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ABSTRACT

Causal inference from observational data has attracted considerable attention in
recent years. One main obstacle is the handling of confounders. As the direct
measure of confounders may not always be feasible, recent methods seek to
address the confounding bias with proxy variables, which are covariates researchers
postulate to be conducive to the inference of latent confounders. However, observed
covariates may scramble both latent confounders and latent post-treatment variables
in observational study, where existing methods risk biasing the estimation by
unintentionally controlling for variables affected by the treatment. In this paper, we
systematically investigate the bias due to latent post-treatment variables, i.e., latent
post-treatment bias, in causal effect estimation. We first derive the bias of existing
methods when selected proxies scramble both latent confounders and latent post-
treatment variables, which we demonstrate can be arbitrarily bad. We then propose
a novel Confounder-identifiable VAE (CiVAE) to address the bias. CiVAE is built
upon the assumption that the prior of the latent variables belongs to a general
exponential family with at least one invertible sufficient statistic in the factorized
part. Based on this, we show that latent confounders and latent post-treatment
variables can be individually identified up to simple bijective transformations.
Finally, we prove that the true causal effects can be unbiasedly estimated with the
transformed confounders inferred by CiVAE. Experiments on both simulated and
real-world datasets demonstrate that CiVAE is significantly more robust to latent
post-treatment bias than existing methods for causal effects estimation.

1 INTRODUCTION

Causal inference, which seeks to draw conclusions about cause-and-effect relationships among
variables of interest, has gained increasing prominence in various fields, such as social science,
economics, and public health (Glass et al., 2013; Johansson et al., 2016; Prosperi et al., 2020).
Traditional methods rely on randomized control trials (RCT) to draw valid causal conclusions from
experimentation (Cook et al., 2002). Recently, more attention has been dedicated toward causal
inference from observational datasets, which contain samples with passively observed past treatment,
the associated outcome, and possibly features, and in which researchers have no control over the
treatment assignment mechanism (Shalit et al., 2017; Shi et al., 2019; Wager & Athey, 2018).

One main obstacle to inferring causal relations from observational data is confounding bias, which
occurs when past treatments were determined by variables that causally influence the outcome, i.e.,
confounders. In such cases, the difference in the average outcome between the treatment group and
the non-treatment group cannot be attributed solely to the treatment, but may also be due to the
systematic difference of samples in the two groups (Mickey & Greenland, 1989). If the confounders
can be observed, a simple strategy to address such a bias is to control them via methods such as
covariate adjustment (Pocock et al., 2002) or propensity score re-weighting (Li et al., 2018). However,
confounders are not always measurable (Kuroki & Pearl, 2014). Therefore, recent methods seek to
adjust for the influence of confounders based on their noisy proxies, which are generally covariates
researchers postulated to be conducive for the inference of confounders (Miao et al., 2018; Yao
et al., 2018; Madras et al., 2019). One exemplar work from this strain is the causal effect variational
auto-encoder (CEVAE) (Louizos et al., 2017) (Fig. 1-(a)), which has demonstrated that confounding
bias can be mitigated by controlling latent variables inferred from proxies of confounders.
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(a) SCM Assumed by CEVAE (c) SCM Assumed by the Proposed CiVAE
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Figure 1: Structural causal model (SCM) assumed by CEVAE, TEDVAE, and CiVAE.

Although proxy-of-confounder-based methods have achieved substantial progress, we argue that these
algorithms may risk controlling latent post-treatment variables (i.e., variables causally affected by
the treatment) scrambled in the proxy variables, where post-treatment bias may be unintentionally
introduced in the estimated treatment effect. Here, we note that the negative effects of controlling
post-treatment variables have been investigated in prior research (Acharya et al., 2016; Elwert &
Winship, 2014; King & Zeng, 2006). For example, Montgomery et al. (2018) found that more than
50% of the papers published in top journals of politics inadvertently control post-treatment variables
in the experimental setting, although researchers have complete control over the treatment assignment
mechanism and the covariates to control for. On this basis, we postulate that post-treatment bias could
be even worse for proxy-based methods in the setting of observational study, as when treatments are
passively recorded, it is difficult to determine which variables causally influence the treatment and
which variables are influenced by it (as both confounders and post-treatment variables are correlated
with the treatment and the outcome). In addition, the post-treatment variables can be latent, which
may be scrambled into the observed covariates together with the latent confounders.

Consider the following real-world example that researchers from the Company1 have encountered
when estimating the average causal effects of switching a job from onsite to online mode to the
statistics of the applicants (e.g., average age, gender/geographical diversity, etc.). In this case, the
Company collected a dataset of two groups of online (i.e., the treatment group) and onsite jobs (i.e.,
the non-treatment group), where for each job, the statistics of the applicants (i.e., the average age) are
calculated as the outcome. Clearly, the seniority of the job is a confounder between the treatment
and the outcome, as less senior jobs (e.g., internships) are more likely to permit online work, and
applicants for these jobs tend to be younger on average. The seniority of a job can be difficult to
measure. Therefore, the required skills of the job, which the recruiter must provide when publishing a
job Ad in the Company, can be used as the proxy of the confounder "seniority". However, a caveat is
that, switching to an online working mode may also alter the required skills of a job, thereby affecting
the qualification of the applicants (where these altered skills are mediators). Consequently, directly
using the required skills as the proxy of the confounder "seniority" could unintentionally control
latent mediators, which introduces post-treatment bias in the causal effect estimation results.

Addressing the latent post-treatment bias faces multi-faceted challenges. First, there lacks a
theoretical formulation of the bias when the selected proxies scramble latent post-treatment variables
for proxy-of-confounder-based methods; the trade-off between deconfounding and introducing
new post-treatment bias is not clear. In addition, it is difficult to distinguish confounders and
post-treatment variables in the latent space. Existing covariate disentanglement-based methods, e.g.,
TEDVAE (Zhang et al., 2021), mainly focus on an easier task of disentangling latent confounders with
latent adjusters and instrumental variables. This can be achieved by using their different predictive
abilities w.r.t. the treatment and outcome (see Fig. 1-(b)). However, since latent confounders and post-
treatment variables correlate with both the treatment and outcome, the two cannot be disentangled by
these methods. One solution is to assume the proxy of latent post-treatment variables can be observed,
from which post-treatment variables can be inferred and disentangled from the latent confounders.
However, this assumption is too strong, as in the previous online/onsite job case, we can never know
which skills are causally influenced by the work mode. Finally, even if latent confounders can be
distinguished, since general latent variable models have no identifiability guarantee (Khemakhem
et al., 2020), it is unclear whether controlling the inferred latent variables, which may be arbitrary
transformations of the true confounders, can provide unbiased estimations of the causal effects.

To address the aforementioned challenges, we provide a systematic investigation of the latent post-
treatment bias in causal inference. We first analyze the behavior of existing proxy-based causal
inference methods when the selected proxies scramble both latent confounders and post-treatment
variables, where we demonstrate that the estimated average causal effects can be arbitrarily biased.

1Anonymized due to double-blind review policy.
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We then propose the Confounder-identifiable VAE (CiVAE) to address such biases. Specifically,
we show that based on a mild assumption that the prior distribution of latent variables (i.e., the
latent confounders and post-treatment variables) belongs to a general exponential family with at least
one invertible sufficient statistic in the factorized part, latent confounders and latent post-treatment
variables can be individually identified up to simple bijective transformations. In addition, based
on the causal relations among confounders, mediators, and treatment, we further demonstrate that
the inferred confounders (which are actually transformed proxies of the true confounders) could be
properly distinguished from the inferred latent post-treatment variables with pair-wise conditional
independence tests. Finally, we prove that the true causal effects can be unbiasedly estimated based on
transformed confounders inferred by CiVAE. Experiments on both simulated and real-world datasets
demonstrate that CiVAE shows more robustness to latent post-treatment bias than existing methods.

2 PROBLEM FORMULATION AND ANALYSIS

2.1 PROBLEM FORMULATION

Throughout this paper, we assume the causal model in Fig. 1-(c), where the dashed lines denote
indeterminate causal mechanisms that might vary in different cases. We use a binary random variable
T to denote the treatment, a random vector X ∈ RKX to denote the observed covariates, and a
random scalar Y ∈ R to denote the outcome. Furthermore, observed covariates X are assumed
to be generated from KC independent latent confounders C ≜ [C1, C2..., CKC

] and KM latent
post-treatment variables M ≜ [M1,M2...,MKM

] under the causal influence of treatment T . We use
the random vector Z ≜ [C||M ] ∈ RKZ=KC+KM to denote all latent factors. Our aim is to estimate
the average causal effects of treatment T on outcome Y with auxiliary confounder information in X ,
where the estimation should be devoid of both confounding bias and post-treatment bias.

2.2 ANALYSIS OF LATENT POST-TREATMENT BIAS

2.2.1 PRELIMINARIES AND ASSUMPTIONS

To achieve such a purpose, we first formally define the (conditional) average treatment effects (C/ATE)
when covariates X scramble both latent confounders C and post-treatment variables M . We then
define the post-treatment bias when covariates X are used directly as the proxy of confounders. To
facilitate the analysis, we make the following assumption regarding the causal generative process.
Assumption 1. (Noisy-Injectivity). We assume X = f(C,M) + ϵ, where f is a deterministic
function that combines latent confounders C and latent post-treatment variables M into observations
X and ϵ is random noise. In addition, we assume that the function f is injective; beyond injectivity,
f can be arbitrarily nonlinear. We use f† : X → [C||M ] to denote its left inverse. We use
f†
C : X → C and f†

M : X →M to denote the mapping from X to C, M , respectively.

Noisy-Injectivity is a common assumption made either explicitly or implicitly in most existing proxy-
of-confounder-based causal inference algorithms. For example, if both X and C are categorical,
Pearl (2012) assumes that X has at least the same number of categories as C, whereas the effect
restoration algorithm (Rothman et al., 2008) assumes that the matrix of p(C,X) to be full-rank.
Although CEVAE (Louizos et al., 2017) makes no explicit injectivity assumption between C and
X , it requires that the joint distribution p(C,X, T, Y ) can be fully recovered from the observations
(X, T, Y ). The literature shows that some of the possible identification criteria are 1) multiple
independent views of C in X (Edwards et al., 2015), and 2) C is categorical and X is a mixture of
Gaussian components determined by C (that is, X is generated by bijective mapping of C to the
mean of the corresponding component with added Gaussian noise) (Anandkumar et al., 2014).

In the following part of this section, we omit the noise ϵ to gain better intuition of latent post-treatment
bias (but all the exact conclusions will still hold in the posterior sense). In Section 3, we assume that
noise exists and demonstrate that our method can still adequately identify latent confounders.

2.2.2 CAUSAL ESTIMAND AND THE TRUE ATE

Based on Assumption 1, we are ready to define the estimated average treatment effect (ATE) by
controlling the covariates X , as well as the true (conditional) average treatment effects.
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Definition 1. We define the Difference in Conditional Expected Values (DCEV) as

DCEV (x) = E[Y |T = 1,X = x]− E[Y |T = 0,X = x], (1)

which is the difference of the expected value of the outcome Y for units with variable X = x in
the treatment group and the non-treatment group. Based on DCEV (x), we define the Difference in
Expected Value (DEV), i.e., DEV (X) = Ep(X)[DCV E(X)] as the expected value DCEV.

DEV (X) denotes the ATE estimand by controlling covariates X . If X = ∅, DEV (∅) represents
the naive estimator that directly calculates the expected difference of Y between the treatment group
and the non-treatment group. With the causal estimand DEV (X) introduced, we then define the true
causal effects (i.e., C/ATE) when covariates X scramble both latent confounders and post-treatment
variables according to the generative process described in Assumption 1. The main issue that hinders
a direct definition of C/ATE with DCEV (x) and DEV (X) is that, since X contains latent post-
treatment variables M , conditional on X , the strong ignorability assumption (Imbens & Rubin,
2015) widely used for the identification of causal effects does not hold2. Accordingly, we have:
Definition 2. Under Assumption 1, we define the Conditional Average Treatment Effect (CATE) for
individuals with observed covariates X = x as follows:

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)], (2)

with the Average Treatment Effect (ATE) of treatment T defined as

ATE = E[Y |do(T = 1)]− E[Y |do(T = 0)] = Ep(C)[E[Y |T = 1,C]− E[Y |T = 0,C]]. (3)

In Definition 2, we only consider the latent confounder component of X for CATE in Eq. (2), as the
causal relationship between the post-treatment variables M and the outcome Y is indeterminate (see
Fig. 1-(c)). However, if the specific relationship between M and Y can be further established by the
researcher (e.g., all elements of M are latent mediators), more precise forms of CATE can be derived
with path-specific counterfactual analysis (Imai et al., 2010; Cheng et al., 2022).

2.2.3 LATENT POST-TREATMENT BIAS

With DEV (X) (the ATE estimator that controls the covariates X), CATE, and ATE defined in Sec-
tion 2.2.2, in this section, we analyze the latent post-treatment bias of existing proxy-of-confounder-
based causal inference methods, such as CEVAE (Louizos et al., 2017), that control latent variables
inferred from the covariates X to estimate the ATE of T on Y , when X scrambles both latent
confounders and post-treatment variables. In our analysis, Lemma 2.1 will be frequently used.
Lemma 2.1. For an injective function g, E[Y |X = x] = E[Y |g(X) = g(x)] holds.

The proof when g is differentiable a.e. can be referred to in Appendix A.1. Since the latent variable
models used in existing methods (such as VAE with factorized Gaussian prior in CEVAE) lack
identifiability guarantee (i.e., the recovery of the exact latent variables), we assume that these models
can recover the true latent space Z = [C,M ] up to invertible transformations f̄ , where the inference
process can be represented as Ẑ = f̃(X) = f̄ ◦ f†(X). With such an assumption, we have the
following theorem regarding the latent post-treatment bias when X mixes post-treatment variables.
Theorem 2.2. If the observed covariates X are generated from latent confounders C and latent
post-treatment variables M according to Assumption 1, the latent post-treatment bias of a proxy-of-
confounder-based causal inference algorithm that controls latent variables Ẑ inferred from X via
f̃ = f̄ ◦ f† : RKX → RKC+KM to estimate the ATE can be formulated as follows:

Bias(X) = ATE −DEV (f̃(X)) = ATE − E[E[Y |T = 1, f̃(X)]− E[Y |T = 0, f̃(X)]]

= ATE − E[E[Y |T = 1, f̄ ◦ f†(f(C,M))]− E[Y |T = 0, f̄ ◦ f†(f(C,M))]]

= E[E[Y |T = 1,C]− E[Y |T = 0,C]]− E[E[Y |T = 1,C,M ]− E[Y |T = 0,C,M ]],
(4)

which can be arbitrarily bad. Therefore, the estimator of existing proxy-of-confounder-based meth-
ods, i.e., DEV (f̃(X)), is an arbitrarily biased estimator of the ATE, when the selected proxy of
confounders X accidentally mixes in latent post-treatment variables M .

2Equivalently, we could say that given covariates X , the backdoor criteria between T and Y does not hold, which requires the conditional
set of variables contains no descendants of the treatment T (Glymour et al., 2016).
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The final step of Eq. (4) can be proved since f is injective and f̄ bijective, the composite f̄ ◦ f† ◦ f :

[C,M ]→ Ẑ is bijective, so we can use Lemma 2.1 to remove f̄ ◦ f† ◦ f in the condition.

2.2.4 EXAMPLES IN THE LINEAR CASES

Generally, the latent post-treatment bias defined in Eq. (4) cannot be simplified because 1) the causal
relationship between M and Y is indeterminate, and 2) the causal influence of C, M , and T on Y
can be arbitrary. However, for linear structural causal models with causal relationships determined
between M and Y (e.g., M are mediators, which are post-treatment variables that have causal
influences on the outcomes), stronger conclusions can be drawn as follows:
Corollary 2.3. (MixedMediator) For the linear Structural Causal Model (SCM) defined as:

T ← 1(αT +
∑

βi · Ci > a)

Mj ← αM + γj · T
X ← αX +A[M ||C]

Y ← αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci,

(5)

where the mixture function f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE,
and the bias of proxy-of-confounder-based causal inference model that controls the latent variables
Ẑ inferred via Ẑ = f̃(X) = BTX can be formulated as follows:

ATE = CATE = τ +
∑

γj · θj

DEV (Ẑ) = E[DCEV (Ẑ)] = DCEV (Ẑ) = τ

Bias(Ẑ) = ATE −DEV (Ẑ) =
∑

γj · θj ,

(6)

where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑

γj · θj is arbitrary, the
estimator DEV (Ẑ) = E[DCEV (BTX)] is arbitrarily biased for ATE estimation.

The proof of Eq. (6) is provided in Appendix A.2. In addition, we show that the post-treatment vari-
ables M DO NOT necessarily need to have direct causal effects on the outcome Y to incur arbitrary
bias in ATE estimation. In Appendix A.3, we provide another example (i.e., MixedCorrelator) in the
linear case where M is correlated with Y through unobserved confounders U in Corollary A.1.

3 METHODOLOGY

In this section, we introduce the proposed Confounder-identifiable Variational Auto-Encoder (CiVAE)
to address latent post-treatment bias. Specifically, we first prove that if the prior distribution of
the true latent variables Z = [C,M ] satisfies certain weak assumptions, identifiability criterion
holds, and each dimension of the inferred latent variables Ẑ, i.e., Ẑi, corresponds to the invertible
transformation of either a true confounder Cj or a true post-treatment variable Mk. Then, utilizing
the causal relations between C, M , and T , we novelly transform the challenging confounder-
identifiability problem into a tractable pair-wise conditional independence test problem, which
can be effectively solved with kernel-based methods. Finally, we demonstrate that controlling the
transformed confounders inferred by CiVAE can yield an unbiased estimation of the true ATE.

3.1 GENERATIVE PROCESS

The fundamental work of deep variational inference with identifiability guarantee, i.e., the identifiable
VAE (iVAE) (Khemakhem et al., 2020), makes a strict assumption that the prior of true latent
variables Z (i.e., [C,M ] in our case) is conditionally factorized given the available covariates (i.e.,
the treatment T and the outcome Y in our case). However, since both latent confounders C and
latent post-treatment variables M form fork structures with the outcome Y (see Fig. 1-(c)) (Koller
& Friedman, 2009), Ci, Cj , Mi, and Mj are not independent given Y . Recently, Non-Factorized
iVAE (NF-iVAE) (Lu et al., 2021) was proposed that allows arbitrary dependence among the true
latent variables Z in the conditional priors, where Z can be identified up to arbitrary non-linear
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transformations, However, the transformation are not necessarily invertible, which is risky for causal
inference, as multiple values of the confounders may collapse, leading to bias when estimating the
ATE by averaging the DCEV calculated in each stratum of the inferred confounders.

The proposed NF-iVAE guarantees the identifiability of Z by putting a general exponential family
distribution with at least one invertible sufficient statistic in the factorized part as its prior when
conditioning on treatment T and outcome Y , which can be formulated as follows.
Assumption 2. Let Z = [C||M ] be the random vector for latent variables that causally gen-
erate the observed covariates X according to Assumption 1. We assume that the conditional
prior of Z given the outcome Y and the treatment T belongs to a general exponential family
with parameter vector λ(Y, T ) and sufficient statistics S(Z) = [Sf (Z)T ,Snf (Z)T ]T . Specif-
ically, S(Z) is composed of (i) the sufficient statistics of a factorized exponential family, i.e.,
Sf (Z) = [S1(Z1)

T , · · · ,SKZ
(ZKZ

)T ]T , where all components Si(Zi) have dimension larger
than or equal to 2 and each Si has at least one invertible dimension, and (ii) Snf (Z), where Snf is
a neural network with ReLU activation. The density of the conditional prior can be formulated as:

pS,λ(Z|Y, T ) = Q(Z)/C(Y, T ) exp[S(Z)Tλ(Y, T )], (7)
where Q(Z) is the base measure and C(Y, T ) not dependent on Z is the normalizing constant.

We justify that assumption 2 is weak and practical as follows. 1) Neural networks with ReLU
activation have universal approximation ability of distributions (Lu & Lu, 2020). Therefore, Eq. (7)
can model arbitrary dependence between true latent confounders C and true post-treatment variables
M conditional on T and Y . 2) Although CiVAE makes an extra assumption that ∀i, at least one
dimension of Si is invertible, this can be easily satisfied as most commonly used exponential family
distributions, such as Gaussian, Bernoulli, etc., has at least one invertible sufficient statistics3.

The reason why we use ReLU as the activation is that, the identifiability of iVAE relies on the
condition that the sufficient statistics S have zero second-order cross-derivative. The factorized part,
i.e., Sf , satisfies it trivially since all cross-derivatives of Sf are zero. In addition, since the ReLU
neural networks are linear a.e., all second-order derivatives of Snf are zero. Therefore, identifiability
holds after adding Snf in the prior that allows the capturing of arbitrary dependence among Z.

3.2 OPTIMIZATION OBJECTIVE

Combining Assumptions 1 and 2, the generative process of CiVAE can be formulated as follows:
pθ(X,Z | Y, T ) = pf (X | Z)pS,λ(Z | Y, T ), (8)

pf (X | Z) = pϵ(X − f(Z)). (9)
where θ = (f,λ,S) ∈ Θ are the parameters of the generative distribution4. Since the generative
process of CiVAE is parameterized by deep neural networks, the posterior distribution of Z, i.e.,
pθ(Z |X, Y, T ), is intractable. Therefore, we resort to variational inference (Blei et al., 2017), where
we introduce approximate posterior qϕ(Z | X, Y, T ) parameterized by deep neural network with
trainable parameter ϕ, and in qϕ(Z|·) finds the one closes to pθ(Z|·) measured by KL divergence.
Minimization of the KL is equivalent to maximization of the evidence lower bound (ELBO) as:

L(θ,ϕ) := Eqϕ(Z|X,Y,T )

log pf (X | Z) + log pS,λ(Z | Y, T )− log qϕ(Z |X, Y, T )︸ ︷︷ ︸
KL of posterior with prior

 . (10)

Since the normalization constant C in Eq. (7) is generally intractable, it is infeasible to directly learn
S, λ by optimizing Eq. (10). Therefore, we substitute the KL term in Eq. (10) with the widely-used
score matching (Hyvärinen & Dayan, 2005) to learn unnormalized densities instead as follows:

L(S,λ,ϕ) := Eqϕ(Z|X,Y,T )

[
∥∇Z log qϕ(Z |X, Y, T )−∇Z log pS,λ(Z | Y, T )∥2

]
= Eqϕ(Z|X,Y,T )

KZ∑
j=1

[
∂2pS,λ(Z | Y, T )

∂Z2
j

+
1

2

(
∂pS,λ(Z | Y, T )

∂Zj

)2
]+ const.

(11)
3There are a few exponential family with no invertible sufficient statistics, e.g., Weibull distribution when shape parameter k is even.
4Note that although f is a function, we include it in the parameter set to be consistent with the iVAE paper.
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3.3 IDENTIFIABILITY OF CIVAE

With the generative process and optimization objective of CiVAE introduced in the previous sub-
sections, we are ready to introduce the final assumption of CiVAE, which, combined with Assumptions
1 and 2, leads to the main theorem of this paper, which states the identifiability of CiVAE.
Assumption 3. Assume the following: (i) The set {X ∈ X |ϕ(X) = 0} has measure zero, where ϕ
is the characteristic function of the density pf in Eq. (9). (ii) The sufficient statistics, Si in Sf are all
twice differentiable. (iii) The mixture function f in Eq. (9) has all second-order cross derivatives.
(iv) There exist k + 1 distinct points (Y, T )0, · · · , (Y, T )k such that the matrix L = [λ((Y, T )1)−
λ((Y, T )0), · · · ,λ((Y, T )k)− λ((Y, T )0)] of size k × k is invertible, where k = Dim(S).

(i) - (iii) are trivial for neural networks. (iv) denotes that independent samples of (Y, T ) are required
to identify C and M . The identifiability theorem of CiVAE can be formulated as follows.
Theorem 3.1. If Assumptions 1, 2, and 3 hold, and if θ, θ̃ ∈ Θ→ pθ(X|Y, T ) = pθ̃(X|Y, T ), the
true latent variables Z are identifiable up to permutation and element-wise bijective transformation.
Furthermore, in the case of variational inference, if we denote the true parameter that generates the
data as θ∗, if (i) the distribution family qϕ(Z|X, Y, T ) contains the posterior pθ(Z|X, Y, T ), and
qϕ(Z|X, Y, T ) > 0, (ii) we optimize Eq. (4) w.r.t. both θ,ϕ, then in the limit of infinite data, true
parameters θ∗ can be learned up to a permutation and bijective transformation of Z.

The proof of Theorem 3.1 is based on the NF-iVAE paper (Lu et al., 2021), with the new assumption
introduced in CiVAE that each Si has at least one invertible dimension incorporated to ensure that
the transformation of each Zi is bijective. The detailed proof is provided in Appendix A.4.

3.4 IDENTIFICATION OF LATENT CONFOUNDERS

Theorem 3.1 ensures that latent variables Ẑ inferred by CiVAE cannot 1) mix confounders and
post-treatment variables in each dimension, or 2) collapse different values of the latent confounders
into the same value. To further determine the dimensions of confounder and post-treatment variable
in Ẑ, we rely on the causal relations between latent variables Z = [C,M ] and treatment T and the
associated marginal/conditional dependence properties. These are discussed as follows.

• Case 1. Intra-Confounders. Latent confounders Ci, Cj and the treatment T form the V-structure
Ci → T ← Cj . Therefore, Ci and Cj are marginally independent, whereas they become
dependent when conditioning on the assigned treatment T .

• Case 2. Intra-Post Treatment Variables. Latent post-treatment variables Mi, Mj and the treatment
T form a fork-structure Mi ← T → Mj , where Mi, Mj are marginally dependent, but they
become independent after conditioning on the assigned treatment T .

• Case 3. Cross-Confounder and Post-Treatment Variables. Latent confounder Ci, latent post-
treatment variable Mj , and the treatment T forms a chain structure Ci → T →Mj , where Ci,
Mj are marginally dependent, and they become independent after conditioning on T .

From the above analysis we can find that, the dependence between two latent variables Zi and Zj

increases after conditioning on the treatment T ONLY in the case of intra-confounders. Therefore,
if more than one latent confounders exist, which is highly probable when covariates X are high-
dimensional, we can conduct independence test Ind(Ẑi, Ẑj) and CInd(Ẑi, Ẑj |T ) for all pairs of
inferred latent variables, which can be implemented via kernel-based methods as (Zhang et al., 2012),
and select the pairs where p-value of CInd is larger than that of Ind as latent confounders.

Here, we note that the kernel-based (conditional) independence test incurs N2×K2
Z complexity in the

training phase. However, once the dimensions of the confounders in Ẑ are determined, CiVAE has
the same complexity as CEVAE for the estimation of CATE and ATE in the test phase. Therefore,
we argue that the additional complexity of model training is worthy due to the substantially increased
robustness toward latent post-treatment bias (which will be demonstrated in Section 4).

3.5 ATE ESTIMATOR WITH TRANSFORMED CONFOUNDERS

Finally, we show that controlling transformed confounders Ĉ inferred by CiVAE provides an unbiased
estimation of ATE. Although assumptions weaker than Assumption 2, e.g., inferred confounders have

7



Under review as a conference paper at ICLR 2024

the same propensity score as the true confounders (i.e., Ĉ does not have to be bijective transformation
of C), could lead to the same unbiasedness results (Imbens & Rubin, 2015), since our main purpose
is to analyze the latent post-treatment bias and propose a viable solution accordingly, this introduces
unnecessary complexity, which could be explored as a direction for future study.
Theorem 3.2. Controlling bijective of confounders is equivalent to controlling true confounders in
ATE estimation, i.e., DEV (Ĉ) = DEV (g(C)) = ATE, if transformation function g is bijective.

The proof of Theorem 3.2 for discrete C is trivial (where Ĉ = g(C) represents a simple relabeling
of the stratum that we calculate the DCEV and take the expectation). The proof in the continuous
case where g is differentiable is provided in Appendix A.5. With Theorem 3.2, we can control the
identified latent confounders as true confounders, providing an unbiased estimate of ATE.

4 EMPIRICAL STUDY

4.1 DATASETS

We establish two simulated datasets, i.e., MixedMediator and MixedCorrelator, that con-
sider two types of post-treatment variables, i.e., 1) mediators and 2) variables that are correlated with
the outcome Y via latent confounders U . The generative process of the two datasets can be referred to
in Corollary 2.3 and Corollary A.1, respectively, where the latent confounders C are generated from
Gaussian as C ∼ Gaussian(0, IKC

). For MixedMediator, γ is set as [−1,−1,−1], θ is set as
[1, 1, 1], and τ is set as 2, which results in ATE = −1. For MixedMediator, we set the same γ
and θ as MixedMediator, where parameters ϕ = 1 and τ = 1, which results in ATE = 1.

In addition, we build a real-world dataset based on the job Ads data from the Company, aiming
to estimate the ATE of switching a job from onsite to online working mode to the statistics of the
applicants (here we choose the average age as the outcome). In the dataset, treatment T represents
the working mode of the job, where T = 1 represents the job is online, whereas T = 0 represents
the job is onsite, Y is the standardized age, and X ∈ {0, 1}KX indicates the required skills of the
job. We select 3,228 jobs from Bay Area, where a primary study shows that DEV (∅) ≈ −2 years5

(i.e., online job applicants are two years younger than onsite job applicants). To simulate the latent
confounder C and post-treatment variables M , we first learn a generative model as follows:

Z ∼ Gaussian(0, IKZ
),X ∼Multi(NNf (Z)), Y ∼ Gaussian(w ⊙Z, 1) (12)

where Multi represents multinomial distribution, NNf is a neural network with softmax activation,
Z,w ∈ RKZ , KZ = 6, and ⊙ represents the element-wise product operator, respectively. We
then treat the first KC = 3 dimensions of Z as the latent confounders C and the remaining
KM = KZ −KC dimensions as the latent mediators M . After learning NNf and w according to
Eq. (12), we draw latent confounders C ∈ Gaussian(0, I), latent mediators M = T · γ, and set the
outcome Y = w⊙ [C||M ] + τ ·T , where the true ATE can be calculated as sum(γ ⊙w−KM :)+ τ .

4.2 COMPARISONS WITH THE STATE-OF-THE-ART

The baselines we include for comparisons can be categorized into three classes. 1) Unawareness,
where no information in X is used for ATE estimation. We implement the naive LR0 estimator,
which regresses Y on T and uses the coefficient to estimate the ATE (Imbens & Rubin, 2015) (LR0
equals to DEV (∅), i.e., the difference of average outcome between the treatment and non-treatment
group). 2) Control-X , which directly controls the covariates X . In this class, LR1 regresses Y on T
and X , whereas TarNet uses a two-branch neural network to estimate the DEV (X) 3) Control-Z,
which controls latent variables Z learned from the covariates X . Methods from this class include
the CEVAE (Louizos et al., 2017) and covariate disentanglement methods (see Fig. 1-(b)), such as
DR-CFR Hassanpour & Greiner (2020) and TEDVAE (Zhang et al., 2021).

The comparisons are summarized in Table 1. From Table 1, we can empirically verify the correctness
of Theorem 2.2 that post-treatment bias indeed poses a serious issue for proxy-of-confounder-based
methods, because for the MixedMediator and MixedConfounder datasets, CEVAE is worse
than the naive LR0 estimator that directly calculates the difference of mean outcome between the

5which leads to -0.178 after standardization. Code demo see https://anonymous.4open.science/r/CiVAE-demo-54B9.

8

https://anonymous.4open.science/r/CiVAE-demo-54B9


Under review as a conference paper at ICLR 2024

(a) Case 1: Intra-Confounder (b) Case 2: Intra-Mediator (c) Case 3: Confounder-Mediator
Figure 2: Visualization of p-value of independence test before and after conditioning on treatment T .
Table 1: Comparison of CiVAE with baselines on ATE estimation with latent post-treatment bias.

Dataset MixedMediator MixedCorrelator Company

Method ATE. Err. ATE. Err. ATE. Err.

LR0 0.975 ±0.032 1.975 2.977 ±0.032 1.977 0.131 ± 0.015 0.399
LR1 1.457 ± 0.167 2.457 3.400 ± 0.130 2.400 0.093 ± 0.071 0.361
TarNet 1.461 ± 0.172 2.461 3.414 ± 0.146 2.414 0.112 ± 0.085 0.380
CEVAE 1.550 ±0.292 2.550 3.323 ±0.167 2.323 0.106 ± 0.078 0.374
DR-CFR 1.239 ±0.324 2.239 3.185 ±0.319 2.185 0.094 ±0.089 0.362
TEDVAE 1.042 ±0.315 2.042 3.138 ±0.281 2.138 0.097 ± 0.093 0.365
CiVAE -0.822 ±0.753 0.178 1.199 ±0.765 0.199 -0.140 ±0.137 -0.128
True ATE -1.000 ±0.000 0.000 1.000 ±0.000 0.000 -0.268 ±0.000 0.000

treatment and non-treatment groups. In addition, for MixedMediator and Company datasets, all
methods except the proposed CiVAE fail to predict the negativity of the ATE.

Covariates disentanglement-based methods, i.e., DR-CFR and TEDVAE, achieve similar performance
as CEVAE. The reason is that, these methods disentangle latent confounders C from latent instru-
mental variables I and latent adjusters A by utilizing their causal relations with T and Y , i.e., I is
predictive only for T , A is predictive only for Y , whereas C is predictive for both T and Y . For
example, TEDVAE includes three encoders to infer three sets of latent variables Î , Â, Ĉ from X and
adds classification losses p(T |Î, Ĉ) and p(Y |T, Ĉ, Â) on the CEVAE loss. However, when latent
post-treatment bias exists, since both latent confounders C and latent post-treatment variables M are
correlated with both T and Y , Ĉ inferred by TEDVAE still cannot disentangle C from M .

CiVAE achieves significantly better results compared to CEVAE and TEDVAE, which demonstrates
its effectiveness in identifying and distinguishing latent confounders from post-treatment variables in
proxies. However, we also notice that a downside of CiVAE is the comparatively large variance across
ten dataset splits, as misidentifying latent mediators as confounders may result in severe performance
degradation when the mediation effects are strong or the number of latent confounders is small.

4.3 DISENTANGLING OF LATENT CONFOUNDERS AND POST-TREATMENT VARIABLES

We show the p-value of the pairwise independence test of the true latent variables before and after
conditioning on the assigned treatment T . From Fig. 2 we can find that the difference between
the three cases discussed in Subsection 3.4 is significant. Here, we should note that the distinction
of the intra-confounder case from other cases relies on the assumption that latent confounders are
independent. If the latent confounders are correlated, we can first use causal discovery techniques
such as the PC algorithm (Spirtes et al., 2000) to find direct parents of T , and use our algorithm as
the refinement to determine the true confounders C from the misidentified post-treatment variables.

5 CONCLUSIONS

In this paper, we systematically investigated the latent post-treatment bias in causal inference from
observational data. We first prove that unresolved latent post-treatment variables scrambled in the
proxy of confounders can arbitrarily bias the ATE estimation. To address the bias, we proposed
the Confounder-identifiable VAE (CiVAE), which, utilizing a mild assumption regarding the prior
of latent factors, guarantees the identifiability of latent confounders up to bijective transformations.
Finally, we show that controlling the latent confounders inferred by CiVAE can provide an unbiased
estimation of the ATE. Experiments on both simulated and real-world datasets demonstrated that
CiVAE has superior robustness to latent post-treatment bias compared with state-of-the-art methods.
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A PROOFS

A.1 PROOF OF LEMMA 2.1.

Proof. Let Z = g(X) and z = g(x). If g is injective and differentiable a.e., and g† is the left-inverse,
we have:

fY |g(X)(y|g(x)) = fY |Z(y|z) =
fY,Z(y,z)

fZ(z)
=

fY,X(y, g†(z))|Jg†(z)|
fX(g†(z))|Jg†(z)|

=
fY,X(y,x)

fX(x)
= fY |X(y|x),

(13)
where f· and f·|· represent the marginal and conditional density function, respectively, and Jg†(z) is
the Jacobian matrix of function g† evaluated at z. Based on Eq. (13), we have:

E[Y |X] =

∫
y ·fY |X(y|x)dy =

∫
y ·fY |Z(y|z)dy = E[Y |Z = z] = E[Y |g(X) = g(x)]. (14)

A.2 PROOF OF COROLLARY 2.3.

Proof. For X = x, let [c||m]
.
= [f†

C(x)||f
†
M (x)]

.
= f†(x) = A†(x − αX), where A† is the left

inverse of the full column-rank matrix A in Eq. (2), we have:

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)]

= E[Y |T = 1,C = c]− E[Y |T = 0,C = c]

= E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 1,C = c]

− E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 0,C = c]

= αY + τ · E[T |T = 1,C = c] +
∑

θj · E[Mj |T = 1,C = c] +
∑

κi · E[Ci|T = 1,C = c]

− αY + τ · E[T |T = 0,C = c] +
∑

θj · E[Mj |T = 0,C = c] +
∑

κi · E[Ci|T = 0,C = c]

= τ · (1− 0) +
∑

θj · (γj · (1− 0)) +
∑

κi · (ci − ci)

= τ +
∑

θj · γj = E[τ +
∑

θj · γj ] = ATE,

(15)
where the first equality is due to the definition of CATE in Eq. (2). In addition, the causal estimand
and bias of a proxy-of-confounder-based causal inference model that controls the latent variable Z

inferred via Ẑ = f̃(X) = BTX (where B is also a full column-rank matrix) can be formulated as:

DCEV (BTx) = E[Y |T = 1, Ẑ = BTx]− E[Y |T = 0, Ẑ = BTx]

= E[Y |T = 1, Ẑ = BTαX +BTA[c||m]]− E[Y |T = 0, Ẑ = BTαX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Mj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Mj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (mj −mj) +
∑

κi · (ci − ci)

= τ = E[τ ] = E[DCEV (BTX)],
(16)

where step (a) is due to the fact that, since both A and B are full column-rank matrices, BTA is
an invertible matrix, and the mapping f̄ = BTαX +BTA is bijective. Therefore, we can invoke
Lemma 2.1 and apply the left-inverse of f̄ , i.e., f̄† = (BTA)−1 −BTαX , to the condition of the
expectation. The rest steps are based on the structural causal equations defined in Eq. (2).
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A.3 ANOTHER CASE OF LINEAR SCM WITH LATENT CORRELATORS

Corollary A.1. (MixedCorrelator) For another Linear Structural Causal Model defined as follows:

T ← 1(αT +
∑

βi · Ci > a)

Mj ← αM + γj · T + ϕj · Uj

X ← αX +A[M ||C]

Y ← αY + τ · T +
∑

θj · Uj +
∑

κi · Ci,

(17)

where the mixture function f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE,
and the bias of proxy-of-confounder-based causal inference model that controls the latent variable Ẑ
inferred via Ẑ = f̃(X) = BTX can be formulated as follows:

ATE = CATE = τ

DEV (Ẑ) = E[DCEV (Ẑ)] = DCEV (Ẑ) = τ−
∑ θj · γj

ϕj

Bias = ATE −DEV (BTX) =
∑ θj · γj

ϕj
,

(18)

where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑ θj ·γj

ϕj
is arbitrary, the

estimator DEV (Ẑ) = E[DCEV (BTX)] is arbitrarily biased for the estimation of ATE.

Proof. The proof of the CATE and ATE is trivial. The causal estimand and the bias of a proxy-
of-confounder-based causal inference model that controls the latent variables Ẑ inferred via Ẑ =
f̃(X) = BTX (where B is also a full column-rank matrix) can be formulated as follows:

DCEV (BTx) = E[Y |T = 1, Ẑ = BTx]− E[Y |T = 0, Ẑ = BTx]

= E[Y |T = 1, Ẑ = αX +BTA[c||m]]− E[Y |T = 0, Ẑ = αX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Uj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Uj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (ϕ−1
j · (mj − αM − γj)− ϕ−1

j · (mj − αM )) +
∑

κi · (ci − ci)

= τ −
∑ θj · γj

ϕj
= E

[
τ −

∑ θj · γj
ϕj

]
= E[DCEV (BTX)],

(19)

where step (a) and the rest of the proof follow the same logic as the proof in Section 2.3.

A.4 PROOF OF THEOREM 3.1

The strict definitions of the exponential family, strong exponential (which is assumed for the factorized
part of the conditional prior), and identifiability follow (Khemakhem et al., 2020; Lu et al., 2021),
and can be referred to in Appendix E, F of (Lu et al., 2021), which we omit to avoid redundancy. The
proof of Theorem 3.1 is largely based on the NF-iVAE paper (Lu et al., 2021), where most of the
details can be found, with the new assumption introduced in CiVAE that each Sf,i has at least one
invertible dimension incorporated to ensure that each dimension of the inferred latent variables is a
bijective transformation of the corresponding true latent variable.
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A.4.1 PART I

Step I. In this step, we transform the equality of noisy conditional marginal distribution of X given
Y, T of two models with parameter θ, θ̃ ∈ Θ into the equality of noise-free distributions.

pθ(X | Y, T ) = pθ̃(X | Y, T )

=⇒
∫
Z
pf (X | Z)pS,λ(Z | Y, T )dZ =

∫
Z
pf̃ (X | Z)pS̃,λ̃(Z | Y, T )dZ

=⇒
∫
Z
pε(X − f(Z))pS,λ(Z | Y, T )dZ =

∫
Z
pε(X − f̃(Z))pS̃,λ̃(Z | Y, T )dZ

(a)
=⇒

∫
X
pε(X −X)pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
dX =∫

X
pε(X −X)pS̃,λ̃

(
f̃†(X) | Y, T

)
vol

(
Jf̃†(X)

)
dX

(b)
=⇒

∫
Rd

pε(X −X)p̃f,S,λ,Y,T (X)dX =

∫
Rd

pε(X −X)p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X)dX

=⇒ (p̃f,S,λ,Y,T ∗ pε) (X) =
(
p̃f̃ ,S̃,λ̃,Ỹ ,T̃ ∗ pε

)
(X)

(c)
=⇒F [p̃f,S,λ,Y,T ] (ω)φε(ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)φε(ω)

(d)
=⇒F [p̃f,S,λ,Y,T ] (ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)

=⇒p̃f,S,λ,Y,T (X) = p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X).

(20)

Step (a) is based on the rule of change-of-variable, where vol(A) =

√
det

(
AT A

)
. In step (b),

we define p̃f,S,λ,Y,T (X) ≜ pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
IX (X). In step (c), we use F [·] to

denote the Fourier transform. In step (d), we drop φε(ω) as it is non-zero a.e. (see Assumption 3).

Step II. In this step, we transform the equality of the noise-free distributions into the relationship of
the sufficient statistics S and S̃. By taking logarithm of both sides of Eq. (20), we have:

log vol
(
Jf†(X)

)
+ logQ

(
f†(X)

)
− log C(Y, T ) +

〈
S
(
f†(X)

)
,λ(Y, T )

〉
= log vol

(
Jf̃†(X)

)
+ log Q̃

(
f̃†(X)

)
− log C̃(Y, T ) +

〈
S̃
(
f̃†(X)

)
, λ̃(Y, T )

〉
.

(21)

Let (Y, T )0, · · · , (Y, T )k be the k+1 distinct points defined in Assumption 3 - (iv). We obtain k+1
equations by evaluating the Eq. (21) at these points, where the first equation is subtracted from the
remaining ones, which leads to the following equation system:〈

S
(
f†(X)

)
,λ ((Y, T )l) −λ ((Y, T )0)⟩+ log

C ((Y, T )0)
C ((Y, T )l)

=
〈
S̃
(
f̃†(X)

)
, λ̃ ((Y, T )l)− λ̃ ((Y, T )0)

〉
+ log

C̃ ((Y, T )0)
C̃ ((Y, T )l)

, l = 1, · · · , k.
(22)

Let L be the invertible matrix defined in Assumption 3 - (iv) and L̃ be the counterpart for λ̃, if we
summarize all terms irrelevant to X into a constant b,we have:

LTS
(
f†(X)

)
= L̃T S̃

(
f̃†(X)

)
+ b

=⇒ S
(
f†(X)

)
= AS̃

(
f̃†(X)

)
+ c,

(23)

where A = L−T L̃ ∈ Rk×k, and c = L−T b ∈ Rk.

Step III. Ideally, to prove the element-wise bijective identifiability of the latent variables Z, the
transformation of the sufficient statistics S derived in Eq. (23) should be bijective. We claim that if
the conditional prior pS,λ(Z | Y, T ) is strongly exponential and L is invertible, L̃ and A must also
be invertible. The proof is omitted, and can be referred to in Appendix H.1.1 of (Lu et al., 2021).
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A.4.2 PART II

In this part, we prove that, if Assumptions 1, 2 and 3 hold, we can identify the factorized part
of the sufficient statistics S(Z), i.e., Sf (Z), up to permutation and element-wise transformation.
Specifically, if we use v to denote the composite map f̃† ◦ f : Z → Z , Eq. (23) can be rewritten into:

S(Z) = AS̃(v(Z)) + c. (24)

We aim to prove that A in Eq. (24) is a block permutation matrix.

Step I. We start by showing that v is a component-wise function. If we differentiate both sides of Eq.
(24) with respect to Zs and Zt, where s ̸= t, we have:

∂S(Z)

∂Zs
= A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂vi(Z)

∂Zs

∂2S(Z)

∂Zs∂Zt
= A

KZ∑
i=1

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)∂vj(Z)
· ∂vj(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
.

(25)

Note that for the factorized part of the sufficient statistics S, i.e., Sf , all cross-derivatives are zero,
and for the non-factorized part of S, i.e., Snf , which is a neural network with ReLU activation (i.e.,
linear a.e.), all second-order derivatives are zero. Therefore, the second order cross-derivatives on
the LHS. of Eq. (25) are zero, which leads to the following equality:

0 = A

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)2
· ∂vi(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
. (26)

Eq. (26) can be written into the matrix-vector product form as follows:

0 = AS̃′′(Z)v′
s,t(Z) +AS̃′(Z)v′′

s,t(Z), (27)

where

S̃′′(Z) =

[
∂2S̃(v(Z))

∂v1(Z)2
, · · · , ∂

2S̃(v(Z))

∂vKZ
(Z)2

]
∈ Rk×KZ ,

v′
s,t(Z) =

[
∂v1(Z)

∂Zt
· ∂v1(Z)

∂Zs
, · · · , ∂vKZ

(Z)

∂Zt
· ∂vKZ

(Z)

∂Zs

]T
∈ RKZ ,

and

S̃′(Z) =

[
∂S̃(v(Z))

∂v1(Z)
, · · · , ∂S̃(v(Z))

∂vKZ
(Z)

]
∈ Rk×KZ ,

v′′
s,t(Z) =

[
∂2v1(Z)

∂Zs∂Zt
, · · · , ∂

2vKZ
(Z)

∂Zs∂Zt

]T
∈ RKZ .

If we denote the concatenation as S̃′′′(Z) =
[
S̃′′(Z), S̃′(Z)

]
∈ Rk×2KZ and v′′

s,t(Z) =[
v′
s,t(Z)T ,v′′

s,t(Z)T
]T ∈ R2Kz , we have:

0 = AS̃′′′(Z)v′′′
s,t(Z). (28)

Finally, if we denote the rows of S̃′′′(Z) that correspond to the factorized part of S by S̃′′′
f (Z),

according to Lemma 5 of the iVAE paper (Khemakhem et al., 2020) and the assumption that k ≥ 2KZ ,
we have that the rank of S̃′′′

f (Z) is 2KZ . Since k ≥ 2KZ , the rank of S̃′′′
f (Z) is also 2KZ . Since the

rank of A is k, the rank of AS̃′′′(Z) is 2KZ , which implies that v′′′
s,t(Z) ∈ R2KZ is a zero vector.

Therefore, we have v′
s,t(Z) = 0,∀s ̸= t, and we have demonstrated that v is a component-wise

function.

Step II. Based on Step I, we demonstrate that A is a block permutation matrix. Without loss of gen-
erality, we assume that the permutation in v is Identity, where v(Z) = [v1 (Z1) , · · · , vKZ

(ZKZ
)]
T

and each vi is a nonlinear univariate scalar function. Since f and f̃ are injective, v is bijective and
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v−1(Z) =
[
v−1
1 (Z1) , · · · , v−1

KZ
(ZKZ

)
]T

. If we denote S(v(Z)) = S̃(v(Z)) +A−1c, Eq. (24)
can be reformulated as S(Z) = AS(v(Z)). We then apply v−1 to Z on both sides, which gives

S
(
v−1(Z)

)
= AS(Z). (29)

Let t be the index of an entry in S that corresponds to the factorized part Sf . For all s ̸= t, we have:

0 =
∂S

(
v−1(Z)

)
t

∂Zs
=

k∑
j=1

atj
∂S(Z)j
∂Zs

. (30)

Since the entries of S̃ are linearly independent, atj is zero for any j such that ∂S(Z)j
∂Zs

̸= 0. This
includes the entries Sj that correspond to 1) the factorized part that does not depend on Zt; and 2)
the non-factorized part Snf . Therefore, when t is the index of an entry in the sufficient statistics S
that corresponds to factor i in the factorized part Sf , i.e., Sf,i, the only non-zero atj are the ones that
map between Sf,i (Zi) and Sf,i (vi (Zi)). Therefore, we can construct an invertible submatrix A′

i
with all non-zero elements atj for all t that corresponds to factor i, such that

Sf,i (Zi) = A′
iSf,i (vi (Zi)) = A′

iS̃f,i (vi (Zi)) + ci, i = 1, · · · ,KZ , (31)

where ci denotes the corresponding elements of c. Eq. (31) means that for each i = 1, · · · ,KZ ,
the matrix block A′

i of A affinely transforms the i-specific sufficient statistics vector Sf,i (Zi) into
S̃f,i (vi (Zi)). In addition, there is also an additional block A′ that affinely transforms Snf (Z) in
into Snf (v(Z)). This completes the proof that A is a block permutation matrix.

A.4.3 PART III

Let Z̃i = vi (Zi) = f̃†(X)i be the ith inferred latent variable. Assume again that the permutation in
v is Identity. In this part, we prove that if Assumption 2 holds, each inferred latent variable Z̃i is the
bijective transformation of the true latent variable. The proof is as follows.

Proof. Plugging Z̃i into Eq. (31), we have:

Sf,i(Zi) = A′
iS̄f,i(Z̃i). (32)

According to Assumption 2, there exists one dimension of Sf,i, i.e., j, such that Sf,ij is bijective.
This implies that Sf,i is injective, and therefore it has a left-inverse S†

f,i. we apply S†
f,i to both sides

of Eq. (32), which gives:
Zi = S†

f,iA
′
iS̄f,i(Z̃i). (33)

Since A′
i is a block of an invertible block permutation matrix, Ai is also an invertible matrix, and

therefore A′
i is a bijective mapping. In addition, since S̃f,i is injective, S̄f,i is also injective, and

therefore the composite map S†
f,iA

′
iS̄f,i : R→ R that applies on Z̃i is a bijective. This completes

the proof that each inferred latent variable Z̃i is the bijective transformation of the true latent variable
in the case of no noise, where Z = f†(X) are the true latent variables. If noise ε exists, the posterior
distribution of the latent variables can be identified up to an analogous bijective indeterminacy.

A.4.4 CONSISTENCY

Proof. If the family of the variational posterior qϕ(Z|X, Y, T ) contains the true posterior
pθ(Z|X, Y, T ), then by optimizing the loss of Eq. (10) (with the KL term replaced by the score
matching loss defined in Eq. (11)) over its parameter ϕ, the score matching term will eventually
vanish. Therefore, the ELBO term in Eq. (10) will be equal to the log-likelihood. Under this
circumstance, CiVAE inherits all the properties of maximum likelihood estimation (MLE). Since the
identifiability of CiVAE is guaranteed up to permutation and component-wise bijective transformation
of the latent variables, the consistency property of MLE means that the model will converge to the true
parameter θ∗ up to such mild indeterminacy of the latent variables in the limit of infinite data.
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A.5 PROOF OF THEOREM 3.2

Proof. Let C be the true latent confounders and Ĉ be the transformed confounders, where the
transformation function g is bijective and differentiable a.e. Let g−1 denote its inverse. The ATE
estimator that controls transformed confounders Ĉ can be formulated as:

DEV (Ĉ) = Ep(Ĉ)[E[Y |T = 1, Ĉ = ĉ]− E[Y |T = 0, Ĉ = ĉ]]. (34)

Specifically, for the continuous case where density functions exist, for each term, we have:

Ep(Ĉ)[E[Y |T = t, Ĉ = ĉ]] =

∫
fĈ(ĉ)

∫
y · fY |T,Ĉ(y|t, ĉ)dydĉ. (35)

For the marginal density fĈ(ĉ), the following equality holds:

fĈ(ĉ) = fC(g−1(ĉ))|Jg−1(ĉ)| = fC(c)|Jg−1(ĉ)|. (36)

As for the conditional density fY |T,Ĉ(y|t, ĉ), since g is bijective, according to Eq. (13), we have:

fY |T,Ĉ(y|t, ĉ) = fY |T,C(y|t, c). (37)

Combining Eqs. (36) and (37), and given that dĉ = |Jg(c)|dc, we have:

(35) =

∫
fC(c)|Jg−1(ĉ)|

∫
y · fY |T,C(y|t, c)dy|Jg(c)|dc

=|Jg−1(ĉ)| · |Jg(c)|
∫

fC(c)

∫
y · fY |T,C(y|t, c)dydc

(a)
=

∫
fC(c)

∫
y · fY |T,C(y|t, c)dydc

=Ep(C)[E[Y |T = t,C = c]],

(38)

where the term |Jg−1(ĉ)| · |Jg(c)| vanishes in step (a) as the two factors have the product of one.
Therefore, if we plug Eq. (38) into Eq. (34), it leads to the following equality:

DEV (Ĉ) = Ep(Ĉ)[E[Y |T = 1, Ĉ = ĉ]− E[Y |T = 0, Ĉ = ĉ]]

= Ep(C)[E[Y |T = 1,C = c]− E[Y |T = 0,C = c]]

= DEV (C) = ATE,

(39)

where the last step is due to Eq. (2) in Definition 2, which completes our proof that controlling
bijectively transformed confounders provides an unbiased estimation of ATE.
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