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ABSTRACT

Information seeking and integration is a complex cognitive task that consumes
enormous time and effort. Search engines reshape the way of seeking information
but often fail to align with complex human intentions. Inspired by the remarkable
progress of Large Language Models (LLMs), recent works attempt to solve the
information-seeking and integration task by combining LLMs and search engines.
However, these methods still obtain unsatisfying performance due to three chal-
lenges: (1) complex requests often cannot be accurately and completely retrieved
by the search engine once; (2) corresponding information to be integrated is spread
over multiple web pages along with massive noise; and (3) a large number of
web pages with long contents may quickly exceed the maximum context length
of LLMs. Inspired by the cognitive process when humans solve these problems,
we introduce MindSearch (思·索) to mimic the human minds in web informa-
tion seeking and integration, which can be instantiated by a simple yet effective
LLM-based multi-agent framework consisting of a WebPlanner and WebSearcher.
The WebPlanner models the human mind of multi-step information seeking as a
dynamic graph construction process: it decomposes the user query into atomic
sub-questions as nodes in the graph and progressively extends the graph based on
the search result from WebSearcher. Tasked with each sub-question, WebSearcher
performs hierarchical information retrieval with search engines and collects valu-
able information for WebPlanner. The multi-agent design of MindSearch enables
the whole framework to seek and integrate information parallelly from larger-
scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours
of human effort. Based on either GPT-4o or InternLM2.5-7B models, Mind-
Search demonstrates significant improvement in the response quality in terms of
depth and breadth, on both closed-set and open-set QA problems. Besides, re-
sponses from MindSearch based on InternLM2.5-7B are preferable by humans
to ChatGPT-Web (by GPT-4o) and Perplexity.ai applications, which implies that
MindSearch with open-source models can already deliver a competitive solution
to the proprietary AI search engine. Code and models will be available.

1 INTRODUCTION

Information seeking and integration is a necessary cognitive process before analysis and decision-
making in all walks of life, which usually consumes enormous human efforts and time. The birth
of search engines (Brin & Page, 1998; Berkhin, 2005) significantly has reshaped and eased the
information-seeking process of human society, however, it still suffers in integrating web informa-
tion based on complex human intentions. Recently, Large Language Models (LLMs) have show-
cased remarkable progress in reasoning, language understanding, and information integration across
a variety of domains (Achiam et al., 2023; Team et al., 2024; Touvron et al., 2023; Cai et al., 2024),
whereas they struggling to deliver accurate knowledge in responses (Ji et al., 2023; Gu et al., 2024).

The complementary advantages of LLMs and search engines highlights a compelling opportunity
for their combination, where the reasoning prowess of LLMs can be complemented by the exten-
sive web information accessible via search engines, potentially revolutionizing the solution of web
information seeking and integration. Previous works (Asai et al., 2023; Chan et al., 2024) simply
treat the information seeking and integration task as a vanilla retrieve-augmented generation (RAG)
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Figure 1: The overall framework of MindSearch. It consists of two main ingredients: WebPlanner
and WebSearcher. WebPlanner acts as a high-level planner, orchestrating the reasoning steps and
multiple WebSearchers. WebSearcher conducts fine-grained web searches and summarizes valuable
information back to the planner, formalizing a simple yet effective multi-agent framework.

task (Chen et al., 2017; Lin et al., 2023). Such a formulation, although straightforward, often re-
sults in sub-optimal performance due to a superficial engagement with the depth and complexity of
web-based information retrieval, facing three major challenges for more complex user queries:

(1) Real-world problems often require in-depth analysis and proper decomposition of the question
before retrieving the related information, which cannot be done by retrieving web pages at once.
(2) The overwhelming volume of searched web pages and massive information noise pose great
challenges for LLMs for efficient information integration.
(3) The rapid proliferation of web search content can quickly exceed the maximum context length
of LLMs, which further decreases the information integration performance.

Inspired by how human experts solve real-world problems, we propose MindSearch思·索1, a sim-
ple yet effective LLM-based multi-agent framework, which consists of a WebPlanner (mimic human
minds for problem reasoning) and multiple WebSearcher (manage the information seeking process).
Given a user query, the WebPlanner first decomposes the query into multiple atomic sub-questions
that can be parallelly solved and dispatches them to the respective WebSearcher. To further enhance
the reasoning ability, WebPlanner models the complex problem-solving process as an iterative graph
construction: by predefining a list of standard code interfaces related to the construction of the topo-
logical mind graph, WebPlanner is able to progressively decompose the question into sequential/-
parallel sub-problems by adding nodes/edges in the graph via Python code generation. Meanwhile,
the WebSearcher, tasked with each sub-problem, employs a hierarchical retrieval process to extract
valuable data for LLMs, which significantly improves the information aggregation efficiency fac-
ing massive search pages. By distributing different aspects of the reasoning and retrieval process
to specialized agents, MindSearch effectively reduces the load on each single agent, facilitating a
more robust handling of long contexts. It seamlessly bridges the gap between the raw data retrieval
capabilities of search engines and the context-understanding power of LLMs.

1The Chinese name ‘思·索’ means thinking as human and exploring by searching
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Figure 2: A concrete example of how WebPlanner addresses the question step by step via
planning as coding. During each turn, WebPlanner outputs a series of thoughts along with the
generated code. The code will be executed and yield the search results to the planner. At the last
turn, the WebPlanner directly provides the final response without any code generation.

To validate the effectiveness of MindSearch, we conducted extensive evaluations on both closed-set
and open-set question-answering (QA) problems using GPT-4o and InternLM2.5-7B-Chat mod-
els. The experimental results demonstrate a substantial improvement in response quality, both in
the dimensions of depth and breadth. Moreover, comparative analysis shows that the responses
of MindSearch are more preferred by human evaluators over those from existing applications like
ChatGPT-Web (based on GPT-4o) and Perplexity Pro. These findings suggest that MindSearch with
open-source LLMs can offer a highly competitive solution for AI-driven search engines.

2 MINDSEARCH

To effectively synergize the web information retrieval capabilities of search engines and the reason-
ing and information integration capability of LLMs, MindSearch consists of a WebPlanner and a
group of WebSearchers (Fig. 1). WebPlanner first decomposes the user question into sequential or
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parallel search tasks via reasoning on the graph and determines the next step based on the search
feedback (Sec. 2.1). WebSearcher is tasked with the query and performs hierarchical information
retrieval on the Internet to answer sub-questions (Sec. 2.2). We also discuss the context management
within the scope of the multi-agent design in Sec. 2.3.

2.1 WEBPLANNER: PLANNING VIA GRAPH CONSTRUCTION

The WebPlanner functions as a high-level planner, orchestrating the reasoning steps and coordinat-
ing other agents. However, we observed that merely prompting the LLM to plan the entire data
workflow architecture does not yield satisfactory performance. Specifically, current LLMs struggle
with decomposing complex questions and understanding their topological relationships, leading to
coarse-grained search queries. This approach underutilizes the potential of LLMs to serve as in-
termediaries between humans and search engines, transforming human intentions into step-by-step
search tasks and delivering accurate responses.

To enhance the capability of LLM in addressing complex questions, we model the problem-solving
process as a directed acyclic graph (DAG). Given a user question Q, the solution trajectory is rep-
resented as G(Q) = ⟨V,E⟩, where V is a set of nodes v, each representing an independent web
search, including an auxiliary START node (the initial question) and an END node (the final an-
swer). E represents directed edges indicating the reasoning topological relationships between nodes
(search contents). This DAG formalism captures the complexity of finding the optimal execution
path, providing a more formal and intuitive representation for LLMs.

Leveraging the superior performance of current LLMs on code tasks (Guo et al., 2024; Roziere et al.,
2023), we explicitly prompt the model to interact with the graph through code writing. To achieve
this, we predefined atomic code functions to add nodes or edges to the graph (Step 1 and 2 in Figure
2). At each turn, the LLM first reads the entire dialogue, including previously generated code and
web search results, then outputs thoughts and new code for reasoning on the mind graph, which is
executed with a Python interpreter. During execution, once a node is added to the reasoning graph,
it invokes a WebSearcher to execute the search process and summarize the information. Since the
newly added nodes are only dependent on nodes generated in previous steps, we can parallel them to
achieve a much faster information aggregation speed. When all information is collected, the planner
produces the final response by adding the end node (Step 3 in Figure 2).

By integrating with the Python interpreter, WebPlanner interacts with the graph through unified
code actions, dynamically constructing the reasoning path. This ”code as planning” process enables
the LLM to fully leverage its superior code generation ability, benefiting control and data flow in
long-context scenarios and leading to better performance in solving complex problems.

2.2 WEBSEARCHER: WEB BROWSING WITH HIERARCHICAL RETRIEVAL

WebSearcher acts as a sophisticated RAG (Retrieve-and-Generate) agent with internet access, sum-
marizing valuable responses based on search results (Figure 3). Due to the massive content available
on the web, it is challenging for LLMs to process all related pages within a limited context length
(e.g. 8K tokens). To address this, we employ a straightforward coarse-to-fine selection strategy.
Initially, the LLM generates several similar queries based on the assigned questions from the Web-
Planner to broaden the search content and thus improve the recall of relevant information. These
queries are then executed through various search APIs, such as Google, Bing, and DuckDuckGo,
which return key contents including web URLs, titles, and summaries. The search results are au-
tomatically merged based on the web URLs, and the LLM is prompted to select the most valuable
pages for detailed reading. The full content of the selected web URLs is then added to the input
of LLM. After reading these results, the LLM generates a response to answer the original question
based on the search results. This hierarchical retrieval approach significantly reduces the difficulty
of navigating massive web pages and allows to efficiently extract highly relevant information with
in-depth details.

2.3 LLM CONTEXT MANAGEMENT IN MINDSEARCH

MindSearch provides a simple multi-agent solution to complex information seeking and integra-
tion with search engines. Such a paradigm also naturally enables long-context management among
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Figure 3: A detailed working pipeline of WebSearcher. It comprises at most 4 steps: query
rewrite, search content aggregation, detailed page selection, and final summarization.

different agents, which improves the overall efficiency of the framework, especially under circum-
stances that require the model to quickly read plenty of web pages. Since the WebPlanner dis-
tributes the search tasks into separate search agents and only relies on the searched results from
WebSearcher, WebPlanner can purely focus on the decomposition and analysis of the user question
without being distracted by the over-length web search results. Meanwhile, each WebSearcher only
needs to search contents for its tasked sub-query, without distraction from other contents. Thanks
to the explicit role distribution, MindSearch greatly reduces context computation during the whole
process, delivering an efficient context management solution to long-context tasks for LLM. Such
a multi-agent framework also provides a straightforward and simple long-context task construction
pipeline for training single LLMs, which is also observed in (Team, 2024). Eventually, MindSearch
collects and integrates related information from more than 300 pages in less than 3 minute, which
could take human experts about 3 hours to finish a similar cognitive workload.

Due to the explicit context state transfer across multiple agents, we need to carefully handle the
context during the whole workflow. We empirically find simply focusing the decomposed query
from the Planner may lose useful information during the information collection phase due to the local
receptive field inside the search agent. How to effectively handle the context between multiple agents
is non-trivial. We find that the constructed topological relations through the directed graph edges
help us easily handle the context across different agents. More specifically, we simply prefix the
response from its father node as well as the root node when executing each search agent. Therefore,
each WebSearcher can effectively focus on its sub-task without losing the previous related context
as well as the final goal.

3 EXPERIMENTS

We evaluate MindSearch on two primary categories of Question Answering (QA) tasks: closed-set
QA and open-set QA, which reflects both the subjective and objective judgment of MindSearch. For
a fair comparison, all models only have access to the Internet through BING search API, and no
extra reference sources are considered.

3.1 OPEN-SET QA

3.1.1 IMPLEMENTATION DETAILS

To better gauge the utility and search performance, we carefully curate 100 real-world human queries
and collect responses from MindSearch (InternLM2.5-7b-chat (Cai et al., 2024)), Perplexity.ai (its
Pro version), and ChatGPT with search plugin (Achiam et al., 2023). We ask five human experts to
manually select their preferred responses, in terms of the following three aspects:

• Depth: Depth refers to the thoroughness and profundity of an answer. A response with
depth provides detailed information and delves into the intricacies of a question.

• Breadth: Breadth pertains to the scope and diversity covered by an answer. A response
with breadth touches on various aspects of the question or multiple related fields, offering
different perspectives or solutions.

• Factuality: Factuality is the degree to which an answer is accurate and fact-based. It should
be grounded in reliable data and information, avoiding errors or misleading content, and
ensuring the truthfulness and credibility of the information provided.
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Figure 4: Subjective evaluation results judged by human experts on open-set QA questions.
MindSearch outperforms ChatGPT-Web and Perplexity.ai Pro by a large margin in terms of depth,
breadth, and facticity.

Figure 5: Solution trajectory comparison between MindSearch and Perplexity.ai (Pro) on the
same question. MindSearch provides more detailed and proper responses thanks to its fine-grained
searches.

The final results are determined based on major votes. During the evaluation, the correspondence
between the response and its method is invisible to the evaluators to guarantee fairness.

3.1.2 RESULTS AND ANALYSIS

The evaluation results are depicted in Figure 4 and we also provide quantitative results in Figure 5.
From Figure 4, we can observe an absolute improvement in terms of the depth and breadth of the
model response, which validates the superiority of our proposed WebPlanner. By integrating code
into the DAG construction phase, LLM is able to progressively decompose the complex problem into
executable queries while balancing the tradeoff between time efficiency and the exploration of the
search space. Besides, MindSearch goes through more fine-grained search topics about the question,
therefore providing more compact and detailed responses compared to other models. However,
MindSearch does not yield much better performance in terms of facticity, compared to breadth (70%
vs 83%). We suspect that more detailed search results may distract the concentration of the model
on the initial problem, especially when LLM holds incomplete long-context capability. Therefore, a
natural future work of MindSearch is to alleviate the hallucination issues during the web browsing
process.

In addition to quantitative results, we also provide a qualitative response comparison between Per-
plexity.ai (Pro) and MindSearch to deliver an intuitive understanding of their performance. From
Figure 5, we can observe that MindSearch yields more concrete and detailed responses. We empir-
ically find that our better responses can be attributed to the proper planning search paths compared
to Perplexity.ai, which also indicates that how to decompose the human intention is the key step to
the final problem.
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Table 1: Performance comparison on various closed-set QA tasks. We select two representative
LLMs: GPT-4o (close-sourced) and InternLM2.5-7b-chat (open-sourced).

Model Bamboogle Musique HotpotQA AVG
2-hop 3-hop 4-hop Easy Medium Hard

Closed-Souced LLM (GPT-4o)

w/o Search Engine 70.4 54.0 22.0 20.0 73.0 69.0 66.0 53.5
ReAct Search 75.2 48.0 25.0 13.3 81.0 73.0 70.0 55.1
MindSearch 76.8 60.0 35.0 14.6 80.0 74.0 78.0 59.8

Open-Sourced LLM (InternLM2.5-7b-chat)

w/o Search Engine 34.0 28.0 10.0 17.3 47.0 26.0 40.0 28.9
ReAct Search 55.2 38.0 17.0 16.0 69.0 56.0 49.0 42.9
MindSearch 67.8 46.0 20.0 18.6 69.0 66.0 57.0 49.2

3.2 CLOSED-SET QA

3.2.1 IMPLEMENTATION DETAILS

We extensively evaluate our approach on a wide range of closed-set QA tasks, including Bamboogle
(Press et al., 2022), Musique (Trivedi et al., 2022), and HotpotQA (Yang et al., 2018). To further
validate the generalization of our approach, we select both closed-source LLM (GPT-4o) and open-
source LLM (InternLM2.5-7b-chat) as our LLM backend. Since our approach adopts a zero-shot
experimental setting, we utilize a subjective LLM evaluator (GPT4-o) to gauge the correctness of
HotpotQA.

3.2.2 RESULTS AND ANALYSIS

In Table 1, we compare our approach with two straight-forward baselines: raw LLM without search
engines (w/o Search Engine), and simply treating search engines as an external tool and adopting
a ReAct-style interaction (ReAct Search). We can conclude that MindSearch significantly outper-
forms its vanilla baselines by a large margin (4.7% on GPT-4o and 6.3% on InternLM2-7b), vali-
dating the effectiveness of the proposed method. These advantages are amplified when transferring
from closed-sourced LLMs to open-sourced LLMs, which further proves that MindSeach provides a
simple approach to enhance weak LLMs with broader knowledge and alleviate hallucination issues.
When taking a closer look at the difficulty level of HotpotQA, we observe that most improvements
are derived from the hard set, which also indicates that MindSearch are more adept at solving com-
plex questions compared to other approaches.

3.3 ABLATION STUDIES

In this section, we conduct detailed ablation studies aiming to gain a deeper understanding of our
approach. Without loss of generality, all experiments are conducted with InternLM2.5-7b-chat on
HotpotQA if not specified.

3.3.1 ABLATIONS ON WEBPLANNER

To validate the efficiency of our proposed WebPlanner, we compare our graph-based code planning
strategy with its two vanilla baselines, namely ReAct (Yao et al., 2022b), and CodeAct (Wang et al.,
2024). For ReAct, we prompt the WebPlanner to invoke WebSearcher with a classical predefined Re-
Act JSON format, i.e., Thought: str; Action: WebSearcher(List[str]) at each
step. As for CodeAct, we wrap WebSearcher as a function and prompt the WebPlanner to use it by
writing code. For a fair comparison, we keep the WebSearcher the same for all entries. The results
are shown in Table 2. We can observe that integrating code generation provides unified action space
and therefore yields better performance compared to ReAct, which proves the correctness of our
adoption of code as planning. Then, when converting the original function calling process into the
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Figure 6: Inference cost v.s search performance among various inference strategies on hot-
potQA. The scores above each bar are search performance and inference cost, respectively. We
normalize the inference time cost by single-turn.

Table 2: Ablations on the planning strategies
adopted in WebPlanner. For a fair compari-
son, we keep WebSearcher the same for all
entries. ’-‘ denotes no access to web search
during inference time.

Strategy Performance

- 37.6
ReAct 58.0
CodeAct 61.3
Ours 64.0

Table 3: Ablations on the components
adopted in WebSearcher. ‘MQG’ de-
notes multi-query generation and aggrega-
tion, ‘PPC’ denotes prefix previous context,
and ‘PS’ denotes the page selection process.

Method Performance

Ours 64.0
w/o MQG 60.6
w/o PPC 63.3
w/o PS 58.0

graph construction, the performance continues to improve, especially on the hard set of HotpotQA,
which further validates the superiority of our proposed planning as graph construction.

3.3.2 ABLATIONS ON WEBSEARCHER

The search quality of WebSearcher determines the upper bound of the final response from WebPlan-
ner. Therefore, how to efficiently aggregate highly related web pages via search engines and provide
valuable summary information is of great importance. In this part, we independently remove the
multi-query generation and aggregation, prefix previous context, and page selection processes, and
report the results in Table 3. Still, we keep the WebPlanner the same for all entries for a fair compar-
ison. As can be seen, each module contributes to the final performance and multi-query generation
has the most influence.

3.4 INFERENCE TIME SCALING V.S SEARCH PERFORMANCE

Properly scaling test-time computation enables LLMs to improve their outputs by a considerable
margin (Snell et al., 2024; Kumar et al., 2024). OpenAI o1 (OpenAI, 2024) has recently shown that
a detailed chain-of-thought can dramatically enhance the reasoning ability of language models on
various downstream tasks. In this section, we discuss the relationship between inference time scaling
and search performance in MindSearch, which systematically analyzes such a trade-off under the AI
search engine domain. Specifically, we compare three types of search patterns in Figure 6: (1)
single-turn search, with only one search call for each question (adopted by most current AI search
engines), (2) multi-turn search with ReAct, and (3) multi-turn search with MindSearch. The last two
patterns allow LLMs to scale up their inference computation with multiple web search interactions
(during experiments, we limit the max interaction turn to 10 since we observe limited performance
gains by enlarging this hyperparameter). Single-turn search achieves a passing grade on the easy
level and uses the shortest time, which actually meets the need for a large portion of real-world
usage (possibly the reason why most AI search engines adopt this pattern). By enabling linear-scale
reasoning through ReAct, we are able to observe that the performance improves at the cost of more
inference costs. Compared to ReAct, MindSearch gets more efficient scaling performance with less
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inference steps, which indicates that MindSearch provides a better scaling strategy for improving
the search performance.

4 RELATED WORK

4.1 TOOL UTILIZATION WITH LLM

The Tool Learning framework empowers LLMs to seamlessly integrate with a variety of tools (Qin
et al., 2023; Hao et al., 2024; Zhuang et al., 2024; Chen et al., 2023), such as search engines (Chan
et al., 2024), databases (Parisi et al., 2022), and APIs (Li et al., 2023; Patil et al., 2023), offering
dynamic solutions to complex problems. This integration is not only beneficial for enhancing the
interpretability and trustworthiness of LLMs but also for improving their robustness and adaptability
across diverse tasks, including reducing hallucinations (Ji et al., 2024), code generation (Gou et al.,
2023), and question answering (Chen et al., 2024). Recent research has focused on enhancing the
tool integration component of Tool Learning systems. Works such as (Huang et al., 2023; Shen
et al., 2023; Schick et al., 2024) have concentrated on improving the retrieval mechanisms, ensuring
that LLMs can access the most pertinent tools for a given task. Other studies, like (Qian et al., 2023;
Yuan et al., 2023), aim at refining the LLMs’ ability to effectively utilize the retrieved information,
optimizing the reading and comprehension processes within the framework.

4.2 RAG WITH LLM

RAG demonstrates significant advantages in addressing knowledge-intensive problems, especially
in open-domain scenarios with the integration of search engines (Chen et al., 2017; Li et al., 2017).
RAG allows LLMs to integrate with the retriever, providing timely information and offering effective
solutions. Moreover, RAG is also applied in various tasks such as reducing hallucinations (Shuster
et al., 2021; Gu et al., 2024), code generation (Zhou et al., 2022), and question answering (Lewis
et al., 2020). Recently, some work (Karpukhin et al., 2020; Xiong et al., 2020; Qu et al., 2020)
focuses on enhancing the retrieval component of RAG systems, while others (Izacard & Grave,
2020; Borgeaud et al., 2022; Yu et al., 2021; Lei et al., 2017) enhances the language model’s ability
as a reader to optimize the framework.

With the advancement of LLM capabilities, some researchers have begun to reoptimize frameworks
and redesign methodologies for model training (Luo et al., 2023a; Qiao et al., 2024). SAIL (Luo
et al., 2023b) trains LLM to be more focused on credible and informative search results. Self-
RAG (Asai et al., 2023) enables LMMs to independently fetch, introspect, and augment their text
generation capabilities. RQ-RAG (Chan et al., 2024) enhances query formulation by learning to
refine queries through an iterative process. Searchain (Xu et al., 2024) introduces chain-of-query
(CoQ) to iteratively refine the reasoning of graph to resolve complex problems. Our work integrates
web search capabilities into LLMs, enhancing response quality by retrieving valuable information
from the Internet.

4.3 WEB AGENTS

Web automation agents have evolved from question-answering tools to sophisticated systems capa-
ble of complex web interactions. Early models like WebGPT (Nakano et al., 2021) and WebGLM
(Liu et al., 2023) primarily addressed QA tasks, while recent advancements have shifted towards
more dynamic operations (Yao et al., 2022a; He et al., 2024). MindAct (Deng et al., 2024), We-
bAgent (Gur et al., 2023), SeeAct (Zheng et al., 2024), and SeePlanAct (Yoran et al., 2024) represent
this progression, with the latter showing exceptional web navigation despite deployment challenges
due to its size. AutoWebGLM (Lai et al., 2024) offers a practical alternative with robust capabilities
and a more compact model size. The incorporation of reinforcement learning (Bai et al., 2024) and
behavior cloning techniques (Zheng et al., 2024; Patel et al., 2024) paves the way for even more
autonomous and efficient web automation, moving the field towards scalable and versatile solutions
for real-world applications. This paper mainly focuses more on the web information-seeking and
integration task with search engines instead of web browsing, and solves the main challenges with a
multi-agent framework.
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5 CONCLUSION AND FUTURE WORK

This paper introduces MindSearch, a novel LLM-based multi-agent framework for complex web
information-seeking and integration tasks, by more comprehensively leveraging the strengths of
both search engines and LLMs. MindSearch conducts effective and sufficient decomposition of
complex queries followed by hierarchical information retrieval to improve the precision and recall
of the retrieved relevant web information, by modeling the problem-solving process as an iterative
graph construction. The multi-agent design distributes the cognitive load among specialized agents,
facilitating robust handling of complex and lengthy contexts. Extensive evaluations on closed-set
and open-set QA problems using GPT-4o and InternLM2.5-7B models demonstrated significant
advantages in the response quality of MindSearch. The results that human evaluators preferred the
responses from MindSearch over those from ChatGPT-Web and Perplexity.ai indicate its competitive
edge in AI-driven search solutions. However, there exist some limitations in this work: the citation
quality of the web search references is not evaluated comprehensively, considering the extremely
diverse and subjective evaluation of AI web search engines compared to closed-set QA reference
evaluation. Besides, MindSearch does not support visual inputs, and can not interact with web
pages, which is a promising and more complex scenario in real-world applications. We leave them
for future work and will continue to explore them in MindSearch. We wish this work pave the way
for future research on multi-agent framework for solving human-level complex cognitive tasks.
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A COMPARISON WITH OTHER STATE-OF-THE-ARTS

In this section, we compare our approach with more competitive web search counterparts, including
self-ask (Press et al., 2022), CodeAct (Wang et al., 2024), and Searchain (Xu et al., 2024). All
experiments are conducted on the hotpotQA dataset with InternLM-7b-2.5 and the results are shown
in Table 4. We can find that MindSearch consistently outperforms other state-of-the-art approaches
by a large margin. Specifically, Searchain shares a similar spirit to our approach which formulates
the reasoning as a query-of-chain. However, at each revised step, Searchain needs to re-generate the
whole reasoning chain due to its weakness in long-context reasoning, which is time-consuming and
fallible. Thanks to the multi-agent design, MindSearch is able to reason at each step immediately
when necessary.

Table 4: Comparison with state-of-the-art approaches for web search tasks on HotpotQA dataset.

Method Easy Medium Hard Average

ReAct (Yao et al., 2022b) 69.0 56.0 49.0 58.0
self-ask (Press et al., 2022) 67.0 59.0 49.0 58.3

CodeAct (Wang et al., 2024) 70.0 63.0 51.0 61.3
Searchain (Xu et al., 2024) 70.0 61.0 54.0 61.6

MindSearch (Ours) 69.0 66.0 57.0 64.0

B TIME EFFICIENCY ON MINDSEARCH VS. HUMAN LABELERS

In this section, we provide detailed time cost measurement in terms of the human labelers and
MindSearch on 10 complex research questions. We randomly distributed 10 questions to 5 human
experts and asked them to collect information with web search engines. After retrieving enough
data, each labeler is requested to write a detailed answer to the question. Human labelers spend
19h17min to accomplish the search tasks while MindSearch only takes 23 min. It can be seen
that there exists a relationship between MindSearch and human labelers with 1 min vs 1-hour time
efficiency. Furthermore, we also analyze the time cost of one human labeler when labeling one
question. 47 minutes are taken to collect Information by searching and reading multiple (100+) web
pages and another 74 minutes are required to write a detailed response (about 3,000 words).

C MORE ANALYSIS ON WEBPLANNER

C.1 NUMBER OF HOPS VS DEPTH OF DAG

We conduct experiments on Musique with GPT-4o with 2,3,4 hops to study the relationships between
the number of hops and the depth of the DAG. From Table 5, it can be seen that the depth of the tree
increases with the number of hops monotonically, which fits our expectations. However, the number
of hops is not identical to the depth of the tree, for example when the number of hops is 3, the depth
of the tree is 1.2. There are two reasons: (1) MindSearch allows parallel execution, which only
increases the tree by one but may resolve multiple questions at the current step, and (2) despite the
question claiming 2 or more hops, there exist short-cuts or simplifications in the question, resulting
shorter search path.

Table 5: Experimental results on the number of hops of questions vs. the depth of the generated
DAG by WebPlanner on Musique dataset.

Num Hops Depth

2 1.1
3 1.2
4 1.6
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C.2 COST ANALYSIS ON THE NUMBER OF SEARCH QUERIES

We analyze the number of queries generated by MindSearch and ReAct. Surprisingly, MindSearch
generates 0.3 fewer queries on average compared to ReAct (3.2 vs 3.5). We find that due to the
weaker ability of ReAct to decompose the question, ReAct actually spends more queries repeatedly
searching for some keywords, which is useless and inefficient. However, MindSearch can effectively
utilize the reasoning ability of LLM to search for more accurate queries, therefore, yielding fewer
search times for each problem.

D GENERALIZATION TO OTHER LANGUAGE MODELS

In this section, we experiment with MindSearch on various accessible large language models to
further validate the generalization of our approach and the extensibility of the DAG-based code
reasoning interface. We select three representative models: DeepSeekv2 (Liu et al., 2024), Qwen-
2.5-7b (Yang et al., 2024), and GLM-4-9b (GLM et al., 2024), and the results are shown in Table
6. It can be seen that MindSearch can easily adapt to various models with little adaptation, which
further proves the effectiveness of our approach.

Table 6: Experimental results on various LLMs for web search tasks on HotpotQA dataset with
MindSearch.

Model Easy Medium Hard Average

DeepSeek-V2 (Liu et al., 2024) 70.0 71.0 68.0 69.6
Qwen-2.5-7b (Yang et al., 2024) 62.0 59.0 52.0 57.6

GLM4-9b (GLM et al., 2024) 65.0 60.0 55.0 60.0

E ANALYSIS ON ERROR CORRECTION IN MINDSEARCH

In this section, we comprehensively demonstrate the error correction ability of MindSearch, which
reflects the superiority of the code interface for planning, and the effectiveness of DAG protocol. We
delicately select several typical examples of how MindSearch recovers from its previous mistakes,
which helps the readers gain an intuitive understanding of how MindSearch deals with occasional
search accidents.

E.1 ERROR CORRECTION WITH CODE EXECUTION FEEDBACK

MindSearch adopts the code as the execution protocol during the agent running, which has two ad-
vantages: (1) large language models are more skillful in generating structure language, compared
to natural form, and (2) code protocol provides us with validation mechanism: when WebPlanner
generates wrong code or invalid planning sentence, we can simply validate it in the Python code
interpreter and seed the exception back to the LLM for re-generation. It is inevitable to generate the
wrong token during the text generation phase, due to the sampling techniques in seq2seq models.
Therefore, it is necessary to maintain a validatable protocol for self-correction. Figure 7 demon-
strates how MindSearch observes the mistakes during the node execution phase and corrects itself
with the help of the error messages provided by the code executor.

E.2 ERROR CORRECTION WHEN WEBSEARCHER CAN NOT FOUND RELATED INFORMATION

MindSearch introduces a multi-agent framework to address the extremely long context encountered
in web search scenarios. However, more communication among agents indicates that MindSearch
needs to handle various responses from multiple WebSearcher. In order to avoid unexpected re-
sponses from WebSearcher, we limit the response content of WebSearcher to either related informa-
tion about the topic or information not found. In Figure 8, we demonstrate that MindSearch is able to
successfully recover from previous search results and regenerate the new search queries with “more
information about the final match of UEFA Euro 2020”, which finally find the corner kicks in the
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Figure 7: Illustration of error self-correction by MindSearch with the help of the error messages
provided by the code executor: MindSearch regenerates the code which correctly fixes the node
name error in the next turn.

Figure 8: Illustration of error self-correction by MindSearch when WebSearcher responds with ‘not
founded’ feedback. MindSearch regenerates the query and successfully retrieves the expected infor-
mation during the next search.

Wikipedia pages in WebSearcher. Besides, there are also some cases that can not be found without
web interaction. MindSearch enables the model to directly generate the response node when several
attempts fail and directly give up the answer, which avoids the model falling into a repeatedly and
meaningless loop (Figure 9).

F DETAILS ON OPEN-SET EVALUATION PHASE

In this section, we provide more details on the open-set evaluation process for better reproducibility.

• The labelers have no prior knowledge and information about the responses generated by
the model.
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Figure 9: Illustration of the self-conclusion of MindSearch when the information can not be found
within the current search engine. It guarantees that MindSearch will not get stuck in certain tasks
and can finally give the answer.

Figure 10: Open-set evaluation labeling interface illustration. We do not expose the source of the
response to the labeler by replacing them with an anonymous model number, by randomly sampling
from 1,2,3 for each question.

• When we ask the labeler to choose the best response, we remove the source method by
replacing it with “model1”, “model2”, and “model3”. In order to avoid the labeler making
any assumption of the sequence of models 1,2,3, we randomly shuffle the order of the
responses before presenting them to the labeler.

• The labelers will be asked to choose the best response from the three responses generated
by the model according to three aspects: factuality, depth, and breath.

In order to gain a straightforward understanding of our evaluation process, we provide an illustration
of our labeling interface (see Figure 10), where human experts can select the best response based on
the factuality, depth, and breath with a simple choice. Besides, we allow labelers to move back to the
previous question to re-check/correct their original choices. Apart from the interface demonstration,
we also provide a response sample from MindSearch, Perpexity.ai Pro, and ChatGPT-Web in the
following:
Question: Recently, Chang’e-6 returned samples from the far side of the Moon. First, analyze the
technical challenges of sampling and returning from the lunar far side, then detail how each chal-
lenge was overcome. Compare this achievement with the Apollo 11 lunar landing mission, assessing
China’s contribution to international space exploration through this successful lunar mission.
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Response from MindSearch

The recent success of China’s Chang’e-6 mission in returning samples from the far side of
the Moon marks a significant milestone in human space exploration. This achievement not
only showcases China’s technological advancements but also highlights its contributions to
international space exploration. Below, we delve into the technical challenges faced during
the mission, how these challenges were overcome, and compare this achievement with the
Apollo 11 lunar landing mission.

### Technical Challenges and Overcoming Them

#### 1. Communication Difficulties

The lunar far side is permanently shielded from Earth’s view due to the Moon’s synchronous
rotation. This means that direct communication between the lunar far side and Earth is
impossible. To address this, China deployed the Queqiao 2 relay satellite in lunar orbit.
This satellite acts as an intermediary, enabling data transmission and control signals to be
sent to the Chang’e 6 probe on the lunar far side [[6]][[2]].

#### 2. Navigation Challenges

Navigating to the lunar far side poses significant difficulties due to its lack of direct
Earth-based communication. This necessitates the use of autonomous navigation systems.
The Chang’e 6 mission employs a combination of orbiter, lander, ascender, and reentry
capsule components to perform its mission. The lander-ascender combination will make a
soft landing in the South Pole-Aitken Basin, the largest and oldest crater on the lunar far
side. The navigation system uses relative measurements between a halo orbiter and surface
assets to achieve accuracies of tens of meters on the lunar far side surface [[1]][[7]].

#### 3. Power Supply and Energy Management

Power availability is a critical enabler for lunar activities. The Chang’e 6 mission relies
on a combination of solar power and onboard energy storage solutions. The LunaGrid
service, which consists of power-generating stations and power transmission cables, ensures
continuous power supply to lunar surface assets for multi-year operations [[9]][[8]].

#### 4. Sample Collection and Return

Collecting samples from the lunar far side involves advanced robotic systems and mecha-
nisms. The Chang’e 6 probe is equipped with a drill and a mechanical arm to gather surface
and underground samples. The collected samples are vacuum-sealed in a metal container
and transferred to the reentry capsule for return to Earth. The entire process is designed to
be efficient and automated, minimizing the risk of sample contamination and ensuring the
integrity of the samples [[6]][[3]].

#### 5. Scientific and Technical Advancements

The lunar far side offers unique scientific opportunities due to its distinct geological features
and electromagnetic environment. The samples collected by Chang’e 6 are expected to
provide valuable insights into the Moon’s early evolution, volcanic activities, impact history,
and the record of galactic activity [[4]][[5]].

### Comparison with Apollo 11

The Apollo 11 mission, which successfully landed astronauts Neil Armstrong and Buzz
Aldrin on the Moon in 1969, remains one of the most iconic achievements in human his-
tory. While Apollo 11 focused on landing humans on the Moon and conducting scientific
experiments, Chang’e-6’s primary objective was to collect samples from the Moon’s far side
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and return them to Earth. Both missions represent significant advancements in space
exploration, but they differ in their goals and methodologies.

#### Technical Challenges

Both Chang’e-6 and Apollo 11 faced significant technical challenges in their missions. The
Apollo 11 mission required precise calculations and engineering to ensure a safe landing on
the Moon’s surface, while Chang’e-6 had to navigate the lunar far side, which is not visible
from Earth due to the Moon’s synchronous rotation. The far side of the Moon presents
additional challenges, including the lack of communication with Earth during the mission’s
critical phases.
To overcome these challenges, Chang’e-6 utilized a relay satellite, Queqiao-2, to maintain
communication with Earth during the mission’s critical phases. This satellite played a
crucial role in ensuring the successful return of the samples to Earth. Similarly, Apollo
11 relied on extensive ground-based tracking and communication systems to monitor the
spacecraft’s progress and ensure a safe return.

### China’s Contribution to International Space Exploration

China’s involvement in the Chang’e-6 mission highlights its growing role in international
space exploration. The mission carried four international payloads, including one developed
by Pakistan, which marked Pakistan’s first venture into lunar exploration. This collaboration
demonstrates China’s commitment to fostering international cooperation in space science
and technology.
Furthermore, China’s lunar exploration program, including the Chang’e series of missions,
has provided a platform for international scientific research. The samples collected by
Chang’e-6 are expected to contribute significantly to the global understanding of lunar
geology and the Moon’s formation and evolution. This collaborative approach underscores
China’s role as a key player in the global space community.

### Conclusion

The success of Chang’e-6 in collecting samples from the Moon’s far side and returning them
to Earth represents a significant achievement in human space exploration. While the Apollo
11 mission remains a landmark in human history for its successful lunar landing, Chang’e-
6’s focus on sample collection from the far side of the Moon showcases China’s technolog-
ical prowess and commitment to international cooperation in space exploration. Through
these missions, China has made substantial contributions to the global understanding of the
Moon and the broader field of space science.

Response from Perplexity.ai

The recent success of the Chang’e-6 mission in returning samples from the far side of
the Moon marks a significant achievement in lunar exploration. This endeavor presented
several technical challenges due to the unique conditions and requirements of sampling and
returning from this less-explored region.

## Technical Challenges of Sampling and Returning from the Lunar Far Side

1. **Communication Limitations**: The far side of the Moon is always facing away from
Earth, making direct communication impossible. This necessitated the use of relay satellites
to maintain contact.
2. **Landing Precision**: Achieving a precise landing on the far side, where terrain is
rugged and less understood, posed significant risks for the lander.
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3. **Sample Collection and Preservation**: Collecting samples without contamination and
ensuring their integrity during transit back to Earth was crucial.
4. **Thermal Control**: The lunar environment experiences extreme temperature fluctua-
tions, which could affect both the lander and the samples.
5. **Power Supply**: The mission required a reliable power source for operations,
especially during the long lunar night.

## Overcoming the Challenges

1. **Communication Limitations**:
To address communication issues, Chang’e-6 utilized the Tianhe relay satellite, which
orbited the Moon and facilitated continuous communication between the lander and mission
control on Earth[1].
2. **Landing Precision**:
Advanced navigation systems were employed, including high-resolution terrain mapping
and autonomous landing technology, to ensure accurate touchdown on the targeted site[1].
3. **Sample Collection and Preservation**:
The mission utilized a specialized robotic arm designed for lunar soil collection. This arm
was equipped with tools to minimize contamination and preserve sample integrity during
collection and storage[1].
4. **Thermal Control**:
Chang’e-6 was equipped with thermal insulation materials and active heating systems to
protect sensitive instruments and samples from extreme temperatures, ensuring operational
stability throughout its mission duration[1].
5. **Power Supply**:
Solar panels were integrated into the lander’s design to provide a consistent power supply
during lunar days, supplemented by rechargeable batteries to support operations during
lunar nights[1].
Overall, Chang’e-6’s successful navigation of these challenges not only demonstrates
China’s growing capabilities in space exploration but also contributes valuable scientific
data from an area of the Moon that remains largely unexplored.

Response from ChatGPT-Web

The Chang’e-6 mission’s successful retrieval of samples from the Moon’s far side represents
a significant achievement in space exploration, overcoming several technical challenges:
**1. Communication Constraints**
The Moon’s far side is perpetually hidden from Earth’s direct line of sight, complicating
real-time communication with the spacecraft. To address this, China deployed the Queqiao-
2 relay satellite into lunar orbit in March 2024, facilitating data transmission between Earth
and the Chang’e-6 lander.
**2. Autonomous Operations**
Due to communication delays and potential signal loss, Chang’e-6 required advanced
autonomous systems for navigation, landing, sample collection, and ascent. These systems
enabled the spacecraft to perform critical operations without immediate human intervention.
**3. Precision Landing in Rugged Terrain**
The South Pole–Aitken Basin, the mission’s target, features challenging topography
with deep craters and uneven surfaces. Achieving a precise landing in this environment
necessitated sophisticated guidance and control technologies.
**4. Sample Collection and Preservation**
Chang’e-6 was equipped with specialized instruments to collect approximately 2 kilograms
of lunar material, including a mechanical arm and drill capable of operating in the Moon’s
low-gravity conditions. Ensuring the integrity of these samples during collection, storage,
and transport was crucial for scientific analysis.
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**5. Ascent and Orbital Rendezvous**
After sample collection, the ascent vehicle needed to launch from the lunar surface, ren-
dezvous, and dock with the orbiting return module—a complex maneuver requiring precise
timing and control. This process was successfully executed, marking a milestone in China’s
space capabilities.
Overcoming these challenges underscores the mission’s technical sophistication and con-
tributes valuable insights into lunar science.

G SYSTEM PROMPT

System Prompt for WebPlanner

Character Profile
You are a programmer capable of Python programming in a Jupyter environment. You can utilize
the provided API to construct a Web Search Graph, ultimately generating and executing code.

API Description
Below is the API documentation for the WebSearchGraph class, including detailed attribute de-
scriptions:
Class: WebSearchGraph
This class manages nodes and edges of a web search graph and conducts searches via a web proxy.
1. Initialization Method
Initializes an instance of WebSearchGraph.
**Attributes:**

• nodes (Dict[str, Dict[str, str]]): A dictionary storing all nodes in the graph. Each node is
indexed by its name and contains content, type, and other related information.

• adjacency list (Dict[str, List[str]]): An adjacency list storing the connections between all
nodes in the graph. Each node is indexed by its name and contains a list of adjacent node
names.

2. Method: add root node
Adds the initial question as the root node.
**Parameters:**

• node content (str): The user’s question.
• node name (str, optional): The node name, default is ’root’.

3. Method: add node
Adds a sub-question node and returns search results.
**Parameters:**

• node name (str): The node name.
• node content (str): The sub-question content.

**Returns:**

• str: Returns the search results.

4. Method: add response node
Adds a response node when the current information satisfies the question’s requirements.
**Parameters:**

• node name (str, optional): The node name, default is ’response’.

5. Method: add edge
Adds an edge.
**Parameters:**

• start node (str): The starting node name.
• end node (str): The ending node name.
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6. Method: reset
Resets nodes and edges.
7. Method: node
Get node information.
def node(self, node name: str) -> str
**Parameters:**

• node name (str): The node name.

**Returns:**

• str: Returns a dictionary containing the node’s information, including content, type,
thought process (if any), and list of predecessor nodes.

Task Description
By breaking down a question into sub-questions that can be answered through searches
(unrelated questions can be searched concurrently), each search query should be a single
question focusing on a specific person, event, object, specific time point, location, or knowl-
edge point. It should not be a compound question (e.g., a time period). Step by step, build
the search graph to finally answer the question.
Considerations
1. Each search node’s content must be a single question; do not include multiple questions
(e.g., do not ask multiple knowledge points or compare and filter multiple things simul-
taneously, like asking for differences between A, B, and C, or price ranges -> query each
separately).
2. Do not fabricate search results; wait for the code to return results.
3. Do not repeat the same question; continue asking based on existing questions.
4. When adding a response node, add it separately; do not add a response node and other
nodes simultaneously.
5. In a single output, do not include multiple code blocks; only one code block per output.
6. Each code block should be placed within a code block marker, and af-
ter generating the code, add an <|action end|> tag as shown below:
<|action start|><|interpreter|>
‘‘‘python
# Your code block (Note that the ’Get new added node information’ logic must be added at
the end of the code block, such as ’graph.node(’...’)’)
‘‘‘<|action end|>
7. The final response should add a response node with node name ’response’, and no other
nodes should be added.

System Prompt for WebSearcher

Character Introduction
You are an intelligent assistant that can call web search tools. Please collect information and reply
to the question based on the current problem. You can use the following tools: {tool info}

Reply Format
When calling the tool, please follow the format below:
‘‘‘
Your thought process...
<|action start|><|plugin|>"name": "tool name", "parameters":
"param1": "value1"<|action end|>
‘‘‘

Requirements
- Each key point in the response should be marked with the source of the search results to ensure
the credibility of the information. The citation format is [[int]]. If there are multiple citations,
use multiple [[]] to provide the index, such as [[id 1]][[id 2]].
- Based on the search results of the ”current problem”, write a detailed and complete reply to
answer the ”current problem”.
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