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ABSTRACT

Learning problems in which multiple conflicting objectives must be considered
simultaneously often arise in various fields, including engineering, drug design, and
environmental management. Traditional methods of multi-objective optimization,
such as scalarization and identification of the Pareto set under componentwise
order, have limitations in incorporating objective preferences and exploring the
solution space accordingly. While vector optimization offers improved flexibility
and adaptability via specifying partial orders based on ordering cones, current
techniques designed for sequential experiments suffer from high sample complexity,
which makes them unfit for large-scale learning problems. To address this issue,
we propose VOGP, an (ϵ, δ)-PAC adaptive elimination algorithm that performs
vector optimization using Gaussian processes. VOGP allows users to convey
objective preferences through ordering cones while performing efficient sampling
by exploiting the smoothness of the objective function, resulting in a more effective
optimization process that requires fewer evaluations. We first establish provable
theoretical guarantees for VOGP, and then derive information gain based and
kernel specific sample complexity bounds. VOGP demonstrates strong empirical
results on both real-world and synthetic datasets, outperforming previous work in
sequential vector optimization and its special case multi-objective optimization.
This work highlights the potential of VOGP as a powerful preference-driven method
for addressing complex sequential vector optimization problems.

1 INTRODUCTION

In diverse fields such as engineering, economics, and computational biology, the problem of identify-
ing the best set of designs across multiple objectives is a recurrent challenge. Often, the evaluation
of a particular design is both expensive and noisy, leading to the need for efficient and reliable
optimization methods. For instance, in aerospace engineering, the design of a wing structure must
balance objectives like aerodynamic drag, wing weight, and fuel weight stored in the wing, each
evaluation of which may require costly physical or computational experiments (Obayashi et al., 1997).
In the realm of drug discovery, a new compound must be optimized for effectiveness, drug-likeness,
and synthesizability, with each trial involving time-consuming lab tests or simulations (Mukaidaisi
et al., 2022). A common framework for dealing with such multi-objective optimization problems is
to focus on identifying Pareto optimal designs, for which there are no other designs that are better in
all objectives. However, this approach can be restrictive, as it only permits a certain set of trade-offs
between objectives where a disadvantage on one objective cannot be compensated by advantages on
other objectives (i.e., domination relation requires superiority in all dimensions).

A more comprehensive solution to this issue lies in vector optimization, where the partial ordering
relations induced by convex cones are used. The core idea is to define a “cone” in the objective space
that represents preferred directions of improvement. A solution is considered better than another if
the vector difference between their objectives falls within this preference cone. The use of ordering
cones in this way gives users a framework that can model a wide range of trade-off preferences (Jahn,
2011).

Let us consider an example. A farmer is planning for the next season and has two key objectives: to
maximize crop yield (Y ) and to minimize water usage (W ). Water usage is something the farmer
wants to minimize, so we can convert it into a maximization problem by considering the negative of
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Figure 1: An example cone (1a), its Pareto front (1b) and three different cones used in experiments:
C45◦ , C90◦ , and C135◦ (1c).

water usage (−W ). The two objectives become: maximize Y and maximize −W . If the farmer is
in a region where water resources are scarce, then they might want to prioritize water conservation
over crop yield. However, they still cannot disregard yield entirely, as it directly impacts their
income. Then, the use of a wide cone that has the following boundaries is appropriate: a boundary
that has 0◦ angle with Y axis and another boundary that makes 90◦ to 135◦ degrees with Y axis.
The visualization of this cone can be seen in Figure 1a. This indicates the preference for water
conservation over crop yield, but not an extreme one. In Figure 1b, it can be seen that some of
the designs (shown in green) in the Pareto front of traditional multiobjective order are not in the
Pareto front of vector optimization. That is, they are dominated by designs that have better water
conservation and slightly worse crop yield. Apart from conveying trade-off preferences of objectives,
as discussed in Ararat & Tekin (2023), employing wider or narrower cones may be used as a control
mechanism to tune the size of the returned Pareto optimal set. Choosing a narrower cone, as opposed
to the positive orthant cone, RM

+ , can potentially yield a more extensive set of Pareto optimal designs.
This enriched set includes not only the designs that would be deemed optimal under the standard
positive orthant cone, but also encompasses additional designs. These additional designs are superior
to arbitrary selections due to their already demonstrated potential in the narrower cone.

The use of ordering cones extends the definition of the Pareto set to objective values that cannot
be improved by another one in the sense of this preference cone (Bot, et al., 2009). While there
exists previous work addressing Pareto set identification with respect to a preference cone in noisy
environments (Ararat & Tekin, 2023), they tend to require vast amounts of samples from the expensive
objective function, making them impractical in real-world scenarios. In this paper, we address the
problem of identifying the Pareto set with respect to a preference cone C from a discrete set of designs
with a minimum number of noisy black-box function queries. We propose Vector Optimization with
Gaussian processes (VOGP), an (ϵ, δ)-probably approximately correct (PAC) adaptive elimination
algorithm that performs vector optimization by utilizing the modeling power of Gaussian processes.
In particular, VOGP leverages confidence regions formed by Gaussian processes to perform cone-
dependent, probabilistic elimination and Pareto identification steps, which adaptively explore the
Pareto front with Bayesian optimization (Garnett, 2023). Similar to PAL and ϵ-PAL (Zuluaga et al.,
2013; 2016) for the multi-objective case (see next subsection), VOGP operates in a fully exploratory
setting, where the least certain design is queried at each round. When VOGP is considered with
the componentwise order, it can be seen as a variant of PAL and ϵ-PAL that can handle dependent
objectives. We prove strong theoretical guarantees on the convergence of this algorithm and derive an
information gain-based sample complexity bound. Our main contributions can be listed as follows:

• We propose VOGP, an (ϵ, δ)-PAC adaptive elimination algorithm that performs vector
optimization while utilizing Gaussian processes. This is the first work that considers vector
optimization within the framework of Bayesian Optimization.

• We theoretically prove that VOGP returns an (ϵ, δ)-PAC Pareto set with a cone dependent
sample complexity bound in terms of the maximum information gain. We also provide
kernel specific sample complexity bounds in O(·) notation.
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• We empirically show that VOGP satisfies the theoretical guarantees across different datasets
and ordering cones. We also demonstrate that VOGP outperforms existing methods on
vector optimization and its special case multi-objective optimization.

Related work: There is considerable existing work on Pareto set identification that utilizes Gaussian
processes (Lyu et al., 2018; Suzuki et al., 2020; Shu et al., 2020; Mathern et al., 2021; Picheny,
2013; Emmerich et al., 2011; Svenson & Santner, 2016). Some of these works use information
theoretic acquisition functions. For instance, PESMO tries to sample designs that optimize the
mutual information between the observation and the Pareto set, given the dataset (Hernandez-Lobato
et al., 2016). MESMO tries to sample designs that maximize the mutual information between
observations and the maximum value of the function (Belakaria et al., 2019). JESMO tries to sample
designs that maximize the mutual information between observations and the joint distribution of the
optimal points (Tu et al., 2022). Different from entropy search-based methods, some other methods
utilize high-probability confidence regions formed by the Gaussian process posterior. For instance,
PALS (Barracosa et al., 2022), PAL and ϵ-PAL are confidence region-based adaptive elimination
algorithms that aim to categorize the input data points into three groups using the models they
have learned: those that are Pareto optimal, those that are not Pareto optimal, and those whose
statuses are uncertain (Zuluaga et al., 2013; 2016). In every iteration, these algorithms choose a
potential input for evaluation with the aim of reducing the quantity of data points in the uncertain
category. Thanks to GP-based modeling, a substantial number of designs can be explored by a single
query. Assuming independent objectives, PAL and ϵ-PAL work in the fixed confidence setting and
accommodates a variable sampling budget. On the other hand, entropy search-based methods are
often investigated in fixed-budget setting without any theoretical guarantee on the accuracy of Pareto
set identification. However, all the algorithms mentioned above try to identify the Pareto set according
to the componentwise order. They are not able to capture user preferences encoded by ordering cones.

In the context of multi-objective Bayesian optimization, there is a limited amount of work that incor-
porates user preferences. Abdolshah et al. (2019) propose MOBO-PC, a multi-objective Bayesian
optimization algorithm which incorporates user preferences in the form of preference-order con-
straints. MOBO-PC uses expected Pareto hypervolume improvement weighted by the probability
of obeying preference-order constraints as its acquisition function. Yang et al. (2016a) proposes a
method that uses truncated expected hypervolume improvement and considers the predictive mean,
variance, and the preferred region in the objective space. Some works employ preference learning
(Chu & Ghahramani, 2005; Hakanen & Knowles, 2017; Taylor et al., 2021; Ungredda & Branke,
2023; Ignatenko et al., 2021), where the user interacts sequentially with the algorithm to learn the
user preference (Astudillo & Frazier, 2019; Lin et al., 2022). Astudillo & Frazier (2019) employ
Bayesian preference learning where the user’s preferences are modeled as a utility function and
they propose two novel acquisition functions that are robust to utility uncertainty. Lin et al. (2022)
consider various preference exploration methods while also representing user preferences with a
utility function which is modeled with a Gaussian Process. Ahmadianshalchi et al. (2023) propose
PAC-MOO, a constrained multi-objective Bayesian optimization algorithm which incorporates pref-
erences in the form of weights that add up to one. PAC-MOO uses the information gained about the
optimal constrained Pareto front weighted by preference weights as its acquisition function. Khan
et al. (2022) propose a method that learns a utility function offline by using expert knowledge to
avoid the repeated and expensive expert involvement.

There are techniques that transform a multi-objective optimization problem into a single-objective
problem by assigning weights to the objectives (Ponweiser et al., 2008; Knowles, 2006). The
transformed problem can be solved using standard single-objective optimization methods. ParEGO
introduced in Knowles (2006) transforms the multi-objective optimization problem into a single-
objective one by using Tchebycheff scalarization and solves it by Efficient Global Optimization
(EGO) algorithm, which was designed for single-objective expensive optimization problems.

There are existing works that incorporate polyhedral structures to guide the design identification task.
As an example, Katz-Samuels & Scott (2018) introduce the concept of feasible arm identification.
Their objective is to identify arms whose average rewards fall within a specified polyhedron, using
evaluations that are subject to noise. Ararat & Tekin (2023) propose a Naïve Elimination algorithm for
Pareto set identification with polyhedral ordering cones. They provide sample complexity bounds on
(ϵ,δ)-PAC Pareto set identification performance of this algorithm. However, their algorithm assumes
independent arms and does not perform adaptive elimination. As a result, they only have worst-case
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sample complexity bounds for this algorithm. Experiments show that identification requires a large
sampling budget which renders Naïve Elimination impractical in real-world problems of interest.
Table 1 compares our work with the most closely related prior works in terms of key differences.

Table 1: Comparison with Related Works

Works Cone-based Sample complexity (ϵ,δ)-PAC Utilizes
preferences bounds GPs

This work Yes Yes Yes Yes
Ararat & Tekin (2023) Yes Yes Yes No
Zuluaga et al. (2016) No Yes Yes Yes
Belakaria et al. (2019) No No No Yes
Hernandez-Lobato et al. (2016) No No No Yes
Tu et al. (2022) No No No Yes

2 BACKGROUND AND PROBLEM DEFINITION

We consider the problem of sequentially optimizing a vector-valued function f : X → RM over a
finite set of designs X ⊂ RD with respect to a polyhedral ordering cone C ⊂ RM . In each iteration
t, a design point xt is selected, and a noisy observation is recorded as yt = f(xt) + νt. Here, the
noise component νt has the multivariate Gaussian distribution N

(
0, σ2IM×M

)
, where σ2 denotes

the variance of the noise. To define the optimality of designs, we use the partial order induced by C.

Partial order induced by a cone We assume that the partial order among designs is induced by
a known polyhedral ordering cone C whose interior is nonempty. Such a cone can be written as
C =

{
x ∈ RM | Wx ≥ 0

}
, where W is a N×M matrix. N is the number of halfspaces that define

C. Rows w⊤
1 , . . . ,w

⊤
N are the unit normal vectors of these halfspaces with respect to the Euclidean

norm ∥ · ∥2. For r ≥ 0, we write B(r) := {y ∈ RM | ∥y∥2 ≤ r}. We say that y ∈ RM weakly
dominates y′ ∈ RM with respect to C if their difference lies in C: y′ ≼C y ⇔ y − y′ ∈ C. By the
structure of C, an equivalent expression is: y′ ≼C y ⇔ w⊤

n (y − y′) ≥ 0 ∀n ∈ [N ] := {1, . . . , N}.
The Pareto set with respect to a cone C is the set of designs that are not weakly dominated by another
design with respect to C: P ∗

C = {x ∈ X | ∄x′ ∈ X \ {x} : f(x) ≼C f(x′)}.

(ϵ, δ)-PAC Pareto set We use the cone-dependent, direction-free suboptimality gaps defined
in Ararat & Tekin (2023). The gap between designs x, x′ ∈ X is given as m(x, x′) :=
inf {s ≥ 0 | ∃u ∈ B(1) ∩ C : f(x) + su /∈ f(x′)− int(C)}, where int(C) denotes the interior of
C and − operator over sets is the Minkowski difference (vectors being treated as singletons). The
suboptimality gap of design x is defined as ∆∗

x := maxx′∈P∗ m(x, x′).
Definition 1. Let ϵ > 0, δ ∈ (0, 1). A random set P ⊆ X is called an (ϵ, δ)-PAC Pareto set if the
subsequent conditions are satisfied at least with probability 1− δ:
(i)
⋃

x∈P (f(x) + B(ϵ) ∩ C − C) ⊇ ⋃x∈P∗ (f(x)− C); (ii) ∀x ∈ P \ P ∗ : ∆∗
x ≤ 2ϵ.

Remark 1. Condition (i) of Definition 1 is equivalent to the following: For every x∗ ∈ P ∗, there
exist x ∈ P and u ∈ B(ϵ)∩C such that f(x∗) ≼C f(x)+u. Even though certain designs in P may
not be optimal, condition (ii) of Definition 1 limits the extent of the inadequacies in these designs.
Consequently, it ensures the overall quality of all the designs produced.

Goal Our aim is to design an algorithm that returns an (ϵ, δ)-PAC Pareto set P̂ ⊆ X with as little
sampling from expensive objective function f as possible.

M -output Gaussian process We model the objective function f as a realization of an M -output GP
with zero mean and a positive definite covariance function k with bounded variance: kjj(x, x) ≤ 1
for every x ∈ X and j ∈ [M ]. Let x̃i be the ith design observed and yi the corresponding observation.
The posterior distribution of f conditioned on the first t observations is that of an M -output GP with
mean (µt) and covariance (kt) functions given below, where kt(x) = [k (x, x1) , . . . ,k (x, xt)] ∈
RM×Mt, y[t] =

[
y⊤
1 , . . . ,y

⊤
t

]⊤
, Kt = (k (xi, xj))i,j∈[t], and IMt is the Mt×Mt identity matrix:

µt(x) = kt(x)
(
Kt + σ2IMt

)−1
y⊤
[t],

kt (x, x
′) = k (x, x′)− kt(x)

(
Kt + σ2IMt

)−1
kt (x

′)
⊤
.
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Definition 2. The maximum information gain at round t is defined as γt := maxA⊆X :|A|=t I(yA;fA),
where yA is the collection of observations corresponding to the designs in A, fA is the collection of
the corresponding function values, and I(yA;fA) is the mutual information between the two.

t ≥ 1

xt,yt

St,Pt

µt(x),σt(x)

Rt(x) = Rt−1(x) ∩Qt(x)

∀x ∈ At

do

Modeling

∃x′ ∈ Ppess,t,∀y ∈ Rt(x) : Rt (x
′) + ϵu∗ ⊆ y + C

St = St \ {x}

Discarding∀x ∈ St \ Ppess,t

do

∄x′ ∈ Wt : (Rt(x) + ϵu∗ + C) ∩ (Rt (x
′)− C) ̸= ∅

St = St \ {x},Pt = Pt ∪ {x}

Pareto Identification∀x ∈ St

do

Figure 2: Illustration of VOGP algorithm’s phases.

3 THE ALGORITHM: VOGP

We propose Vector Optimization with Gaussian processes (VOGP), an (ϵ, δ)-PAC adaptive elimination
algorithm that performs vector optimization by utilizing the modeling power of GPs. VOGP takes as
input the design set X , cone C, accuracy parameter ϵ, and confidence parameter δ. VOGP adaptively
classifies designs as suboptimal, Pareto optimal, and uncertain. Initially, all designs are put in the
set of uncertain designs, denoted by St. Designs that are classified as suboptimal are discarded and
never considered again in comparisons. Designs that are classified as Pareto optimal are moved
to the predicted Pareto set P̂t. VOGP terminates and returns P̂ = P̂t when the set of uncertain
designs becomes empty. Decision-making in each round is divided into four phases named modeling,
discarding, Pareto identification, evaluating. An illustration of these phases is given in Figure 2.
Below, we discuss each phase in detail.

Algorithm 1 VOGP Algorithm

1: Input: Design set X , accuracy parameter ϵ ≥ 0, GP prior µ0,σ0, polyhedral ordering cone C
2: Initialize: P1 = ∅,S1 = X ,R0(x) = Rm for each x ∈ S1, t = 1
3: Compute: Accuracy vector u∗ ∈ C
4: while St ̸= ∅ do
5: MODELING(St,Pt);
6: DISCARDING(St);
7: PARETOIDENTIFICATION(St,Pt);
8: EVALUATING(St,Wt);
9: Pt+1 = Pt, St+1 = St;

10: t = t+ 1;
11: end while
12: return Predicted Pareto set P̂ = Pt

Modeling VOGP uses the GP posterior means and variances of designs to define confidence regions
in the form of M -dimensional hyperrectangles which are scaled by a function of δ. The probability
that these hyperrectangles include the true objective values of the designs is at least 1− δ, where δ is
the confidence parameter of the algorithm. Using these confidence hyperrectangles allows for the
formulation of probabilistic success criteria and the quantification of uncertainty with designs. The
hyperrectangles are defined by (1) below, where βt is a scalar chosen to ensure that the hyperrectangles
include the true objective values at least with probability 1− δ. We take βt = 2 ln

(
Mπ2|X |t2/(3δ)

)
.

Qt(x) =
{
y ∈ RM | µj

t (x)− β
1/2
t σj

t (x) ≤ yj ≤ µj
t (x) + β

1/2
t σj

t (x),∀j ∈ {1, 2, . . . ,M
}

. (1)

At each round, the calculated hyperrectangles are intersected cumulatively to obtain the cumulative
confidence intervals for the designs. Once the algorithm has modeled the designs using confidence
hyperrectangles, it proceeds to the discarding phase.

5



Under review as a conference paper at ICLR 2024

Algorithm 2 Modeling Subroutine

1: At = St ∪ Pt;
2: for x ∈ At do
3: Obtain GP posterior for x: µt(x) and σt(x);
4: Construct the confidence hyperrectangle Qt(x);
5: Rt(x) = Rt−1(x) ∩Qt(x);
6: end for

Discarding VOGP discards undecided designs that are dominated with respect to C with high
probability. In order to speed up the discarding phase, the designs that are to be discarded with low
probability are identified and are used to form the pessimistic Pareto set P(C)

pess,t(St) as defined below.

Definition 3 (Pessimistic Pareto Set). Let t ≥ 1 and let D ⊆ At be a set of nodes. The pessimistic
Pareto set of D with respect to C at round t, denoted by P(C)

pess,t(D), is the set of all nodes x ∈ D for
which there is no other node x′ ∈ D \ {x} such that Rt(x

′) ⊆ Rt(x) + C.

VOGP computes pessimistic Pareto set of St by checking for each design in St whether there is
another design that prevents it from being in the pessimistic Pareto set. To see if design x prevents
design x′ from being in the pessimistic Pareto set, by solving a convex optimization problem, VOGP
checks if every vertex of Rt(x

′) can be expressed as the sum of a vector in C and a vector in Rt(x).

VOGP refines the undecided set by utilizing the pessimistic Pareto set. It eliminates designs based
on the following criteria: for a given design x, if all values inside its confidence hyperrectangle,
when added to an "accuracy vector", are dominated with respect to C by all values in the confidence
hyperrectangle of another design x′, then the dominated design x is discarded. The dominating
design x′ should be a member of the pessimistic Pareto set.

The accuracy vector is of the form ϵu∗, where the accuracy parameter ϵ gives its norm and u∗ is a
unit direction vector, called the accuracy direction. The latter is selected strategically to maximize the
robustness of the ordering relation induced by C. More precisely, the accuracy direction dominates
the origin, even with a small perturbation in an arbitrary direction u ∈ SM−1, where SM−1 denotes
the unit sphere in RM (see Lemma 1 below). For this purpose, u∗ is defined as follows:

Definition 4. Let A(1) :=
⋂

u∈Sm−1(u+ C) and d(1) := inf{∥z∥2 | z ∈ A(1)}. Then, there exists
a unique vector z∗ ∈ A(1) such that d(1) = ∥z∥2 and we define u∗ := z∗

d(1) .

Lemma 1. For every y, z ∈ RM and p̃ ∈ B( ϵ
d(1) ), having y + p̃ ≼C z implies y ≼C z + ϵu∗.

Algorithm 3 Discarding Subroutine

1: Compute: Ppess,t = P(C)
pess,t(St)

2: for x ∈ St \ Ppess,t do
3: if ∃x′ ∈ Ppess,t ∀y ∈ Rt(x) : Rt(x

′) + ϵu∗ ⊆ y + C then
4: St = St \ {x};
5: end if
6: end for

Pareto identification VOGP aims to identify the designs that are not dominated by any other design
with high probability with respect to the ordering cone C. It does so by pinpointing designs that, after
adding the accuracy vector to the values in their confidence hyperrectangles, remain non-dominated
with respect to C when compared to the values in the confidence hyperrectange of any other design.

The identified designs are moved from the set of undecided designs to the predicted Pareto set. It
is important to note that, once a design becomes a member of the predicted Pareto set, it remains a
permanent member of that set.
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Algorithm 4 Pareto Identification Subroutine

1: Wt = St ∪ Pt;
2: for x ∈ St do
3: if ∄x′ ∈ Wt: (Rt(x) + ϵu∗ + C) ∩Rt(x

′) ̸= ∅ then
4: St = St \ {x}, Pt = Pt ∪ {x};
5: end if
6: end for

Evaluating VOGP selects the design whose confidence hyperrectangle has the widest diagonal.
The diagonal of the hyperrectangle Rt(x) is given by ωt(x) = maxy,y′∈Rt(x) ∥y − y′∥22. The
motivation behind this step is to acquire as much information about the objective space as possible,
so that the distinction between Pareto and non-Pareto designs can be made fast with high probability.

Algorithm 5 Evaluating Subroutine

1: if St ̸= ∅ then
2: Select design xt ∈ argmaxx∈Wt

ωt(x) (break ties randomly);
3: Observe yt = f(xt) + νt;
4: end if

4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees for VOGP and sketch their derivation. Existing
adaptive elimination methods on multi-objective optimization compare designs in componentwise
order. Our proof techniques diverge from the this line of prior work by elaborately using properties
of the ordering cone.
Theorem 1. Let η := σ−2/ ln

(
1 + σ−2

)
. When VOGP is run, the following holds at least with

probability 1− δ: An (ϵ, δ)-Pareto set can be identified with no more than T function evaluations,
where

T := min

{
t ∈ N :

√
8βtσ2ηMγt

t
≤ ϵ

2d(1)

}
. (2)

Here, we sketch the idea of the proof. The full proof can be found in supplemental document. First,
we define an event E under which the confidence hyperrectangles of designs include their true
objective values. We prove that P(E) ≥ 1− δ. We introduce a new cone-dependent accuracy vector
ϵu∗ as a means of performing comparisons under uncertainty. Next, we derive some useful properties
of d(1) and A(1) (see Definition 4). Then, by leveraging cone domination properties together with
the subroutines of the algorithm, we establish that the set P̂ returned by VOGP is an (ϵ, δ)-PAC
Pareto set (see Definition 1). We determine the stopping criterion for VOGP in a unique way, by
utilizing the uncertainty in designs based on the properties of ϵu∗ (see Lemma 1). We use the stated
stopping criterion to derive an upper bound on the sample complexity of VOGP.
Theorem 2. Let the GP kernel k have the multiplicative form k(x, x′) = [k̃(x, x′)k∗(p, q)]p,q∈[M ],
where k̃ : X × X → R is a kernel for the design space and k∗ : [M ] × [M ] → R is a kernel
for the objective space. Assume that k̃ is a squared exponential kernel or a Matérn kernel. Let
Λ := 4α2d

2(1) (2 + ln (α1)), α1 := Mπ2|X |/(3δ), α2 := 16σ2ηM2. Then, the sample complexity
of VOGP is given by

T = O
(
e

(
τ
√

2(ln(τ)− ln(ω)
τ −1)

)
· τ

τ

ω

)
. (3)

Here, τ = D + 2 and ω = ϵ2/Λ when k̃ is a squared exponential kernel; τ = (D + 2)(2ν +D(D +

1))/2ν and ω = (ϵ2/Λ)
2ν+D

2ν when k̃ is a Matérn kernel with smoothness parameter ν.

To prove Theorem 2, we use some bounds on the mutual information of the observations and the
true values for an M -output GP to bound the γt term in (2). Then, we find an upper bound on the
sample complexity which is expressed in terms of the Lambert W function. Finally, we use some
tight bounds for W in Chatzigeorgiou (2013a) to bound the sample complexity of VOGP.
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Remark 2. Theorem 1 provides a bound on sample complexity that is applicable in a very general
context where the kernel k can be any bounded positive definite kernel. However, since it has the
form of an argmin over an inequality, it may be hard to interpret. Theorem 2 provides a more explicit
and practical formulation of sample complexity that shows how it scales in relation to VOGP’s
parameters.

5 EXPERIMENTS

We evaluate the performance of VOGP on two synthetic and two real-world datasets. We investigate
its adherence to the proven theoretical guarantees (success rates SR1, SR2), function evaluation
count (SC), and Pareto statistics (namely, Pareto accuracy (PA), recall (PR), and precision (PP)
values in classifying the designs as Pareto or not.) We will investigate the performance of VOGP
under C45◦ , C90◦ , and C135◦ in comparison to the state of the art method for vector optimization:
Naïve Elimination (NE). There are many established multi-objective optimization (MOO) methods
mentioned in the related works section. However, adapting these methods to general cone structures
is non-trivial. A comparison with these methods is still possible since VOGP can be used for MOO
purposes by choosing C = C90◦ . Therefore, we provide an extensive comparison of VOGP with other
state-of-the-art MOO methods in the context of C90◦ in the supplemental document (Section A.1).
These methods are MESMO, JESMO, PESMO and EHVI (Daulton et al., 2020). The reported results
are obtained by repeating all experiments 10 times and averaging the scores. The results of the
experiments can be seen in Table 2.

• SNW dataset This dataset was introduced by Zuluaga et al. (2012). The objective here is
to optimize the area and throughput for the synthesis of a field-programmable gate array
(FPGA) platform (M = 2, D = 3). The dataset comprises 206 distinct hardware design
implementations of a sorting network.

• BC (Branin Currin) dataset For this dataset, we utilize two commonly used benchmark
functions, namely Branin and Currin, each serving as an output dimension. The input space
for this dataset is two-dimensional (M = 2, D = 2).

• OKA dataset This dataset involves the evaluation of two functions as defined in Okabe et al.
(2004) (M = 2, D = 3).

• SnAr (chemical reaction) dataset This benchmark examines the nucleophilic aromatic
substitution reaction (SnAr) involving 2,4-difluoronitrobenzene and pyrrolidine in ethanol,
which results in a primary product and two additional side-products (Hone et al., 2017). The
objectives are the space-time yield and the environmental impact. The dataset comprises
950 designs (M = 2, D = 4).

• MAR (marine) dataset This dataset focuses on optimizing bulk carrier architectures while
obeying specific restrictions required for vessels navigating the Panama Canal (Parsons &
Scott, 2004). The objective includes maximizing annual cargo, while minimizing transporta-
tion cost and ship weight. The mentioned constraints are also transformed into objectives.
The dataset comprises of 1000 designs (M = 4, D = 6).

Definition 5. Given an angle θ◦, the cone Cθ◦ ⊆ R2 is defined as the convex cone whose two
boundary rays make ±θ

2 degrees with the identity line.

Definition 6. Given a finite set of designs X , set of Pareto designs P ∗
θ and a set of predicted Pareto

designs Pθ with respect to the cone Cθ◦ , Pareto accuracy (PA), Pareto recall (PR), and Pareto
precision (PP), rate of satisfying success conditions (i) (SR1) and (ii) (SR2) are defined as

PA :=
|P ∗

θ ∩ Pθ|+ |(X\P ∗
θ ) ∩ (X\Pθ)|

|X | × 100 , PR :=
|P ∗

θ ∩ Pθ|
|P ∗

θ |
× 100 , PP :=

|P ∗
θ ∩ Pθ|
|Pθ|

× 100

SR1 :=

∣∣{x ∈ P ∗
θ : f(x∗) ∈ ⋃x∈Pθ

(f(x) + B(ϵ) ∩ C − C)
}∣∣

|P ∗
θ |

, SR2 :=
|{x ∈ Pθ : ∆∗

x ≤ 2ϵ}|
|Pθ|

.

Experimental Setup Prior to the experiments, we normalize the datasets for ϵ parameter to be
applicable. Since we normalize the datasets, we apply a noise standart deviation of 0.1. We fix
ϵ = 0.1 and δ = 0.05. Similar to the other works with the same confidence hyperrectangle definition,
we scale down βt by a factor of 20 (Zuluaga et al. (2016)). Initially, for each dataset, we learn the
kernel hyperparameters by training on the entire dataset. This is done to ensure that the algorithm

8



Under review as a conference paper at ICLR 2024

capture the smoothness of the dataset correctly. Data used in this phase is not used to update the
GP posterior. All algorithms start the learning phase with an empty set of observations. In this
experiment, for OKA dataset, Matérn kernel was used. For SNW, BC, SnAr datasets, RBF kernel
was used. NE is a fixed budget algorithm and it takes at least one sample from each design. Prior
work derived a theoretically sufficient sampling budget for NE under which an (ϵ, δ)-PAC Pareto set
is guaranteed to be returned; however, this budget is too large to be useful in practice. To make results
comparable, NE was given a sample-per-design budget that makes total number of evaluations as
close as possible (⌈T/|X |⌉) .

Discussion As seen in Table 2, despite the disparity in sampling budgets, VOGP performs very
similarly but moderately below NE in terms of Pareto accuracy (PA), Pareto precision (PP), and Pareto
recall (PR). VOGP performs marginally below NE in terms of satisfying the (ϵ,δ)-PAC conditions.
These can be attributed to the disparity between the sample counts between NE and VOGP. Since NE
takes at least one sample from each design, in cases where VOGP samples less designs than |X |, NE
gets to sample more designs than VOGP. As can be confirmed from Table 2, this is a lot more than
VOGP’s total sample count for most cases; specifically, for all cases except when SNW dataset is
used with C45◦ . As an example, for SnAr dataset with C135◦ , VOGP had a total budget of around 33
whereas NE had 950. As can be seen in Table 2, despite NE’s advantage of sample counts, VOGP was
capable of achieving superior (ϵ,δ)-PAC success rates for multiple settings and comparable Pareto
statistics while requiring significantly fewer samples in almost all of the cases. This is an expected
result because VOGP utilizes an M -output GP to obtain information from close observations while
also taking correlations of output dimensions into account whereas NE uses empirical means only.

Table 2: Performance comparison between VOGP (Our method) and Naive Elimination under C45◦ ,
C90◦ , and C135◦ . SR1 and SR2: The success rate of satisfying (ϵ,δ)-PAC conditions (i) and (ii)
respectively. PA: Pareto accuracy rate. PR: Pareto recall rate. PP: Pareto precision rate. SC: The
number of evaluations.

VOGP Naive Elimination

C D SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC

C45◦ SNW 95.96 ±2.78 98.65 ±1.46 85.53 ±1.35 76.54 ±4.93 69.49 ±3.25 777.8 ±220.65 96.92 ± 3.87 100.00 ±0.00 88.40±2.42 72.31±6.50 79.95±5.21 3×250
C45◦ BC 95.17 ±7.43 99.37 ±1.27 95.36 ±1.59 86.90 ±8.13 76.56 ±6.35 446.40 ±131.14 91.03±3.52 99.63±1.11 92.60±1.26 67.93±8.45 68.25±5.16 2×250
C45◦ OKA 88.00 ±7.38 92.84 ±5.41 95.28 ±0.99 76.40 ±4.54 76.87 ±6.89 650.3 ±153.36 98.00±2.00 100.00±0.00 96.56±1.11 82.40±7.42 83.77±7.61 3×250
C45◦ SnAr 78.75 ±14.03 98.00 ±6.00 98.46 ±0.42 55.62 ±16.64 53.63 ±12.25 517.0 ±148.79 88.12 ± 5.90 97.86 ± 3.27 98.56±0.22 55.00±6.12 58.52±8.07 1×950
C90◦ SNW 94.62 ±4.28 97.5 ±2.22 89.85 ±2.14 63.85 ±10.35 59.61 ±8.75 112.70 ±28.49 92.69±7.78 99.23±1.54 90.00±1.19 56.54±7.10 61.23±4.96 1×250
C90◦ BC 98.33 ±5.00 100.0 ±0.00 99.20 ±0.59 80.00 ±20.82 88.33 ±14.53 33.60 ±2.73 98.33±5.00 100.00 ± 0.00 98.32±0.61 68.33±17.40 67.03±15.97 1×250
C90◦ OKA 87.14 ±4.29 99.09 ±2.73 96.24 ±0.57 57.14 ±6.39 38.91 ±5.84 110.60 ±16.38 90.00 ±11.16 98.33 ±5.00 97.96±0.66 60.00±16.66 68.93±16.40 1×250
C90◦ SnAr 67.5 ±40.39 95.00 ±10.00 99.46 ±0.14 40.00 ±25.50 34.42 ±21.34 39.80 ±20.26 95.00 ± 15.00 98.57 ± 4.29 99.43±0.18 55.00±10.00 40.19±11.51 1×950
R4

+ MAR 100.00 ±0.00 99.67 ±0.81 97.70 ±0.31 79.32 ±2.96 66.84 ±4.29 716.43 ±173.89 98.42 ± 1.29 99.00 ± 1.22 96.88±0.51 71.58±5.98 57.53±6.21 1×1000
C135◦ SNW 92.00 ±9.80 94.39 ±6.41 96.12 ±1.76 72.00 ±12.49 60.07 ±15.58 72.80 ±11.91 89.00 ±11.36 100.00 ± 0.00 96.41±1.13 63.00±13.45 64.19±13.28 1×250
C135◦ BC 100.00 ±0.00 100.00 ±0.00 99.88 ±0.18 85.00 ±22.91 100.00 ±0.00 17.50 ±2.77 100.00± 0.00 100.00± 0.00 99.76±0.20 85.00±22.91 90.00±15.28 1×250
C135◦ OKA 65.00 ±22.91 85.00 ±22.91 99.60 ±0.31 65.00 ±22.91 85.00 ±22.91 44.60 ±5.22 95.00±15.00 100.00 ± 0.00 99.96±0.12 95.00±15.00 100.00 ± 0.00 1×250
C135◦ SnAr 73.33 ±13.33 100.0 ±0.0 99.64 ±0.10 26.67 ±20.00 38.33 ±30.78 32.90 ±9.41 83.33 ± 30.73 100.00 ± 0.00 99.75±0.15 43.33±26.03 65.00±39.76 1×950

6 CONCLUSION, LIMITATIONS AND FUTURE RESEARCH

We consider black-box vector optimization with noisy evaluations where the objective function is
expensive to evaluate. We propose a sample-efficient adaptive elimination algorithm, VOGP. We prove
that VOGP returns an (ϵ, δ)-PAC Pareto set and derive information gain-based and kernel-specific
sample complexity bounds.

In our experiments, we observe that VOGP outperforms NE in terms of sampling budget needed to
return an (ϵ, δ)-PAC Pareto set. Furthermore, VOGP requires significantly fewer function evaluations
to obtain Pareto statistics similar to those of NE. In the experiments given in the supplemental
document, we observe that VOGP is the most consistently high-performing method among other
MOO methods across the datasets and metrics presented. In real-world datasets (SnAr, SNW), the
lead of VOGP over MOO methods (JESMO, MESMO, PESMO, EHVI) is amplified. In conclusion,
VOGP surpasses the state-of-the-art methods of vector optimization and the specific case of multi-
objective optimization in terms of the needed function evaluation count and returned Pareto set
quality.

Our work opens up many research directions in which vector optimization with Gaussian Pro-
cesses can be improved. One of those directions is to extend VOGP to continuous design setting,
which would require a more nuanced theoretical analysis and incorporating techniques like adap-
tive discretization. Another direction worth exploring is extending VOGP to the case of missing
rewards where observations have incomplete objective values. This could broaden its applicability to
real-world problems where data might be partial or missing.
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SUPPLEMENTAL DOCUMENT

Overview In Section A, we present additional experiments by providing the comparison of VOGP
with other MOO methods. In Section B, we provide the comparison of VOGP and random search. In
Section C, we present an ablation study where the absence of known kernel hyperparameters assump-
tion is investigated. In Section D, we provide an extension of our related works that encapsulates
related works on evolutionary algorithms. In Section E, we provide the derivations of Theorems 1, 2.

A COMPARISON OF VOGP WITH OTHER MOO METHODS

A.1 COMPARISON OF VOGP WITH OTHER MOO METHODS UNDER C = C90◦

Here, we undertake a comparative study of the VOGP algorithm and other MOO methods within the
framework of a 90◦ ordering cone. These methods are MESMO, JESMO, PESMO and EHVI. Our
objective is to compare the performance of algorithms in terms of their sample complexity and the
quality of the resulting Pareto front.

Table 3: Comparison of VOGP with other MOO methods under C90◦ . SR1 and SR2: The success rate
of satisfying (ϵ,δ)-PAC conditions (i) and (ii) respectively. HV: Hypervolume. PA: Pareto accuracy
rate. PR: Pareto recall rate. PP: Pareto precision rate. SC: The number of evaluations.

Method Dataset SR1 ↑ SR2 ↑ HV ↑ PA ↑ PR ↑ PP ↑ SC↓
VOGP (Ours) SNW 94.62 ±4.28 97.5 ±2.22 45.89 ±0.09 89.85 ±2.14 63.85 ±10.35 59.61 ±8.75 112.70 ±28.49
MESMO SNW 89.23 ±6.62 92.7 ±3.27 45.84 ±0.12 88.40 ±1.40 56.54 ±7.89 53.77 ±5.33 112
EHVI SNW 26.54 ±16.80 46.62 ±25.92 32.09 ±5.10 72.57 ±12.83 16.92 ±13.01 14.25 ±13.07 112
JESMO SNW 0.00 ±0.00 1.43 ±4.29 27.48 ±1.27 85.87 ±0.91 0.00 ±0.00 0.00 ±0.00 112
PESMO SNW 0.00 ±0.00 0.00 ±0.00 26.34 ±2.15 86.12 ±0.73 0.00 ±0.00 0.00 ±0.00 112

VOGP (Ours) BC 98.33 ±5.00 100.0 ±0.00 42.66 ±0.06 99.20 ±0.59 80.00 ±20.82 88.33 ±14.53 33.6 ±2.73
MESMO BC 78.33 ±29.86 94.24 ±8.94 42.59 ±0.14 97.36 ±1.78 65.00 ±28.33 50.12 ±24.41 33
EHVI BC 36.67 ±22.11 90.67 ±19.6 42.14 ±0.29 97.08 ±0.74 31.67 ±8.98 40.02 ±16.70 33
JESMO BC 46.67 ±26.67 100.0 ±0.00 42.41 ±0.09 96.92 ±0.44 36.67 ±6.67 36.57 ±7.79 33
PESMO BC 60.00 ±32.66 100.0 ±0.00 42.45 ±0.12 96.92 ±0.54 41.67 ±11.18 37.89 ±7.62 33

VOGP (Ours) OKA 87.14 ±4.29 99.09 ±2.73 51.68 ±0.02 96.24 ±0.57 57.14 ±6.39 38.91 ±5.84 110.60 ±16.38
MESMO OKA 77.14 ±7.0 98.89 ±3.33 50.39 ±1.96 96.96 ±0.86 48.57 ±9.48 48.17 ±13.87 110
EHVI OKA 88.57 ±5.71 100.0 ±0.00 51.72 ±0.03 97.76 ±0.82 65.71 ±9.48 60.85 ±14.92 110
JESMO OKA 90.00 ±6.55 100.0 ±0.00 51.70 ±0.03 97.28 ±0.5 62.86 ±7.00 51.66 ±7.27 110
PESMO OKA 87.14 ±7.69 100.0 ±0.00 51.62 ±0.20 96.96 ±0.65 61.43 ±9.15 47.50 ±9.88 110

VOGP (Ours) SnAr 67.5 ±40.39 95.00 ±10.00 48.65 ±1.17 99.46 ±0.14 40.00 ±25.50 34.42 ±21.34 39.80 ±20.26
MESMO SnAr 15.0 ±25.5 56.0 ±35.77 45.69 ±1.76 99.39 ±0.15 5.00 ±10.00 13.33 ±30.55 39
EHVI SnAr 0.00 ±0.00 0.00 ±0.00 14.29 ±0.00 99.47 ±0.00 0.00 ±0.0 0.0 ±0.00 39
JESMO SnAr 0.00 ±0.00 0.00 ±0.00 14.29 ±0.00 99.47 ±0.00 0.00 ±0.0 0.0 ±0.00 39
PESMO SnAr 0.00 ±0.00 0.00 ±0.00 14.29 ±0.00 99.47 ±0.00 0.00 ±0.0 0.0 ±0.00 39

Experimental Setup VOGP algorithm was run with the same setup as in the main paper’s experiments
section. As in the case of VOGP, for MOO methods, initially we learn the kernel hyperparameters by
training on the entire dataset. This is done to ensure that the algorithms capture the smoothness of the
dataset correctly. Data used in this phase is not used to update the GP posterior. All algorithms start
the learning phase with an empty set of observations. MOO methods operates in fixed budget setting.
To have an accurate comparison between VOGP and MOO algorithms, we set the budget of MOO
algorithms based on the average number of evaluations of VOGP in each dataset. All methods used
Matérn kernel for OKA dataset and RBF kernel for other datasets. After the optimization loop of
MOO methods is finished, their observations are used to train a GP, and the posterior mean values for
designs in the design set are used to calculate the predicted Pareto set for these MOO methods.

Discussion As seen in Table 3, VOGP consistently ranks among the top-performing methods across
datasets and metrics. For BC, SNW and SnAr datasets, VOGP surpasses other methods in every
metric. JESMO performs well in the OKA dataset, especially with SR. EHVI performs well in
OKA dataset and has the highest Pareto statistics. MESMO generally has decent performances but
does not lead as strongly as VOGP in most cases. In conclusion, VOGP is the most consistently
high-performing method across the datasets and metrics presented. In real-world datasets (SnAr,
SNW), the lead of VOGP over MOO methods is amplified and PESMO and JESMO fail to return
good designs.
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The superiority of VOGP over other MOO methods can be attributed to multiple factors. First, VOGP
guarantees an (ϵ, δ)-PAC Pareto set to be returned, whereas the compared MOO methods do not
have this guarantee. Second, VOGP algorithm does maximum variance reduction-based sampling.
In Vakili et al. (2021a), it was shown that tighter than usual confidence bounds hold for sampling
methods where noise history is independent of sampling history. For instance, a purely non-adaptive
variance reduction-based algorithm satisfies the conditions for the mentioned tight bounds to hold
since it samples without looking at the observations. While VOGP performs variance reduction in a
similar spirit, it also performs adaptive elimination, which may prevent a design from getting sampled
if the design is discarded based on the noise history. Therefore, these tight bounds are not certified
for VOGP. However, it is important to observe that at the beginning of the algorithm, the sampling
strategy of VOGP is very close to that of a purely non-adaptive variance reduction-based sampling
algorithm. Since we empirically scale VOGP’s confidence region in the experiments, VOGP might
be getting the benefit of (almost) valid tighter confidence regions, thereby improving its performance.
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Figure 3: The scores of VOGP, JESMO, EHVI, and PESMO on BC dataset with C90◦ cone. Since
VOGP’s runs are of different round counts, averages were taken over possible runs.
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A.2 COMPARISON OF VOGP WITH OTHER MOO METHODS UNDER C = C135◦

In this section, we compare VOGP run with C = C135◦ to other MOO methods under with the
metrics defined over C135◦ .

Table 4: Comparison of VOGP with other MOO methods under C135◦ . SR1 and SR2: The success
rate of satisfying (ϵ,δ)-PAC conditions (i) and (ii) respectively. PA: Pareto accuracy rate. PR: Pareto
recall rate. PP: Pareto precision rate. SC: The number of evaluations.

Method Dataset SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC↓
VOGP (Ours) SNW 92.00 ±9.80 94.39 ±6.41 96.12 ±1.76 72.0 ±12.49 60.07 ±15.58 72.8 ±11.91
MESMO SNW 80.00 ±14.14 80.31 ±5.91 94.22 ±1.86 63.0 ±20.52 43.79 ±11.95 72
EHVI SNW 0.00 ±0.00 50.00 ±50.00 94.66 ±0.00 0.00 ±0.00 0.00 ±0.00 72
JESMO SNW 0.00 ±0.00 0.00 ±0.00 94.66 ±0.00 0.00 ±0.00 0.00 ±0.00 72
PESMO SNW 0.00 ±0.00 0.00 ±0.00 94.66 ±0.00 0.00 ±0.00 0.00 ±0.00 72

VOGP (Ours) BC 100.00 ±0.00 100.00 ±0.00 99.88 ±0.18 85.0 ±22.91 100.00 ±0.00 17.5 ±2.77
MESMO BC 60.00 ±48.99 70.00 ±45.83 98.0 ±3.01 45.0 ±41.53 60.00 ±48.99 17
EHVI BC 100.00 ±0.00 100.00 ±0.00 99.92 ±0.16 90.00 ±20.00 100.00 ±0.00 17
JESMO BC 100.00 ±0.00 100.00 ±0.00 99.96 ±0.12 95.0 ±15.0 100.00 ±0.00 17
PESMO BC 100.00 ±0.00 100.00 ±0.00 99.84 ±0.20 80.00 ±24.49 100.00 ±0.00 17

VOGP (Ours) OKA 65.00 ±22.91 85.00 ±22.91 99.60 ±0.31 65.00 ±22.91 85.00 ±22.91 44.60 ±5.22
MESMO OKA 50.00 ±0.00 85.0 ±22.91 99.48 ±0.18 50.00 ±0.00 85.0 ±22.91 44
EHVI OKA 60.00 ±20.00 100.00 ±0.00 99.68 ±0.16 60.00 ±20.00 100.00 ±0.00 44
JESMO OKA 80.00 ±24.49 96.67 ±10.00 99.80 ±0.20 80.00 ±24.49 96.67 ±10.00 44
PESMO OKA 70.00 ±24.49 96.67 ±10.00 99.72 ±0.18 70.00 ±24.49 96.67 ±10.00 44

VOGP (Ours) SnAr 73.33 ±13.33 100.00 ±0.00 99.64 ±0.1 26.67 ±20.00 38.33 ±30.78 32.9 ±9.41
MESMO SnAr 30.00 ±31.45 60.00 ±48.99 99.61 ±0.09 6.67 ±13.33 20.00 ±40.00 32
EHVI SnAr 0.00 ±0.00 0.00 ±0.00 99.58 ±0.00 0.00 ±0.00 0.00 ±0.00 32
JESMO SnAr 0.00 ±0.00 0.00 ±0.00 99.58 ±0.00 0.00 ±0.00 0.00 ±0.00 32
PESMO SnAr 0.00 ±0.00 0.00 ±0.00 99.58 ±0.00 0.00 ±0.00 0.00 ±0.00 32

Experimental Setup In this experiment (by all methods), for OKA dataset, Matérn kernel was
used. For SNW, BC, SnAr datasets, RBF kernel was used. Gaussian process kernel parameters are
known by all methods. MOO methods are run with the budget of VOGP for C = C135◦ . After
MOO methods finish the Bayseian optimization loop, a GP is set with the observations of the MOO
methods. Then, the posterior mean values of the GP are used (by identifying the non-dominated
posterior means) to calculate the estimated Pareto set for C135◦ . PA, PR, PP are then calculated with
respect to C135◦ .

Discussion VOGP consistently ranks among the top-performing methods across datasets and metrics.
While VOGP consistently demonstrates high success rates (SR1 and SR2), other methods show a
broader range of performance. This result is not unexpected since VOGP performs comparisons
with the ordering cone whereas for the other methods, there is a mismatch between their optimized
acquisition function and the cone-dependent Pareto front.

B COMPARISON OF VOGP WITH RANDOM SEARCH

Here, we compare the VOGP algorithm with random search as a baseline. The random search
algorithm samples as many samples as VOGP had sampled at random. Then, the observed data is
used to train a Gaussian process model, whose posterior mean values at every design are used to
determine the cone-dependent Pareto set.
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Table 5: Performance comparison between VOGP (Our method) and random search under C45◦ ,
C90◦ , and C135◦ . SR1 and SR2: The success rate of satisfying (ϵ,δ)-PAC conditions (i) and (ii)
respectively. PA: Pareto accuracy rate. PR: Pareto recall rate. PP: Pareto precision rate. SC: The
number of evaluations.

VOGP Random search

C D SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC

C45◦ SNW 95.96 ±2.78 98.65 ±1.46 85.53 ±1.35 76.54 ±4.93 69.49 ±3.25 777.8 ±220.65 95.38 ±0.94 99.24 ±0.94 85.63 ±1.52 73.27 ±4.07 70.87 ±3.01 777
C45◦ BC 95.17 ±7.43 99.37 ±1.27 95.36 ±1.59 86.90 ±8.13 76.56 ±6.35 446.40 ±131.14 99.66 ±1.03 100.00 ±0.00 97.24 ±0.9 91.03 ±4.14 86.17 ±4.71 446
C45◦ OKA 88.00 ±7.38 92.84 ±5.41 95.28 ±0.99 76.40 ±4.54 76.87 ±6.89 650.3 ±153.36 97.6 ±4.80 94.82 ±5.31 95.6 ±0.88 79.60 ±6.56 77.63 ±5.98 650
C45◦ SnAr 78.75 ±14.03 98.00 ±6.00 98.46 ±0.42 55.62 ±16.64 53.63 ±12.25 517.0 ±148.79 87.50 ±7.40 96.89 ±5.63 98.53 ±0.33 53.12 ±11.61 57.09 ±12.1 517
C90◦ SNW 94.62 ±4.28 97.5 ±2.22 89.85 ±2.14 63.85 ±10.35 59.61 ±8.75 112.70 ±28.49 85.38 ±7.65 93.94 ±3.29 87.72 ±3.32 50.00 ±13.76 51.75 ±13.39 112
C90◦ BC 98.33 ±5.00 100.0 ±0.00 99.20 ±0.59 80.00 ±20.82 88.33 ±14.53 33.60 ±2.73 98.33 ±5.00 88.09 ±11.26 98.00 ±0.91 88.33 ±13.02 59.57 ±17.02 33
C90◦ OKA 87.14 ±4.29 99.09 ±2.73 96.24 ±0.57 57.14 ±6.39 38.91 ±5.84 110.60 ±16.38 72.86 ±10.00 87.37 ±7.85 95.52 ±0.59 37.14 ±9.48 27.96 ±6.62 110
C90◦ SnAr 67.5 ±40.39 95.00 ±10.00 99.46 ±0.14 40.00 ±25.50 34.42 ±21.34 39.80 ±20.26 62.50 ±16.77 84.58 ±19.37 99.45 ±0.28 20.00 ±18.71 38.33 ±37.31 39
C4

90◦ MAR 100.00 ±0.00 99.67 ±0.81 97.70 ±0.31 79.32 ±2.96 66.84 ±4.29 716.43 ±173.89 98.16 ± 2.37 100.00 ±0.00 97.96 ±0.53 73.42 ±6.17 74.33 ±9.78 716
C135◦ SNW 92.00 ±9.80 94.39 ±6.41 96.12 ±1.76 72.00 ±12.49 60.07 ±15.58 72.80 ±11.91 76.00 ±16.85 91.79 ±9.27 95.10 ±2.12 57.00 ±21.00 50.50 ±17.86 72
C135◦ BC 100.00 ±0.00 100.00 ±0.00 99.88 ±0.18 85.00 ±22.91 100.0 0 17.50 ±2.77 75.00 ±40.31 84.68 ±25.51 98.84 ±1.49 70.00 ±40.00 55.77 ±40.57 17
C135◦ OKA 65.00 ±22.91 85.00 ±22.91 99.60 ±0.31 65.00 ±22.91 85.00 ±22.91 44.60 ±5.22 30.00 ±24.49 33.33 ±37.08 98.76 ±0.49 30.00 ±24.49 33.33 ±37.08 44
C135◦ SnAr 73.33 ±13.33 100.00 ±0.00 99.64 ±0.10 26.67 ±20.00 38.33 ±30.78 32.90 ±9.41 63.33 ±23.33 66.67 ±37.27 99.54 ±0.14 13.33 ±16.33 20.00 ±31.45 32

Experimental Setup The setup of this experiment is the same as the experiment setup in Section 5.

Discussion As seen in Table 5, VOGP consistently outperforms random search method across datasets
and metrics for cones C90◦ and C135◦ . The superiority of VOGP stems from its efficient sampling as
a result of variance reduction sampling. By learning as much as possible with few samples, GP used
in VOGP learns more about the underlying objective function than random search. For C45◦ , random
search method performs marginally better than VOGP. This could be because VOGP samples more
designs than are necessary to learn the objective function globally, possibly because of looseness in
confidence intervals of designs. This makes the advantages of variance reduction of VOGP diminish,
making random search learn the function well enough to become competitive with VOGP.

C ABLATION STUDY: UNKNOWN KERNEL HYPERPARAMETERS

In numerous practical situations, the correct hyperparameters are often inaccessible to us, nor do we
possess reliable initial estimates for them. Therefore, a common approach in practical settings is to
gradually learn and adjust the hyperparameters as more queries get included in observations. In this
section, we investigate the performance of VOGP when the kernel hyperparameters are unknown.
Then, as more observations are made, at each round, the kernel hyperparameters are retrained with
the observed data so far. We also share the results of an experiment where VOGP’s parameters are
fixed after being trained with a small sample of 30 datapoints. In the latter setting, parameters are not
updated as more queries get included in observations.

Table 6: Performance analysis of VOGP (Our method) with known and unknown kernel hyperparam-
eters under C45◦ , C90◦ , and C135◦ . SR1 and SR2: The success rate of satisfying (ϵ,δ)-PAC conditions
(i) and (ii) respectively. PA: Pareto accuracy rate. PR: Pareto recall rate. PP: Pareto precision rate.
SC: The number of evaluations.

VOGP (Known Parameters) VOGP (Unknown Parameters)

C D SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC

C45◦ SNW 95.96 ±2.78 98.65 ±1.46 85.53 ±1.35 76.54 ±4.93 69.49 ±3.25 777.80 ±220.65 98.46 ±2.24 86.93 ±17.95 72.33 ±23.71 83.46 ±10.29 57.74 ±17.08 283.2 ±206.97
C45◦ BC 95.17 ±7.43 99.37 ±1.27 95.36 ±1.59 86.90 ±8.13 76.56 ±6.35 446.40 ±131.14 70.34 ±35.21 81.1 ±31.33 90.84 ±3.62 57.24 ±31.35 52.46 ±25.14 180.8 ±102.00
C45◦ OKA 88.00 ±7.38 92.84 ±5.41 95.28 ±0.99 76.40 ±4.54 76.87 ±6.89 650.3 ±153.36 64.50 ±27.82 61.42 ±29.96 80.9 ±26.83 59.0 ±27.69 42.83 ±22.63 254.25 ±179.59
C45◦ SnAr 78.75 ±14.03 98.00 ±6.00 98.46 ±0.42 55.62 ±16.64 53.63 ±12.25 517.00 ±148.79 73.75 ±29.82 66.54 ±34.44 78.96 ±38.64 55.62 ±32.05 36.38 ±22.1 93.9 ±64.71
C90◦ SNW 94.62 ±4.28 97.5 ±2.22 89.85 ±2.14 63.85 ±10.35 59.61 ±8.75 112.70 ±28.49 73.85 ±37.0 72.51 ±36.46 86.99 ±2.26 53.85 ±27.41 39.53 ±20.75 104.4 ±86.2
C90◦ BC 98.33 ±5.00 100.0 ±0.00 99.20 ±0.59 80.00 ±20.82 88.33 ±14.53 33.60 ±2.73 30.00 ±38.59 73.41 ±31.02 87.24 ±28.3 28.33 ±38.04 15.57 ±21.56 15.0 ±12.75
C90◦ OKA 87.14 ±4.29 99.09 ±2.73 96.24 ±0.57 57.14 ±6.39 38.91 ±5.84 110.60 ±16.38 69.64 ±29.83 50.17 ±39.29 73.4 ±38.21 46.43 ±34.07 24.17 ±24.81 29.88 ±21.07
C90◦ SnAr 67.5 ±40.39 95.00 ±10.00 99.46 ±0.14 40.00 ±25.50 34.42 ±21.34 39.80 ±20.26 17.5 ±35.44 33.57 ±39.75 99.24 ±0.21 10.00 ±20.00 6.86 ±13.95 19.7 ±11.47
C135◦ SNW 92.00 ±9.80 94.39 ±6.41 96.12 ±1.76 72.00 ±12.49 60.07 ±15.58 72.80 ±11.91 64.00 ±34.99 70.28 ±37.72 94.76 ±0.84 56.00 ±31.37 38.17 ±19.84 67.6 ±42.26
C135◦ BC 100.00 ±0.00 100.00 ±0.00 99.88 ±0.18 85.00 ±22.91 100.00 ± 0.00 17.50 ±2.77 60.00 ±48.99 51.91 ±44.73 88.8 ±29.37 60.0 ±48.99 35.08 ±36.78 13.6 ±8.24
C135◦ OKA 65.00 ±22.91 85.00 ±22.91 99.60 ±0.31 65.00 ±22.91 85.00 ±22.91 44.60 ±5.22 18.75 ±34.8 6.35 ±16.5 86.20 ±32.28 18.75 ±34.8 6.35 ±16.5 13.75 ±12.4
C135◦ SnAr 73.33 ±13.33 100.00 ±0.00 99.64 ±0.10 26.67 ±20.00 38.33 ±30.78 32.90 ±9.41 10.00 ±21.34 25.00 ±40.31 99.58 ±0.12 10.00 ±21.34 15.00 ±32.02 12.00 ±5.78

Experimental Setup the In this experiment (by all methods), for OKA dataset, Matérn kernel was
used. For SNW, BC, SnAr datasets, RBF kernel was used. The instance of VOGP with the unknown
kernel hyperparameters, as more observations are made at each round, are retrained with the observed
data so far.
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Table 7: Performance analysis of VOGP (Our method) with known and partially known hyperparame-
ters under C45◦ , C90◦ , and C135◦ . SR1 and SR2: The success rate of satisfying (ϵ,δ)-PAC conditions
(i) and (ii) respectively. PA: Pareto accuracy rate. PR: Pareto recall rate. PP: Pareto precision rate.
SC: The number of evaluations.

VOGP (Known Parameters) VOGP (Partially Known Parameters)

C D SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC ↓ SR1 ↑ SR2 ↑ PA ↑ PR ↑ PP ↑ SC ↓
C45◦ SNW 95.96 ±2.78 98.65 ±1.46 85.53 ±1.35 76.54 ±4.93 69.49 ±3.25 777.8 ±220.65 96.35 ±2.50 97.83 ±1.73 82.67 ±2.35 68.08 ±5.52 65.28 ±5.18 450.7 ±117.68
C45◦ BC 95.17 ±7.43 99.37 ±1.27 95.36 ±1.59 86.90 ±8.13 76.56 ±6.35 446.40 ±131.14 92.07 ±5.78 96.65 ±3.50 92.48 ±2.54 78.28 ±7.24 65.7 ±10.44 285.3 ±93.17
C45◦ OKA 88.00 ±7.38 92.84 ±5.41 95.28 ±0.99 76.40 ±4.54 76.87 ±6.89 650.3 ±153.36 82.0 ±7.43 89.7 ±2.53 93.16 ±1.31 74.0 ±7.21 63.78 ±6.0 365.2 ±154.56
C45◦ SnAr 78.75 ±14.03 98.00 ±6.00 98.46 ±0.42 55.62 ±16.64 53.63 ±12.25 517.0 ±148.79 90.0 ±9.76 96.81 ±4.31 98.72 ±0.31 60.0 ±8.93 62.82 ±9.74 350.8 ±91.41
C90◦ SNW 94.62 ±4.28 97.5 ±2.22 89.85 ±2.14 63.85 ±10.35 59.61 ±8.75 112.70 ±28.49 98.08 ±3.10 93.23 ±3.60 89.17 ±1.55 64.62 ±11.12 56.36 ±5.29 69.5 ±13.29
C90◦ BC 98.33 ±5.00 100.0 ±0.00 99.20 ±0.59 80.00 ±20.82 88.33 ±14.53 33.60 ±2.73 93.33 ±20.0 98.89 ±3.33 98.96 ±0.93 80.0 ±19.44 79.89 ±21.36 28.5 ±8.02
C90◦ OKA 87.14 ±4.29 99.09 ±2.73 96.24 ±0.57 57.14 ±6.39 38.91 ±5.84 110.60 ±16.38 75.71 ±6.55 90.44 ±10.64 96.28 ±0.67 40.0 ±12.45 35.66 ±9.93 52.5 ±15.31
C90◦ SnAr 67.5 ±40.39 95.00 ±10.00 99.46 ±0.14 40.00 ±25.50 34.42 ±21.34 39.80 ±20.26 82.5 ±11.46 82.92 ±22.55 99.51 ±0.16 37.5 ±16.77 51.0 ±26.78 27.0 ±11.08
C135◦ SNW 92.00 ±9.80 94.39 ±6.41 96.12 ±1.76 72.00 ±12.49 60.07 ±15.58 72.80 ±11.91 95.00 ±8.06 90.06 ±10.99 96.65 ±1.56 85.0 ±8.06 64.18 ±15.87 42.0 ±7.21
C135◦ BC 100.00 ±0.00 100.00 ±0.00 99.88 ±0.18 85.00 ±22.91 100.00 ±0.00 17.50 ±2.77 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0 13.3 ±1.95
C135◦ OKA 65.00 ±22.91 85.00 ±22.91 99.60 ±0.31 65.00 ±22.91 85.00 ±22.91 44.60 ±5.22 40.0 ±20.0 55.0 ±35.0 99.08 ±0.57 40.0 ±20.0 55.0 ±35.0 25.9 ±6.86
C135◦ SnAr 73.33 ±13.33 100.00 ±0.00 99.64 ±0.10 26.67 ±20.00 38.33 ±30.78 32.90 ±9.41 66.67 ±29.81 75.0 ±33.54 99.68 ±0.19 36.67 ±17.95 60.0 ±30.0 16.7 ±4.08

Experimental Setup In this experiment, for OKA dataset, Matérn kernel was used. For SNW,
BC, SnAr datasets, RBF kernel was used. The instance of VOGP with the partially known kernel
hyperparameters has its parameters with randomly selected 30 datapoints initially. These data are not
used to update the GP posterior.

Discussion As seen in Table 6, VOGP’s performance is affected negatively when the kernel parameters
are initially unknown. Though the VOGP gets to learn the kernel parameters as more queries are
added to the observations, VOGP performs Pareto classification operations in early stages without
having the right kernel parameters. Since VOGP does not check discarded designs again and does
not reconsider added Pareto designs, these erroneous decisions in the cannot be corrected later on.
As seen in Table 7, a small set of 30 initial samples to learn the kernel parameters are enough
to make VOGP perform marginally worse than the version with known parameters. Additionally,
VOGP samples the objective function less times when it has incomplete information of the kernel
hyperparameters. A possible reason for this would be higher length scales, which could lead to
observations reducing more uncertainty about other designs, leading to faster terminations.
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D RELATED WORKS ON EVOLUTIONARY ALGORITHMS

Numerous studies employ multi-objective evolutionary algorithms in order to estimate the Pareto
front, thereby accomplishing this task through the iterative development of a population of evaluated
designs; see Seada & Deb (2015); Deb et al. (2002); Knowles (2006); Zhang & Li (2007). Some
of these methods use hypervolume calculation to guide their method (Yang et al., 2016b; Beume
et al., 2007; Bader & Zitzler, 2011). A significant body of research exists on the integration of user
preferences into multi-objective evolutionary algorithms (Coello, 2000; Zhou et al., 2011; Branke
& Deb, 2005; Phelps & Köksalan, 2003; Li & Silva, 2008; Sinha et al., 2010). Using evolutionary
algorithms, preferences can be articulated a priori, a posteriori, or interactively. Various methods for
expressing preferences have been suggested, primarily encompassing techniques based on objective
comparisons, solution ranking, and expectation-based approaches (Zhou et al., 2011). There are
also works that employ preference cones in multi-objective evolutionary algorithms. Batista et al.
(2011) utilize polyhedral cones as a method of managing the resolution of the estimated Pareto front.
Ferreira et al. (2020) apply preference cone based multi-objective evolutionary algorithm to optimize
distributed energy resources in microgrids.
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E PROOFS

Below, we present a table of symbols that are used in the proofs.

Symbol Description
X The design space

M The dimension of the objective space

SM−1 The unit sphere in RM

C The polyhedral ordering cone

ζ The ordering complexity of the cone C

f The objective function

ϵ Accuracy level given as input to the algorithm

y[t] Vector that represents the first t noisy observations where y[0] = ∅.

µt(x) The posterior mean of design x at round t whose jth component is µj
t (x)

σt(x) The posterior variance of design x at round t whose jth component is σj
t (x)

βt The confidence term at round t

Pt The predicted Pareto set of designs at round t

St The undecided sets of designs at round t

P̂ The estimated Pareto set of designs returned by VOGP

P ∗ The set of true Pareto optimal designs

P ∗
θ The set of true Pareto optimal designs when M = 2 and C = Cθ

At The union of sets St and Pt at the beginning of round t

Wt The union of sets St and Pt at the end of the discarding phase of round t

Qt (x) The confidence hyperrectangle associated with design x at round t

Rt(x) The cumulative confidence hyperrectangle associated with design x at round t

xt The design evaluated at round t

ωt(x) The diameter of the cumulative confidence hyperrectangle of design x at round t

ωt The maximum value of ωt(x) over all active designs x at round t

m(x, x′) inf {s ≥ 0 | ∃u ∈ B(1) ∩ C : f(x) + su /∈ f(x′)− int(C)}
γt The maximum information that can be gained about f in t evaluations

ts The round in which VOGP terminates
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E.1 DERIVATION OF THEOREM 1

Let ϵ > 0 and δ ∈ (0, 1) be given. Let N := {1, 2, . . .}.
Lemma 2. Let us define the event

E :=
{
∀j ∈ [M ] ∀t ∈ N ∀x ∈ X : |f j(x)− µj

t (x)| ≤ β
1/2
t σj

t (x)
}
,

where

βt := ln

(
Mπ2|X |t2

3δ

)
.

Then, P(E) ≥ 1− δ.

Proof. For an event E′, we denote by I(E′) its probabilistic indicator function, i.e., {I(E′) = 1} = E′

and {I(E′) = 0} = Ω \ E′, where Ω is the underlying sample space. Note that

1− P(E) = E
[
I
({

∃j ∈ [M ] ∃t ∈ N ∃x ∈ X : |f j(x)− µj
t (x)| > β

1/2
t σj

t (x)
})]

≤ E

 M∑
j=1

∞∑
t=1

∑
x∈X

I
({

|f j(x)− µj
t (x)| > β

1/2
t σj

t (x)
})

=

M∑
j=1

∞∑
t=1

∑
x∈X

E
[
E
[
I
({

|f j(x)− µj
t (x)| > β

1/2
t σj

t (x)
}) ∣∣y[t−1]

]]
(4)

=

M∑
j=1

∞∑
t=1

∑
x∈X

E
[
P
({

|f j(x)− µj
t (x)| > β

1/2
t σj

t (x)
} ∣∣y[t−1]

)]

≤
M∑
j=1

∞∑
t=1

∑
x∈X

2e−βt/2 (5)

= 2M |X |
∞∑
t=1

e−βt/2

= 2M |X |
∞∑
t=1

(
Mπ2|X |t2

3δ

)−1

=
6δ

π2

∞∑
t=1

1

t2
= δ ,

where (4) uses the tower rule and linearity of expectation and (5) uses Gaussian tail bound; here note
that, given y[t−1], the conditional distribution of f j(x) is N (µj

t (x), σ
j
t (x)).

For each s > 0, let us introduce

A(s) :=
⋂

u∈SM−1

(su+ C), d(s) := inf{∥z∥2 | z ∈ A(s)}.

Lemma 3. Let s > 0. Then, A(s) = sA(1) := {sy | y ∈ A(1)} and d(s) = sd(1). Moreover, there
exists a unique zs ∈ A(s) such that d(s) = ∥zs∥2.

Proof. Let s > 0. Then, note that

y ∈ A(s) ⇔ y ∈ su+ C, ∀u ∈ SM−1

⇔ y − su ∈ C, ∀u ∈ SM−1

⇔ w⊤
n (y − su) ≥ 0, ∀n ∈ [N ], ∀u ∈ SM−1

⇔ w⊤
n y ≥ sw⊤

n u, ∀n ∈ [N ], ∀u ∈ SM−1

⇔ w⊤
n y ≥ s sup

u∈SM−1

(
w⊤

n u
)
, ∀n ∈ [N ] . (6)
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Let n ∈ [N ]. By the definition of wn, we have

sup
u∈SM−1

w⊤
n u = sup

u∈B(1)
w⊤

n u = ||wn||2 = 1 . (7)

Combining (6) and (7), we get

y ∈ A(s) ⇔ w⊤
n y ≥ s, ∀n ∈ [N ] .

Therefore, A(s) =
{
z ∈ RM | w⊤

n z ≥ s, ∀n ∈ [N ]
}

, which implies that A(s) = sA(1) and hence
d(s) = sd(1).

The existence and uniqueness of zs is a direct consequence of the strict convexity and continuity of
the ℓ2-norm ∥ · ∥2 together with the closedness and convexity of A(s).
Remark 3. The last part of Lemma 3 justifies the definition of u∗ (see Definition 4).

In what follows, we denote by SM−1(r) the boundary of B(r), where r > 0; in particular, SM−1(1) =
SM−1 is the unit sphere.

We next prove Lemma 1: For every y, z ∈ RM and p̃ ∈ B( ϵ
d(1) ), having y + p̃ ≼C z implies

y ≼C z + ϵu∗.

Proof of Lemma 1. Since p̃ ∈ B
(

ϵ
d(1)

)
, we have

(p̃+ C) ∩ SM−1

(
ϵ

d(1)

)
̸= ∅ ⇐⇒ ∃γ̃ ∈ SM−1

(
ϵ

d(1)

)
: p̃ ≼C γ̃ . (8)

By Definition 4, we have

u∗ =

argmin (∥z∥2)
z∈A(1)

d(1)
=⇒ d(1)u∗ ∈ A(1)

=⇒ u∗ ∈ A(1)

d(1)
(9)

=⇒ u∗ ∈ A

(
1

d(1)

)
(10)

=⇒ ϵu∗ ∈ A

(
ϵ

d(1)

)
, (11)

where (9), (10), and (11) follow from Lemma 3. The division in (10) denotes the scaling of the
elements of A(1). The proof is completed by observing that, by Definition 4,

∀γ ∈ SM−1

(
ϵ

d(1)

)
,∀k ∈ A

(
ϵ

d(1)

)
: γ ≼C k (12)

=⇒ γ̃ ≼C ϵu∗ (13)
=⇒ p̃ ≼C ϵu∗ , (14)

where (13) follows from γ̃ ∈ SM−1
(

ϵ
d(1)

)
and (11), and (14) follows from combining (13) with

(8).

Lemma 4. Under event E, the set P̂ returned by VOGP satisfies condition (i) in Definition 1.

Proof. We claim that for every x ∈ P ∗, there exists z ∈ P̂ such that f(x) ≼C f(z) + ϵu∗. If x ∈ P̂ ,
then the claim holds with z = x, i.e., f(x) ≼C f(x) + ϵu∗, since ϵu∗ ∈ C. If x ̸∈ P̂ , then x must
have been discarded at some round s1. By the discarding rule, that means there exists z1 ∈ Ppess,s1
such that

Rs1(z1) + ϵu∗ ⊆ y + C . (15)
holds for every y ∈ Rs1(x).

At each round, the initial confidence hyperrectangle of a design x is calculated as

Qt(x) =
{
y ∈ RM | µt(x)− β

1/2
t σt(x) ≼RM

+
y ≼RM

+
µt(x) + β

1/2
t σt(x)

}
(16)
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and the initial confidence hyperrectangle is intersected with previous hyperrectangles to obtain the
confidence hyperrectangle of the current round, that is,

Rt(x) = Rt−1(x) ∩Qt(x) . (17)

It can be checked that, due to Lemma 2, we have f(x) ∈ Rs1(x) under event E. Note that, by (15),
there exists z1 ∈ Ppess,s1 such that

Rs1(z1) + ϵu∗ ⊆ f(x) + C . (18)

Since f(z1) ∈ Rs1(x), (18) implies that f(z1) + ϵu∗ ∈ f(x) + C, which is equivalent to f(x) ≼C

f(z1) + ϵu∗. Therefore, if z1 ∈ P̂ , then the claim holds by choosing z = z1.

If z1 ̸∈ P̂ , then it must have been discarded at some round s2 ≥ s1. Because VOGP discards from
the set St \ Ppess,t at round t, z1 ̸∈ Ppess,s2 . Then, using the definition of the pessimistic set (see
Definition 3), there exists z2 ∈ As2 such that

Rs2(z2) ⊆ Rs2(z1) + C . (19)

To proceed, we use (18) and the fact that C + C = C, to obtain

Rs1(z1) + ϵu∗ ⊆ f(x) + C =⇒ Rs1(z1) + ϵu∗ + C ⊆ f(x) + C + C

=⇒ Rs1(z1) + ϵu∗ + C ⊆ f(x) + C . (20)

In addition, (19) implies the following

Rs2(z2) + ϵu∗ ⊆ Rs1(z1) + ϵu∗ + C .

Combining the above display with (20) yields

Rs2(z2) + ϵu∗ ⊆ Rs1(z1) + ϵu∗ + C ⊆ f(x) + C .

According to Lemma 2, under event E, f(z2) ∈ Rs2(z2). Hence, it holds that

f(z2) + ϵu∗ ∈ f(x) + C .

So, if z2 ∈ P̂ , then the claim holds with z = z2. If z2 ̸∈ P̂ , then z2 must have been discarded at some
round s3 ≥ s2. Because VOGP discards from the set St \ Ppess,t at t, z2 ̸∈ Ppess,s3 . Then, using the
definition of the pessimistic set, there exists z3 ∈ As3 such that

Rs3(z3) ⊆ Rs3(z2) + C =⇒ Rs3(z3) ⊆ Rs2(z2) + C , (21)

where (21) follows from the fact that Rs3(z2) ⊆ Rs2(z2). Continuing from (19), we have

Rs2(z2) ⊆ Rs2(z1) + C =⇒ Rs2(z2) + C ⊆ Rs2(z1) + C + C (22)
=⇒ Rs2(z2) + C ⊆ Rs2(z1) + C , (23)

where (22) follows from the definition of Minkowski sum and (23) follows from the convexity
property of C.

Combining (21) and (23), we have

Rs3(z3) ⊆ Rs2(z1) + C . (24)

Next, using (24), s2 ≥ s1, and (20), we get

Rs3(z3) + ϵu∗ ⊆ Rs2(z1) + ϵu∗ + C ⊆ Rs1(z1) + ϵu∗ + C ⊆ f(x) + C .

According to Lemma 2, f(z3) ∈ Rs3(z3) under event E. Hence, under event E, we have

f(z3) + ϵu∗ ∈ f(x) + C .

So, if z3 ∈ P̂ , then the claim holds with z = z3. If z3 ̸∈ P̂ , a similar argument can be made until
zn ∈ P̂ . In the worst case, there comes a point where zn ∈ Ats , in which case it is either discarded
or added to the P̂ . If it is discarded, then it is removed from Ppess,ts by some design which is then
moved to P̂ . If it is not discarded, then zn ∈ P̂ .
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Lemma 5. Under event E, the set P̂ returned by VOGP satisfies condition (ii) in Definition 1.

Proof. We will show that if ∆∗
x > 2ϵ, then x /∈ P̂ \ P ∗. To prove this by contradiction, suppose

that ∆∗
x > 2ϵ for a design x ∈ P̂ \ P ∗. By definition of m(x, x′), this means that there exists

x′ ∈ P ∗ such that m(x, x′) > 2ϵ. Since x ∈ P̂ , it must have been added to P̂ at some round
t. By the ϵ-covering rule of VOGP, that means for all z ∈ Wt, (Rt(x)+ϵu∗+C)∩(Rt(z)−C) = ∅.

We complete the proof by considering two cases:

• Case 1: x′ ∈ Wt.
• Case 2: x′ /∈ Wt.

Case 1: If x′ ∈ Wt, then

(Rt(x) + ϵu∗ + C) ∩ (Rt(x
′)− C) = ∅ . (25)

By the properties of the Minkowski sum, we have Rt(x) + ϵu∗ ⊂ Rt(x) + ϵu∗ + C. This together
with (25) results in

(Rt(x) + ϵu∗) ∩ (Rt(x
′)− C) = ∅ . (26)

According to Lemma 2, under the good event E, f(x) ∈ Rt(x) and f(x′) ∈ Rt(x
′). Combining

this with (26), we conclude that

f(x) + ϵu∗ /∈ f(x′)− C . (27)

Because f(x) + ϵu∗ /∈ f(x′) − int(C), by the definition of m(x, x′), m(x, x′) ≤ ϵ and we get a
contradiction for the case of x′ ∈ Wt.

Case 2: If x′ /∈ Wt, it must have been discarded at an earlier round s1 < t. By the discarding rule,
∃z1 ∈ Ppess,s1 such that

Rs1(z1) + ϵu∗ ⊆ y + C, ∀y ∈ Rs1(x
′) . (28)

We proceed in Case 2, by considering the following two cases based on the status of z1:

• Case 2.1: z1 ∈ Wt.
• Case 2.1: z1 /∈ Wt.

Case 2.1: If z1 ∈ Wt, since Rt(z1) ⊆ Rs1(z1), (28) also implies that

Rt(z1) + ϵu∗ ⊆ y + C, ∀y ∈ Rs1(x
′)

⇐⇒ ∀yx′,s1 ∈ Rs1(x
′), ∀yz1,t ∈ Rt(z1) : yz1,t ∈ yx′,s1 − ϵu∗ + C

⇐⇒ ∀yx′,s1 ∈ Rs1(x
′), ∀yz1,t ∈ Rt(z1) : yx′,s1 − ϵu∗ ≼C yz1,t . (29)

Since z1 ∈ Wt, the ϵ-covering rule at round t between x and z1 pairs should hold. Combined with
the fact that Rt(x) + ϵu∗ ⊂ Rt(x) + ϵu∗ + C, it holds that

(Rt(x) + ϵu∗ + C) ∩ (Rt(z1)− C) = ∅ (30)
=⇒ (Rt(x) + ϵu∗) ∩ (Rt(z1)− C) = ∅
⇐⇒ ∀yz1,t ∈ Rt(z1),∀yx,t ∈ Rt(x) : yx,t + ϵu∗ ̸≼C yz1,t . (31)

Then, by combining (29) and (31), we get yx,t + ϵu∗ ̸≼C yx′,s1 − ϵu∗, ∀yx,t ∈ Rt(x) and
∀yx′,s1 ∈ Rs1(x

′). Therefore, according to Lemma 2, under the good event F1 it holds that
f(x) + 2ϵu∗ ̸≼C f(x′). Since 2ϵu∗ ∈ B(2ϵ) ∩ C, by the definition of m(x, x′), m(x, x′) ≤ 2ϵ
which is a contradiction.

Case 2.2: Next, we examine the case z1 /∈ Wt. Particularly, consider the collection of designs
denoted by z1, . . . , zn−1, zn where zi has been discarded at some round si+1 by being removed
from Ppess,si+1 by zi+1, as they fulfill the condition Rsi+1(zi+1) ⊆ Rsi+1(zi) + C. Assume that
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zn ∈ Wt. Notice that it’s always possible to identify such a design, because of the way the sequence
was defined. Due to the definition of the pessimistic Pareto set Ppess given in Definition 3 and (17),
we observe that the following set operations hold.

Rs2(z1) + C ⊇ Rs2(z2) ⊇ Rs3(z2)

Rs3(z2) + C ⊇ Rs3(z3) ⊇ Rs4(z3)

...
Rsn−1(zn−2) + C ⊇ Rsn−1(zn−1) ⊇ Rsn(zn−1)

Rsn(zn−1) + C ⊇ Rsn(zn) ⊇ Rt(zn) . (32)

In particular, (32) holds since t ≥ sn.

By the definition of Minkowski sum and the convexity of C, for any i ∈ {2, . . . , n− 1}, we have

Rsi(zi−1) + C ⊇ Rsi+1
(zi) =⇒ Rsi(zi−1) + C + C ⊇ Rsi+1

(zi) + C

=⇒ Rsi(zi−1) + C ⊇ Rsi+1(zi) + C .

Hence, it holds that

Rs2(z1) + C ⊇ Rs3(z2) + C

Rs3(z2) + C ⊇ Rs4(z3) + C

...
Rsn−1(zn−2) + C ⊇ Rsn(zn−1) + C

=⇒ Rs2(z1) + C ⊇ Rsn(zn−1) + C . (33)

Using the fact that Rs1(z1) ⊇ Rs2(z1) when s1 ≤ s2, (33), and (32) in order, we obtain

Rs1(z1) + C ⊇ Rs2(z1) + C ⊇ Rsn(zn−1) + C ⊇ Rt(zn) . (34)

Next, by combining (28) and (34), and using the properties of Minkowski sum, we have

∀y ∈ Rs1(x
′) : Rs1(z1) + ϵu∗ ⊆ y + C ⇐⇒ ∀y ∈ Rs1(x

′) : Rs1(z1) ⊆ y − ϵu∗ + C

=⇒ ∀y ∈ Rs1(x
′) : Rs1(z1) + C ⊆ y − ϵu∗ + C

=⇒ ∀y ∈ Rs1(x
′) : Rt(zn) ⊆ y − ϵu∗ + C . (35)

Alternatively, (35) can be re-written as

∀yx′,s1 ∈ Rs1(x
′),∀yzn,t ∈ Rt(zn) : yx′,s1 − ϵu∗ ≼C yzn,t . (36)

Since zn ∈ Wt, the ϵ-covering rule at round t between x and zn pairs should hold. Combined with
Rt(x) + ϵu∗ ⊂ Rt(x) + ϵu∗ + C, it holds that

(Rt(x) + ϵu∗ + C) ∩ (Rt(zn)− C) = ∅ (37)
=⇒ (Rt(x) + ϵu∗) ∩ (Rt(zn)− C) = ∅
=⇒ ∀yzn,t ∈ Rt(zn),∀yx,t ∈ Rt(x) : yx,t + ϵu∗ ̸≼C yzn,t . (38)

Then, by combining (36) and (38), we get yx,t+ϵu∗ ̸≼C yx′,s1 −ϵu∗, ∀yx,t ∈ Rt(x) and ∀yx′,s1 ∈
Rs1(x

′). Then, according to Lemma 2, under the good event E it holds that f(x) + 2ϵu∗ ̸≼C f(x′).
Since 2ϵu∗ ∈ B(2ϵ) ∩ C, by the definition of m(x, x′), m(x, x′) ≤ 2ϵ which is a contradiction.

Lemma 6. If ωt = maxx∈Wt
ωt(x) ≤ ϵ

2d(1) , then it holds that ∀x ∈ Wt,∀yx,yx̃ ∈ Rt(x) : yx ≼C

yx̃ + ϵu∗.

Proof. We have

(yx − yx̃) ∈ B
(

2ϵ

2d(1)

)
= B

(
ϵ

d(1)

)
.
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Therefore, it holds that

(yx − yx̃ + C) ∩ SM−1

(
ϵ

d(1)

)
̸= ∅ ⇐⇒ ∃γ̃ ∈ SM−1

(
ϵ

d(1)

)
: yx − yx̃ ≼C γ̃ . (39)

By Definition 4, we have

u∗ =

argmin (∥z∥2)
z∈A(1)

d(1)
=⇒ d(1)u∗ ∈ A(1)

=⇒ u∗ ∈ A(1)

d(1)
(40)

=⇒ u∗ ∈ A

(
1

d(1)

)
(41)

=⇒ ϵu∗ ∈ A

(
ϵ

d(1)

)
, (42)

where (40), (41), and (42) follow from Lemma 3. The division in (41) denotes the scaling of the
elements of A(1). The proof is completed by observing that, by Definition 4,

∀γ ∈ SM−1

(
ϵ

d(1)

)
,∀k ∈ A

(
ϵ

d(1)

)
: γ ≼C k (43)

=⇒ γ̃ ≼C ϵu∗ (44)
=⇒ yx − yx̃ ≼C ϵu∗ , (45)

where (44) follows from γ̃ ∈ SM−1
(

ϵ
d(1)

)
and (42), and (45) follows from combining (44) with

(39).
Lemma 7. VOGP terminates at round t if ωt <

ϵ
2d(1) .

Proof. Let St,0 (Pt,0) ,St,1 (Pt,1) and St,2 (Pt,2) denote sets St (P) at the end of modeling, discard-
ing and covering phases, respectively. For an x ∈ St,0 \ Pt,2, if x ̸∈ St,1, that means it must have
been discarded at round t. So, if the claim holds, any x ∈ St,0 is either discarded or moved to Pt,2.
In order to prove the lemma, we will show that if x ∈ St,0 \ Pt,2 holds, then x cannot belong to St,1.
To prove this by contradiction, assume that x ∈ St,1 (otherwise it is discarded). Since x ∈ St,0 \Pt,2,
x has not been added to Pt,2. According to the ϵ-covering rule, there exists some z∗ ∈ Pt,1 ∪ St,1 for
which

∃yz∗ ∈ Rt(z
∗),∃yx ∈ Rt(x) : yx + ϵu∗ ≼C yz∗ (46)

Fix yz∗ and yx as given in (46). Since we assume that x ∈ Pt,1 ⊆ Pt,1 ∪ St,1 = Wt, by Lemma 6,
we have

∀yx̃ ∈ Rt(x) : yx̃ ≼C yx + ϵu∗ . (47)

Again, by Lemma 6, since z∗ ∈ Wt, we have

∀ỹz ∈ Rt(z
∗) : yz∗ ≼C ỹz + ϵu∗ . (48)

Then, starting from (46), and using (48), we have

yx + ϵu∗ ≼C yz∗ ≼C ỹz + ϵu∗, ∀ỹz ∈ Rt(z
∗) (49)

⇐⇒ yx ≼C ỹz, ∀ỹz ∈ Rt(z
∗) . (50)

Now, starting from (46) and using (47), we have

yx̃ ≼C yx + ϵu∗ ≼C yz∗ , ∀yx̃ ∈ Rt(x)

=⇒ yx̃ ≼C yz∗ , ∀yx̃ ∈ Rt(x) . (51)

Starting from (51) and using (48), we have

yx̃ ≼C yz∗ ≼C ỹz + ϵu∗, ∀yx̃ ∈ Rt(x) and ∀ỹz ∈ Rt(z
∗)

=⇒ yx̃ ≼C ỹz + ϵu∗, ∀yx̃ ∈ Rt(x) and ∀ỹz ∈ Rt(z
∗) . (52)
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Notice that (50) shows that x /∈ Ppess,t. If z∗ ∈ Ppess,t, then (52) shows that x must be discarded. If
z∗ /∈ Ppess,t, then ∃z′ ∈ At such that

∀yz′ ∈ Rt(z
′),∃yz′′ ∈ Rt(z

∗) : yz′′ ≼C yz′ (53)

⇐⇒ ∀yz′ ∈ Rt(z
′),∃yz′′ ∈ Rt(z

∗) : yz′′ + ϵu∗ ≼C yz′ + ϵu∗ . (54)

Fix yz′′ as given in (53). Starting from (52) and using (54), we have

yx̃ ≼C yz′′ + ϵu∗ ≼C yz′ + ϵu∗,∀yz′ ∈ Rt(z
′) and ∀yx̃ ∈ Rt(x) (55)

=⇒ yx̃ ≼C yz′ + ϵu∗,∀yz′ ∈ Rt(z
′) and ∀yx̃ ∈ Rt(x) . (56)

(56) shows that if z′ ∈ Ppess,t, x should be discarded. If z′ /∈ Ppess,t, a similar argument can be made
until the condition to be inside Ppess,t holds since St is a finite set. Hence, the lemma is proved.

Lemma 8. Let ts represent the round in which the algorithm terminates. We have

ts∑
t=1

ωt ≤
√
ts (8βtsσ

2ηMγts) ,

where η = σ−2

ln(1+σ−2) and γts is the maximum information gain in ts evaluations.

Proof. Since the diagonal distance of the hyperrectangle Qt(x) is the largest distance between any
two points in the hyperrectangle, we have

ts∑
t=1

ω2
t =

ts∑
t=1

max
y,y′∈Rt(xt)

∥y − y′∥22 (57)

≤
ts∑
t=1

max
y,y′∈Rt−1(xt)

∥y − y′∥22

≤
ts∑
t=1

max
y,y′∈Qt−1(xt)

∥y − y′∥22

=

ts∑
t=1

M∑
j=1

(
2β

1/2
t−1σ

j
t−1(xt)

)2
(58)

≤ 4βts

ts∑
t=1

M∑
j=1

(σj
t−1(xt))

2 (59)

= 4βtsσ
2

ts∑
t=1

M∑
j=1

σ−2(σj
t−1(xt))

2

≤ 4βtsσ
2η

 ts∑
t=1

M∑
j=1

ln
(
1 + σ−2(σj

t−1(xt))
2
) (60)

≤ 8βtsσ
2ηMI(y[ts]; f[ts]) (61)

≤ 8βtsσ
2ηMγts , (62)

where η := σ−2/ ln
(
1 + σ−2

)
and σ is the noise standard deviation; (57) is due to the definition of

ω̄t; (58) follows from (16); (59) holds since βt is nondecreasing in t; (60) follows from the fact that
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s ≤ η ln(1 + s) for all 0 ≤ s ≤ σ−2 and that we have

σ−2
(
σj
t−1 (xt)

)2
= σ−2

(
kjj (xt, xt)−

(
k[t−1] (xt)

(
K[t−1] +Σ[t−1]

)−1
k[t−1] (xt)

T
)jj)

≤ σ−2kjj (xt, xt)

≤ σ−2, (63)

where (63) follows from the fact that kjj(x, x′) ≤ 1 for all x, x′ ∈ X , and (61) follows from (Nika
et al., 2021, Proposition 1). Finally, by Cauchy-Schwartz inequality, we have

ts∑
t=1

ωt ≤

√√√√ts

ts∑
t=1

ω2
t ≤

√
ts (8βtsσ

2ηMγts) ,

which completes the proof.

E.1.1 PROOF OF THEOREM 1

By definition, ωt = ωt(xt) ≤ ωt−1(xt) ≤ maxx∈Wt−1 ωt−1(x) = ωt−1, where the first inequality
is due to Rt(x) ⊆ Rt−1(x) for x ∈ X and the last inequality is due to the selection rule of VOGP.
Hence, we conclude that ωt ≤ ωt−1. By above and by Lemma 8, we have

ωts ≤
∑ts

t=1 ωt

ts
≤
√

8βtsσ
2ηMγts
ts

.

E.2 DERIVATION OF THEOREM 2

E.2.1 AUXILIARY LEMMATA

Lemma 9. (Broxson, 2006, Theorem 15) Let A ∈ Rn×n, B ∈ Rm×m be two real square matrices,
where m,n ∈ N. If λ is an eigenvalue of A with corresponding eigenvector v ∈ Rn and µ
is an eigenvalue of B with corresponding eigenvector u ∈ Rm, then λµ is an eigenvalue of
A⊗B ∈ Rmn×mn, the Kronecker product of A and B, with corresponding eigenvector v⊗u ∈ Rmn.
Moreover, the set of eigenvalues of A ⊗B is {λiµj : i ∈ [n], j ∈ [m]}, where λ1, . . . , λn are the
eigenvalues of A and µ1, . . . , µm are the eigenvalues of B (including algebraic multiplicities). In
particular, the set of eigenvalues of A⊗B is the same as the set of eigenvalues of B ⊗A.
Lemma 10. (Chatzigeorgiou, 2013b, Theorem 1) The Lambert function W−1 satisfies

−1−
√
2u− u < W−1

(
−e−u−1

)
< −1−

√
2u− 2

3
u

for every u > 0.

Lemma 11. Let τ ≥ 0 and t > eτ . Setting ω := lnτ (t)
t , we have

t ≤ exp

(
τ

√
2

(
ln(τ)− ln(ω)

τ
− 1

))
τ τ

ω
. (64)

Proof. For convenience, let us write a := ln(t). Hence, ω = e−aaτ and

ae−
a
τ = ω

1
τ .

Let b := a
τ . Then,

bτe−b = ω
1
τ ,

which implies that

−be−b = −ω
1
τ

τ
.
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Thus,

−b = W−1

(
−ω

1
τ

τ

)
.

Here, we use the Lambert W function with index −1 thanks to the assumption t > eτ . Then, we
obtain

ln(t)

τ
= −W−1

(
−ω

1
τ

τ

)
so that

t = e

(
−τ ·W−1

(
− τ√ω

τ

))
.

To be able to use Theorem 10, we set u via
τ
√
ω

τ
= e−u−1 ⇔ ln(ω)

τ
− ln(τ) = −u− 1 ⇔ u = ln(τ)− ln(ω)

τ
− 1.

First, we prove that u > 0. To that end, we show that t 7→ w(t) := lnτ (t)
t is decreasing for t > eτ .

We have
∂

∂t

(
lnτ (t)

t

)
=

(τ − ln(t)) lnτ−1(t)

t2
.

Since t > eτ , we have lnτ−1(t) > 0 and t2 > 0. Also notice that τ − ln(t) < 0 for t > ez . Hence,
t 7→ w(t) is decreasing for t > eτ . Now, if we take t = eτ , then we have

u = ln(τ)− ln (w (eτ ))

τ
− 1

= ln(τ)−
ln
(

lnτ (eτ )
eτ

)
τ

− 1

= ln(τ)− ln (lnτ (eτ ))− ln (eτ )

τ
− 1

= ln(τ)− ln (τ τ )− τ

τ
− 1

= ln(τ)− ln(τ) + 1− 1

= 0

Since ω(t) = lnτ (t)
t is decreasing for t > eτ , and u = 0 when t = eτ , we can conclude that u > 0

whenever t > eτ .

Therefore, we may apply the bound in Theorem 10 and obtain

t ≤ exp
(
(1 +

√
2u+ u)τ

)
= exp

(
τ + τ

√
2

(
ln(τ)− ln(ω)

τ
− 1

)
+ τ

(
ln(τ)− ln(ω)

τ
− 1

))

= exp

(
τ

√
2

(
ln(τ)− ln(ω)

τ
− 1

)
+ τ ln(τ)− ln(ω)

)

= exp

(
τ

√
2

(
ln(τ)− ln(ω)

τ
− 1

))
· τ

τ

ω
,

which completes the proof.
Lemma 12. Let f be a realization from an M -output GP with a separable covariance function
of the form (x, x′) 7→ k(x, x′) = [k̃(x, x′)k∗(p, q)]p,q∈[M ], where k̃ : X × X → R is an RBF or
Matérn kernel for the design space and k∗ : [M ] × [M ] → R is a kernel for the objective space.
For each p ∈ [M ], let Ψp be the maximum information gain for a single output GP whose kernel is
(x, x′) 7→ k̃(x, x′)k∗(p, p). Then, we have

I(y[t];f[t]) ≤ M max
p∈[M ]

Ψp .
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Proof. Our proof is similar to the proof of (Li et al., 2022, Theorem 2). The difference comes from
the structures of the covariance matrices, where the order of Kronecker products are swapped in our
case. (Kronecker product of input and output kernels to form the covariance matrix has swapped
order.)

Recall that Kt = (k (xi, xj))i,j∈[t]. Hence, we have

I(y[t];f[t]) = H(y[t])−H(y[t] | f[t])

=
1

2
ln
∣∣2πe (Kt + σ2IMt

)∣∣− 1

2
ln
∣∣2πeσ2IMt

∣∣
=

1

2
ln

(∣∣2πe (Kt + σ2IMt

)∣∣
|2πeσ2IMt|

)

=
1

2
ln
∣∣∣(Kt + σ2IMt

)
·
(
σ2IMt

)−1
∣∣∣

=
1

2
ln

∣∣∣∣IMt +
1

σ2
Kt

∣∣∣∣ .
By the separable form of k, we have

Kt = [k̃(xi, xj)]i,j∈[t] ⊗ [k∗(p, q)]p,q∈[M ] .

Hence, by Lemma 9 and using the identity |I +A⊗B| = |I +B ⊗A|, we get

I(y[t];f[t]) =
1

2
ln

∣∣∣∣IMt +
1

σ2
[k∗(p, q)]p,q∈[M ] ⊗ [k̃(xi, xj)]i,j[t]

∣∣∣∣ . (65)

Notice that

IMt +
1

σ2
[k∗(q, p)]p,q∈[M ] ⊗ [k̃(xi, xj)]i,j∈[t]

=

 It + k∗(1, 1)[k̃(xi, xj)]i,j∈[t]σ
−2, . . . , k∗(1,M)[k̃(xi, xj)]i,j∈[t]σ

−2

...
...

k∗(M, 1)[k̃(xi, xj)]i,j∈[t]σ
−2, . . . , It + k∗(M,M)[k̃(xi, xj)]i,j∈[t]σ

−2

 .

Since the matrix itself and all of its diagonal blocks are positive definite symmetric real matrices, we
can apply Fischer’s inequality and obtain

I(y[t];f[t]) ≤
1

2

M∑
p=1

ln
∣∣∣It + k∗(p, p)σ−2[k̃(xi, xj)]i,j∈[t]

∣∣∣ .
This is actually the sum of mutual informations of single output GPs fl ∼
GP(0, k∗(l, l)[k̃(xi, xj)]i,j∈[t]). Notice that a positive constant multiple of an RBF (resp.
Matérn) kernel is still an RBF (resp. Matérn) kernel. Since the mutual information is bounded
by maximum information gain, we obtain I(y[t];f[t]) ≤ M maxp∈[M ] Ψp, which completes the
proof.

E.2.2 ANALYSIS FOR AN RBF KERNEL

Now, let us assume that we are using an RBF kernel k̃ for the design space. Then, by Lemma 12 and
the bounds on maximum information gain established in Srinivas et al. (2012), we have

I(y[t];f[t]) ≤ M · O
(
lnD+1(t)

)
=⇒ γt ≤ M · O

(
lnD+1(t)

)
.

Notice that in Theorem 1, as ϵ goes to 0, T goes to infinity. Therefore, we can use the bounds on
maximum information gain established in Srinivas et al. (2012).

We have βt = 2 ln
(
Mπ2|X |t2/(3δ)

)
. Let α1 = Mπ2|X |/(3δ), α2 = 16σ2ηM2 and α3 = α2ϕ

where ϕ is the multiplicative constant that comes from the O notation. We continue by finding an
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upper bound on the left of the inequality given in Theorem 1. Note that, for t ≥ 3, we have ln(t) ≥ 1
so that √

8βtσ2ηMγt
t

=

√
ln (α1t2) γtα2

tM

≤

√
ln (α1t2)α3 ln

D+1(t)

t
(66)

=

√
[ln (α1) + ln(t2)] lnD+1(t)

t
· α3

≤

√
[ln (α1) ln(t) + ln(t2)] lnD+1(t)

t
· α3

=

√
lnD+2(t)

t
· α3(2 + ln(α1)).

Let us define

t∗ := min

t ∈ N | t ≥ 3,

√
lnD+2(t)

t
α3 (2 + ln (α1)) ≤

ϵ

2d(1)


= min

{
t ∈ N | t ≥ 3,

lnD+2(t)

t
≤ ϵ2

4d2(1) (2 + ln (α1))α3

}
.

Notice that t∗ ≥ T . Moreover, the definition of t∗ also guarantees that

t∗ − 1 ≤ min

{
t ∈ R | t ≥ 3,

lnD+2(t)

t
≤ ϵ2

4d2(1) (2 + ln (α1))α3

}

≤ min

{
t ∈ R | t ≥ eD+2,

lnD+2(t)

t
≤ ϵ2

4d2(1) (2 + ln (α1))α3

}
,

which implies that
t∗ − 1 ≤ t̃, (67)

where t = t̃ is the unique solution of the equation

lnD+2(t)

t
=

ϵ2

4d2(1) (2 + ln (α1))α3

in the region t ∈ [eD+2,+∞), thanks to the fact that t 7→ lnD+2(t)
t is a decreasing function in this

region. Since T − 1 ≤ t∗ − 1 ≤ t̃ and we can safely ignore the −1 term, we can use Lemma 11
where τ = D + 2 and ω = ϵ2

4d2(1)(2+ln(α1))α3
. Hence, the analysis for RBF kernel is complete.

E.2.3 ANALYSIS FOR A MATÉRN KERNEL

Next, we suppose that k̃ is a Matérn kernel. The analysis is very similar to the analysis for an RBF
kernel. We use the bounds found by Vakili et al. (2021b):

I(y[t],f[t]) ≤ M · O
(
T

D
2ν+D ln

2ν
2ν+D (T )

)
=⇒ γt ≤ M · O

(
T

D
2ν+D ln

2ν
2ν+D (T )

)
.

By observing only the exponent of the denominator t changes and D + 1 is replaced by 2ν
2ν+d in

comparison to (66), we have (67) with t = t̃ solving the equation

ln4ν+D(t)

t(2ν)/(2ν+D)
=

ϵ2

4d2(1) (2 + ln (α1))α3
⇔ ln

(4ν+D)(2ν+D)
2ν (t)

t
=

ϵ
2ν+D

ν

(4α3d2(1) (2 + ln (α1)))
2ν+D

2ν

(68)
The sample complexity is then found by applying Lemma 11 with τ = (4ν+D)(2ν+D)

2ν and ω being
the last term in (68). Hence, the analysis for a Matérn kernel is complete.
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