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Abstract

In this paper, we address the problem of Vision
Transformer (ViT) models being limited to intra-
image attention, which prevents them from leverag-
ing cross-sample information. This is highly relevant
in agricultural data such as plant disease detection,
an important challenge in agriculture where early
and reliable diagnosis helps protect yields and food
security. Yet existing methods often fail to capture
subtle or overlapping symptoms that only become
evident when considered in a population context.
Our approach SimGroupAtin extends masked im-
age modeling by enabling image patches to attend
not only within their own image but also to simi-
lar regions across other images in the same batch.
Guided by cosine similarity score which is trained
jointly with model weights, SimGroupAttn incorpo-
rates population-level context into the learned rep-
resentations, making them more robust and dis-
criminative. Extensive experiments on PlantPathol-
ogy dataset demonstrate that our approach outper-
forms Simple Masked Image Modeling (SimMIM)
and Masked Autoencoders (MAE) in linear probing
and classification task. It improves top-1 accuracy
by up to 6.5% in linear probing for complex classes
and 3.5% in classification compared with the best
baseline model performance under the same settings.

1 Introduction

In recent years, Vision Transformers (ViTs) [1] have
attracted considerable interest for their ability to
model long-range dependencies across image patches
through self-attention. This global attention mecha-
nism enables ViTs to capture richer visual context,
making them particularly effective for complex visual
recognition tasks. However, most ViT architectures
focus attention solely within a single image, while
this design is effective for many scenarios, it lim-
its the ability to incorporate broader context. In
fields like agriculture and biology, samples frequently
share phenotypic traits or disease patterns that are
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only meaningful when viewed in the context of other
data points.

Existing masked image modeling methods like
Masked Autoencoders (MAE) [2] and SimMIM |[3]
have shown strong performance by reconstructing
masked patches and encouraging robust representa-
tion learning. Yet, because they operate on isolated
images, they struggle to capture the broader pat-
terns and variability that are essential for robust
representation learning in population-sensitive do-
mains.

To address this limitation, we introduce
Similarity-Guided Group Attention (SimGroupAttn),
a mechanism that extends self-attention beyond in-
dividual images. Instead of restricting attention to
intra-image patches, it allows each patch to attend
to similar regions across other images within the
same batch. These cross-image links are guided
by similarity scores, allowing the model to learn
from population-level information during training.
We integrate SimGroupAttn into a masked image
modeling (MIM) framework [4-8], where the added
context improves reconstruction of masked patches
and strengthens representation learning.

In summary, this paper makes three key contribu-
tions:

1. We propose SimGroupAttn, a novel attention
mechanism that incorporates population-level in-
formation into ViTs by enabling similarity guided
cross-image attention.

2. SimGroupAttn jointly learns the similarity scor-
ing and model parameters, allowing the similarity
function to adapt during training. This leads to
more effective task-specific modeling and improved
generalization in diverse samples.

3. We show that SimGroupAttn not only outper-
forms existing MIM-based frameworks in representa-
tion learning, but also significantly improves down-
stream classification tasks involving classes with
highly overlapping features.

In summary, our results highlight the value of
modeling cross-sample relationships, especially in
domains where complex feature patterns are key to
accurate visual understanding.
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2 Related Work

Masked Image Modeling (MIM). [4-8] has
become a popular self-supervised learning strategy
for ViTs. The key idea is to randomly mask im-
age patches and train the model to reconstruct the
missing content, thereby encouraging the encoder to
capture meaningful visual representations. Masked
Autoencoders (MAE) [2] and SimMIM [3] pioneered
this approach for ViTs. MAE adopts an asymmetric
design, masking most patches (typically 75%) and
encoding only the visible ones, while a lightweight
decoder reconstructs the masked content. This re-
duces computation and allows the encoder to focus
on semantic abstraction. SImMIM offers a simpler al-
ternative by reconstructing masked patches directly
with the encoder, yet still achieves competitive re-
sults, showing that effective reconstruction-based
pretraining can be realized with minimal architec-
tural changes. While both MAE and SimMIM have
demonstrated strong performance in downstream
recognition tasks, they share a common limitation:
attention remains confined to intra-image patches.
This makes them less effective in domains where
cross-sample relationships are crucial.

Plant Disease Classification. Deep learning has
been widely applied to plant disease classification,
with models such as AlexNet and ResNet demon-
strating strong early results [9-11]. More recently,
ViTs [1] have gained attention in this area, with
several works exploring ViTs alone or in hybrid com-
binations with CNNs [12-16]. However, most ap-
proaches still focus on individual images and rarely
incorporate population-level information, which is
particularly important in domains such as agricul-
ture and biology. For instance, a single leaf may
exhibit symptoms of multiple diseases simultane-
ously, making its representation more challenging.
A recent study by Eu-Tteum Baek [17] attempted
to address this by combining multiple independent
ViTs for population-aware classification. While this
approach achieves high accuracy, each ViT still op-
erates primarily at the instance level since their
training does not involve population-level attention.

Joint Training of ViTs. Unifying the strengths
of self-supervised and supervised learning for train-
ing ViT especially under circumstances of limited
data has gained substantial attention. Qian et al.
[18] proposed a novel joint training framework where
a Vision Transformer is optimized simultaneously
using MAE reconstruction loss and a classification
loss from the very beginning of training. Unlike
conventional two-stage pipelines that separate self-
supervised pretraining from downstream fine-tuning,
their method integrates both objectives into a uni-
fied training loop, allowing the encoder to learn

semantically rich and task-aligned representations
in a data-efficient manner. This approach is par-
ticularly effective in low-data circumstances, as the
reconstruction loss acts as a strong inductive bias
that regularizes the learning process and helps pre-
vent overfitting. Zhou et al. introduced UniMAE
[19], a unified masked autoencoder that supports
multi-task training by jointly optimizing for image
reconstruction and multiple downstream objectives,
including classification and detection. In this study,
we also adopt joint training for one of our experi-
ments to address the issue of limited data.

3 Method

3.1 SimGroupAttn Mechanism

Standard ViT restricts attention to patches within a
single image, our SimGroupAtin extends this mech-
anism to enable cross-image interactions. A few key
differences are illustrated here:

Intra-image attention & Cross-image Atten-
tion. Rather than limiting attention to only intra-
image patches, each query patch in the input batch
attends to its top-M most similar patches within the
same image (intra-image) and top-N most similar
patches across the batch (cross-image) — resulting
in a total of (M + N) attended patches. These
connections form an attention graph that guides
the attention layer in ViT to cross all patches in a
batch. This graph, along with the randomly masked
patch embeddings, is then fed into the attention
blocks. During attention computation, selected en-
tries in the key matrix K and the value matrix V'
are indexed according to the attention graph while
query matrix () is computed identically to standard
attention. This produces a sparsely refined atten-
tion pattern that focuses the computation on the
most relevant patches. In standard self-attention,
the output is computed as:

-

Attention(Q, K, V') = softmax <QK ) vV @
VD

In SimGroupAtin, attention is restricted to a
similarity-guided neighborhood N for each query
patch z,. Let Q = 2,Wqo, Ki = zWk, and
Vi = zuWy for all k € Nq where W are learnable
weight matrices that linearly project the inputs into
query, key, and value matrix and D is the feature
dimension. The attention is computed as:

Attention(zq) = Z g Vi
keN,

(2)

where the attention weights oy are given by:
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Similarity Guidance. A patch-pairwise cosine
similarity scoring system measures how similar
two patches are and then helps to construct the
attention graph. For each input batch, pairwise
similarity is calculated for all patches in the same
batch which forms a similarity matrix capturing
relations between patches both in the same image
and across different images. This similarity matrix
is computed after patches are passed through
the patch embedding layer. The motivation of
a post-patch embedding similarity is that the
model can jointly learn similarity scoring and
weights simultaneously. This allows the model to
better adapt to various domains by enabling it to
combine patch-wise relation learning and weight
optimization in one go. In addition, we also set
the similarity scores between the same patch to be
—oo when M is smaller than the total number of
patches in an image to prevent patches attending to
themselves. This aims to maximize population-level
information utilization and limit the original signal
flowing into reconstruction .

The general workflow of SimGroupAtin is il-
lustrated in Figure 1.

3.2 Model Architecture

We benchmark our method against two Vision Trans-
former—based masked image modeling approaches:
SimMIM [3] and MAE [2]. Given the relatively small
size of our datasets, we scale down the Vision Trans-
former encoder to ViT-Tiny (ViT-T) configuration.
For MAE, we also reduce the decoder’s capacity to
ensure a comparable number of parameters across
models. However, because MAE’s performance is
highly dependent on decoder design, we retain a
relatively larger decoder for MAE.

Table 1 summarises the architectural configura-
tions of the compared methods. All three models
share the same encoder design, consisting of a sin-
gle convolutional patch embedding layer, learnable
positional embeddings, and a 12-layer transformer
encoder with 6 attention heads of dimension 64,
resulting in an embedding dimension of 384 and
approximately 23.7M parameters. The main dif-
ference lies in the decoder design. MAE employs
a deeper attention-based decoder with two layers
and three attention heads, resulting in approximate
2.6M parameters. In contrast, both SimMIM and
SimGroupAttn adopt a lightweight CNN decoder
followed by PixelShuffle, with only two layers and
1.18M parameters.

4 Experiments

In this section, we evaluate the effectiveness of our
approach from three main aspects: reconstruction

quality, representation learning quality and classi-
fication performance. For the first two tasks, all
models were trained on the PlantVillage dataset
[20] using self-supervised Masked Image Modeling
(MIM) [2, 3]. We then assess reconstruction qual-
ity by visually comparing reconstructed images of
different methods. We evaluate representational
learning quality through linear probing on a subset
of the Plant Pathology dataset containing the most
complex classes. To evaluate classification perfor-
mance, we train all models on the full PlantPathol-
ogy dataset [21] using a joint method of supervised
and self-supervised [18]. In addition, we conducted
several ablation studies in the classification task to
explore some important factors.

Table 2 shows an overview of our experiment de-
sign.

4.1 Dataset

We use two different datasets in this study: PlantVil-
liage [20] and PlantPathology [21].

PlantVillage dataset. This dataset contains a
large and diverse collection of plant leaf images span-
ning 38 disease classes across 14 crop species. Origi-
nal resolution is 256 x 256. To ensure consistency
and improve the overall quality of the input data,
all images were segmented using SAM 2 [22].

PlantPathology dataset. It is a publicly avail-
able benchmark for image-based plant disease clas-
sification that consists of high-resolution images.
We used the version with a downsized resolution
of 640 x 427. Images are annotated with multiple
disease categories, including complex cases where
leaves exhibit symptoms of more than one disease.
Such complex classes demonstrate a more entangled
feature space, making linear separation significantly
harder.

All images are resized to 224 x 224 before feeding
into the models. The statistics for each dataset,
including the number of images, class counts, and
splits used in our experiments, are shown in Table 3.

Batch Construction. For SimMIM and MAE,
batches are typically randomly sampled from the
entire dataset. In contrast, SimGroupAttn requires
more careful batch construction. Because attention
is applied across the whole batch, it is preferable
to group images of the same plant species within a
batch rather than sample randomly across species,
in order to avoid cross-species attention. Therefore,
when training on the PlantVillage dataset, each
batch was randomly sampled from images of the
same plant type, whereas for the Plant Pathology
dataset, standard random sampling was used since
all images come from the same plant species.
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Figure 1. An illustration of masked image modeling framework using our SimGroupAtin Vision Transformer.
Input (bottom) first goes through a patch embedding. Before the randomly masking patches are then fed into the
attention block, pair-wise similarity is computed between all patches in the batch to construct an attention graph.
Encoded patches are then randomly masked with a mask ratio of 0.5 and fed into the attention block along with
the attention graph. The output (top right) of ViT encoder is decoded back to the original image and L1 loss is

calculated only on the masked patches.

4.2 Reconstruction & Representation
Learning Performance

4.2.1 Training

We trained all three models on the PlantVillage
dataset using Masked Image Modeling (MIM). Dur-
ing training, a random mask ratio of 0.5 was applied
to all models. Although the original SimMIM and
MAE studies adopt higher mask ratios to improve
performance, the limited size of our dataset raised
concerns that overly aggressive masking could slow
down convergence. For this reason, we chose a lower
mask ratio. During testing, we used a higher mask
ratio of 0.7 to evaluate reconstruction quality and
no masking for representation learning since models
need to see all image patches to produce a meaning-
ful representation.

To reduce computational cost, particularly for
SimGroupAttn, we used a patch size of 32, resulting
in a total of 49 (7 x 7) patches. In addition, we

set both intra-image patches (M) and cross-image
patches (V) to 15. This configuration was moti-
vated by the nature of PlantVillage dataset, where
segmented objects are typically centered, and for a
majority of images, the object area can be covered
by approximately 30 patches. After masking half
of them, 15 patches remain in the same image that
carry meaningful information. To maintain consis-
tency, the number of cross-image patches was also
fixed at 15 so that all models see a similar number
of meaningful paths. By fixing on a smaller number
of attention connections, we also reduced computa-
tional complexity since SimGroupAtin requires more
memory in attention indexing.

All models were trained on a cluster equipped
with 8 NVIDIA A10G GPUs (24 GB each) using
identical experimental settings to ensure fair com-
parison. Pretraining was conducted for 600 epochs
with an effective batch size of 32 per GPU. Gradient
accumulation was applied every four steps to achieve



Table 1. Configuration of encoders and decoders for different methods.

Method ‘ Encoder Decoder
‘ Positional Embedding Patch Size # Depth # Heads Head Dim Dim # Param ‘ Network # Layers # Heads # Param
SimMIM learnable 32 12 6 64 384 23.7M Conv + PixelShuffle 2 - 1.18M
MAE learnable 32 12 6 64 384 23.7TM Attn + Linear 2 3 2.6M
SimGroupAttn learnable 32 12 6 64 384 23.7M Conv + PixelShuffle 2 1.18M

Table 2. Overview of experiment design.

Task Dataset Training Method Evaluation Method Ablation Studies
Reconstruction Quality PlantVillage [20] Self-Supervised Visual Inspection X
Representation Learning PlantVillage [20] & PP [21] Self-Supervised Linear Probing X
Classification Performance PlantPathology [21] Supervised & Self-Supervised (Joint) Multiclass Classification v
Table 3. Overview of datasets used in this study

Encoder H Decoder }— Reconstructed| (NN

Dataset Image Size # Classes # Train # Test - N
Self-supervised Task
PlantVillage [20] 256x 256 38 45312 -- ishared
PlantPathology [21]  640x427 12 16696 1936 ¢
Classifier Class |
Encoder Head Labels CLS

an effective batch size of 512. The base learning rate
was set to 0.0005 with a 50-epoch warm-up phase.
AdamW optimization was used with a weight decay
of 0.05, and a cosine learning rate scheduler. For the
reconstruction loss, SImMIM and SimGroupAttn
used L1 loss, while MAE relied on L2 loss.

4.2.2 Evaluation

Reconstruction Performance. To assess recon-
struction quality, we visually inspect the recon-
structed images of SimGroupAttn and compute the
L1 loss compared to the baselines. For visual com-
parison, we emphasize mostly on images of leaves
that are affected by one or more diseases or that have
irregular shapes, color, patterns, etc. We believe
it is relatively harder to reconstruct and requires a
richer context in such cases to have a decent recon-
struction.

Representation Learning Performance.
conduct linear probing on the pre-trained models
using PlantPathology dataset. It contains five simple
classes and seven complex classes where each leaf
is infected by multiple diseases. This poses more
challenges since feature space of complex classes is
highly entangled and they cannot be easily separated
in a linear way. Such cases require models to learn
a better context from a population perspective.

we

4.3 Classification Performance
4.3.1 Training.

We adopted a joint training framework for this task,
similar to the work [18]. The motivation of adopt-
ing such a method is to address the issue of limited
data which results in the inefficient learning of induc-
tive bias for ViT. Moreover, the model can benefit

Classification Task

Figure 2. Illustration of joint training framework. In-
put (left) goes through two passes. One computes pixel-
wise reconstruction loss for masked image modeling task
(top); another one computes classification entropy loss
(bottom). Encoder is shared and total loss is summed
with a weight A = 0.1 for Lasras

from being able to learn semantically rich and task-
specific feature space simultaneously. Each input
batch undergoes two forward passes: one through
a standard MIM pipeline with a decoder to recon-
struct masked patches, where the pixel-wise L1 loss
is computed (Lyiv); and another through a lin-
ear classification head, where the cross-entropy loss
(Lcwg) is computed. The total loss is defined as

L=XLyiv+ (1 —A) Lers. (4)
We choose A = 0.1 to have the model focus more
on task-specific learning. Figure 2 illustrates the
workflow of the training pipeline. The encoder is
shared during training; after training, the decoder is
discarded and only the classifier head remains for the
classification task. All models were trained on a 4-
GPU cluster with identical hardware configurations
for 500 epochs, using a base learning rate of 0.0005.
We employed 20 warm-up epochs and optimized with
cross-entropy loss, incorporating a label smoothing
factor of 0.01 to improve generalization and mitigate
overfitting.

4.3.2 Evaluation

We perform a series of ablation studies to assess
model performance across different configurations,
evaluating the top-1 accuracy over the entire test
dataset as well as for each individual class to provide
a more granular analysis of the model’s performance.



To better understand how specific design choices
influence the performance of SimGroupAttn in this
task, we examine several main factors: the number
of intra~-image patches M, the number of cross-image
patches N, and the batch size B.

Effect of M and N. M controls how much infor-
mation to use from the same image while N controls
how many patches from other images a certain patch
can attent to which calibrate the amount of external
context to utilize. The balance of M and N can have
an affect in the model’s performance since both Intra
and Cross-image information is important in certain
scenarios. With a larger IN, the model relies more on
patterns shared across the dataset, whereas a larger
M keeps the model focused mainly on the context
within its own image. To ensure a fair comparison,
we maintain the same total number of patches a
patch can attend to for all three models, namely,
M + N = 49. For the two baseline models, M =
49 and N = 0 in all cases.

Effect of B. The batch size B adjusts the overall
diversity of that context by increasing or decreasing
the number of images in a single batch. For SimMIM
and MAE, this might be a less crucial factor since
they do not rely on cross-image attention. How-
ever, for SimGroupAttn, larger batches are likely to
provide a richer population-level context, allowing
the model to compare patches in a broader set of
samples, whereas smaller batches limit the diver-
sity of reference patches and reduce the benefit of
cross-image attention.

5 Results

5.1 Reconstruction

Since mask ratio during evaluation is high at 0.7,
the reconstruction task is substantially more chal-
lenging than training since models can only see a
minority of patches. Under this setting, large por-
tions of the leaf are masked out, requiring the model
to infer missing content from very limited contextual
information. In reality, it is common that disease
symptoms appear only in small regions of the leaf;
if these areas are masked, reconstructing them be-
comes highly challenging since the remaining visible
patches often contain semantically different content.

As illustrated in Figure 3, SimMIM and MAE
fail to recover small defective regions, producing re-
constructions that resemble generic approximations
rather than the original image. Our approach lever-
ages similarities across patches from other images
within the same batch, allowing it to recover miss-
ing regions more effectively. The reconstructions
produced by our model remain closer to the original
images and better preserve essential phenotypical

Method ‘ Single class ‘ Complex class

| Top-1 (%) Top-3 (%) | Top-1 (%) Top-3 (%)
SimMIM 56.9 90.5 37.8 82.0
MAE 56.5 90.2 37.5 78.9
SimGroupAttn (Ours) 56.4 90.4 44.3 82.5

Table 4. Comparison of Top-1 and Top-3 accuracy in
linear probing on PlantPathology for single vs. complex
class .

features such as shape, texture, and color patterns.
This capacity to recover fine-grained details shows
the advantage of incorporating cross-image informa-
tion. Per-class reconstruction errors are provided in
Appendix B.1, where SimGroupAttn consistently
achieves lower L1 losses across most species and dis-
ease types, demonstrating its superior reconstruction
fidelity.

5.2 Representation Learning

We evaluate how well models learn representations
by conducting linear probing on PlantPathology
dataset [21]. Due to the classes are quite imbal-
anced between simple classes and complex classes,
we run linear probing on these two groups separately.
In simple class, leaves are only infected by one dis-
ease while in complex classes, they are infected by
multiple diseases which makes feature space heavily
entangled and difficult to linearly separated. As
shown in Table 4, in simple classes, performances of
all three models are very comparable with a maxi-
mum of 0.5% difference in top-1 accuracy and 0.3%
in top-3 accuracy. Such differences are likely not
to be significant due to randomness such as batch
formation. On contrary, in complex classes, Sim-
GroupAttn outperforms both SImMIM and MAE,
achieving a Top-1 accuracy of 44.3% and 82.5 % Top-
3 accuracy, a notable improvement of nearly 6.5%
and 6.8% over SimMIM (37.8%) and MAE (37.5%)
respectively on Top-1 accuracy. This suggests that
although it shows no advantages on simple classes,
incorporating population context during pretraining
helps achieve better representation learning in cases
where data space is highly entangled.

5.3 Classification & Ablation Studies
5.3.1 Overall Accuracy

As shown in the Owerall column of Table 5 and
Figure 4, SimGroupAtin outperforms both baseline
models in most configurations. SimMIM maintains
stable accuracy across batch sizes, whereas MAFE
achieves a noticeably higher accuracy of 59.6% at
batch size 32. We suspect this may be due to more
optimal learning for a limited number of classes
during training. In fact, Table 5 shows that at
batch size 32, MAFE performs exceptionally well
on the PM class, with a 24.7% increase compared



(a) Original (b) Masked

(c) SimMIM

(e) SimGroupAttn

(d) MAE

Figure 3. Comparison of original, masked, and reconstructed images for four different examples. Each column
corresponds to one method, and each row shows a different input case.
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Figure 4. Top-1 accuracy of SimGroupAtin across
different N values, for batch sizes 16, 32, and 64.

to batch size 16. This behavior is unusual, since
neither StmMIM nor SimGroupAtin exhibits such
large variation in this class. While SimMIM and
MAE reach their highest accuracies at 56.9% and
59.6% respectively, SimGroupAttn achieves a peak
accuracy of 63.1% with M = 30, N = 19 at batch
size 32, representing a 6.2% and 3.5% improvement
over the baselines. Even under less optimal con-
figurations, SimGroupAtin consistently maintains
accuracy above 60%. These results suggest that
incorporating population-level information helps the
model better distinguish between groups, as cross-
image attention encourages the formation of more
informative latent representations that improve clas-
sification accuracy.

The following paragraphs provide a more detailed

breakdown on the effect of M, N, and batch size B
on classification performance.

Batch Size 16. As shown by the blue line in
Figure 4, at a lower batch size of 16, the performance
of SimGroupAttn remains relatively stable across
different values of N, with only a noticeable dip
at N = 29. This suggests that if the batch size is
limited, the model does not benefit from increasing
the proportion of cross-image patches because they
are statistically unlikely to be more informative than
intra-image patches.

Batch Size 32. The single best performance of
Top-1 accuracy of 63.1% is observed at the config-
uration: B = 32, M = 30 ,and N = 19 (red line
in Figure 4). This configuration substantially out-
performs both SimMIM (56.9%) and MAE (59.6%).
As M decreases (and N increases), the accuracy
gradually decreases to 60.6% in M = 20 and 60. 4%
in M = 10, indicating diminishing returns when too
much emphasis is placed on cross-image interactions.

Batch Size 64. As illustrated by the brown line
in Figure 4, at a higher batch size of 64, performance
improves progressively with increasing N, peaking
at N = 29. This trend indicates that when using
larger batches, the model is likely to benefit from
distributing more attention toward population-level
features.



Method B | M | N | Healthy | Scab | Rust | PM FL SFL | RFL | SFLComplex | FLComplex | PMComplex | RustComplex | Complex | Overall
#Diseases per leaf 1 1 1 1 1 2 2 >3 >3 >3 >3 >3
#Images 462 482 | 186 | 118 | 518 68 12 55 27 23 25 160
16|49 | 0 75.7 63.6 | 64.3 | 78.1 | 60.0 | 6.7 0 0 0 0 0 20.0 56.7
SimMIM 32149 0 69.8 61.8 | 58.5 | 80.0 | 55.7 | 7.1 0 10.0 0 0 16.7 50.0 56.9
64149 0 68.4 63.3 | 644 | 87.5 | 51.5 | 7.2 0 0 0 0 0 40.1 56.4
16 |49 | 0 72.7 63.6 | 62.0 | 58.6 | 51.2 0 0 0 0 0 33.3 475 56.3
MAE 321491 0 70.7 67.2 | 65.3 | 83.3 | 62.0 | 10.0 0 0 16.7 0 20.0 36.5 59.6
64 149 | 0 80.2 64.8 | 64.1 | 59.3 | 40.8 | 9.5 0 7.1 0 0 0 40.0 55.4
16 | 40 | 9 83.1 64.8 | 62.5 | 75.7 | 58.9 | 25.0 0 0 16.7 0 0 45.0 61.3
16 | 30 | 19 78.0 73.7 | 57.1 | 78.6 | 59.7 | 25.0 0 0 50.0 10.0 20.0 35.6 61.0
16 | 20 | 29 T 65.5 | 65.3 | 65.5 | 61.4 | 6.7 0 0 0 0 0 37.8 59.0
16 | 10 | 39 81.3 72.7 | 70.5 | 75.0 | 54.8 5.9 0 0 0 0 33.3 43.8 61.5
16 | 0 | 49 78.8 64.8 | 57.5 | 82.1 | 59.7 | 13.3 0 0 0 0 0 51.1 60.6
SimGroupAttn 32140 9 T 66.4 | 62.9 | 84.0 | 51.2 0 0 9.1 0 0 0 53.7 58.8
32130 | 19 82.4 67.7 | 704 | 67.9 | 64.0 6.7 0 0 0 0 0 44.7 63.1
32120 | 29 85.0 61.6 | 60.8 | 75.9 | 61.3 | 125 0 0 25 0 0 38.9 60.6
3210 | 39 71.1 632 | 72.9 | 789 | 59.3 | 188 0 0 0 0 0 45.2 60.4
32 0 |49 79.8 66.7 | 53.5 | 77.4 | 61.0 | 5.9 0 0 16.7 20.0 0 45.7 60.8
64 140 | 9 75.0 63.9 | 62.5 | 85.0 | 55.6 0 0 9.1 0 0 20.0 32.3 57.4
64 | 30 | 19 70.0 70.5 | 63.6 | 73.1 | 61.3 5.9 0 0 28.6 0 20.0 25.0 59.6
64 | 20 | 29 81.8 66.4 | 66.7 | 76.7 | 52.9 0 0 0 0 0 0 54.5 62.3
64 | 10 | 39 88.8 64.6 | 69.1 | 80.0 | 50.0 | 10.5 0 0 0 0 20.0 53.1 62.2
64| 0 | 49 82.1 66.4 | 65.1 | 76.2 | 60.3 | 20.0 0 0 0 0 0 37.9 61.4

Table 5. Top-1 accuracy for different configurations. Number of diseases shown on each leaf in each class is also
shown in the header line. PM, FL, SFL, RFL are powdery mildew, frog eye leaf spot, scab frog eye leaf spot, and
rust frog eye leaf spot respectively. Complex suffix means leaves in a class are infected by multiple disease while
having a main disease (prefix). Number of images in test set for each class is also shown in row #Images.

5.3.2 Per Class Accuracy

In addition to its superior overall performance, Sim-
GroupAtin also demonstrates improved per-class ac-
curacy in ten out of twelve classes considering all
configurations as shown in Table 5, although there
is no single configuration that can outperform both
baselines in all classes simultaneously.

For simple classes, SimGroupAttn shows a large
margin over baselines in particular cases under cer-
tain configurations. For example, in class Healthy,
SimGroupAttn shows a improvement of 13.1% and
8.6% compared to the best accuracy in SimMIM and
MAE respectively; in class Scab, an improvement
of 10.4% and 6.5%; also in class Rust, 8.3% and
7.6% respectively; while in class PM, it falls behind
SimMIM and in class FL, only a small margin over
both baselines is achieved.

In more challenging classes where multiple dis-
eases co-occur on the same leaf, baseline models
remain competitive in some cases. For example,
SimMIM achieves the best result in the SFLCom-
plex class with an accuracy of 10%, and MAE shows
comparable performance in the RustComplex class
with an accuracy of 33.3%. For other classes, Sim-
GroupAttn delivers stronger results. For instance, in
class FLComplez, best performance from our model
gives 50% exceeding best baseline accuracy over
33.3%; in class PMComplex, SimGroupAtin also
achieves a 20% margin over baselines. However, it
is not sufficient to conclude that SimGroupAtin per-
forms better overall due to the very limited number
of images in complex classes. Further experiments
are needed in this respect.

These results show potential benefits of incor-
porating population-level information in attention
mechanism especially when the amount of intra and

cross-image attention are optimized.

6 Conclusion

In this work, we introduced SimGroupAttn, a novel
attention mechanism that enhances Vision Trans-
formers by incorporating population context. Our
approach enables image patches to attend to their
most similar counterparts both within and across
images in the same batch, effectively embedding
population structure into masked image modeling.
We evaluated SimGroupAttn on the PlantPathology
dataset, comparing it against existing methods. The
results show that our method improves the quality
of reconstruction and enhances the performance of
representation learning for complex classes. Further-
more, we observed gains in classification accuracy
under certain configurations. We hope this frame-
work will support and inspire future research in this
direction.

7 Limitations & Future Work

While SimGroupAttn delivers clear gains over ex-
isting masked image modeling frameworks, it also
comes with certain limitations. The cross-image
attention mechanism introduces running time over-
heads. Appendix A.l is the analysis of running
complexity. Our experiments were also restricted to
plant disease dataset therefore further evaluation on
other domains is valuable to test broader applica-
bility. Future work will focus on developing more
efficient attention indexing to lower computational
cost and possibly on adaptive strategies that balance
intra- and cross-image attention.
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A Running Complexity

Table A.1 presents the average inference time per
image (s/image) across different Vision Transformer
backbones. All experiments were conducted on a
single NVIDIA A10G GPU (24 GB memory) using
untrained models, which does not affect inference
time. This choice allows us to evaluate much larger
models than would otherwise be feasible and pro-
vides practical insights for use cases where training
large models is beneficial. For each configuration, in-
ference was performed on a single image 1000 times,
and the mean runtime was reported.

As expected, inference time increases with model
scale—from ViT-B to ViT-H—due to the added
cost of cross-sample attention and similarity-matrix
computation. SimGroupAttn introduces a mod-
erate computational overhead relative to SimMIM,
with the maximum slowdown ranging from 1.46x
for ViT-B to 1.63x for ViT-H. This overhead scales
consistently with model size, indicating predictable
performance costs when adopting group-attention
mechanisms in larger models.

From Table A.1, we observe that while the Sim-
GroupAttn method is slower than SimMIM and
MAE, the increase is modest compared to the ben-
efits of enabling richer attention patterns. The re-
sults also show that the relative overhead does not
grow disproportionately with model size, which is
encouraging for practical deployment in large-scale
settings. Using untrained models ensures that these
measurements reflect the computational characteris-
tics of the architecture itself, rather than training
dynamics, making the analysis broadly applicable to
scenarios where large models are used for inference
or pretraining.

B Reconstruction Quality

Quantification

Table B.1 presents the per-class reconstruction per-
formance measured by the L loss, where lower val-
ues correspond to better reconstruction. All experi-
ments were performed using a model pretrained on
the PlantVillage dataset, without joint training on
the PlantPathology dataset, with a batch size of
128.

Across the 12 categories, SimGroupAttn con-
sistently matches or outperforms both MAE and
SimMIM in most categories, demonstrating the ben-
efit of incorporating group-attention mechanisms
for image reconstruction. For example, in more
challenging categories such as powderymildew and
powderymildewcomplex, SimGroupAttn achieves
substantial improvements over both baselines, re-
ducing the L; loss by 18.2% and 13.4%, respectively.
Similarly, notable gains are observed for complez,

rust, frogeyeleafspotcomplex, and mixed-disease cat-
egories like rustfrogeyeleafspot, with improvements
ranging from approximately 3.5% to 5.9%.

In some categories, such as healthy and scab, Sim-
GroupAttn shows minor differences compared to
SimMIM (0.6% worse and 5.6% worse, respectively).
Overall, the results suggest that SimGroupAttn is
particularly effective in capturing fine-grained and
complex spatial patterns, leading to more accurate
reconstructions in most cases. The negative A(%)
values in most categories highlight the robustness
of the method, showing that the architectural im-
provements can be translated into measurable gains
in reconstruction performance.

Importantly, these reconstruction improvements
have practical implications for downstream tasks:
by producing more precise representations during
pretraining, SimGroupAttn can enhance perfor-
mance on tasks such as classification, segmentation,
or anomaly detection, especially in datasets with
complex or overlapping patterns, especially with
sample correlated features, as highlighted by the
results in previous sections. This demonstrates the
benefits of this method in applications where fine-
grained and high-quality feature learning is critical.
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ViT | #Params (M) | MAE | SimMIM | SimGroupAttn (Ours) | Max Slowdown

ViT-B 86 0.0149 0.0146 0.0213 1.46x
ViT-L 307 0.0258 0.0291 0.0410 1.59x
ViT-H 632 0.0335 0.0391 0.0545 1.63x

Table A.1. Average inference time (s/image) for different ViTs using MAE, SimMIM and SimGroupAttn.
The reported values represent the mean running time to reconstruct a single image, showing the computational
overhead introduced by the group-attention mechanism relative to the SImMIM baseline. Maz Slowdown represents
the largest ratio between the running time of our method and the fastest method for each ViT.

Category ‘ MAE SimMIM SimGroupAttn A(%)
complex 0.0915 0.0700 0.0659 -5.9
healthy 0.0828 0.0688 0.0692 +0.6
rust 0.0699 0.0570 0.0538 -5.6
scab 0.0941 0.0683 0.0721 +5.6
frogeyeleafspot 0.0929 0.0734 0.0721 -1.8
frogeyeleafspotcomplex 0.0850 0.0640 0.0609 -4.8
powderymildew 0.0847 0.0777 0.0635 -18.2
powderymildewcomplex 0.0788 0.0627 0.0543 -13.4
rustcomplex 0.0802 0.0663 0.0640 -3.5
rustfrogeyeleafspot 0.0758 0.0595 0.0568 -4.5
scabfrogeyeleafspot 0.0959 0.0732 0.0725 -1.0
scabfrogeyeleafspotcomplex | 0.0932 0.0703 0.0672 -4.4

Table B.1. Per-class reconstruction L; loss (lower is better). A(%) represents the relative change of Sim-
GroupAttn compared to min(MAE, SimMIM). Negative values indicate a lower loss, corresponding to higher
reconstruction quality, while positive values represent an increase in loss, reflecting reduced reconstruction precision.
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