable com-
pared to matching users with analogous preference patterns. A more detailed analysis is provided in
Appendix C.1.

Intra-User Contrastive Loss. For the two augmented sequences S ′
u and S ′′

u , we obtain their hidden
vectors h′

u and h′′
u using the sequence encoder defined in Equation (2). Then the intra-user contrastive

loss can be calculated as:

LIS = − log
exp

(
h′
u · h′′

u)

exp
(
h′
u · h′′

u) +
∑

hneg
u ∈Hneg

u
exp

(
h′
u · hneg

u

) (11)

In a batch with a size of N , we have 2N augmented sequences. Among these, h′
u and h′′

u are positive
samples of each other and are interchangeable. The remaining 2(N − 1) samples excluding h′

u and
h′′
u are considered negative samples Hneg

u .

Algorithm 1 Training for SRA-CL
Require: Training data {Su} for all u ∈ U ; hyperparameters α, β, k

1: Obtain user semantic embeddings {h̃u} for all u ∈ U ; obtain item semantic embeddings {ẽv}
for all v ∈ V .

2: Freeze the embeddings {h̃u} and {ẽv}, and initialize the model parameters.
3: for each iteration do
4: Compute hu using Equation (2).
5: Calculate ŷ = softmax(huM

T).
6: Compute LRec using Equation (3).
7: Retrieve Nu for each u ∈ U using Equation (5).
8: Synthesize h+

u for each u using Equations (6), (7), and (8).
9: Compute LCS using Equation (9).

10: Retrieve Nv for each v ∈ V using Equation (10).
11: Generate S ′

u and S ′′
u , along with the corresponding h′

u and h′′
u.

12: Compute LIS using Equation (11).
13: Calculate the total loss L = LRec + αLCS + βLIS.
14: Update the model parameters using the gradient of L.
15: end for
16: Return the final model parameters θ.

Algorithm 2 Inference for SRA-CL
Require: Trained model parameters θ; test data {Su}

1: for each user sequence in test data do
2: Compute hu using Equation (2).
3: Calculate the predicted scores ŷ = softmax(huM

T).
4: Obtain the top-k items with the highest scores in ŷ.
5: end for
6: Return the recommended items for all users.
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3.3 Training and Inference

During the training phase, all semantic embeddings are fixed. The training objective consists of three
components: the loss of the recommendation model LRec, which serves as the main loss, and the
inter-user contrastive loss LCS and intra-user contrastive loss LIS, which act as regularization terms.

L = LRec + αLCS + βLIS, (12)

where α and β are hyperparameters.

During inference, only the recommendation backbone is utilized. The contrastive learning tasks
and LLMs’ semantic embeddings are not involved in the inference process. This implies that our
framework can be deployed in real-world applications without incurring any additional inference
latency from incorporating LLMs. The training and inference processes are detailed in Algorithm 1
and Algorithm 2, respectively.

4 Experiments
4.1 Experimental Settings

Datasets. Following previous studies [21, 34, 22], we conducted experiments on four public real-
world datasets: Yelp, Amazon Sports, Beauty, and Office. The statistics for these datasets are
presented in Table 3. More details about the datasets are shown in Appendix B.1.

Evaluation Metrics. To evaluate the performance of the models, we use widely recognized evaluation
metrics: Hit Rate (HR) and Normalized Discounted Cumulative Gain (NDCG), follow previous
studies [41, 30, 9, 12]. The leave-one-out strategy is employed, where the last interaction is used for
testing, the second-to-last interaction for validation, and the remaining interactions for training. To
ensure an unbiased evaluation, we rank the prediction on the whole item set without sampling.

Baseline Methods. We compare our method with 13 baseline methods, categorized into three groups:
1) classical methods (GRU4Rec [10], SASRec [12], BERT4Rec [27]), 2) contrastive learning-based
methods (S3-Rec [46], CL4SRec [34], CoSeRec [21], ICLRec [3], DuoRec [24], MCLRec [22],
ICSRec [23]), and 3) LLM-based methods (LRD [35], RLMRec [25], LLM-ESR [20]).

Implementation Details. All experiments are conducted with a single 32G V100 GPU. The em-
bedding size is set to 64. We adopt the batch size of 256 and employ the Adam optimizer with a
learning rate of 0.001. The dropout rate is set to 0.5 across all datasets. Following previous studies
[35], we set the maximum sequence length to 20. The early stopping is applied if the metrics on
the validation set do not improve over 10 consecutive epochs. For LLM, we use DeepSeek-V3 by
invoking its API. We set the LLM’s temperature τ to 0 and top-p to 0.001. For the text embedding
model M, we use the pre-trained RoBERTa from Hugging Face. Note that identical settings are
adopted for our method and baselines that involve LLMs and text embeddings to ensure fairness.
More implementation details can be found in Appendix B.3.

4.2 Comparison Results with Baselines

The comparison results are presented in Table 1. Each experiment was conducted five times, and
the average results are reported. SRA-CL consistently outperforms all baseline methods across
all datasets, achieving performance improvements of up to 11.82%. The improvements are also
confirmed by a paired t-test with a significance level of 0.01. Contrastive learning-based methods
generally surpass traditional methods (GRU4Rec, SASRec, BERT4Rec). Among the contrastive
learning baselines, MCLRec and ICSRec demonstrate superior performance. However, both methods
underperform compared to SRA-CL, as they fail to control the quality of contrastive samples. SRA-
CL mitigates this issue by introducing semantic-based retrieval augmentation, thereby improving
the quality of contrastive samples and enhancing the overall effectiveness of contrastive learning.
Regarding LLM-enhanced baselines, they demonstrate superior results compared to classical methods.
However, our proposed SRA-CL achieves significant improvements over these LLM approaches. Un-
like existing LLM-based methods, SRA-CL is fundamentally different in motivation—it specifically
addresses the limitations in contrastive learning through enhanced construction of positive sample
pairs using semantic information.
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Table 1: Performance comparison of different methods on four datasets. Bold font indicates the best
performance, while underlined values represent the second-best. SRA-CL achieves state-of-the-art
results among all methods, as confirmed by a paired t-test with a significance level of 0.01. Due to
space constraints, additional metrics (HR@10 and NDCG@10) are provided in Appendix C.2.

Model Yelp Sports Beauty Office

HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

GRU4Rec 0.0639 0.0243 0.0325 0.0129 0.0488 0.0189 0.0956 0.0361
SASRec 0.0899 0.0390 0.0498 0.0216 0.0887 0.0382 0.1329 0.0482
BERT4Rec 0.0913 0.0394 0.0578 0.0241 0.0933 0.0399 0.1436 0.0520

S3-Rec 0.0964 0.0443 0.0607 0.0262 0.0994 0.0414 0.1568 0.0571
CL4SRec 0.0923 0.0395 0.0562 0.0235 0.0980 0.0416 0.1297 0.0488
CoSeRec 0.0984 0.0404 0.0638 0.0293 0.1034 0.0487 0.1354 0.0516
ICLRec 0.0974 0.0432 0.0636 0.0284 0.1056 0.0482 0.1513 0.0559
DuoRec 0.1173 0.0493 0.0706 0.0302 0.1224 0.0535 0.1549 0.0653
MCLRec 0.1150 0.0486 0.0736 0.0318 0.1239 0.0536 0.1629 0.0684
ICSRec 0.1165 0.0495 0.0728 0.0304 0.1205 0.0528 0.1643 0.0690

LRD 0.1082 0.0455 0.0589 0.0257 0.0931 0.0402 0.1468 0.0577
RLMRec 0.1125 0.0478 0.0664 0.0298 0.1190 0.0521 0.1532 0.0613
LLM-ESR 0.1061 0.0451 0.0638 0.0277 0.1064 0.0515 0.1425 0.0602

SRA-CL 0.1282 0.0533 0.0823 0.0347 0.1314 0.0568 0.1702 0.0725
Improvement 9.29% 7.68% 11.82% 9.12% 6.05% 5.97% 3.59% 5.07%

Figure 3: Experimental results demonstrating the model-agnostic nature and strong generalization
capability of SRA-CL. “+” indicates the addition of SRA-CL to different recommendation models.

4.3 Validation of Model-Agnostic Characteristic

In this section, we validate the model-agnostic nature of our method. We select three classic
recommendation models (GRU4Rec, SASRec, DuoRec) as the backbone and integrate SRA-CL to
observe performance changes. We retain the original loss functions of the backbones and introduce our
contrastive loss LCS and LIS during training. The results are shown in Figure 3, which indicate that
for all three backbone methods, the versions enhanced with SRA-CL ("+") consistently outperform
the original versions. Specifically, HR@20 improves by 8.3% to 27.3%, and NDCG@20 increases
by 9.7% to 25.5%. These findings validate that SRA-CL can robustly improve the performance of
various recommendation models.

4.4 Ablation Study
In this section, we evaluate the effectiveness of each component in SRA-CL. The results, presented
in Table 2, demonstrate the impact of removing individual modules. Overall, the results show that
removing any component degrades model performance, confirming the necessity of each module.
Specifically, the variants “w/o LCS” and “w/o LIS” exhibit significant performance drops, highlight-
ing the importance of both inter-user and intra-user contrastive learning objectives. The “w/o CL”
variant suffers a more severe performance decline than those removing only one contrastive objective,
suggesting that these two types of objectives complement each other. Additionally, the “w/o learn.”
variant also leads to reduced performance, indicating that a learning-based sample synthesizer is
more effective than random selection for inter-user contrastive learning. Furthermore, removing
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Table 2: Ablation study on all datasets.

Metric w/o
CL

w/o
LCS

w/o
LIS

w/o
learn.

w/o
semantic

w/o
LLM Ours

Yelp H@20 0.1101 0.1203 0.1228 0.1253 0.1187 0.1190 0.1282
N@20 0.0473 0.0504 0.0519 0.0520 0.0495 0.0501 0.0533

Sports H@20 0.0745 0.0780 0.0795 0.0792 0.0772 0.0781 0.0823
N@20 0.0296 0.0315 0.0332 0.0336 0.0311 0.0314 0.0347

Beauty H@20 0.1206 0.1273 0.1279 0.1273 0.1265 0.1259 0.1314
N@20 0.0518 0.0546 0.0545 0.0551 0.0532 0.0537 0.0568

Office H@20 0.1476 0.1621 0.1619 0.1617 0.1624 0.1643 0.1702
N@20 0.0599 0.0691 0.0689 0.0681 0.0673 0.0692 0.0725

Figure 4: Hyperparameter experiments on the weight of LCS (α), the weight of LIS (β), and the
number of retrieved users/items (k).

semantic information and relying solely on collaborative signals for retrieval (“w/o semantic”) results
in a notable performance decline, underscoring the importance of semantic information in construct-
ing high-quality contrastive samples. This finding aligns with our initial motivation. Similarly,
the absence of LLM-based text processing (“w/o LLM”) also results in performance degradation,
demonstrating that utilizing the LLM’s ability to understand and reason about user preferences is
crucial.

4.5 Hyperparameter Study
In this section, we investigate the impacts of three key hyperparameters, α, β, and k. Here, α and β
are the weights of LCS and LIS , respectively, while k denotes the number of retrieved users/items.
From Figure 4, we observe that as both α and β increase, the model’s performance initially improves
slightly and then decreases marginally. Empirically, the optimal range for α and β is between 0.05
and 0.1. This is reasonable as contrastive learning loss acts as a regularization term. As the value of k
increases, the performance initially improves and then declines, with the optimal value around 10. As
k increases, the semantic relevance of retrieved neighbors decreases and randomness increases. A
very small k results in a candidate set that is too small without diversity. Conversely, a very large
k loses semantic relevance, thereby degrading the effectiveness of contrastive learning. Note that
NDCG@20 results are provided in Figure 7 due to space limitation.

4.6 Contrastive Learning in Sparse Data: Analyzing SRA-CL’s Superiority

Figure 5: Performance comparison on different
user groups among MCLRec, ICSRec and Ours.

To further examine SRA-CL’s capability in mit-
igating the issue of low-quality contrastive sam-
ples in data-sparse scenarios, we categorize
user sequences into three groups based on their
length and compare the evaluation results of
different methods. Due to space limitation,
we present the experimental results for Beauty
and Office, as shown in Figure 5. By com-
paring SRA-CL with the two strongest con-
trastive learning baselines (MCLRec and IC-
SRec), we observe that SRA-CL consistently
outperforms them across all user groups. No-
tably, our method achieves greater improvements in sparser user groups (e.g., those with fewer than
7 or 7-10 interactions). This result further validates our motivation: while MCLRec and ICSRec
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construct contrastive sample pairs based on collaborative signals, their performance degrades in
data-sparse scenarios due to the diminished quality of contrastive samples. In contrast, our method
significantly enhances the quality of contrastive pairs by incorporating semantic information, leading
to superior performance under sparse data conditions.

5 Related Work
Contrastive Learning in Sequential Recommendation. Contrastive learning has been successfully
used to enhance sequential recommendation [40, 11, 38, 31, 33, 37, 4, 5, 23]. In terms of the
composition of contrastive samples, we categorize existing methods into two types: (1) Inter-
user. This involves generating contrastive samples from different user sequences. For example,
ICLRec [3] clusters user interests into distinct categories by K-Means and brings the representations
of users with similar interests closer. ICSRec [23] further segments a user’s behavior sequence
into multiple subsequences to generate finer-grained user intentions for contrastive learning. These
methods generate contrastive supervision signals based on collaborative signals. However, the
sparsity of the co-occurrence pattern leads to unreliable clustering results, which in turn affects
the performance of contrastive learning. (2) Intra-user. This involves applying perturbations to the
original sequence to generate augmented views. The two views of the same sequence are treated
as a pair of positive samples. For example, CL4SRec [34] employs three data-level augmentation
operators: Cropping, Masking, and Reordering, to create contrastive pairs. CoSeRec [21] introduces
two additional informative augmentation operators, building upon the foundation of CL4SRec. In
addition, some methods generate augmented views from the model’s hidden layers. A notable
example is DuoRec [24], which creates positive pairs by forward-passing a sequence representation
twice with different dropout masks. MCLRec [22] further combines data-level and model-level
augmentation. Despite their effectiveness, they employ random operators, introducing significant
uncertainty and potentially generating unreasonable positive samples for contrastive learning.
Sequential Recommendation with LLMs. Building upon foundations laid by traditional recom-
mender systems [9, 15, 16], recent studies have successfully integrated LLMs into the recommender
paradigm [32, 43, 14, 6]. Overall, LLMs are employed either as direct recommenders or as tools
for extracting semantic information [13, 19, 42, 1, 26]. In the former approach, all inputs are
converted into textual format, and the LLM generates recommendations based on its pre-trained
knowledge or after undergoing supervised fine-tuning. Representative examples include LC-Rec [44],
LLM-TRSR [45], and CALRec [18]. However, these methods rely on the inference process of
large language models to generate recommendation results, which is computationally expensive and
often challenging to deploy in practical scenarios. Another line of research [26, 30, 20, 35, 42, 1]
leverages LLMs to process semantic information and incorporates it into traditional ID-based models.
For example, SLIM [30] distills knowledge from large-scale LLMs into a smaller student LLM to
improve the recommendation model. LLM-ESR [20] addresses the long-tail problem by leveraging
collaborative signals and semantic information through dual-view modeling and self-distillation.
LRD [35] utilizes the LLM to explore potential relations between items and reconstructs one item
based on its relation to another. Unlike the aforementioned methods, our approach, grounded in the
essence of contrastive learning, aims to construct more effective contrastive pairs with LLMs.

6 Conclusion
In this paper, we analyze the limitations of contrastive learning in sequential recommendation, namely
Semantic Divergence and Unlearnability. To address these issues, we propose SRA-CL, a novel
framework that enhances contrastive sample construction by integrating LLM-based semantic retrieval
with a learnable sample synthesizer. SRA-CL leverages the capabilities of LLMs without increasing
the inference time of the recommendation model, making it practical for large-scale real-world
applications. Through comprehensive experiments, we demonstrate that LLM-based semantic-guided
contrastive sample construction improves the contrastive learning, and we validate the effectiveness of
the learnable sample synthesis mechanism. Furthermore, experiments with different recommendation
model backbones confirm the model-agnostic nature of our approach.
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paper’s contributions and scope?
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of our core innovation, key methodological contributions, and the specific research problem
addressed in this work.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the appendix.
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the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
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Justification: This paper provides full disclosure of all information necessary to reproduce
our key experimental results, and provides source code on an anonymized GitHub repository.
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The four datasets used in this paper are all public, and we offer their links. We
also provide our source code on the anonymized GitHub repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all training and test details, including data splits, hyperparameters,
how they were chosen, type of optimizer, etc. necessary to understand the results in the
experiment section and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results in this paper are confirmed by a paired t-test with a
significance level of 0.01.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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didn’t make it into the paper).
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discussed both potential positive societal impacts and negative
societal impacts in the appendix.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no risk of misuse of the proposed method and the datasets used in the
paper are open-sourced.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets are properly credited through citations and in-text
acknowledgments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the dataset/code/model as part of our submission
with an anonymized github URL.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Supplement to SRA-CL

A.1 Prompt Template

In this section, we provide a detailed description of the LLM prompt templates employed in our
study. Specifically, to enhance the model’s ability to comprehend user preferences and items, we
have meticulously designed specialized prompts, as illustrated in Figure 6.

Assume you are a recommender system expert. Below is the information of a specific product. 
The product name is <name>; category is <cate>; brand is <brand>; description is < description>.
The historical sequences of users who have interacted with this product: 
{sequence1}; 
{sequence2};
…
{sequence10}.

Please describe the given item and its potential audience according to its attributes and context. Your 
response should not exceed 100 words. 

You are a recommender system expert. A user’s historical interactions are provided below in 
chronological order:
<product_name_1, brand_1, category_1, description_1>; 
<product_name_2, brand_2, category_2, description_2>; 
... 
<product_name_n, brand_n, category_n, description_n>

Please analyze both the textual information and sequential patterns, and summarize the user 
preferences with no more than 200 words.

Prompt Template

U
se

r
It

em

Figure 6: Prompt Template.

A.2 Efficiency Analysis

Inference Efficiency. During inference, only the recommendation backbone is utilized. The
contrastive learning tasks and the LLMs’ semantic embeddings are not involved in the inference
process. This ensures that our framework can be deployed in real-world applications without incurring
any additional inference latency from incorporating LLMs.

Training Efficiency. The training process of our method consists of two stages: In the first stage,
we use an LLM API to obtain semantic information and convert it into embeddings, which are then
cached to construct contrastive sample indices. The primary time cost in this stage comes from the
API calls. However, by employing asynchronous concurrency, this step can be completed within a
few hours. Crucially, this stage is performed once and requires no repetition during model training.
In the second stage, we use the pre-constructed contrastive sample index to train the recommendation
model. Regarding the computational complexity of this stage, our method maintains comparable
time complexity to general ID-based contrastive recommendation approaches. The only additional
overhead during training compared to conventional contrastive recommendation models comes from
the lightweight learnable sample synthesis module whose parameter size is negligible compared to
that of the main recommendation model.

B Experimental Setting Details

B.1 Datasets

We conducted experiments on four public real-world datasets: Yelp, Sports, Beauty, and Office.
The statistics for these datasets are presented in Table 3. These datasets cover a diverse range of
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Table 3: Dataset statistics.

Datasets #Users #Items #Actions Avg. Length Density

Yelp 19,936 14,587 207,952 10.4 0.07%
Sports 35,598 18,357 296,337 8.3 0.05%
Beauty 22,363 12,101 198,502 8.8 0.07%
Office 4,905 2,420 53,258 10.9 0.45%

application scenarios. The Yelp dataset3 is widely used for business recommendations. The Sports,
Beauty, and Office datasets are sourced from Amazon4, one of the largest e-commerce platforms.
Following previous studies [21, 34, 22], the users and items that have fewer than five interactions are
removed.

B.2 Baseline Methods

To ensure a comprehensive assessment, we compare our method with 12 baseline methods, categorized
into three groups: classical methods (GRU4Rec, SASRec, BERT4Rec), contrastive learning-based
methods (S3-Rec, CL4SRec, CoSeRec, ICLRec, DuoRec, MCLRec, ICSRec), and LLM-enhanced
methods (LRD, LLM-ESR).

• GRU4Rec [10] applies recurrent neural networks (RNN) to sequential recommendation.
• SASRec [12] is the first work to utilize the self-attention mechanism for sequential recommenda-

tion.
• BERT4Rec [27] employs the BERT [7] framework to capture the context information of user

behaviors.
• S3-Rec [46] leverages four self-supervised objectives to uncover the inherent correlations within

the data.
• CL4SRec [34] proposes three random augmentation operators to generate positive samples for

contrastive learning.
• CoSeRec [21] introduces two additional informative augmentation operators, building upon the

foundation of CL4SRec.
• ICLRec [3] clusters user interests into distinct categories and brings the representations of users

with similar interests closer together.
• DuoRec [24] combines a model-level dropout augmentation and a sampling strategy for choosing

hard positive samples.
• MCLRec [22] integrates CL4SRec’s random data augmentation for the input sequence and employs

MLP layers for model-level augmentation.
• ICSRec [23] is an improvement on ICLRec, further segmenting a user’s sequential behaviors into

multiple subsequences to generate finer-grained user intentions for contrastive learning.
• LRD [35] is an LLM-based method. It leverages LLMs to discover new relations between items

and reconstructs one item based on the relation and another item.
• RLMRec [25] utilizes LLMs to generate text profiles and combine their semantic embeddings

with recommendation models.
• LLM-ESR [20] is also an LLM-based method. It addresses the long-tail problem by simultaneously

leveraging collaborative signals and semantic information through the dual-view modeling and
self-distillation.

B.3 Implementation Details

All experiments are conducted with a single V100 GPU. The embedding size for all methods is set
to 64 for a fair comparison. We use a training batch size of 256 and employ the Adam optimizer

3https://www.yelp.com/dataset
4http://jmcauley.ucsd.edu/data/amazon/
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with a learning rate of 0.001. The dropout rate is set to 0.5 for both the embedding layer and the
hidden layers across all datasets. Following previous studies [35], we set the maximum sequence
length to 20 for all datasets. The early stopping is applied if the metrics on the validation set do
not improve over 10 consecutive epochs. Our method is model-agnostic and can be applied to any
sequential recommendation model. The transformer backbone mentioned in Sec. 2.2 comprises
two layers, each with two attention heads. For the LLM, we select DeepSeek-V3, a robust large
language model that demonstrates exceptional performance on both standard benchmarks and open-
ended generation evaluations. For detailed information about DeepSeek, please refer to their official
website5. Specifically, we utilize DeepSeek-V3 by invoking its API6. To reduce text randomness of
the LLM, we set the temperature τ to 0 and the top-p to 0.001. For the text embedding model M, we
use the pre-trained SimCSE-RoBERTa7 from Hugging Face. Identical settings are used for baselines
that involve LLMs and text embeddings to ensure fairness.

C Additional Results & Analysis

C.1 Discussion on Learnable Sample Synthesis

Inter-User Contrastive Learning. User preferences exhibit significant heterogeneity across individ-
uals. Sole reliance on hard rules, such as selecting a user from the current user’s dedicated candidate
pool as the positive sample, may yield suboptimal solutions. Our experiments (as shown in Table 2
“w/o learn.”) validated this. To enhance contrastive sample construction, we introduce a learnable
sample synthesizer that optimizes the contrastive sample generation process during model training
for inter-user contrastive learning.

Intra-User Contrastive Learning. Our preliminary experiments also explored the use of learnable
synthesizers (analogous to inter-contrastive learning approaches) for generating substitute items, yet
yielded no measurable performance improvements (shown in Table 4). Our analysis suggests this
results from the inherent nature of item semantics being more readily interpretable and quantifiable
than user preferences. Therefore, directly identifying appropriate substitutes from semantically
similar candidate pools is simpler and more reliable compared to matching users with analogous
preference patterns.

Table 4: Performance impact of learnable versus non-learnable sample synthesis strategies in intra-
user contrastive learning.

Yelp Sports Beauty Office

HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

Learnable 0.1276 0.0531 0.0825 0.0344 0.1309 0.0561 0.1706 0.0722
Unlearnable 0.1282 0.0533 0.0823 0.0347 0.1314 0.0568 0.1702 0.0725

C.2 Additional Comparison Results

We provide additional comparison results (HR@10 and NDCG@10) of different methods in Table 5.
The experimental results demonstrate that our method outperforms all baselines across all datasets,
further validating its superiority.

C.3 Additional Results for Hyperparameter Experiments

Due to space constraints, we only present HR@20 in Figure 4 of the main text for hyperparameter
study. Here, we additionally report the NDCG@20 evaluation results in Figure 7, providing comple-
mentary performance metrics for comprehensive analysis. As shown, the trend in NDCG@20 closely
aligns with that of HR@20.

5https://github.com/deepseek-ai/DeepSeek-V3
6https://api-docs.deepseek.com/
7https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
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Table 5: Additional comparison results for HR@10 and NDCG@10. Bold font indicates the best
performance, while underlined values represent the second-best. “ND” represents for “NDCG”. Our
method SRA-CL achieves state-of-the-art results among all methods, as confirmed by a paired t-test
with a significance level of 0.01.

Model Yelp Sports Beauty Office

HR@10 ND@10 HR@10 ND@10 HR@10 ND@10 HR@10 ND@10

GRU4Rec 0.0362 0.0173 0.0193 0.0096 0.0279 0.0137 0.0540 0.0260
SASRec 0.0572 0.0308 0.0304 0.0157 0.0612 0.0336 0.0791 0.0348
BERT4Rec 0.0582 0.0311 0.0349 0.0189 0.0628 0.0352 0.0821 0.0376

S3-Rec 0.0612 0.0339 0.0385 0.0204 0.0647 0.0327 0.0931 0.0426
CL4SRec 0.0583 0.0315 0.0358 0.0189 0.0649 0.0329 0.0695 0.0322
CoSeRec 0.0607 0.0309 0.0439 0.0244 0.0725 0.0410 0.0782 0.0412
ICLRec 0.0598 0.0328 0.0428 0.0235 0.0713 0.0396 0.0922 0.0411
DuoRec 0.0747 0.0380 0.0474 0.0242 0.0841 0.0443 0.1015 0.0519
MCLRec 0.0721 0.0378 0.0498 0.0257 0.0870 0.0442 0.1036 0.0538
ICSRec 0.0738 0.0380 0.0487 0.0243 0.0844 0.0437 0.1034 0.0540

LRD 0.0693 0.0357 0.0376 0.0191 0.0620 0.0294 0.0887 0.0431
RLMRec 0.0709 0.0371 0.0426 0.0238 0.0764 0.0439 0.0927 0.0496
LLM-ESR 0.0669 0.0353 0.0415 0.0221 0.0750 0.0435 0.0889 0.0468

SRA-CL 0.0817 0.0419 0.0539 0.0274 0.0924 0.0469 0.1111 0.0575

Improvement 9.37% 10.26% 8.23% 6.61% 6.21% 6.11% 7.24% 6.48%

Figure 7: Hyperparameter experiments on the weight of LCS (α), the weight of LIS (β), and the
number of retrieved users/items (k) (NDCG results).

D Other Discussions

D.1 Limitation

Considering computational budgets and resource limitations, we specifically analyzed how two
selected LLMs (DeepSeek and Qwen) affect our framework’s effectiveness. While more LLMs might
yield different results, our study focused on these representative models.

D.2 Broader Impacts

SRA-CL demonstrates significant improvements in sequential recommendation accuracy (positive
impact), with potential applicability to real-world platforms. Like all recommendation systems, its
personalized nature may occasionally limit content diversity, though this effect is inherent to the
recommendation paradigm rather than unique to our method.
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