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ABSTRACT

Stable tracking in both daytime and nighttime is essential for applying single ob-
ject tracking to real-world scenarios. Traditional daytime trackers mainly rely
on clear appearance features, which leads to significant performance degrada-
tion under nighttime conditions. Conversely, nighttime trackers often incorporate
low-light enhancement techniques to improve robustness but struggle to main-
tain comparable accuracy in daytime environments. To address this challenge,
we propose a novel framework, termed Visual Chain-of-Thought (VCoT), which
reformulates object tracking as a structured reasoning process. VCoT follows a
three-stage cognitive path of Observe—Recall-Infer—Memorize: it first observes
and extracts the appearance and motion features of the current frame; then re-
trieves and fuses relevant historical prompts from a memory pool via an atten-
tion mechanism to enable context-aware reasoning; and finally employs gradient-
based importance evaluation to update the memory by selectively retaining the
most valuable knowledge. This design allows the model to integrate real-time
observations with historical experiences, while achieving continual learning and
effective knowledge transfer across tasks. Extensive experiments on multiple
challenging benchmarks demonstrate that VCoT consistently outperforms exist-
ing methods under diverse illumination conditions. Codes will be available at
https://github.com/Gkk10/VCoT.

1 INTRODUCTION

Object tracking plays a vital role in applications such as search-and-rescue drones [Mishra et al.
(2020); [Martinez-Alpiste et al| (2021); |Abdelnabi & Rabadi| (2024), nighttime border patrol
Bhanuprakash et al.| (2025); [Sharma et al.| (2021)), and urban surveillance Mohanty et al.| (2025));
Abba et al.| (2024); [Liu et al.|(2021b). These tasks usually require tracking systems to maintain
stable and reliable perception across two drastically different lighting environments: daytime and
nighttime. For example, in earthquake rescue missions (Calamoneri et al| (2022); |Papyan et al.
(2024), drones need to continuously search suspicious areas across day and night; in nighttime se-
curity or border patrol tasks |Koslowski & Schulzke| (2018); [Misbah et al.| (2023), the system must
still accurately localize targets even under poor appearance visibility. If a system only works under
a single lighting condition, its practicality in real-world scenarios will be severely limited. There-
fore, developing a unified tracking mechanism with strong generalization across both daytime and
nighttime scenes has become a key step toward making visual tracking truly applicable in practice.

Existing object tracking algorithms often perform well under specific lighting conditions such as
daytime or nighttime. For example, ProContEXT |Lan et al.| (2023) achieves precise target local-
ization in daylight scenes with sufficient illumination and clear textures by relying on appearance
features. In contrast, DCPT Zhu et al|(2024a) improves tracking robustness in low-light environ-
ments by introducing the mechanism of darkness clue prompts. However, these methods are usually
designed exclusively for either daytime or nighttime scenarios: daytime trackers are typically effec-
tive only under bright conditions, while nighttime trackers are tailored to low-light settings. When
such single-condition methods are deployed in real-world applications that require continuous oper-
ation across day and night—such as search-and-rescue drones or surveillance systems—their perfor-
mance may degrade rapidly under unseen lighting conditions. This limitation significantly restricts
the reliability and practicality of these systems. These challenges highlight the necessity of design-
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ing a tracking mechanism that can maintain stable performance across both daytime and nighttime
environments.

From the perspective of human-like cognition, current mainstream tracking methods [Zhou et al.
(2020); [Voigtlaender et al.| (2020) face two major limitations. First, most approaches Bertinetto
et al. (2016); |L1 et al.| (2019a) focus only on single-frame information and lack the ability to model
temporal continuity. As a result, they struggle to reason about motion changes through multi-step
inference in the way humans do. Second, when leveraging historical information Danelljan et al.
(2019); [Bhat et al.| (2019), these models cannot selectively retain or flexibly transfer knowledge,
which makes it difficult for them to accumulate experience and adapt quickly when the environment
changes. In contrast, humans, when facing uncertain situations such as occlusion, blur, or incom-
plete information, typically observe the motion trend of the target, recall past experiences, infer
the potential position, and remember the most critical information. This process illustrates how hu-
mans integrate observations with memory, enabling them to accumulate knowledge while improving
perception across different scenarios and tasks.

Motivated by the success of the Chain-of-Thought (CoT) |Wei et al.| (2022) mechanism in large lan-
guage models for complex reasoning tasks, this paper introduces a Visual Chain-of-Thought (VCoT)
framework to enable unified cognitive reasoning across both daytime and nighttime tracking scenar-
ios. We further formulate day—night tracking as a continual learning problem, where the model must
adapt between tasks under different illumination conditions while avoiding the loss of previously
acquired knowledge. The overall architecture of VCoT is illustrated in Fig. [I VCoT unfolds along
a three-stage cognitive pathway of Observe—Recall-Infer—-Memorize: Observe: extract appearance
features from the current frame to encode the target’s visual state and motion trend, generating
observation prompts; Recall-Infer: use the current observation prompt as a query to retrieve and
integrate relevant historical knowledge from the prompt pool, producing context-aware reasoning
signals that guide Transformer sub-modules for structural modeling and decision making; Memo-
rize: apply gradient-based importance weighting to evaluate newly generated prompts, selectively
retaining the most representative knowledge to support accumulation and preservation across tasks.

The main contributions of this work are summarized as follows: 1) VCoT framework. We are the
first to introduce the concept of chain-of-thought reasoning into visual object tracking. By designing
a cognitive process of Observe—Recall-Infer—Memorize, our model can maintain effective feature
extraction and deliver stable tracking performance across both daytime and nighttime environments.
2) Prompt-based continual learning. We construct a prompt pool as a memory unit and employ
gradient-based importance weighting for selective updating, enabling dynamic adaptation to new
tasks while effectively alleviating catastrophic forgetting. 3) Extensive evaluation. Experiments
on multiple daytime and nighttime benchmarks demonstrate that VCoT achieves superior cross-
scenario generalization and overall performance compared to state-of-the-art methods.

2 RELATED WORKS

2.1 OBIECT TRACKING ACROSS DAYTIME AND NIGHTTIME SCENES

Maintaining stable tracking performance under varying illumination remains a long-standing chal-
lenge in single object tracking. Most existing methods [Held et al.| (2016); Bertinetto et al.| (2016)
rely heavily on appearance-based similarity learning. These approaches typically achieve strong re-
sults in daytime scenarios with good lighting and clear textures. For instance, representative trackers
such as OSTrack |Ye et al.| (2022a); (Chen et al.| (2024)) leverage rich visual appearance cues to de-
liver accurate performance on standard well-lit benchmarks. However, in nighttime or low-light
environments, image quality degrades severely, with blurred contours and missing texture infor-
mation, making appearance-driven trackers struggle to maintain robustness. To address this issue,
some studies |Li et al.| (2019b); [Luo et al.| (2025) introduce external prompts as complementary
signals. For example, DCPT |Zhu et al.| (2024a) incorporates darkness-related prompts to enhance
noise resistance in low-light conditions. Despite these efforts, such methods are often optimized
for a single illumination domain. When deployed in real-world applications like inspection drones
or surveillance systems that require continuous operation across both daytime and nighttime, their
performance typically drops significantly in non-target illumination scenarios.
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Figure 1: Schematic illustration of the overall VCoT framework. The current frame’s appearance
features and residual-based motion features are first extracted and fused. The fused features then
interact with historical prompts in the memory via a query function, enabling the “recall-infer”
process. The generated prompts are injected into the backbone, and finally, based on importance
weight estimation, selectively stored in the prompt pool.

2.2 CONTINUAL LEARNING IN VISION TASKS

The core problem that continual learning (CL) Rebutffi et al.|(2017)); Shin et al.| (2017)) aims to solve
is how to enable a model to continuously accumulate and transfer knowledge while adapting to new
tasks or environments, with minimal forgetting of previously learned information. In recent years,
researchers have explored several strategies for mitigating forgetting in tasks such as classification
and detection |Li & Hoiem|(2017);|Shmelkov et al.[(2017). These include using regularization tech-
niques to preserve prior knowledge and employing sample replay to reduce forgetting. However,
in the field of visual object tracking, related studies remain relatively limited. Existing trackers are
often tailored to a single task, and their performance tends to degrade significantly when the environ-
ment changes. Introducing continual learning into tracking Liu et al.| (2023b); |Choi et al.|(2022) not
only helps alleviate performance degradation when switching between daytime and nighttime tasks
but also provides new insights for addressing similar cross-domain challenges in future research.

2.3 INSPIRATION FROM PROMPT LEARNING AND CHAIN-OF-THOUGHT

Over the past few years, prompt learning and chain-of-thought (CoT) techniques have achieved re-
markable success in natural language processing Wei et al.| (2022)) and multimodal tasks |Liu et al.
(2023a). Prompt learning |Li & Liang| (2021)); [Liu et al.|(2021a)) guides models to adapt to different
task scenarios by embedding learnable prompt vectors into the current task. Chain-of-thought rea-
soning |Yao et al.| (2023)), on the other hand, tackles complex problems by decomposing them into
multiple steps, enabling models to gradually analyze and derive results in a step-by-step manner.
Some prior studies Wang et al.[(2022) have applied prompt mechanisms to continual learning, while
others [Hao et al.| (2024) have explored the use of CoT for handling complex scenarios. However,
most of these efforts remain limited to static image settings, lacking effective modeling of tempo-
ral dynamics and historical experience. Motivated by these insights, this work integrates prompt
learning with chain-of-thought reasoning and introduces a Visual Chain-of-Thought (VCoT) frame-
work. Furthermore, we incorporate continual learning into the design, allowing the model to adapt
to nighttime tasks while still retaining knowledge and performance on daytime tasks.

3 METHOD

3.1 VISUAL PROMPT GENERATOR

This paper introduces the Visual Chain-of-Thought (VCoT) framework, which draws inspiration
from human cognitive processes to achieve unified target modeling and reasoning across both
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Figure 2: The Prompt Generation and Fusion Process: First, the current task prompts are extracted
from the appearance and motion features. Then, they are used as queries to perform attentional
fusion with the historical memory prompts (keys/values), resulting in enhanced prompt information.

daytime and nighttime environments. VCoT formulates tracking as a cognitive cycle of “Ob-
serve—Recall &Infer-Memorize”. Unlike conventional trackers that rely solely on the current frame,
VCoT actively leverages motion cues and historical experiences to compensate for degraded ap-
pearance information in nighttime scenarios, while its dynamic memory update mechanism sup-
ports continual learning. This enables the model to maintain stable performance across different
illumination domains. the prompt generation and fusion process is illustrated in Fig. Specif-
ically, appearance features are first encoded through a linear transformation, and motion features
are extracted by computing residuals between the current frame and the previous k frames. These
appearance and motion representations are then concatenated along the sequence dimension and fed
into a Transformer encoder, where their relationships are jointly modeled to produce fused prompt
vectors. This process can be expressed as:

p:pp = WappZt,
mot MLP(Z‘t — Tt— 1)
= TransEnc([p{™, pP']) € R'*P,

where, x; denotes the feature vector of the current frame, while x;_j, represents the feature vector
from the previous k frames. The terms p;*” and p™ correspond to the appearance prompt and
the motion prompt, respectively, and p; denotes the fused prompt representation. D is the feature
dimension. The generated prompt vectors are stored in a prompt pool, which serves as a memory
buffer to maintain previously generated prompts. In this way, when new prompts are created, the
model can refer to past information and integrate prior experience into the current task as guidance.
This process can be formulated as follows:

M(Q, K, V) = Concat(head, . . ., head, ) W©,

Q K\T
head; = softmax M vwyY,
Vd

where @ isp;, K and V is the historical memory, and WiQ, WHE WY are learnable projection ma-
trices. This process enables the model to aggregate contextual information across time and generate
updated prompts. The linear layer projects them into a fixed-length prompt sequence P, € RL*P,
The prompt is then expanded along the batch dimension and concatenated to the front of the main
input token sequence:

x; =[P x,).

3.2 PROMPT MEMORY AND IMPORTANCE EVALUATION

Traditional object tracking algorithms typically rely on modeling the current target, while overlook-
ing the role of historical experience in assisting the ongoing tracking task. Prior studies |Cai et al.
(2024) have shown that accumulating historical knowledge can not only improve recognition perfor-
mance but also help mitigate catastrophic forgetting. This aligns with the goal of day—night tracking,
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where the objective is to fully leverage complementary information from both daytime and nighttime
while avoiding the loss of nighttime knowledge during training. To this end, we maintain a prompt
memory module that stores previously generated prompts. When a new prompt is generated, the
system determines whether it should be added to memory. Since storage capacity is limited, it is
impossible to retain all prompts, making it essential to establish a mechanism for selecting the most
valuable ones. We propose a gradient-guided prompt scoring mechanism to evaluate the contribu-
tion of each prompt to the reduction of the loss function during model updates. Unlike traditional
similarity-based metrics, our method dynamically prioritizes memory retention based on the verified
utility of prompts, thereby improving both knowledge consolidation and evolution. The core idea is
intuitive: if a prompt has a stronger influence on the loss reduction during training, it is more valu-
able to retain. Let P, € RY*P denote the prompt sequence at time step . During backpropagation,
we compute the gradient V p, £ with respect to each token in the sequence. The sensitivity score is
obtained by averaging the ¢5-norm of the gradients across all tokens:

L
1
gt = T Z var,,lﬁ”%
=1

which reflects the overall sensitivity of the prompt to parameter updates in a single optimization
step. To suppress noise fluctuations and ensure stable scoring, we apply a sliding window of size K
to smooth the sensitivity values. The final importance score is then defined as the average over the
most recent K steps:

1 K
k
St:?Egt()

k=1

After computing s;, each prompt is assigned an importance score and stored in the prompt mem-
ory. To prevent unbounded growth, the memory retains only the top-M prompts with the highest
importance scores at any given time.

3.3 CONTINUAL LEARNING MODELING

For a tracker to adapt robustly across day and night conditions, it must maintain stable percep-
tion under varying illumination. Addressing the plasticity—stability dilemma in continual learning
is therefore critical. If the model relies solely on the features of the current task without retaining
past knowledge, new training will inevitably overwrite previous representations, leading to severe
forgetting. To alleviate this, we introduce a memory mechanism that supports selective storage and
updating of prompts across tasks. Prompts serve both as contextual cues for the current task and as
transferable knowledge units that accumulate experience over time. This allows the model to con-
tinually leverage prior knowledge while adapting to new environments, thus achieving cross-task
consistency and stability. Specifically, when encountering new tasks, the model evaluates the impor-
tance of newly generated prompts and updates the memory pool accordingly. The retained prompts
can then be recalled and fused with current observations, enabling knowledge transfer between day
and night domains. Formally, let P; denote the prompt at time ¢ and s(P;) its gradient-based impor-
tance score. The memory update rule is:

My = Topy, (M, U{(Pr, s(P1))}),

where Top;, selects the top-M prompts with the highest importance scores.

At inference, the current observation o; (encoded from external inputs) is used as the query, while
prompts in the memory serve as keys and values. A multi-head attention module retrieves and
integrates the most relevant historical prompts with the current observation:

1t = MHA(Q = ot, K = Risi, V = Phig),

where P, denotes the set of prompts stored in memory. In this design, gradient sensitivity governs
memory writing and updating, while attention drives memory retrieval and fusion. This comple-
mentary mechanism allows the tracker to accumulate knowledge incrementally while maintaining
stability, ensuring robust adaptation across day and night tasks.
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Figure 3: Overall performance of VCoT and other SOTA trackers (DropTrack Durve et al.| (2022),
ROMTrack [Cai et al.| (2023, SeqTrack [Chen et al.| (2023), OSTrack [Ye et al|(2022a), GRM [Gao
(2023)), STARK [Yan et al] (2021)), ZoomTrack [Kou et al.|(2023)), SimTrack (Chen et al] (2022),

STRCF (2018), CSWinTT (2022), ARCF Huang et al| (2019b), UDAT
(2022c) ) on LLOT. View enlarged image for clarity.
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Figure 4: Visual comparison between our tracker and three SOTA methods on LaSOT and LLOT
benchmarks.

4 EXPERIMENTS

We treat daytime and nighttime tracking as two sequential tasks in a continual learning setting.
For training, we construct task-specific datasets under two illumination conditions. The daytime
task integrates LaSOT [Fan et al| (2019), GOT-10k [Huang et al.| (2019a), COCO (2014),
and TrackingNet Muller et al.| (2018) to cover diverse daytime scenarios, while the nighttime task
leverages BDD100K-Night Yu et al.| (2020) and SHIFT-Night Sun et al.|(2022), which contain low-
light conditions. For evaluation, DTB70 (2017), VisDrone2018 (2018),
UAVDT (2018), and OTB100(Wu et al.| are used as benchmarks for daytime tasks,
whereas UAVDark135 |Li et al] (2022), NAT2024-1 (2024a)), DarkTrack2021
(2022b)), and LLOT [Zhong et al|(2024) are employed for nighttime tasks. To further validate the
generalization ability of our method, we additionally conduct large-scale experiments on GOT-10k
Huang et al (20194) and TrackingNet [Muller et al| (2018). Performance is evaluated following
standard single-object tracking protocols, using Area Under the Curve (AUC), Precision (P), and
Normalized Precision (P,orm) as the main metrics. To ensure fair comparisons, strong baselines
such as ODTrack, HIPTrack, and AQATrack are retrained on the same datasets using their official
default settings before testing on nighttime benchmarks.
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4.1 IMPLEMENTATION DETAILS

We adopt HiViT-Base as the backbone network, with input sizes of 224 x 224 for the search region
and 112 x 112 for the template region. The model is trained using the AdamW optimizer|Loshchilov
& Hutter|(2017) for 300 epochs with a batch size of 16. The initial learning rate is set to 1 x 10~* and
the weight decay to 1 x 10~%. Each epoch contains approximately 60,000 image pairs. To stabilize
training, the learning rate is reduced to 1 x 107> after 250 epochs. All experiments are conducted
on a workstation equipped with an Intel i19-10850K CPU, 16 GB of memory, and an NVIDIA Titan
X GPU.

Table 1: Comparison of tracking performance on nighttime datasets. The top three results are high-
lighted in red, blue, and green.

UAVDark135 NAT2024-1 DarkTrack2021

Method Source AUC P  Pyom AUC P Pyom AUC P Pyom
UniTrack (Ours) - 686 826 839 733 945 90.7 626 742 750
MambalL.CT |Li et al. (2025) AAAI2025 644 779 80.6 60.8 85.8 61.5 744 751
ODTrack [Zheng et al./(2024) AAAI2024 89.6

HIPTrack |Cai et al.| (2024) CVPR2024 59.7 720 70.0 694 884 841 57.1 685 68.7
EVPTtrack |Shi et al[(2024) AAAI2024 58.1 69.2 70.5 650 837 78.1 537 648 64.7
AQATrack [Xieetal.|[(2024) CVPR2024 582 69.2 70.7 642 821 77.1 550 66.1 66.8
SAM-DA [Fu et al.[(2024b) ICARM24 47.6 604 594 534 753 649 447 555 546
DCPT |Zhu et al.|(2024b) ICRA2024 56.7 69.2 69.8 62.1 809 754 540 667 64.6
AVTrack |Li et al.| (2024) ICML2024 47.6 58.6 592 567 68.2 753 46.1 551 549
LiteTrack |Wei et al.[(2024) CVPR2024 539 63.6 659 618 79.7 741 528 635 628

Table 2: Comparison of tracking performance on daytime datasets. The top three results are high-
lighted in red, blue, and green.

DTB70 VisDrone2018 UAVDT

Method Source AUC P  Pyom AUC P Pyom AUC P Pyom
UniTrack (Ours) - 70.1 90.7 853 70.6 90.0 868 67.2 888 77.6
Mambal.CT |Li et al. (2025)  AAAI2025 65.4 88.1 63.6 844 758
ODTrack [Zheng et al./(2024) AAAI2024 70.0 90.0 86.1 647 856 83.1 638 858 747
HIPTrack |Cai et al.| (2024) CVPR2024 686 812 762 67.1 867 839 609 812 762
EVPTtrack |Shietal|(2024) AAAI2024 66.6 86.7 81.7 666 87.0 826 602 800 713
AQATrack Xie et al.[(2024) CVPR2024 66.1 86.3 80.7 89.8

SAM-DA [Fu et al.[(2024b) ICARM24 630 822 763 531 714 670 613 826 733
DCPT |Zhu et al.|(2024b) ICRA2024 64.6 837 77.6 642 831 797 569 768 66.0
AVTrack [Li et al.|(2024) ICML2024 65.0 843 800 642 84.8 803 587 821 68.6
LiteTrack |Wei et al.|(2024) CVPR2024 64.7 835 776 61.8 798 757 62.1 843 71.6

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Comparison On nighttime benchmarks, our method demonstrates clear perfor-
mance advantages. As shown in Table [T] and Fig. 3] VCoT achieves 68.61% AUC and 82.69%
P on UAVDark135, outperforming all competing state-of-the-art methods. On Nat2024-1, VCoT
ranks first with 73.33% AUC, and 94.57% P, highlighting its robustness to appearance degradation
under low-light conditions. Furthermore, on two particularly challenging datasets, DarkTrack2021
and LLOT, our method consistently maintains leading results across all three metrics, validating the
stability and generalization ability of VCoT under diverse illumination scenarios.

On daytime benchmarks, VCoT likewise surpasses existing SOTA trackers. As presented in Table[2]
on DTB70, our method achieves 70.13% AUC and 90.75% P. On OTB100, it further obtains 71.76%
AUC, achieving the best overall tracking performance. On UAVDT, VCoT delivers significant im-
provements with 67.25% AUC and 88.81% P, reflecting strong adaptability to complex real-world
conditions. On VisDrone2018, it reaches 70.64% AUC, 90.02% P, and 86.84% Pp oy, outperform-
ing all competitors and confirming its effectiveness under scale variation and motion blur. VCoT
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Table 3: Performance comparison on Track-  Table 4: Performance comparison on GOT-10K

ingNet dataset. dataset.

Method AUC P PNorm Method AO SR0‘5 SR0_75
UniTrack (Ours) 85.02 84.60  89.52 UniTrack(Ours) 77.10  87.01 76.70
ManBaLCT 84.30 Mambal.CT 74.80 72.10
HIPTrack 83.80 89.10 HIPTrack 77.40  88.70  74.50
LoRAT 83.50 82.10 87.90 LoRAT 72.10 81.80  70.70
ARTrackV?2 84.90 84.50 89.30 ARTrackV2 72.70
EVPTtrack 83.50 - 88.30 EVPTrack 73.30  83.60  70.70
AQATrack 83.80 83.10 88.60 AQATrack 73.80 83.20
LiteTrack 80.80 78.20 85.70 LiteTrack 68.70 7820  64.20
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Figure 5: Performance Comparison Across OTB100 Challenge Attributes.

demonstrates remarkable performance in the OTB100 radar chart (Fig. [5), exhibiting outstanding
advantages in handling core challenges such as partial occlusion and motion blur.

To further verify generalization and scalability, we conduct experiments on two large-scale datasets,
GOT-10k and TrackingNet. As reported in Table[3]and[d] VCoT consistently achieves strong results.
On GOT-10k, it achieves higher AO and SR compared to MambaLLCT and LoRAT [Lin et al.[(2024).
On TrackingNet, it surpasses HIPTrack and ARTrackV2|Bai et al.|(2024)) across AUC, P, and Py oym,
demonstrating robust generalization in large-scale real-world scenarios.

Qualitative Comparison To further validate the effectiveness of the proposed method under vary-
ing illumination conditions, we conduct qualitative comparisons with representative state-of-the-art
trackers across diverse day and night scenarios, as illustrated in Fig. [ In daytime scenes (first
and second rows), mainstream methods such as HIPTrack, MambaLLCT, and ODTrack perform rea-
sonably well when the target appearance is clear. However, they often suffer from boundary shifts
or target loss under strong illumination or background distractions. In contrast, our method con-
sistently maintains accurate boundary alignment, leading to more stable and precise tracking. In
nighttime scenarios (third and fourth rows), low illumination and noise pose significant challenges,
where existing methods commonly exhibit bounding box drift or incorrect matches. For example,
HIPTrack tends to drift under weak illumination, MambaLLCT struggles when the contrast between
target and background is low, and ODTrack fails to capture the target under complex lighting con-
ditions. By leveraging the proposed Visual Chain-of-Thought reasoning mechanism to effectively
integrate historical memory, our method is able to robustly localize the target even in extremely poor
illumination and heavy occlusion cases.
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Table 5: Stepwise Ablation Results of VCoT Components on LLOT and DTB70. O, R, and M
correspond to the Observe, Recall-Infer, and Memorize stages in our VCoT framework.

Method LLOT DTB70
Succ. Prec. Succ. Prec.
Baseline 55.88 6290 67.85 87.39
Baseline+O 5752 63.85 68.72 89.02
Baseline+O+R 5847 6491 69.20 88.90

Baselinee+O+R+M  59.38 6542 70.13 90.75

Table 6: Ablation study on continual learning Table 7: Ablation study on the role of the histori-

ability in LaSOT benchmark. cal prompt pool on DTB70 dataset.
Train Data Method  Succ.  Prec. Method Succ.  Prec.
Daytime only baseline 70.99 77.04 Baseline 67.85 87.39
Daytime+Nighttime  baseline 67.49  72.71 Baseline+Prompt  68.15  87.24
Daytime +Nighttime  VCoT 72.74 78.87 VCoT 70.13  90.75

4.3 ABLATION STUDY

Stepwise Ablation of VCoT Components. As shown in Table [5] We first evaluate the indepen-
dent contributions of the three stages: Observe (O), Recall-Infer (R), and Memorize (M) on the
LLOT and DTB70 datasets. The baseline model (B) achieves only 55.88%/62.9% success and pre-
cision on LLOT. Adding the Observe module (B+O), then the Recall-Infer stage (B+O+R), and
finally the full three-stage pipeline (B+O+R+M), the performance improves step by step, reaching
59.38%/65.42% on LLOT. On DTB70, the complete model achieves 70.13% success and 90.75%
precision, surpassing the baseline by 2.28% and 3.36%, respectively. Each stage proves useful, and
Memorize especially strengthens stability across day and night.

Continual Learning Capability. As presented in Table [6] To evaluate the model’s continual
learning ability under day-to-night task switching, we conduct staged training experiments on La-
SOT. When trained only on daytime data, the model achieves 70.99%/77.04% in success and preci-
sion. However, when subsequently trained on nighttime data without an effective cross-task memory
mechanism, the performance drops to 67.49%/72.71%, indicating clear forgetting. In contrast, with
our proposed continual learning scheme, the model is able to retain both daytime and nighttime
knowledge, achieving 72.74%/78.87%.

Effect of the Historical Prompt Pool.  As illustrated in Table[7] We further evaluate the impact of
the historical prompt pool on model performance. As shown in the experiments, when relying only
on the current frame’s appearance and motion prompts (B), the model achieves 67.85%/87.39%
in success and precision on DTB70. Simply introducing prompts without retaining historical
memory (B+Prompt) yields little improvement. In contrast, the full method, which leverages the
prompt pool to accumulate and selectively retain historical information, improves performance to
70.13%/90.75%. This result underscores the prompt pool’s role in knowledge selection and transfer.

5 CONCLUSION

This study is the first to introduce continual learning and the Chain-of-Thought (CoT) reasoning
mechanism into visual object tracking. We propose a novel framework, termed Visual Chain-of-
Thought (VCoT), which models the human cognitive process of “observe-recall-infer-memorize.”
By effectively integrating real-time observations with historical experience, VCoT maintains sta-
ble and accurate tracking performance across both daytime and nighttime scenarios. Furthermore,
we design a continual learning mechanism that employs gradient-guided importance evaluation to
update and retain critical historical information, enabling the model to adapt to new tasks while al-
leviating the common problem of catastrophic forgetting. Extensive experiments demonstrate that
VCoT consistently outperforms current state-of-the-art methods in overall performance.
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