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Abstract001

In this paper, we address the problem of Vision002

Transformer (ViT) models being limited to intra-003

image attention, which prevents them from leverag-004

ing cross-sample information. This is highly relevant005

in agricultural data such as plant disease detection,006

an important challenge in agriculture where early007

and reliable diagnosis helps protect yields and food008

security. Yet existing methods often fail to capture009

subtle or overlapping symptoms that only become010

evident when considered in a population context.011

Our approach SimGroupAttn extends masked im-012

age modeling by enabling image patches to attend013

not only within their own image but also to simi-014

lar regions across other images in the same batch.015

Guided by cosine similarity score which is trained016

jointly with model weights,SimGroupAttn incorpo-017

rates population-level context into the learned rep-018

resentations, making them more robust and dis-019

criminative. Extensive experiments on PlantPathol-020

ogy dataset demonstrate that our approach outper-021

forms Simple Masked Image Modeling (SimMIM)022

and Masked Autoencoders (MAE) in linear probing023

and classification task. It improves top-1 accuracy024

by up to 6.5% in linear probing for complex classes025

and 3.5% in classification compared with the best026

baseline model performance under the same settings.027

1 Introduction028

In recent years, Vision Transformers (ViTs) [1] have029

attracted considerable interest for their ability to030

model long-range dependencies across image patches031

through self-attention. This global attention mecha-032

nism enables ViTs to capture richer visual context,033

making them particularly effective for complex visual034

recognition tasks. However, most ViT architectures035

focus attention solely within a single image, while036

this design is effective for many scenarios, it lim-037

its the ability to incorporate broader context. In038

fields like agriculture and biology, samples frequently039

share phenotypic traits or disease patterns that are040

only meaningful when viewed in the context of other041

data points.042

Existing masked image modeling methods like043

Masked Autoencoders (MAE) [2] and SimMIM [3]044

have shown strong performance by reconstructing 045

masked patches and encouraging robust representa- 046

tion learning. Yet, because they operate on isolated 047

images, they struggle to capture the broader pat- 048

terns and variability that are essential for robust 049

representation learning in population-sensitive do- 050

mains. 051

To address this limitation, we introduce 052

Similarity-Guided Group Attention (SimGroupAttn), 053

a mechanism that extends self-attention beyond in- 054

dividual images. Instead of restricting attention to 055

intra-image patches, it allows each patch to attend 056

to similar regions across other images within the 057

same batch. These cross-image links are guided 058

by similarity scores, allowing the model to learn 059

from population-level information during training. 060

We integrate SimGroupAttn into a masked image 061

modeling (MIM) framework [4–8], where the added 062

context improves reconstruction of masked patches 063

and strengthens representation learning. 064

In summary, this paper makes three key contribu- 065

tions: 066

1. We propose SimGroupAttn, a novel attention 067

mechanism that incorporates population-level in- 068

formation into ViTs by enabling similarity guided 069

cross-image attention. 070

2. SimGroupAttn jointly learns the similarity scor- 071

ing and model parameters, allowing the similarity 072

function to adapt during training. This leads to 073

more effective task-specific modeling and improved 074

generalization in diverse samples. 075

3. We show that SimGroupAttn not only outper- 076

forms existing MIM-based frameworks in representa- 077

tion learning, but also significantly improves down- 078

stream classification tasks involving classes with 079

highly overlapping features. 080

In summary, our results highlight the value of 081

modeling cross-sample relationships, especially in 082

domains where complex feature patterns are key to 083

accurate visual understanding. 084

2 Related Work 085

Masked Image Modeling (MIM). [4–8] has 086

become a popular self-supervised learning strategy 087

for ViTs. The key idea is to randomly mask im- 088

age patches and train the model to reconstruct the 089
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missing content, thereby encouraging the encoder to090

capture meaningful visual representations. Masked091

Autoencoders (MAE) [2] and SimMIM [3] pioneered092

this approach for ViTs. MAE adopts an asymmetric093

design, masking most patches (typically 75%) and094

encoding only the visible ones, while a lightweight095

decoder reconstructs the masked content. This re-096

duces computation and allows the encoder to focus097

on semantic abstraction. SimMIM offers a simpler al-098

ternative by reconstructing masked patches directly099

with the encoder, yet still achieves competitive re-100

sults, showing that effective reconstruction-based101

pretraining can be realized with minimal architec-102

tural changes. While both MAE and SimMIM have103

demonstrated strong performance in downstream104

recognition tasks, they share a common limitation:105

attention remains confined to intra-image patches.106

This makes them less effective in domains where107

cross-sample relationships are crucial.108

Plant Disease Classification. Deep learning has109

been widely applied to plant disease classification,110

with models such as AlexNet and ResNet demon-111

strating strong early results [9–11]. More recently,112

ViTs [1] have gained attention in this area, with113

several works exploring ViTs alone or in hybrid com-114

binations with CNNs [12–16]. However, most ap-115

proaches still focus on individual images and rarely116

incorporate population-level information, which is117

particularly important in domains such as agricul-118

ture and biology. For instance, a single leaf may119

exhibit symptoms of multiple diseases simultane-120

ously, making its representation more challenging.121

A recent study by Eu-Tteum Baek [17] attempted122

to address this by combining multiple independent123

ViTs for population-aware classification. While this124

approach achieves high accuracy, each ViT still op-125

erates primarily at the instance level since their126

training does not involve population-level attention.127

Joint Training of ViTs. Unifying the strengths128

of self-supervised and supervised learning for train-129

ing ViT especially under circumstances of limited130

data has gained substantial attention. Qian et al.131

[18] proposed a novel joint training framework where132

a Vision Transformer is optimized simultaneously133

using MAE reconstruction loss and a classification134

loss from the very beginning of training. Unlike135

conventional two-stage pipelines that separate self-136

supervised pretraining from downstream fine-tuning,137

their method integrates both objectives into a uni-138

fied training loop, allowing the encoder to learn139

semantically rich and task-aligned representations140

in a data-efficient manner. This approach is par-141

ticularly effective in low-data circumstances, as the142

reconstruction loss acts as a strong inductive bias143

that regularizes the learning process and helps pre-144

vent overfitting. Zhou et al. introduced UniMAE145

[19], a unified masked autoencoder that supports 146

multi-task training by jointly optimizing for image 147

reconstruction and multiple downstream objectives, 148

including classification and detection. In this study, 149

we also adopt joint training for one of our experi- 150

ments to address the issue of limited data. 151

3 Method 152

3.1 SimGroupAttn Mechanism 153

Standard ViT restricts attention to patches within a 154

single image, our SimGroupAttn extends this mech- 155

anism to enable cross-image interactions. A few key 156

differences are illustrated here: 157

Intra-image attention & Cross-image Atten- 158

tion. Rather than limiting attention to only intra- 159

image patches, each query patch in the input batch 160

attends to its top-M most similar patches within the 161

same image (intra-image) and top-N most similar 162

patches across the batch (cross-image) — resulting 163

in a total of (M + N) attended patches. These 164

connections form an attention graph that guides 165

the attention layer in ViT to cross all patches in a 166

batch. This graph, along with the randomly masked 167

patch embeddings, is then fed into the attention 168

blocks. During attention computation, selected en- 169

tries in the key matrix K and the value matrix V 170

are indexed according to the attention graph while 171

query matrix Q is computed identically to standard 172

attention. This produces a sparsely refined atten- 173

tion pattern that focuses the computation on the 174

most relevant patches. In standard self-attention, 175

the output is computed as: 176

Attention(Q,K, V ) = softmax

(
QK⊤
√
D

)
V (1) 177

In SimGroupAttn, attention is restricted to a 178

similarity-guided neighborhood Nq for each query 179

patch zq. Let Qq = zqWQ, Kk = zkWK , and 180

Vk = zkWV for all k ∈ Nq where W are learnable 181

weight matrices that linearly project the inputs into 182

query, key, and value matrix and D is the feature 183

dimension. The attention is computed as: 184

Attention(zq) =
∑
k∈Nq

αqkVk (2) 185

where the attention weights αqk are given by: 186

αqk =
exp

(
QqK

⊤
k√

D

)
∑

j∈Nq
exp

(
QqK⊤

j√
D

) (3) 187

Similarity Guidance. A patch-pairwise cosine 188

similarity scoring system measures how similar 189

two patches are and then helps to construct the 190
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attention graph. For each input batch, pairwise191

similarity is calculated for all patches in the same192

batch which forms a similarity matrix capturing193

relations between patches both in the same image194

and across different images. This similarity matrix195

is computed after patches are passed through196

the patch embedding layer. The motivation of197

a post-patch embedding similarity is that the198

model can jointly learn similarity scoring and199

weights simultaneously. This allows the model to200

better adapt to various domains by enabling it to201

combine patch-wise relation learning and weight202

optimization in one go. In addition, we also set203

the similarity scores between the same patch to be204

−∞ when M is smaller than the total number of205

patches in an image to prevent patches attending to206

themselves. This aims to maximize population-level207

information utilization and limit the original signal208

flowing into reconstruction .209

210

The general workflow of SimGroupAttn is il-211

lustrated in Figure 1.212

3.2 Model Architecture213

We benchmark our method against two Vision Trans-214

former–based masked image modeling approaches:215

SimMIM [3] and MAE [2]. Given the relatively small216

size of our datasets, we scale down the Vision Trans-217

former encoder to ViT-Tiny (ViT-T) configuration.218

For MAE, we also reduce the decoder’s capacity to219

ensure a comparable number of parameters across220

models. However, because MAE’s performance is221

highly dependent on decoder design, we retain a222

relatively larger decoder for MAE.223

Table 1 summarises the architectural configura-224

tions of the compared methods. All three models225

share the same encoder design, consisting of a sin-226

gle convolutional patch embedding layer, learnable227

positional embeddings, and a 12-layer transformer228

encoder with 6 attention heads of dimension 64,229

resulting in an embedding dimension of 384 and230

approximately 23.7M parameters. The main dif-231

ference lies in the decoder design. MAE employs232

a deeper attention-based decoder with two layers233

and three attention heads, resulting in approximate234

2.6M parameters. In contrast, both SimMIM and235

SimGroupAttn adopt a lightweight CNN decoder236

followed by PixelShuffle, with only two layers and237

1.18M parameters.238

4 Experiments239

In this section, we evaluate the effectiveness of our240

approach from three main aspects: reconstruction241

quality, representation learning quality and classi-242

fication performance. For the first two tasks, all243

models were trained on the PlantVillage dataset244

[20] using self-supervised Masked Image Modeling 245

(MIM) [2, 3]. We then assess reconstruction qual- 246

ity by visually comparing reconstructed images of 247

different methods. We evaluate representational 248

learning quality through linear probing on a subset 249

of the Plant Pathology dataset containing the most 250

complex classes. To evaluate classification perfor- 251

mance, we train all models on the full PlantPathol- 252

ogy dataset [21] using a joint method of supervised 253

and self-supervised [18]. In addition, we conducted 254

several ablation studies in the classification task to 255

explore some important factors. 256

Table 2 shows an overview of our experiment de- 257

sign. 258

4.1 Dataset 259

We use two different datasets in this study: PlantVil- 260

liage [20] and PlantPathology [21]. 261

PlantVillage dataset. This dataset contains a 262

large and diverse collection of plant leaf images span- 263

ning 38 disease classes across 14 crop species. Origi- 264

nal resolution is 256 × 256. To ensure consistency 265

and improve the overall quality of the input data, 266

all images were segmented using SAM 2 [22]. 267

PlantPathology dataset. It is a publicly avail- 268

able benchmark for image-based plant disease clas- 269

sification that consists of high-resolution images. 270

We used the version with a downsized resolution 271

of 640 × 427. Images are annotated with multiple 272

disease categories, including complex cases where 273

leaves exhibit symptoms of more than one disease. 274

Such complex classes demonstrate a more entangled 275

feature space, making linear separation significantly 276

harder. 277

All images are resized to 224× 224 before feeding 278

into the models. The statistics for each dataset, 279

including the number of images, class counts, and 280

splits used in our experiments, are shown in Table 3. 281

Batch Construction. For SimMIM and MAE, 282

batches are typically randomly sampled from the 283

entire dataset. In contrast, SimGroupAttn requires 284

more careful batch construction. Because attention 285

is applied across the whole batch, it is preferable 286

to group images of the same plant species within a 287

batch rather than sample randomly across species, 288

in order to avoid cross-species attention. Therefore, 289

when training on the PlantVillage dataset, each 290

batch was randomly sampled from images of the 291

same plant type, whereas for the Plant Pathology 292

dataset, standard random sampling was used since 293

all images come from the same plant species. 294
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Figure 1. An illustration of masked image modeling framework using our SimGroupAttn Vision Transformer.
Input (bottom) first goes through a patch embedding. Before the randomly masking patches are then fed into the
attention block, pair-wise similarity is computed between all patches in the batch to construct an attention graph.
Encoded patches are then randomly masked with a mask ratio of 0.5 and fed into the attention block along with
the attention graph. The output (top right) of ViT encoder is decoded back to the original image and L1 loss is
calculated only on the masked patches.

4.2 Reconstruction & Representation295

Learning Performance296

4.2.1 Training297

We trained all three models on the PlantVillage298

dataset using Masked Image Modeling (MIM). Dur-299

ing training, a random mask ratio of 0.5 was applied300

to all models. Although the original SimMIM and301

MAE studies adopt higher mask ratios to improve302

performance, the limited size of our dataset raised303

concerns that overly aggressive masking could slow304

down convergence. For this reason, we chose a lower305

mask ratio. During testing, we used a higher mask306

ratio of 0.7 to evaluate reconstruction quality and307

no masking for representation learning since models308

need to see all image patches to produce a meaning-309

ful representation.310

To reduce computational cost, particularly for311

SimGroupAttn, we used a patch size of 32, resulting312

in a total of 49 (7 × 7) patches. In addition, we313

set both intra-image patches (M) and cross-image 314

patches (N) to 15. This configuration was moti- 315

vated by the nature of PlantVillage dataset, where 316

segmented objects are typically centered, and for a 317

majority of images, the object area can be covered 318

by approximately 30 patches. After masking half 319

of them, 15 patches remain in the same image that 320

carry meaningful information. To maintain consis- 321

tency, the number of cross-image patches was also 322

fixed at 15 so that all models see a similar number 323

of meaningful paths. By fixing on a smaller number 324

of attention connections, we also reduced computa- 325

tional complexity since SimGroupAttn requires more 326

memory in attention indexing. 327

All models were trained on a cluster equipped 328

with 8 NVIDIA A10G GPUs (24 GB each) using 329

identical experimental settings to ensure fair com- 330

parison. Pretraining was conducted for 600 epochs 331

with an effective batch size of 32 per GPU. Gradient 332

accumulation was applied every four steps to achieve 333
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Table 1. Configuration of encoders and decoders for different methods.

Method Encoder Decoder

Positional Embedding Patch Size # Depth # Heads Head Dim Dim # Param Network # Layers # Heads # Param

SimMIM learnable 32 12 6 64 384 23.7M Conv + PixelShuffle 2 - 1.18M
MAE learnable 32 12 6 64 384 23.7M Attn + Linear 2 3 2.6M

SimGroupAttn learnable 32 12 6 64 384 23.7M Conv + PixelShuffle 2 - 1.18M

Table 2. Overview of experiment design.

Task Dataset Training Method Evaluation Method Ablation Studies

Reconstruction Quality PlantVillage [20] Self-Supervised Visual Inspection ✗
Representation Learning PlantVillage [20] & PP [21] Self-Supervised Linear Probing ✗
Classification Performance PlantPathology [21] Supervised & Self-Supervised (Joint) Multiclass Classification ✓

Table 3. Overview of datasets used in this study

Dataset Image Size # Classes # Train # Test

PlantVillage [20] 256×256 38 45312 - -
PlantPathology [21] 640×427 12 16696 1936

an effective batch size of 512. The base learning rate334

was set to 0.0005 with a 50-epoch warm-up phase.335

AdamW optimization was used with a weight decay336

of 0.05, and a cosine learning rate scheduler. For the337

reconstruction loss, SimMIM and SimGroupAttn338

used L1 loss, while MAE relied on L2 loss.339

4.2.2 Evaluation340

Reconstruction Performance. To assess recon-341

struction quality, we visually inspect the recon-342

structed images of SimGroupAttn compared to the343

baselines. We emphasize mostly on images of leaves344

that are affected by one or more diseases or that have345

irregular shapes, color, patterns, etc. We believe346

it is relatively harder to reconstruct and requires a347

richer context in such cases to have a decent recon-348

struction.349

Representation Learning Performance. we350

conduct linear probing on the pre-trained models351

using PlantPathology dataset. It contains five simple352

classes and seven complex classes where each leaf353

is infected by multiple diseases. This poses more354

challenges since feature space of complex classes is355

highly entangled and they cannot be easily separated356

in a linear way. Such cases require models to learn357

a better context from a population perspective.358

4.3 Classification Performance359

4.3.1 Training.360

We adopted a joint training framework for this task,361

similar to the work [18]. The motivation of adopt-362

ing such a method is to address the issue of limited363

data which results in the inefficient learning of induc-364

tive bias for ViT. Moreover, the model can benefit365

Figure 2. Illustration of joint training framework. In-
put (left) goes through two passes. One computes pixel-
wise reconstruction loss for masked image modeling task
(top); another one computes classification entropy loss
(bottom). Encoder is shared and total loss is summed
with a weight λ = 0.1 for LMIM

from being able to learn semantically rich and task- 366

specific feature space simultaneously. Each input 367

batch undergoes two forward passes: one through 368

a standard MIM pipeline with a decoder to recon- 369

struct masked patches, where the pixel-wise L1 loss 370

is computed (LMIM); and another through a lin- 371

ear classification head, where the cross-entropy loss 372

(LCLS) is computed. The total loss is defined as 373

L = λLMIM + (1− λ)LCLS. (4) 374

We choose λ = 0.1 to have the model focus more 375

on task-specific learning. Figure 2 illustrates the 376

workflow of the training pipeline. The encoder is 377

shared during training; after training, the decoder is 378

discarded and only the classifier head remains for the 379

classification task. All models were trained on a 4- 380

GPU cluster with identical hardware configurations 381

for 500 epochs, using a base learning rate of 0.0005. 382

We employed 20 warm-up epochs and optimized with 383

cross-entropy loss, incorporating a label smoothing 384

factor of 0.01 to improve generalization and mitigate 385

overfitting. 386

4.3.2 Evaluation 387

We perform a series of ablation studies to assess 388

model performance across different configurations, 389

evaluating the top-1 accuracy over the entire test 390

dataset as well as for each individual class to provide 391

a more granular analysis of the model’s performance. 392
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To better understand how specific design choices393

influence the performance of SimGroupAttn in this394

task, we examine several main factors: the number395

of intra-image patchesM, the number of cross-image396

patches N, and the batch size B.397

Effect of M and N. M controls how much infor-398

mation to use from the same image while N controls399

how many patches from other images a certain patch400

can attent to which calibrate the amount of external401

context to utilize. The balance of M and N can have402

an affect in the model’s performance since both Intra403

and Cross-image information is important in certain404

scenarios. With a larger N, the model relies more on405

patterns shared across the dataset, whereas a larger406

M keeps the model focused mainly on the context407

within its own image. To ensure a fair comparison,408

we maintain the same total number of patches a409

patch can attend to for all three models, namely,410

M + N = 49. For the two baseline models, M =411

49 and N = 0 in all cases.412

Effect of B. The batch size B adjusts the overall413

diversity of that context by increasing or decreasing414

the number of images in a single batch. For SimMIM415

and MAE, this might be a less crucial factor since416

they do not rely on cross-image attention. How-417

ever, for SimGroupAttn, larger batches are likely to418

provide a richer population-level context, allowing419

the model to compare patches in a broader set of420

samples, whereas smaller batches limit the diver-421

sity of reference patches and reduce the benefit of422

cross-image attention.423

5 Results424

5.1 Reconstruction425

Since mask ratio during evaluation is high at 0.7,426

the reconstruction task is substantially more chal-427

lenging than training since models can only see a428

minority of patches. Under this setting, large por-429

tions of the leaf are masked out, requiring the model430

to infer missing content from very limited contextual431

information. In reality, it is common that disease432

symptoms appear only in small regions of the leaf;433

if these areas are masked, reconstructing them be-434

comes highly challenging since the remaining visible435

patches often contain semantically different content.436

As illustrated in Figure 3, SimMIM and MAE437

fail to recover small defective regions, producing re-438

constructions that resemble generic approximations439

rather than the original image. Our approach lever-440

ages similarities across patches from other images441

within the same batch, allowing it to recover miss-442

ing regions more effectively. The reconstructions443

produced by our model remain closer to the original444

images and better preserve essential phenotypical445

Method Single class Complex class

Top-1 (%) Top-3 (%) Top-1 (%) Top-3 (%)

SimMIM 56.9 90.5 37.8 82.0
MAE 56.5 90.2 37.5 78.9
SimGroupAttn (Ours) 56.4 90.4 44.3 82.5

Table 4. Comparison of Top-1 and Top-3 accuracy in
linear probing on PlantPathology for single vs. complex
class .

features such as shape, texture, and color patterns. 446

This capacity to recover fine-grained details shows 447

the advantage of incorporating cross-image informa- 448

tion. 449

5.2 Representation Learning 450

We evaluate how well models learn representations 451

by conducting linear probing on PlantPathology 452

dataset [21]. Due to the classes are quite imbal- 453

anced between simple classes and complex classes, 454

we run linear probing on these two groups separately. 455

In simple class, leaves are only infected by one dis- 456

ease while in complex classes, they are infected by 457

multiple diseases which makes feature space heavily 458

entangled and difficult to linearly separated. As 459

shown in Table 4, in simple classes, performances of 460

all three models are very comparable with a maxi- 461

mum of 0.5% difference in top-1 accuracy and 0.3% 462

in top-3 accuracy. Such differences are likely not 463

to be significant due to randomness such as batch 464

formation. On contrary, in complex classes, Sim- 465

GroupAttn outperforms both SimMIM and MAE, 466

achieving a Top-1 accuracy of 44.3% and 82.5 % Top- 467

3 accuracy, a notable improvement of nearly 6.5% 468

and 6.8% over SimMIM (37.8%) and MAE (37.5%) 469

respectively on Top-1 accuracy. This suggests that 470

although it shows no advantages on simple classes, 471

incorporating population context during pretraining 472

helps achieve better representation learning in cases 473

where data space is highly entangled. 474

5.3 Classification & Ablation Studies 475

5.3.1 Overall Accuracy 476

As shown in the Overall column of Table 5 and 477

Figure 4, SimGroupAttn outperforms both baseline 478

models in most configurations. SimMIM maintains 479

stable accuracy across batch sizes, whereas MAE 480

achieves a noticeably higher accuracy of 59.6% at 481

batch size 32. We suspect this may be due to more 482

optimal learning for a limited number of classes 483

during training. In fact, Table 5 shows that at 484

batch size 32, MAE performs exceptionally well 485

on the PM class, with a 24.7% increase compared 486

to batch size 16. This behavior is unusual, since 487

neither SimMIM nor SimGroupAttn exhibits such 488

large variation in this class. While SimMIM and 489

MAE reach their highest accuracies at 56.9% and 490
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(a) Original (b) Masked (c) SimMIM (d) MAE (e) SimGroupAttn

Figure 3. Comparison of original, masked, and reconstructed images for four different examples. Each column
corresponds to one method, and each row shows a different input case.
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Figure 4. Top-1 accuracy of SimGroupAttn across
different N values, for batch sizes 16, 32, and 64.

59.6% respectively, SimGroupAttn achieves a peak491

accuracy of 63.1% with M = 30, N = 19 at batch492

size 32, representing a 6.2% and 3.5% improvement493

over the baselines. Even under less optimal con-494

figurations, SimGroupAttn consistently maintains495

accuracy above 60%. These results suggest that496

incorporating population-level information helps the497

model better distinguish between groups, as cross-498

image attention encourages the formation of more499

informative latent representations that improve clas-500

sification accuracy.501

The following paragraphs provide a more detailed502

breakdown on the effect of M , N , and batch size B503

on classification performance.504

Batch Size 16. As shown by the blue line in 505

Figure 4, at a lower batch size of 16, the performance 506

of SimGroupAttn remains relatively stable across 507

different values of N , with only a noticeable dip 508

at N = 29. This suggests that if the batch size is 509

limited, the model does not benefit from increasing 510

the proportion of cross-image patches because they 511

are statistically unlikely to be more informative than 512

intra-image patches. 513

Batch Size 32. The single best performance of 514

Top-1 accuracy of 63.1% is observed at the config- 515

uration: B = 32, M = 30 ,and N = 19 (red line 516

in Figure 4). This configuration substantially out- 517

performs both SimMIM (56.9%) and MAE (59.6%). 518

As M decreases (and N increases), the accuracy 519

gradually decreases to 60.6% in M = 20 and 60. 4% 520

in M = 10, indicating diminishing returns when too 521

much emphasis is placed on cross-image interactions. 522

Batch Size 64. As illustrated by the brown line 523

in Figure 4, at a higher batch size of 64, performance 524

improves progressively with increasing N , peaking 525

at N = 29. This trend indicates that when using 526

larger batches, the model is likely to benefit from 527

distributing more attention toward population-level 528

features. 529

5.3.2 Per Class Accuracy 530

In addition to its superior overall performance, Sim- 531

GroupAttn also demonstrates improved per-class ac- 532

7
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Method B M N Healthy Scab Rust PM FL SFL RFL SFLComplex FLComplex PMComplex RustComplex Complex Overall
#Diseases per leaf 1 1 1 1 1 2 2 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3

#Images 462 482 186 118 318 68 12 55 27 23 25 160

SimMIM

16 49 0 75.7 63.6 64.3 78.1 60.0 6.7 0 0 0 0 0 20.0 56.7
32 49 0 69.8 61.8 58.5 80.0 55.7 7.1 0 10.0 0 0 16.7 50.0 56.9
64 49 0 68.4 63.3 64.4 87.5 51.5 7.2 0 0 0 0 0 40.1 56.4

MAE

16 49 0 72.7 63.6 62.0 58.6 51.2 0 0 0 0 0 33.3 47.5 56.3
32 49 0 70.7 67.2 65.3 83.3 62.0 10.0 0 0 16.7 0 20.0 36.5 59.6
64 49 0 80.2 64.8 64.1 59.3 40.8 9.5 0 7.1 0 0 0 40.0 55.4

SimGroupAttn

16 40 9 83.1 64.8 62.5 75.7 58.9 25.0 0 0 16.7 0 0 45.0 61.3
16 30 19 78.0 73.7 57.1 78.6 59.7 25.0 0 0 50.0 10.0 20.0 35.6 61.0
16 20 29 77.7 65.5 65.3 65.5 61.4 6.7 0 0 0 0 0 37.8 59.0
16 10 39 81.3 72.7 70.5 75.0 54.8 5.9 0 0 0 0 33.3 43.8 61.5
16 0 49 78.8 64.8 57.5 82.1 59.7 13.3 0 0 0 0 0 51.1 60.6
32 40 9 77.7 66.4 62.9 84.0 51.2 0 0 9.1 0 0 0 53.7 58.8
32 30 19 82.4 67.7 70.4 67.9 64.0 6.7 0 0 0 0 0 44.7 63.1
32 20 29 85.0 61.6 60.8 75.9 61.3 12.5 0 0 25 0 0 38.9 60.6
32 10 39 71.1 63.2 72.9 78.9 59.3 18.8 0 0 0 0 0 45.2 60.4
32 0 49 79.8 66.7 53.5 77.4 61.0 5.9 0 0 16.7 20.0 0 45.7 60.8
64 40 9 75.0 63.9 62.5 85.0 55.6 0 0 9.1 0 0 20.0 32.3 57.4
64 30 19 70.0 70.5 63.6 73.1 61.3 5.9 0 0 28.6 0 20.0 25.0 59.6
64 20 29 81.8 66.4 66.7 76.7 52.9 0 0 0 0 0 0 54.5 62.3
64 10 39 88.8 64.6 69.1 80.0 50.0 10.5 0 0 0 0 20.0 53.1 62.2
64 0 49 82.1 66.4 65.1 76.2 60.3 20.0 0 0 0 0 0 37.9 61.4

Table 5. Top-1 accuracy for different configurations. Number of diseases shown on each leaf in each class is also
shown in the header line. PM, FL, SFL, RFL are powdery mildew, frog eye leaf spot, scab frog eye leaf spot, and
rust frog eye leaf spot respectively. Complex suffix means leaves in a class are infected by multiple disease while
having a main disease (prefix). Number of images in test set for each class is also shown in row #Images.

curacy in ten out of twelve classes considering all533

configurations as shown in Table 5, although there534

is no single configuration that can outperform both535

baselines in all classes simultaneously.536

For simple classes, SimGroupAttn shows a large537

margin over baselines in particular cases under cer-538

tain configurations. For example, in class Healthy,539

SimGroupAttn shows a improvement of 13.1% and540

8.6% compared to the best accuracy in SimMIM and541

MAE respectively; in class Scab, an improvement542

of 10.4% and 6.5%; also in class Rust, 8.3% and543

7.6% respectively; while in class PM, it falls behind544

SimMIM and in class FL, only a small margin over545

both baselines is achieved.546

In more challenging classes where multiple dis-547

eases co-occur on the same leaf, baseline models548

remain competitive in some cases. For example,549

SimMIM achieves the best result in the SFLCom-550

plex class with an accuracy of 10%, and MAE shows551

comparable performance in the RustComplex class552

with an accuracy of 33.3%. For other classes, Sim-553

GroupAttn delivers stronger results. For instance, in554

class FLComplex, best performance from our model555

gives 50% exceeding best baseline accuracy over556

33.3%; in class PMComplex, SimGroupAttn also557

achieves a 20% margin over baselines. However, it558

is not sufficient to conclude that SimGroupAttn per-559

forms better overall due to the very limited number560

of images in complex classes. Further experiments561

are needed in this respect.562

These results show potential benefits of incor-563

porating population-level information in attention564

mechanism especially when the amount of intra and565

cross-image attention are optimized.566

6 Conclusion 567

In this work, we introduced SimGroupAttn, a novel 568

attention mechanism that enhances Vision Trans- 569

formers by incorporating population context. Our 570

approach enables image patches to attend to their 571

most similar counterparts both within and across 572

images in the same batch, effectively embedding 573

population structure into masked image modeling. 574

We evaluated SimGroupAttn on the PlantPathology 575

dataset, comparing it against existing methods. The 576

results show that our method improves the quality 577

of reconstruction and enhances the performance of 578

representation learning for complex classes. Further- 579

more, we observed gains in classification accuracy 580

under certain configurations. We hope this frame- 581

work will support and inspire future research in this 582

direction. 583

7 Limitations & Future Work 584

While SimGroupAttn delivers clear gains over ex- 585

isting masked image modeling frameworks, it also 586

comes with certain limitations. The cross-image 587

attention mechanism increases memory demands 588

especially when using a smaller patch size or a big- 589

ger batch size. The running complex is nearly 3× 590

more than the baselines. Our experiments were 591

also restricted to plant disease dataset therefore fur- 592

ther evaluation on other domains is valuable to test 593

broader applicability. Future work will focus on de- 594

veloping more efficient attention indexing to lower 595

computational cost and possibly on adaptive strate- 596

gies that balance intra- and cross-image attention 597

during training. 598
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