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ABSTRACT

Federated Learning is a collaborative training framework that leverages hetero-
geneous data distributed across a vast number of clients. Since it is practically
infeasible to request and process all clients during the aggregation step, partial par-
ticipation must be supported. In this setting, the communication between the server
and clients poses a major bottleneck. To reduce communication loads, there are two
main approaches: compression and local steps. Recent work by Mishchenko et al.
(2022) introduced the new ProxSkip method, which achieves an accelerated rate
using the local steps technique. Follow-up works successfully combined local steps
acceleration with partial participation (Grudzień et al., 2023; Condat et al., 2023)
and gradient compression (Condat et al., 2022). In this paper, we finally present a
complete method for Federated Learning that incorporates all necessary ingredients:
Local Training, Compression, and Partial Participation. We obtain state-of-the-art
convergence guarantees in the considered setting. Moreover, we analyze the general
sampling framework for partial participation and derive an importance sampling
scheme, which leads to even better performance. We experimentally demonstrate
the advantages of the proposed method in practice.

1 INTRODUCTION

Federated Learning (FL) (Konečný et al., 2016; McMahan & Ramage, 2017) is a distributed machine
learning paradigm that allows multiple devices or clients to collaboratively train a shared model
without transferring their raw data to a central server. In traditional machine learning, data is typically
gathered and stored in a central location for training a model. However, in Federated Learning, each
client trains a local model using its own data and shares only the updated model parameters with a
central server or aggregator. The server then aggregates the updates from all clients to create a new
global model, which is then sent back to each client to repeat the process (McMahan et al., 2016).

This approach has gained significant attention due to its ability to address the challenges of training
machine learning models on decentralized and sensitive data McMahan et al. (2017). Federated
Learning enables clients to preserve their privacy and security by keeping their data local and not
sharing it with the central server. This approach also reduces the need for large-scale data transfers,
thereby minimizing communication costs and latency (Li et al., 2020a).

Federated Learning poses several challenges such as data heterogeneity, communication constraints,
and ensuring the privacy and security of the data (Kairouz et al., 2021). Researchers in this field
have developed novel optimization algorithms to address these challenges and to enable efficient
aggregation of the model updates from multiple clients (Wang et al., 2021b). Federated Learning has
been successfully applied to various applications, including healthcare (Vepakomma et al., 2018),
finance (Long et al., 2020), and Internet of Things (IoT) devices (Khan et al., 2021).

We consider the standard formulation of Federated Learning as a finite sum minimization problem:

min
x∈Rd

[
f(x) := 1

M

M∑
m=1

fm(x)

]
(1)

where M is the number of clients/devices. Each function fm(x) = Eξ∼Dm
[l(x, ξ)] represents the

average loss, calculated via the loss function l, of the model parameterized by x ∈ Rd over the
training data Dm stored by client m ∈ [M ] := {1, . . . ,M} .
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Federated Averaging. The method known as Federated Averaging (FedAvg), proposed by McMa-
han et al. (2017), addresses practical challenges in federated learning while solving problem 1. It
builds upon Gradient Descent (GD) and incorporates four key modifications: Client Sampling (CS),
Data Sampling (DS), Local Training (LT), and Communication Compression (CC).

The training process consists of multiple communication rounds. At each round t, a subset St ⊂ [M ]
of clients, with size Ct = |St|, is chosen to participate. The server sends the current model xt to
clients in St. Each client m ∈ St performs K iterations of Stochastic Gradient Descent (SGD)
on their local loss function fm, using mini-batches Bk,t

m ⊆ Dm of size bm = |Bk,t
m |. Clients then

compress and transmit their updates to the server for aggregation into a new model xt+1, repeating
the process. This scheme is described in Grudzień et al. (2023).

The four modifications can be independently activated or deactivated. For instance, when Ct =M
for all rounds, CS is deactivated. DS is disabled when bm = |Dm| for all clients, and LT is turned off
when K = 1. If the compression operator is the identity, CC is deactivated. With all modifications
disabled, FedAvg is equivalent to vanilla gradient descent (GD).

Data Sampling. Previous studies have highlighted the practical advantages of FedAvg but lack
theoretical analysis. Given FedAvg’s four distinct components, analyzing them separately is essential
for a deeper understanding.

Unbiased data sampling techniques have a strong connection to stochastic approximation literature.
For instance, CS mechanisms have been well-explored in both convex and nonconvex settings. Oracle-
optimal versions of SGD supporting unbiased CS and DS mechanisms have been proposed, along
with analyses using variance reduction techniques (Robbins & Monro, 1951; Nemirovsky & Yudin,
1983; Nemirovski et al., 2009; Bottou et al., 2018; Gower et al., 2019; Khaled & Richtárik, 2020;
Tyurin et al., 2022a; Li et al., 2021; Fang et al., 2018; Nguyen et al., 2017a;b; Gorbunov et al., 2020).

Client Sampling. As distributed learning gained popularity, researchers investigated Client Sam-
pling strategies for communication efficiency and security. Empirical and theoretical studies have
examined optimal strategies under various conditions. While Client Sampling shares similarities with
data sampling, it has distinct characteristics (Wu & Wang, 2022; So et al., 2021; Fraboni et al., 2021;
Charles et al., 2021; Huang et al., 2022; Wang et al., 2022; Chen et al., 2022; Malinovsky et al., 2023;
Cho et al., 2023).

Communication Compression. Compression techniques are crucial for distributed optimization,
allowing clients to transmit compressed updates, reducing bandwidth usage. Various compression
methods, including stochastic quantization and random sparsification, have been proposed. Unbiased
compressors can reduce transmitted bits but may slow convergence due to increased gradient variance.
To address this, Mishchenko et al. (2019) proposed DIANA, which uses control iterates to guarantee
fast convergence. DIANA has been extended and applied in various scenarios. The article discusses the
application of compression techniques in Federated Learning, including methods like compression
with random reshuffling (Alistarh et al., 2017; Wangni et al., 2017; Stich et al., 2018; Tang et al.,
2019; Khirirat et al., 2018; Stich, 2020; Mishchenko et al., 2019; Horváth et al., 2019; Safaryan
et al., 2021; Wang et al., 2021a; Kovalev et al., 2021; Li et al., 2020c; Basu et al., 2019; Reisizadeh
et al., 2020; Haddadpour et al., 2021; Khaled & Richtárik, 2019; Chraibi et al., 2019; Malinovsky &
Richtárik, 2022; Sadiev et al., 2022b).

FIVE GENERATIONS OF LOCAL TRAINING

Local Training (LT) is a crucial aspect of Federated Learning (FL), where each participating client
performs multiple local training steps before synchronization. In the smooth strongly convex regime,
we provide an overview of advancements in understanding LT. (Malinovsky et al., 2022) categorized
LT methods into five generations - heuristic, homogeneous, sublinear, linear, and accelerated.

1st (Heuristic) Generation of LT Methods. While the concepts of Local Training (LT) had been
used in various machine learning fields (Povey et al., 2015; Moritz et al., 2016), it gained prominence
as a communication acceleration technique with the introduction of the FedAvg algorithm (McMahan
et al., 2017). However, this work, along with previous research, lacked theoretical justification. Hence,
LT-based heuristics dominated the initial development of the field, devoid of theoretical guarantees.
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2nd (Homogeneous) Generation of LT Methods. The second generation of LT methods provided
guarantees but relied on data homogeneity assumptions. These assumptions included bounded
gradients, requiring ∥∇fm(x)∥ ≤ c for all m ∈ [M ] and x ∈ Rd (Li et al., 2020b), and bounded
gradient dissimilarity, demanding 1

M

∑M
m=1 ∥∇fm(x)∥2 ≤ c∥∇f(x)∥2 for all x ∈ Rd (Haddadpour

& Mahdavi, 2019). These assumptions aimed to exploit communication efficiency when local
functions are identical. However, such assumptions are problematic and not met in many real-world
cases. Relying on data/gradient homogeneity assumptions for analyzing LT methods is mathematically
dubious and practically insignificant, given the non-i.i.d nature of Federated Learning datasets.

3rd (Sublinear) Generation of LT Methods. The third generation of LT methods eliminated the
need for data homogeneity assumptions, as demonstrated by Khaled et al. (2019a;b). Nevertheless,
studies by Woodworth et al. (2020b) and Glasgow et al. (2022) revealed that LocalGD with Data
Sampling (LocalSGD) had communication complexity no better than minibatch SGD in heteroge-
neous data settings. Moreover, Malinovsky et al. (2020) analyzed LT methods for general fixed
point problems, and Koloskova et al. (2020) studied decentralized aspects of Local Training. Despite
removing data homogeneity assumptions, this generation showed pessimistic results, indicating
sublinear rates for LocalGD, inferior to vanilla GD’s linear convergence rate (Woodworth et al.,
2020a).

4th (Linear) Generation of LT Methods. The fourth generation of LT methods aimed to develop
linearly converging versions by addressing client drift issues identified in the previous generation.
The Scaffold method, proposed by Karimireddy et al. (2020), successfully mitigated client drift and
achieved a linear convergence rate. Other approaches, such as those by Gorbunov et al. (2021a) and
Mitra et al. (2021), achieved similar results. While achieving linear convergence under standard
assumptions was significant, these methods still had slightly higher communication complexity than
vanilla GD and at best matched GD’s complexity.

5th (Accelerated) Generation of LT Methods. Mishchenko et al. (2022) introduced the ProxSkip
method, a new approach to Local Training that provably accelerates communication in the smooth
strongly convex regime, even with heterogeneous data. Specifically, when each fm is L-smooth and
µ-strongly convex, ProxSkip can solve the optimization problem in O(

√
L/µ log 1/ε) communi-

cation rounds, a significant improvement over GD’s O(L/µ log 1/ε) complexity. This accelerated
communication complexity has been proven optimal (Scaman et al., 2019). Mishchenko et al. (2022)
also introduced various extensions to ProxSkip, including flexible data sampling and a decentralized
version. These developments led to the proposal of other methods for achieving communication
acceleration through Local Training.

The initial article by Malinovsky et al. (2022) presents variance reduction for ProxSkip, while
Condat & Richtárik (2022) applies ProxSkip to complex splitting schemes. Sadiev et al. (2022a)
and Maranjyan et al. (2022) improve the computational complexity of ProxSkip. Condat et al.
(2023) introduces accelerated Local Training methods with Client Sampling. Grudzień et al. (2023)
provide an accelerated method with Client Sampling based on RandProx. CompressedScaffnew
(Condat et al., 2022) achieves accelerated communication complexity using compression but requires
permutation-based compressors (Szlendak et al., 2022).

2 CONTRIBUTIONS

Our work is based on the observation that none of the 5th generation Local Training (LT) methods
currently support both Client Sampling (CS) and Communication Compression (CC). This raises
the question of whether it is possible to design a method that can benefit from communication
acceleration via LT while also supporting CS and utilizing Communication Compression techniques.

At this point, we are prepared to present the crucial observations and contributions made in our work.

• To the best of our knowledge, we provide the first LT method that successfully combines
communication acceleration through local steps, Client Sampling techniques, and Communi-
cation Compression for a wide range of unbiased compressors. Our proposed algorithm for
distributed optimization and federated learning is the first of its kind to utilize both strategies
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Table 1: Comparison of local training (LT) methods.

Method Solver DS CS VR (a) CC A-LT (b) Sampling Reference
Local-SGD GD, SGD ✓ ✓ ✗ ✗ ✗✗(c) Uniform Khaled et al. (2019b)
SCAFFOLD GD, SGD ✓ ✓ ✗ ✗ ✗ Uniform Karimireddy et al. (2020)

FedLin GD, SGD ✓ ✗ ✗ ✓ ✗ ✗ Mitra et al. (2021)
S-Local-SVRG GD, SGD, VR-SGD ✓ ✗ ✓ ✗ ✗ ✗ Gorbunov et al. (2021b)

ProxSkip GD, SGD ✓ ✗ ✗ ✗ ✓ ✗ Mishchenko et al. (2022)
ProxSkip-VR GD, SGD, VR-SGD ✓ ✗ ✓ ✗ ✓ ✗ Malinovsky et al. (2022)
APDA-Inexact any ✓ ✗ ✓ ✗ ✓ ✗ Sadiev et al. (2022a)

RandProx Prox (d) ✗ ✓ ✗ ✓ ✓ Assumption 5 Condat & Richtárik (2022)
TAMUNA GD, SGD ✓ ✓ ✗ ✓(e) ✓ Uniform Condat et al. (2023)

5GCS any ✓ ✓ ✓ ✗ ✓ Uniform Grudzień et al. (2023)
5GCS-AB any ✓ ✓ ✓ ✗ ✓ Assumption (2) This work
5GCS-CC any ✓ ✓ ✓ ✓(f) ✓ Uniform This work

(a) Supports variance-reduced DS on clients.
(b) Acceleration via local training.
(c) It has sublinear rate that is worse than GD rate.
(d) It requires exact calculations of proximal operators.
(e) TAMUNA supports only Perm-K Szlendak et al. (2022) compression.
(f) Any compressor satisfying Assumption (4).

in combination, resulting in a doubly accelerated rate. Our method based on method 5GCS
(Grudzień et al., 2023) benefits from the two acceleration mechanisms provided by Local
Training and compression in the Client Sampling regime, exhibiting improved dependency
on the condition number of the functions and the dimension of the model, respectively.

• In this paper, we investigate a comprehensive Client Sampling framework based on the
work of Tyurin et al. (2022b), which we then apply to the 5GCS method proposed by
Grudzień et al. (2023). This approach enables us to analyze a wide range of Client Sampling
techniques, including both sampling with and without replacement and it recovers previ-
ous results for uniform distribution. The framework also allows us to determine optimal
probabilities, which results in improved communication.

3 PRELIMINARIES

Method’s description. This section outlines the methods employed in this paper, focusing on
two algorithms, Algorithm 1 and Algorithm 2, which share a common underlying concept. At
the beginning of the training process, we initialize several parameters, including the starting point
x0, the dual (control) iterates u01, . . . , u

0
M , the primal (server-side) stepsize, and M dual (local)

stepsizes. Additionally, we choose a sampling scheme S for Algorithm 1 or a type of compressor Q
for Algorithm 2. Once all parameters are set, we commence the iteration cycle.

At the start of each communication round, we sample a cohort (subset) of clients according to a
particular scheme. The server then computes the intermediate model x̂t and sends this point to
each client in the cohort. Once each client receives the model x̂t, the worker uses it as a starting
point for solving the local sub-problem defined in Equation 4. After approximately solving the local
sub-problem, each client computes the gradient of the local function at the approximate solution
∇Fm(yK,t

m ) and, based on this information, each client forms and sends an update to the server, with
or without compression. The server aggregates the received information from workers and updates
the global model xt+1 and additional variables if necessary. This process repeats until convergence.

TECHNICAL ASSUMPTIONS

We begin by adopting the standard assumption in convex optimization (Nesterov, 2004).

Assumption 1. The functions fm are Lm-smooth and µm-strongly convex for all m ∈ {1, ...,M} .

All of our theoretical results will rely on this standard assumption in convex optimization. To recap, a
continuously differentiable function ϕ : Rd → R is L-smooth if ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ ≤
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L
2 ∥x− y∥2 for all x, y ∈ Rd, and µ-strongly convex if ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ ≥ µ

2 ∥x− y∥2

for all x, y ∈ Rd, L = 1
M

∑M
m=1 Lm and Lmax = maxm Lm.

Our method employs the same reformulation of problem 1 as it is used in Grudzień et al. (2023), which
we will now describe. Let H : Rd → RMd be the linear operator that maps x ∈ Rd to the vector
(x, . . . , x) ∈ RMd consisting of M copies of x. First, note that Fm(x) := 1

M

(
fm(x)− µm

2 ∥x∥2
)

is
convex and LF,m-smooth, where LF,m := 1

M (Lm − µm). Furthermore, we define F : RMd → R as
F (x1, . . . , xM ) :=

∑M
m=1 Fm (xm).

Having introduced the necessary notation, we state the following formulation in the lifted space,
which is equivalent to the initial problem 1:

x⋆ = argmin
x∈Rd

[
f(x) := F (Hx) + µ

2 ∥x∥
2
]
, (2)

where µ = 1
M

∑M
m=1 µm.

The dual problem to 2 has the following form:

u⋆ = argmax
u∈RMd

(
1
2µ

∥∥∥∥ M∑
m=1

um

∥∥∥∥2 + M∑
m=1

F ∗
m (um)

)
, (3)

where F ∗
m is the Fenchel conjugate of Fm, defined by F ∗

m(y) := supx∈Rd {⟨x, y⟩ − Fm(x)}. Under
Assumption 1 , the primal and dual problems have unique optimal solutions x⋆ and u⋆, respectively.

Next, we consider the tool of analyzing sampling schemes, which is Weighted AB Inequality from
Tyurin et al. (2022b). Let ∆M :=

{
(p1, . . . , pM ) ∈ RM | p1, . . . , pM ≥ 0,

∑M
m=1 pm = 1

}
be the

standard simplex and (Ω,F ,P) a probability space.
Assumption 2. (Weighted AB Inequality). Consider the random mapping S : {1, . . . ,M} × Ω →
{1, . . . ,M}, which we call “sampling”. For each sampling we consider the random mapping that
we call estimator S : Rd × . . .×Rd ×Ω → Rd, such that E[S(a1, . . . , aM ;ψ)] = 1

M

∑M
m=1 am for

all a1, . . . , aM ∈ Rd. Assume that there exist A,B ≥ 0 and weights (w1, . . . , wM ) ∈ ∆M such that

E

[∥∥∥∥S(a1, . . . , aM ;ψ)− 1
M

M∑
m=1

am

∥∥∥∥2
]
≤ A

M2

M∑
m=1

∥am∥2

wm
−B

∥∥∥∥ 1
M

M∑
m=1

am

∥∥∥∥2 ,∀am ∈ Rd.

Furthermore, it is necessary to specify the number of local steps to solve sub-problem 4. To maintain
the generality and arbitrariness of local solvers, we use an inequality that ensures the accuracy of
the approximate solutions of local sub-problems is sufficient. It should be noted that the assumption
below covers a broad range of optimization methods, including all linearly convergent algorithms.
Assumption 3. (Local Training). Let {A1, . . . ,AM} be any Local Training (LT) subroutines for

minimizing functions {ψt
1, . . . , ψ

t
M} defined in 4, capable of finding points

{
yK,t
1 , . . . , yK,t

M

}
in K

steps, from the starting point y0,tm = x̂t for all m ∈ {1, . . . ,M}, which satisfy the inequality
M∑

m=1

4
τ2
m

µmL2
Fm

3M

∥∥yK,t
m − y⋆,tm

∥∥2 + M∑
m=1

LFm

τ2
m

∥∥∇ψt
m(yK,t

m )
∥∥2 ≤

M∑
m=1

µm

6M ∥x̂t − y⋆,tm ∥2 ,

where y⋆,tm is the unique minimizer of ψt
m, and τm ≥ 8µm

3M .

Finally, we need to specify the class of compression operators. We consider the class of unbiased
compressors with conic variance (Condat & Richtárik, 2021).
Assumption 4. (Unbiased compressor). A randomized mapping Q : Rd → Rd is an unbiased
compression operator (Q ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

EQ(x) = x, (Unbiasedness) E∥Q(x)− x∥2 ≤ ω∥x∥2 (Conic variance) .

4 COMMUNICATION COMPRESSION

In this section we provide convergence guarantees for the Algorithm 1 (5GCS-CC), which is the
version that combines Local Training, Client Sampling and Communication Compression.
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Algorithm 1 5GCS-CC
1: Input: initial primal iterates x0 ∈ Rd; initial dual iterates u0

1, . . . , u
0
M ∈ Rd; primal stepsize γ > 0; dual

stepsize τ > 0; cohort size C ∈ {1, . . . ,M}
2: Initialization: v0 :=

∑M
m=1 u

0
m ⋄ The server initiates v0 as the sum of the initial dual iterates

3: for communication round t = 0, 1, . . . do
4: Choose a cohort St ⊂ {1, . . . ,M} of clients of cardinality C, uniformly at random ⋄ CS step
5: Compute x̂t = 1

1+γµ

(
xt − γvt

)
and broadcast it to the clients in the cohort

6: for m ∈ St do
7: Find yK,t

m as the final point after K iterations of some local optimization algorithm Am, initiated with
y0m = x̂t, for solving the optimization problem ⋄ Client m performs K LT steps

yK,t
m ≈ argmin

y∈Rd

{
ψt

m(y) := Fm(y) +
τm
2

∥∥∥∥y − (
x̂t +

1

τm
ut
m

)∥∥∥∥2
}

(4)

8: Compute ūt+1
m = ∇Fm(yK,t

m )
9: ut+1

m = ut
m + 1

1+ω
C
M
Qm

(
ūt+1
m − ut

m

)
10: Send Qm

(
ūt+1
m − ut

m

)
to the server. ⋄ Server updates ut+1

m

11: end for
12:
13: for m ∈ {1, . . . ,M}\St do
14: ut+1

m := ut
m ⋄ Non-participating clients do nothing

15: end for
16: vt+1 := vt + 1

1+ω
C
M

∑M
m=1 Qm

(
ūt+1
m − ut

m

)
⋄ The server keeps vt+1 as the sum of the dual iterates

17: xt+1 := x̂t − γM
C

(1 + ω) (vt+1 − vt) ⋄ The server updates the primal iterate
18: end for

Theorem 4.1. Let Assumption 1 hold. Consider Algorithm 1 (5GCS-CC) with the LT solvers Am

satisfying Assumption 3 and compression operators Qm satisfying Assumption 4. Let τ = τm for
all m ∈ {1, . . . ,M} and 1

τ − γ(M + ωM
C ) ≥ 4

τ2
µ

3M , for example: τ ≥ 8µ
3M and γ = 1

2τ(M+ωM
C )

.

Then for the Lyapunov function

Ψt := 1
γ ∥xt − x⋆∥2 + M

C (ω + 1)
(

1
τ + 1

LF,max

) M∑
m=1

∥utm − u⋆m∥2 ,

the iterates satisfy E
[
ΨT
]
≤ (1− ρ)TΨ0, where ρ := min

{
γµ

1+γµ ,
C

M(1+ω)
τ

(LF,max+τ)

}
< 1.

Next, we derive the communication complexity for Algorithm 1 (5GCS-CC).

Corollary 4.2. Choose any 0 < ε < 1 and τ = 8
3

√
µLmax

(
ω+1
C

)
1

M(1+ ω
C )

and γ = 1

2τM(1+ ω
C )

.

In order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ O
((

M
C (ω + 1) +

(√
ω
C + 1

)√
(ω + 1) M

C
L
µ

)
log 1

ε

)
communication rounds.

Note, if no compression is used (ω = 0) we recover the rate of 5GCS: O
((

M/C +
√

ML/Cµ

)
log 1

ε

)
.

5 GENERAL CLIENT SAMPLING

In this section we analyze Algorithm 2 (5GCS-AB). First, we introduce a general result for all
sampling schemes that can satisfy Assumption 2
Theorem 5.1. Let Assumption 1 hold. Consider Algorithm 2 with sampling scheme S sat-
isfying Assumption 2 and LT solvers Am satisfying Assumption 3. Let the inequality hold
1
τm

−
(
γ (1−B)M + γ A

wm

)
≥ 4

τ2
m

µm

3M , e.g. τm ≥ 8µm

3M and γ ≤ 1

2τm((1−B)M+ A
wm

)
. Then

for the Lyapunov function

Ψt := 1
γ ∥xt − x⋆∥2 +

M∑
m=1

(1 + qm)
(

1
τm

+ 1
LFm

)
∥utm − u⋆m∥2 ,
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Algorithm 2 5GCS-AB
1: Input: initial primal iterate x0 ∈ Rd; initial dual iterates u0

1, . . . , u
0
M ∈ Rd; primal stepsize γ > 0; dual

stepsizes τm > 0; ω ∈ DM

2: Initialization: v0 :=
∑M

m=1 u
0
m ⋄ The server initiates v0 as the sum of the initial dual iterates

3: for communication round t = 0, 1, . . . do
4: Sample a cohort St ⊂ {1, . . . ,M} of clients according to sampling scheme S
5: Compute x̂t = 1

1+γµ

(
xt − γvt

)
and broadcast it to the clients in the cohort

6: for m ∈ St do
7: Find yK,t

m as the final point after K iterations of some local optimization algorithm Am, initiated with
y0m = x̂t, for solving the optimization problem ⋄ Client m performs K LT steps

yK,t
m ≈ argmin

y∈Rd

{
ψt

m(y) := Fm(y) +
τm
2

∥∥∥∥y − (
x̂t +

1

τm
ut
m

)∥∥∥∥2
}

(6)

8: Compute ūt+1
m = ∇Fm(yK,t

m )
9: Update ut+1

m = ūt+1
m .

10: end for
11: for m ∈ {1, . . . ,M} \ St do
12: Update ut+1

m = ut
m.

13: end for
14: xt+1 := x̂t − γM · S(ut+1

1 − ut
1, . . . , u

t+1
M − ut

M ;ω) ⋄ The server updates the primal iterate
15:
16: vt+1 =

∑M
m=1 u

t+1
m

17: end for

the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1+γµ ,maxm

[
LFm+ qm

1+qm
τm

LFm+τm

]}
E[Ψt] ,

where qm = 1
p̂m

− 1 and p̂m is probability that m-th client is participating.

The obtained result is contingent upon the constants A and B, as well as the weights wm specified
in Assumption 2. Furthermore, the rate of the algorithm is influenced by p̂m, which represents the
probability of the m-th client participating. This probability is dependent on the chosen sampling
scheme S and needs to be derived separately for each specific case. In main part of the work we
consider two important examples: Multisampling and Independent Sampling.

5.1 SAMPLING WITH REPLACEMENT (MULTISAMPLING)

Let p = (p1, p2, . . . , pM ) be probabilities summing up to 1 and let χm be the random variable
equal to m with probability pm. Fix a cohort size C ∈ {1, 2, . . . ,M} and let χ1, χ2, . . . , χC be
independent copies of χ. Define the gradient estimator via

S
(
a1, . . . , an, ψ, p

)
:= 1

C

C∑
m=1

aχm

Mpχm
. (5)

By utilizing this sampling scheme and its corresponding estimator, we gain the flexibility to assign
arbitrary probabilities for client participation while also fixing the cohort size. However, it is important
to note that under this sampling scheme, certain clients may appear multiple times within the cohort.
Lemma 5.2. The Multisampling with estimator 5 satisfies the Assumption 2 with A = B = 1

C and
wm = pm.

Now we are ready to formulate the theorem.
Theorem 5.3. Let Assumption 1 hold. Consider Algorithm 2 (5GCS-AB) with Multisampling and
estimator 5 satisfying Assumption 2 and LT solvers Am satisfying Assumption 3. Let the inequality
hold 1

τm
−
(
γ
(
1− 1

C

)
M + γ 1

Cpm

)
≥ 4

τ2
m

µm

3M , e.g. τm ≥ 8µm

3M and γ ≤ 1

2τm((1− 1
C )M+ 1

Cpm
)
.

Then for the Lyapunov function

Ψt := 1
γ ∥xt − x⋆∥2 +

M∑
m=1

1
p̂m

(
1
τm

+ 1
LFm

)
∥utm − u⋆m∥2 ,
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the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1+γµ ,max
m

[
LFm+(1−p̂m)τm

LFm+τm

}]
E[Ψt] ,

where p̂m = 1− (1− pm)
C is probability that m-th client is participating.

Regrettably, it does not appear to be feasible to obtain a closed-form solution for the optimal
probabilities and stepsizes when C > 1. Nevertheless, we were able to identify a specific set of
parameters for a special case where C = 1. Furthermore, even in this particular case, the solution is
not exact. However, based on the Brouwer fixed-point theorem (Brouwer, 1911), a solution for pm
and τm in Corollary 5.4 exists.

Corollary 5.4. Suppose C = 1. Choose any 0 < ε < 1 and pm =

√
LF,m+τm∑M

m=1

√
LF,m+τm

, and

τm = 8
3

√
LµMpm. In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 + 16

3

√
LM
µ , 38

√
LM
µ +M

}
log 1

ε

communication rounds.

To address the challenge posed by the inexact solution, we have also included the exact formulas for
the parameters. While this set of parameters may not offer the optimal complexity, it can still be
valuable in certain cases.

Corollary 5.5. Suppose C = 1. Choose any 0 < ε < 1 and pm =

√
Lm
M∑M

m=1

√
Lm
M

, and τm =

8
3

√
LµMpm. In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 + 16

3

√
LM
µ , 38

√
LM
µ +

∑M
m=1

√
Lm√

Lmin

}
log 1

ε

communication rounds. Note that Lmin = min
m

Lm.

5.2 SAMPLING WITHOUT REPLACEMENT (INDEPENDENT SAMPLING)

In the previous example, the server had the ability to control the cohort size and assign probabilities
for client participation. However, in practical settings, the server lacks control over these probabilities
due to various technical conditions such as internet connections, battery charge, workload, and others.
Additionally, each client operates independently of the others. Considering these factors, we adopt
the Independent Sampling approach. Let us formally define such a scheme. To do so, we introduce
the concept of independent and identically distributed (i.i.d.) random variables:

χm =

{
1 with probability pm
0 with probability 1− pm,

for all m ∈ [M ], also take St := {m ∈ [M ]|χm = 1} and p = (p1, . . . , pM ) . The corresponding
estimator for this sampling has the following form:

S(a1, . . . , aM , ψ, p) :=
1
M

∑
m∈S

am

pm
, (7)

The described sampling scheme with its estimator is called the Independence Sampling. Specifically,
it is essential to consider the probability that all clients communicate, denoted as ΠM

m=1pm, as well
as the probability that no client participates, denoted as ΠM

m=1(1− pm). It is important to note that∑M
m=1 pm is not necessarily equal to 1 in general. Furthermore, the cohort size is not fixed but rather

random, with the expected cohort size denoted as E[St] =
∑M

m=1 pm.
Lemma 5.6. The Independent Sampling with estimator 7 satisfies the Assumption 2 with A =

1∑M
m

pm
1−pm

, B = 0 and wm =
pm

1−pm∑M
m=1

pm
1−pm

.

Now we are ready to formulate the convergence guarantees and derive communication complexity.
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Figure 1: (a) Performance of Algorithm 1 (5GCS-CC) with different levels of sparsification k. (b)
Comparison of Algorithm 2 (5GCS-AB) with uniform sampling and Multisampling in case of C = 1.

Corollary 5.7. Choose any 0 < ε < 1 and pm can be estimated but not set, then set τm =
8
3

√
L̄µ

M
∑M

m=1 pm
and γ = 1

2τm(M+ 1−pm
pm

)
. In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 + 16

3

√
LM

µ
∑M

m=1 pm

(
1 + 1−pm

Mpm

)
,max

m

[
3LFm

8pm

√
M

∑M
m=1 pm

Lµ
+ 1

pm

]}
log 1

ε

communication rounds.

6 EXPERIMENTS

This study primarily focuses on analyzing the fundamental algorithmic and theoretical aspects of a
particular class of algorithms, rather than conducting extensive large-scale experiments. While we
acknowledge the importance of such experiments, they fall outside the scope of this work. Instead, we
provide illustrative examples and validate our findings through the application of logistic regression
to a practical problem setting.

We are considering ℓ2-regularized logistic regression, which is a mathematical model used for
classification tasks. The objective function, denoted as f(x), is defined as follows:

f(x) = 1
MN

∑M
m=1

∑N
i=1 log

(
1 + e−bm,ia

⊤
m,ix

)
+ λ

2 ∥x∥
2.

In this equation, am,i ∈ Rd and bm,i ∈ {−1,+1} represent the data samples and labels, respectively.
The variables M and N correspond to the number of clients and the number of data points per client,
respectively. The term λ is a regularization parameter, and in accordance with Condat et al. (2023),
we set λ, such that we have κ = 104. To illustrate our experimental results, we have chosen to focus
on a specific case using the "a1a" dataset from the LibSVM library (Chang & Lin, 2011). We have
d = 119, M = 107 and N = 15 for this dataset.

For the experiments involving communication compression, we utilized the Rand-k compressor
(Mishchenko et al., 2019) with various parameters for sparsification and theoretical stepsizes for
the method. Based on the plotted results, it is evident that the optimal choice is achieved when
setting k = 1 and the method without communication compression shows the worst performance. We
calculate the number of communicated floats by all clients. In the experiments conducted to evaluate
the Multisampling strategy, we employed the exact version of the parameters outlined in Corollary 5.5.
Additionally, we applied a re-scaling procedure to modify the distribution of Lm in order to reduce
its uniformity. The resulting values were approximately Lmin ≈ 1.48 and Lmax ≈ 2 · 104.

The observed results indicate that the exact solution of determining probabilities and stepsizes.,
despite not being optimal, outperformed the version with uniform sampling.
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learning problems using stochastic recursive gradient. In The 34th International Conference on
Machine Learning, 2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient algorithm
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A APPENDIX

B BASIC INEQUALITIES

B.1 YOUNG’S INEQUALITIES

For all x, y ∈ Rd and all a > 0, we have

⟨x, y⟩ ≤ a ∥x∥2

2
+

∥y∥2

2a
, (8)

∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 , (9)
1

2
∥x∥2 − ∥y∥2 ≤ ∥x+ y∥2 . (10)

B.2 VARIANCE DECOMPOSITION

For a random vector X ∈ Rd (with finite second moment) and any c ∈ Rd, the variance of X can be
decomposed as

E
[
∥X− E[X]∥2

]
= E

[
∥X− c∥2

]
− ∥E[X]− c∥2 . (11)

B.3 CONIC COMPRESSION VARIANCE

An unbiased randomized mapping C : Rd → Rd has conic variance if there exists ω ≥ 0 such that

E
[
∥C(x)− x∥2

]
≤ ω ∥x∥2 (12)

for all x ∈ Rd.

B.4 CONVEXITY AND L-SMOOTHNESS

Suppose ϕ : Rd → R is L-smooth and convex. Then
1

L
∥∇ϕ(x)−∇ϕ(y)∥2 ≤ ⟨∇ϕ(x)−∇ϕ(y), x− y⟩ (13)

for all x, y ∈ Rd.

B.5 DUAL PROBLEM AND SADDLE-POINT REFORMULATION

Then the saddle function reformulation of (2) is:

Find (x⋆, (u⋆m)Mm=1) ∈ arg min
x∈Rd

max
u∈RMd

(
µ

2
∥x∥2 +

M∑
m=1

⟨x, um⟩ −
M∑

m=1

F ∗
m(um)

)
. (14)

To ensure well-posedness of these problems, we need to assume that there exists x⋆ ∈ Rd s.t.:

0 = µx⋆ +

M∑
m=1

∇Fm(x⋆). (15)

Which is equivalent to (2), having a solution, which it does (unique in fact) as each fm is µ-strongly
convex. By first order optimality condition x⋆ and u⋆ that are solution to (14), satisfy:{

0 = µx⋆ +
∑M

m=1 u
⋆
m

Hx⋆ ∈ ∂F ∗(u⋆)
. (16)

Where the latter in (16) is equivalent to:

∇F (Hx⋆) = u⋆. (17)

Throughout, this section we will denote by Ft for all t ≥ 0 the σ-algebra generated by the collection
of
(
Rd × RdM

)
-valued random variables

(
x0, u0

)
, . . . , (xt, ut) .
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C PROOF OF THEOREM 5.1

Theorem. Let Assumption 1 hold. Consider Algorithm 2 with sampling scheme S satisfy-
ing Assumption 2 and LT solvers Am satisfying Assumption 3. Let the inequality hold 1

τm
−(

γ (1−B)M + γ A
wm

)
≥ 4

τ2
m

µm

3M , e.g. τm ≥ 8µm

3M and γ ≤ 1

2τm((1−B)M+ A
wm

)
. Then for the

Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + M∑

m=1

(1 + qm)

(
1

τm
+

1

LFm

)∥∥utm − u⋆m
∥∥2 ,

the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm

+ qm
1+qm

τm

LFm
+ τm

]}
E
[
Ψt
]
,

where qm = 1
p̂m

− 1 and p̂m is probability that m-th client is participating.

Proof. We start from using variance decomposition 11 and Proposition 1 from (Condat & Richtárik,
2021), we obtain

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
(11)
=

∥∥E[xt+1 | Ft

]
− x⋆

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft

]
(2)
=

∥∥x̂t − x⋆ − γH⊤ (ūt+1 − ut
)∥∥2︸ ︷︷ ︸

X

−γ2B
∥∥H⊤(ūt+1 − ut)

∥∥2
+γ2

M∑
m=1

A

wm

∥∥ūt+1
m − utm

∥∥2 . (18)

Moreover, using (16) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH⊤ut, (19)

(1 + γµ)x⋆ = x⋆ − γH⊤u⋆. (20)

Using (19) and (20) we obtain

X =
∥∥x̂t − x⋆

∥∥2 + γ2
∥∥H⊤ (ūt+1 − ut

)∥∥2 − 2γ
〈
x̂t − x⋆, H⊤ (ūt+1 − ut

)〉
≤ (1 + γµ)

∥∥x̂t − x⋆
∥∥2 + γ2

∥∥H⊤ (ūt+1 − ut
)∥∥2

−2γ
〈
x̂t − x⋆, H⊤ (ūt+1 − u⋆

)〉
+ 2γ

〈
x̂t − x⋆, H⊤ (ut − u⋆

)〉
(19)+(20)

=
〈
xt − x⋆ − γH⊤ (ut − u⋆

)
, x̂t − x⋆

〉
+ γ2

∥∥H⊤ (ūt+1 − ut
)∥∥2

−2γ
〈
x̂t − x⋆, H⊤ (ūt+1 − u⋆

)〉
+
〈
x̂t − x⋆, 2γH⊤ (ut − u⋆

)〉
=

〈
xt − x⋆ + γH⊤ (ut − u⋆

)
, x̂t − x⋆

〉
+ γ2

∥∥H⊤ (ūt+1 − ut
)∥∥2

−2γ
〈
x̂t − x⋆, H⊤ (ūt+1 − u⋆

)〉
(19)+(20)

=
1

1 + γµ

〈
xt − x⋆ + γH⊤ (ut − u⋆

)
, xt − x⋆ − γH⊤ (ut − u⋆

)〉
+γ2

∥∥H⊤ (ūt+1 − ut
)∥∥2 − 2γ

〈
x̂t − x⋆, H⊤ (ūt+1 − u⋆

)〉
=

1

1 + γµ

∥∥xt − x⋆
∥∥2 − γ2

1 + γµ

∥∥H⊤ (ut − u⋆
)∥∥2

+γ2
∥∥H⊤ (ūt+1 − ut

)∥∥2 − 2γ
〈
x̂t − x⋆, H⊤ (ūt+1 − u⋆

)〉
. (21)
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Combining (18) and (21)

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
≤ 1

1 + γµ

∥∥xt − x⋆
∥∥2 − γ2

1 + γµ

∥∥H⊤(ut − u⋆)
∥∥2

+γ2(1−B)
∥∥H⊤(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+γ2

M∑
m=1

A

wm

∥∥ūt+1
m − utm

∥∥2 − γµ

M

∥∥Hx̂t −Hx⋆
∥∥2 .

Let p̂ = (p̂1, . . . , p̂M ). The update for u may be written as

ut+1
m = utm + p̂m

1

p̂m
Bernoulli(ūt+1

m − utm, p̂m),

where p̂m is the probability that client m participates in the iteration. Firstly note that the update for
ut+1
m can be written as:

ut+1
m = utm + p̂mR̃m(ūt+1

m − utm, p̂m),

i.e we have a relation of 1
1+qm

= p̂m , which obviously makes sense, since the independent, unbiased
bernoulli compressor with probability pm has conic variance qm = 1

p̂m
− 1. This leads to

ut+1
m = utm +

1

1 + qm
R̃m(ūt+1

m − utm, qm).

Using such form, we get

E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

] (11)+(12)

≤
∥∥∥∥utm − u⋆m +

1

1 + qm

(
ūt+1
m − utm

)∥∥∥∥2
+

qm
(1 + qm)2

∥∥ūt+1
m − utm

∥∥2
=

q2m
(1 + qm)2

∥∥utm − u⋆m
∥∥2 + 1

(1 + qm)2
∥∥ūt+1

m − u⋆m
∥∥2

+
2qm

(1 + qm)2
〈
utm − u⋆m, ū

t+1
m − u⋆m

〉
+

qm
(1 + qm)2

∥∥ūt+1
m − u⋆m

∥∥2 + qm
(1 + qm)2

∥∥utm − u⋆m
∥∥2

− 2qm
(1 + qm)2

〈
utm − u⋆m, ū

t+1
m − u⋆m

〉
≤ 1

1 + qm

∥∥ūt+1
m − u⋆m

∥∥2 + qm
1 + qm

∥∥utm − u⋆m
∥∥2 . (22)

Let us consider the first term in (22):∥∥ūt+1
m − u⋆m

∥∥2 =
∥∥(utm − u⋆m) + (ūt+1

m − utm)
∥∥2

=
∥∥utm − u⋆m

∥∥2 + ∥∥ūt+1
m − utm

∥∥2 + 2
〈
utm − u⋆m, ū

t+1
m − utm

〉
=

∥∥utm − u⋆m
∥∥2 + 2

〈
ūt+1
m − u⋆m, ū

t+1
m − utm

〉
−
∥∥ūt+1

m − utm
∥∥2 .

Combining terms together we get

E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤
∥∥utm − u⋆m

∥∥2
+

1

1 + qm

(
2
〈
ūt+1
m − u⋆m, ū

t+1
m − utm

〉
−
∥∥ūt+1

m − utm
∥∥2) .
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Finally, we obtain

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

M∑
m=1

1 + qm
τm

E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤ 1

γ (1 + γµ)

∥∥xt − x⋆
∥∥2 − γ

1 + γµ

∥∥H⊤(ut − u⋆)
∥∥2

+γ(1−B)
∥∥H⊤(ūt+1 − ut)

∥∥2
+γ

M∑
m=1

A

wm

∥∥ūt+1
m − utm

∥∥2 − µ

M

∥∥Hx̂t −Hx⋆
∥∥2

+
1 + qm
τm

∥∥utm − u⋆m
∥∥2 − 2

M∑
m=1

〈
x̂t − x⋆, ūt+1

m − u⋆m
〉

+
1

τm

(
2
〈
ūt+1
m − u⋆m, ū

t+1
m − utm

〉
−
∥∥ūt+1

m − utm
∥∥2) .

Ignoring − γ
1+γµ

∥∥H⊤(ut − u⋆)
∥∥2 and noting

−
〈
x̂t − x⋆, ūt+1

m − u⋆m
〉
+

1

τm

〈
ūt+1
m − u⋆m, ū

t+1
m − utm

〉
= −

〈
yK,t
m − x⋆, ūt+1

m − u⋆m
〉
+

1

τm

〈
∇ψt

m(yK,t
m ), ūt+1

m − u⋆m
〉

(8)+(13)

≤ − 1

LFm

∥∥ūt+1
m − u⋆m

∥∥2 + am
2τm

∥∥∇ψt
m(yK,t

m )
∥∥2 + 1

2amτm

∥∥ūt+1
m − u⋆m

∥∥2
= −

(
1

LFm

− 1

2amτm

)∥∥ūt+1
m − u⋆m

∥∥2 + am
2τm

∥∥∇ψt
m(yK,t

m )
∥∥2

(22)

≤ −
(

1

LFm

− 1

2amτm

)(
(1 + qm)E

[∥∥ut+1
m − u⋆m

∥∥2 | Ft

]
− qm

∥∥utm − u⋆m
∥∥2)

+
am
2τm

∥∥∇ψt
m(yK,t

m )
∥∥2 ,

we get

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

M∑
m=1

(1 + qm)

(
1

τm
+

1

LFm

)
E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤ 1

γ (1 + γµ)

∥∥xt − x⋆
∥∥2

+

M∑
m=1

(1 + qm)

(
1

τm
+

qm
1 + qm

1

LFm

)∥∥utm − u⋆m
∥∥2

+

M∑
m=1

(
γ (1−B)M + γ

A

wm
− 1

τm

)∥∥ūt+1
m − utm

∥∥2
+

M∑
m=1

LFm

τ2m

∥∥∇ψt
m(yK,t

m )
∥∥2 − M∑

m=1

µvm
∥∥x̂t − x⋆

∥∥2 .
Where we made the choice am =

LFm

τm
and

∑M
m=1 vm ≤ 1, positive real numbers, e.g. µm∑M

m=1 µm
.

Using Young’s inequality we have

−µvm
3

∥∥x̂t − y⋆,tm + y⋆,tm − x⋆
∥∥2 (10)

≤ µvm
3

∥∥y⋆,tm − x⋆
∥∥2 − µvm

6

∥∥x̂t − y⋆,tm

∥∥2 .
Noting the fact that y⋆,tm = x̂t − 1

τm
(ût+1

m − utm), we have

µvm
3

∥∥y⋆,tm − x⋆
∥∥2 (9)

≤ 2
µvm
3

∥∥x̂t − x⋆
∥∥2 + 2

τ2m

µvm
3

∥∥ût+1
m − utm

∥∥2 .
18



Combining those inequalities we get

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

M∑
m=1

(1 + qm)

(
1

τm
+

1

LFm

)
E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤ 1

γ (1 + γµ)

∥∥xt − x⋆
∥∥2

+

M∑
m=1

(1 + qm)

(
1

τm
+

qm
1 + qm

1

LFm

)∥∥utm − u⋆m
∥∥2

+

M∑
m=1

2

τ2m

µvm
3

∥∥ût+1
m − utm

∥∥2
−

M∑
m=1

(
1

τm
−
(
γ (1−B)M + γ

A

wm

))∥∥ūt+1
m − utm

∥∥2
+

M∑
m=1

LFm

τ2m

∥∥∇ψt
m(yK,t

m )
∥∥2 − M∑

m=1

µvm
6

∥∥x̂t − y⋆,tm

∥∥2 .
Assuming γ and τm can be chosen so that 1

τm
−
(
γ (1−B)M + γ A

wm

)
≥ 4

τ2
m

µvm

3 we obtain

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

M∑
m=1

(1 + qm)

(
1

τm
+

1

LFm

)
E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤ 1

γ (1 + γµ)

∥∥xt − x⋆
∥∥2

+

M∑
m=1

(1 + qm)

(
1

τm
+

qm
1 + qm

1

LFm

)∥∥utm − u⋆m
∥∥2

+

M∑
m=1

4

τ2m

µvmL
2
Fm

3

∥∥yK,t
m − y⋆,tm

∥∥2
+

M∑
m=1

LFm

τ2m

∥∥∇ψt
m(yK,t

m )
∥∥2 − M∑

m=1

µvm
6

∥∥x̂t − y⋆,tm

∥∥2 .
The point yK,t is supposed to satisfy Assumption 3:

M∑
m=1

4

τ2m

µvmL
2
Fm

3

∥∥yK,t
m − y⋆,tm

∥∥2 + M∑
m=1

LFm

τ2m

∥∥∇ψt
m(yK,t

m )
∥∥2 ≤

M∑
m=1

µvm
6

∥∥x̂t − y⋆,tm

∥∥2 .
Thus

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

M∑
m=1

(1 + qm)

(
1

τm
+

1

LFm

)
E
[∥∥ut+1

m − u⋆m
∥∥2 | Ft

]
≤ 1

γ (1 + γµ)

∥∥xt − x⋆
∥∥2

+

M∑
m=1

(1 + qm)

(
1

τm
+

qm
1 + qm

1

LFm

)∥∥utm − u⋆m
∥∥2 .

By taking the expectation on both sides we get

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LFm

+ qm
1+qm

τm

LFm
+ τm

}
E
[
Ψt
]
,

which finishes the proof.
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D MULTISAMPLING (SAMPLING WITH REPLACEMENT)

D.1 PROOF OF LEMMA 5.2

Lemma. The Multisampling with estimator 5 satisfies the Assumption 2 with A = B = 1
C and

wm = pm.

Proof. The proof is presented in Tyurin et al. (2022a). Let us provide it for completeness.

Let us fix C > 0. For all m ∈ [C], we define i.i.d. random variables

Xm =



1 with probability p1
2 with probability p2

·
·
·

M with probability pM ,

where p = (p1, . . . , pM ) ∈ ∆M (simple simplex). A sampling

S(a1, . . . , aM ; p) :=
1

C

C∑
m=1

aXm

MpXm

is called the Importance sampling.

Let us establish inequality for Assumption 2:

E

∥∥∥∥∥ 1C
C∑

m=1

aXm

MpXm

− 1

M

M∑
m=1

am

∥∥∥∥∥
2
 =

1

C2

C∑
m=1

E

∥∥∥∥∥ aXm

MpXm

− 1

M

M∑
m=1

am

∥∥∥∥∥
2


+
1

C2

∑
m̸=m′

E

[〈
aXm

MpXm

− 1

M

M∑
m=1

am,
aX ′

m

MpX ′
m

− 1

M

M∑
m=1

am

〉]
.

By utilizing the independence and unbiasedness of the random variables, the final term becomes zero,
resulting in:

E

∥∥∥∥∥ 1C
C∑

m=1

aXm

MpXm

− 1

M

M∑
m=1

am

∥∥∥∥∥
2
 =

1

C2

C∑
m=1

E

∥∥∥∥∥ aXm

MpXm

− 1

M

M∑
m=1

am

∥∥∥∥∥
2


=
1

C2

C∑
m=1

E

[∥∥∥∥ aXm

MpXm

∥∥∥∥2
]
− 1

C

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2

=
1

C

M∑
m=1

pm

∥∥∥∥ am
Mpm

∥∥∥∥2 − 1

C

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2

=
1

C

 1

M

M∑
m=1

1

Mpm
∥am∥2 −

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2
 .

Thus we have A = B = 1
C .

D.2 PROOF OF THEOREM 5.3

Theorem. Let Assumption 1 hold. Consider Algorithm 2 (5GCS-AB) with Multisampling and
estimator 5 satisfying Assumption 2 and LT solvers Am satisfying Assumption 3. Let the inequality
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hold 1
τm

−
(
γ
(
1− 1

C

)
M + γ 1

Cpm

)
≥ 4

τ2
m

µm

3M , e.g. τm ≥ 8µm

3M and γ ≤ 1

2τm((1− 1
C )M+ 1

Cpm
)
.

Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + M∑

m=1

1

p̂m

(
1

τm
+

1

LFm

)∥∥utm − u⋆m
∥∥2 ,

the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm + (1− p̂m) τm

LFm
+ τm

}]
E
[
Ψt
]
,

where p̂m = 1− (1− pm)
C is probability that m-th client is participating.

Proof. We start from theorem 5.1:

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LFm

+ qm
1+qm

τm

LFm
+ τm

}
E
[
Ψt
]
.

For Multisampling the probability of m-th client participating is p̂m = 1− (1− pm)
C and we have

relation p̂m = 1
1+qm

. Plugging qm = 1
p̂m

− 1 into recursion gives us

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm

+ (1− p̂m) τm
LFm

+ τm

}]
E
[
Ψt
]
.

Also using Lemma 5.2 we have A = B = 1
C and w = pm. Plugging such constants to inequality

for γ and τm leads to 1
τm

−
(
γ
(
1− 1

C

)
M + γ 1

Cpm

)
≥ 4

τ2
m

µm

3M , e.g. τm ≥ 8µm

3M and γ ≤
1

2τm((1− 1
C )M+ 1

Cpm
)

.

D.3 PROOF OF COROLLARY 5.4

Corollary. Suppose C = 1. Choose any 0 < ε < 1 and pm =

√
LF,m+τm∑M

m=1

√
LF,m+τm

, and τm =

8
3

√
LµMpm. In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

1 +
16

3

√
LM

µ
,
3

8

√
LM

µ
+M

 log
1

ε

communication rounds.

Proof. We set parameters as pm =

√
LFm+τm∑M

m=1

√
LFm+τm

, and τm = 8
3

√
LµMpm. Let us derive the

communication complexity:

T ≥ max

1 +
16

3

√
LM

µ
,
3

8

√
LM

µ
+M

 log
1

ε

≥ max

1 +
16

3

√
LM

µ
,
3

8

ML+M 8
3

√
LµM√

LµM

 log
1

ε

≥ max

1 +
16

3

√
LM

µ
,
3

8

(∑M
m=1

√
LFm+τm

)2
√
LµM

 log
1

ε

≥ max

1 +
16

3

√
LM

µ
,max

m

3

8

(∑M
m=1

√
LFm+τm

)2
(LFm + τm)

√
LµM

(LFm + τm)


 log

1

ε
.
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Unrolling the recursion from Theorem 5.3 we get

E
[
ΨT
]
≤
(
max

{
1

1 + γµ
,max

m

[
LFm

+ (1− p̂m) τm
LFm + τm

}])T

Ψ0. (23)

Using Lemma from Malinovsky et al. (2021) for recursion (Appendix B), we can state that derived T
is sufficient to guarantee 23.

D.4 PROOF OF COROLLARY 5.5

Corollary. Suppose C = 1. Choose any 0 < ε < 1 and pm =

√
Lm
M∑M

m=1

√
Lm
M

, and τm = 8
3

√
LµMpm.

In order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

1 +
16

3

√
LM

µ
,
3

8

√
LM

µ
+

∑M
m=1

√
Lm√

Lmin

 log
1

ε

communication rounds. Note that Lmin = minm Lm.

We set parameters as pm =

√
Lm
M∑M

m=1

√
Lm
M

, and τm = 8
3

√
LµMpm. Let us derive the communication

complexity. Since
(∑M

m=1

√
Lm

M

)2

≤ML we have

T ≥ max

1 +
16

3

√
LM

µ
,
3

8

√
LM

µ
+

∑M
m=1

√
Lm√

Lmin

 log
1

ε

≥ max

1 +
16

3

√
LM

µ
,
3

8

(∑M
m=1

√
Lm

M

)2

√
LµM

+

∑M
m=1

√
Lm

M√
Lmin

M

 log
1

ε

≥ max

1 +
16

3

√
LM

µ
,max

m

3

8

(∑M
m=1

√
Lm

M

)2

Lm

M

√
L+µM

Lm − µm

M
+

∑M
m=1

√
Lm

M√
Lm

M


 log

1

ε

≥ max

{
1 +

1

γµ
,max

m

(
1

p̂m

(
LFm

τm
+ 1

))}
log

1

ε

≥ max

{
1 +

1

γµ
,max

m

(
(1 + qm)

(
LFm

τm
+ 1

))}
log

1

ε
.

Unrolling the recursion from Theorem 5.3 we get

E
[
ΨT
]
≤
(
max

{
1

1 + γµ
,max

m

[
LFm + (1− p̂m) τm

LFm
+ τm

}])T

Ψ0. (24)

Using Lemma from Malinovsky et al. (2021) for recursion (Appendix B), we can state that derived T
is sufficient to guarantee 24.

E INDEPENDENT SAMPLING (SAMPLING WITHOUT REPLACEMENT)

E.1 PROOF OF LEMMA 5.6

Lemma. The Independent Sampling with estimator 7 satisfies the Assumption 2 with A = 1∑M
m

pm
1−pm

,

B = 0 and wm =
pm

1−pm∑M
m=1

pm
1−pm

.
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Proof. The proof is presented in Tyurin et al. (2022a). Let us provide it for completeness.

Let us define i.i.d. random variables

χm =

{
1 with probability pm
0 with probability 1− pm,

for all m ∈ [M ], also take St := {m ∈ [M ]|χm = 1} and p = (p1, . . . , pM ) . The corresponding
estimator for this sampling has the following form:

S(a1, . . . , aM , ψ, p) :=
1

M

∑
m∈S

am
pm

. (25)

We get

E

∥∥∥∥∥ 1

M

∑
m∈S

am
pm

− 1

M

M∑
m=1

am

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

M

M∑
m=1

1

pm
χmam

∥∥∥∥∥
2
−

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2

=

M∑
m=1

E [χm]

M2p2m
∥am∥2 +

∑
m ̸=k

E [χm] E [χk]

M2pmpk
⟨am, ak⟩

−

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2

=

M∑
m=1

1

M2pm
∥am∥2 + 1

M2

∥∥∥∥∥
M∑

m=1

am

∥∥∥∥∥
2

−
M∑

m=1

∥am∥2


−

∥∥∥∥∥ 1

M

M∑
m=1

am

∥∥∥∥∥
2

=
1

M2

M∑
m=1

(
1

pm
− 1

)
∥am∥2 .

Thus we have A = 1∑M
m=1

pm
1−pm

, B = 0 and wm =
pn

1−pm∑M
m=1

pm
1−pm

for all m ∈ [M ].

E.2 PROOF OF THEOREM ??

Theorem. Consider Algorithm 2 with Independent Sampling with estimator 7 satisfying Assumption 2
and LT solver satisfying Assumption 3. Let the inequality hold 1

τm
−
(
γM + γ 1−pm

pm

)
≥ 4

τ2
m

µm

3M , e.g.

τm ≥ 8µm

3M and γ ≤ 1

2τm(M+ 1−pm
pm

)
. Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt+1 − x⋆
∥∥2 + M∑

m=1

1

pm

(
1

τm
+

1

LFm

)∥∥ut+1
m − u⋆m

∥∥2 ,
the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm + (1− pm) τm

LFm
+ τm

]}
E
[
Ψt
]
,

where pm is probability that m-th client is participating.

Proof. Using Lemma 5.6 we haveA = 1∑M
m=1

pm
1−pm

, B = 0 andwm =
pn

1−pm∑M
m=1

pm
1−pm

for allm ∈ [M ].

Using Theorem 5.1 and we plug this constants into

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LFm + qm

1+qm
τm

LFm
+ τm

}
E
[
Ψt
]
,
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and we obtain

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm

+ (1− pm) τm
LFm

+ τm

]}
E
[
Ψt
]
.

E.3 PROOF OF COROLLARY 5.7

Corollary E.1. Choose any 0 < ε < 1 and pm can be estimated but not set, then set τm =
8
3

√
L̄µ

M
∑M

m=1 pm
and γ = 1

2τm(M+ 1−pm
pm

)
. In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

1 +
16

3

√
LM

µ
∑M

m=1 pm

(
1 +

1

M

1− pm
pm

)
,max

m

3
8

LFm

pm

√
M
∑M

m=1 pm

Lµ
+

1

pm

 log
1

ε

communication rounds.

Proof. First note that τm = 8
3

√
Lµ

M
∑M

m=1 pm
≥ 8µ

3M and γ = 3
16

√
M

∑M
m=1 pm

Lµ
1

(M+ 1−pm
pm

)
≤

1

2τm(M+ 1−pm
pm

)
, thus the stepsizes choices satisfy 1

τm
−
(
γM + γ 1−pm

pm

)
≥ 4

τ2
m

µm

3M . Now we

get the contraction constant from Theorem 5.7 to be equal to:

1− ρ = max

{
1− γµ

1 + γµ
,max

m

[
1− pmτm

LFm + τm

]}
.

Let us derive the complexity:

T ≥ max

1 +
16

3

√
LM

µ
∑M

m=1 pm

(
1 +

1− pm
Mpm

)
,max

m

3
8

LFm

pm

√
M
∑M

m=1 pm

Lµ
+

1

pm

 log
1

ε

≥ max

{
1 +

1

γµ
,max

m

[
LFm + τm
pmτm

]}
log

1

ε
.

Remark. Note a very important special case, where Lm = L and so L = L and LFm
= 1

M (L−µ) ≤
L/M . Choose pm, so that

∑M
m=1 pm = C (expected cohort size), then the above simplifies to

T = max

{
max
m

[
1 +

16

3

√
LM

µC

(
1 +

1

M

1− pm
pm

)]
,max

m

[
3

8

1

pm

√
LC

Mµ
+

1

pm

]}
log

1

ε
.

Additionally specifying that pm = C
M gives

T ≥ max

{
1 +

16

3

√
LM

µC

(
1 +

1

M

M − C

C

)
,
3

8

√
LM

Cµ
+
M

C

}
log

1

ε

= O

((
M

C
+

√
M

C

L

µ

)
log

1

ε

)
.

E.4 TAU-NICE SAMPLING

In this section we show that previous result of Grudzień et al. (2023) can be covered by our framework.
This means we fully generalize previous convergence guarantees.

24



Theorem E.2. Consider Algorithm 2 with uniform sampling scheme satisfying 2 and LT solver
satisfying Assumption 3. Let the inequality hold 1

τm
− γM ≥ 4

τ2
m

µ
3M , e.g. τm ≥ 8µ

3M and γ ≤ 1
2τmM .

Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt+1 − x⋆
∥∥2 + M∑

m=1

M

C

(
1

τm
+

1

LFm

)∥∥ut+1
m − u⋆m

∥∥2 ,
the iterates of the method satisfy

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,max

m

[
LFm + M−C

M τm

LFm
+ τm

]}
E
[
Ψt
]
.

Corollary E.3. Suppose that Lm = L,∀m ∈ {1, . . . ,M}. Choose any 0 < ε < 1 and γ =
3
16

√
C

LµM and τm = 8
3

√
Lµ
MC . In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 +

16

3

√
M

C

L

µ
,
M

C
+

3

8

√
M

C

L

µ

}
log

1

ε

= O

((
M

C
+

√
M

C

L

µ

)
log

1

ε

)
communication rounds.

E.5 PROOF OF COROLLARY E.3

Proof. First note that τm = τ = 8
3

√
Lµ
MC ≥ 8µ

3M and γ = 3
16

√
C

LµM ≥ 1
2τmM , thus the stepsizes

choices satisfy 1
τm

− γM ≥ 4
τ2
m

µ
3M . Now we get the contraction constant from Theorem E.2 to be

equal to:

1− ρ = O

(
max

{
1− γµ

1 + γµ
, 1−

C
M τ

LFm
+ τ

})
.

This gives a rate of

T = max

{
1 +

1

γµ
,
M

C

L/M + τ

τ

}
log

1

ε

= max

{
1 +

16

3

√
LM

µC
,
M

C
+

3

8

√
LM

µC

}
log

1

ε

= O

((
M

C
+

√
LM

µC

)
log

1

ε

)
.
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Algorithm 3 inexact-RandProx
1: Input: initial primal iterates x0 ∈ Rd; initial dual iterates u0

1, . . . , u
0
M ∈ Rd; primal stepsize γ > 0; dual

stepsize τ > 0

2: Initialization: v0 :=
∑M

m=1 u
0
m ⋄ The server initiates v0 as the sum of the initial dual iterates

3: for communication round t = 0, 1, . . . do
4: Compute x̂t = 1

1+γµ

(
xt − γvt

)
and broadcast it to the clients

5: Find yK,t as the final point after K iterations of some local optimization algorithm A, initiated with
y0 = Hx̂t, for solving the optimization problem

yK,t ≈ argmin
y∈RdM

{
ψt(y) := F (y) +

τ

2

∥∥∥∥y − (
Hx̂t +

1

τ
ut

)∥∥∥∥2
}

(26)

6: Compute ūt+1 = ∇F (yK,t) and send R̃t
(
ūt+1 − ut

)
to the server

7: ut+1 = ut + 1
1+ω

R̃t
(
ūt+1 − ut

)
8: vt+1 :=

∑M
m=1 u

t+1
m ⋄ The server maintains vt+1 as the sum of the dual iterates

9: xt+1 := x̂t − γ (1 + ω) (vt+1 − vt) ⋄ The server updates the primal iterate
10: end for

F ANALYSIS OF 5GCS-CC

F.1 PROOF OF THEOREM 4.1

In this section we will provide the proof for general version of 5GCS algorithm, which is Algorithm 3.
This method is inexact version of RandProx presented in Condat & Richtárik (2022).

We need to formulate an assumption similar to Assumption 2.

Assumption 5. (AB Inequality). Let R̃ : RdM → RdM , be an unbiased random operator which
satisfies:

E
[∥∥∥H⊤

(
R̃(v)− v

)∥∥∥2] ≤ A

M∑
m=1

∥vm∥2 −B

∥∥∥∥∥
M∑

m=1

vm

∥∥∥∥∥
2

, (27)

for some A,B > 0, where v = (v1, . . . , vM )
⊤ and vm ∈ Rd for m ∈ {1, . . . ,M}.

Theorem F.1. Consider Algorithm 3 (Inexact-RandProx) with the LT solver satisfying Assumption 3.
Let 1

τ −(γ(1−B)M+γA)) ≥ 4
τ2

µ
3M , e.g. τ ≥ 8µ

3M and γ = 1
2τ(M+A−MB) . Then for the Lyapunov

function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
1

τ
+

1

LF

)∥∥ut − u⋆
∥∥2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1−ρ)TΨ0, where ρ := min

{
γµ

1+γµ ,
1

1+ω
τ

(LF+τ)

}
< 1.

Proof. Noting that updates for ut+1 and xt+1 can be written as

ut+1 := ut + 1
1+ω R̃

t
(
ūt+1 − ut

)
, (28)

xt+1 = x̂t − γ (ω + 1)H⊤ (ut+1 − ut
)
, (29)

where R̃t is any random operator, which satisfies conic variance (in this case it is not compression
parameter) and Assumption 5 and ūt+1 = ∇F (yK,t). Then using variance decomposition and
proposition 1 from Condat & Richtárik (2021) we obtain

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
(11)
=

∥∥E[xt+1 | Ft

]
− x⋆

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft

]
(29)+(2)

=
∥∥x̂t − x⋆ − γH⊤(ūt+1 − ut)

∥∥2︸ ︷︷ ︸
X

+γ2A
∥∥ūt+1 − ut

∥∥2
−γ2B

∥∥H⊤(ūt+1 − ut)
∥∥2 . (30)
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Moreover, using (16) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH⊤ut, (31)

(1 + γµ)x⋆ = x⋆ − γH⊤u⋆. (32)

Using (31) and (32) we obtain

X =
∥∥x̂t − x⋆ − γH⊤(ūt+1 − ut)

∥∥2
=

∥∥x̂t − x⋆
∥∥2 + γ2

∥∥H⊤(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x⋆, H⊤(ūt+1 − ut)

〉
= (1 + γµ)

∥∥x̂t − x⋆
∥∥2 + γ2

∥∥H⊤(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+ 2γ

〈
x̂t − x⋆, H⊤(ut − u⋆)

〉
−γµ

∥∥x̂t − x⋆
∥∥2

(31)+(32)
=

〈
xt − x⋆ − γH⊤(ut − u⋆), x̂t − x⋆

〉
+ γ2

∥∥H⊤(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+
〈
x̂t − x⋆, 2γH⊤(ut − u⋆)

〉
−γµ

∥∥x̂t − x⋆
∥∥2 .

It leads to

X =
〈
xt − x⋆ + γH⊤(ut − u⋆), x̂t − x⋆

〉
+γ2

∥∥H⊤(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
−γµ

∥∥x̂t − x⋆
∥∥2

(31)+(32)
=

1

1 + γµ

〈
xt − x⋆ + γH⊤(ut − u⋆), xt − x⋆ − γH⊤(ut − u⋆)

〉
+γ2

∥∥H⊤(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
−γµ

∥∥x̂t − x⋆
∥∥2

=
1

1 + γµ

∥∥xt − x⋆
∥∥2 − γ2

1 + γµ

∥∥H⊤(ut − u⋆)
∥∥2

+γ2
∥∥H⊤(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
−γµ

∥∥x̂t − x⋆
∥∥2 . (33)

Combining (30) and (33) we have

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
≤ 1

1 + γµ

∥∥xt − x⋆
∥∥2 − γ2

1 + γµ

∥∥H⊤(ut − u⋆)
∥∥2

+γ2(1−B)
∥∥H⊤(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+γ2A

∥∥ūt+1 − ut
∥∥2 − γµ

M

∥∥Hx̂t −Hx⋆
∥∥2 .

Note that we can have the update rule for u as:

ut+1 := ut + 1
1+ω R̃

t
(
ūt+1 − ut

)
.
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Using conic variance formula (12) of R̃t we obtain

E
[∥∥ut+1 − u⋆

∥∥2 | Ft

] (11)+(12)

≤
∥∥∥∥ut − u⋆ +

1

1 + ω

(
ūt+1 − ut

)∥∥∥∥2 + ω

(1 + ω)2
∥∥ūt+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u⋆

∥∥2 + 1

(1 + ω)2
∥∥ūt+1 − u⋆

∥∥2
+

2ω

(1 + ω)2
〈
ut − u⋆, ūt+1 − u⋆

〉
+

ω

(1 + ω)2
∥∥ūt+1 − u⋆

∥∥2
+

ω

(1 + ω)2
∥∥ut − u⋆

∥∥2 − 2ω

(1 + ω)2
〈
ut − u⋆, ūt+1 − u⋆

〉
=

1

1 + ω

∥∥ūt+1 − u⋆
∥∥2 + ω

1 + ω

∥∥ut − u⋆
∥∥2 . (34)

Let us consider the first term in (34):∥∥ūt+1 − u⋆
∥∥2 =

∥∥(ut − u⋆) + (ūt+1 − ut)
∥∥2

=
∥∥ut − u⋆

∥∥2 + ∥∥ūt+1 − ut
∥∥2 + 2

〈
ut − u⋆, ūt+1 − ut

〉
=

∥∥ut − u⋆
∥∥2 + 2

〈
ūt+1 − u⋆, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2 .
Combining terms together we get

E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤
∥∥ut − u⋆

∥∥2 + 1

1 + ω

(
2
〈
ūt+1 − u⋆, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
Finally, we obtain

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

1 + ω

τ
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµ)

∥∥xt − x⋆
∥∥2 − γ

1 + γµ

∥∥H⊤(ut − u⋆)
∥∥2

+γ(1−B)
∥∥H⊤(ūt+1 − ut)

∥∥2
+γA

∥∥ūt+1 − ut
∥∥2 − µ

M

∥∥Hx̂t −Hx⋆
∥∥2

+
1 + ω

τ

∥∥ut − u⋆
∥∥2 − 2

〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+
1

τ

(
2
〈
ūt+1 − u⋆, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
Ignoring − γ

1+γµ

∥∥H⊤(ut − u⋆)
∥∥2 and noting

−
〈
x̂t − x⋆, H⊤(ūt+1 − u⋆)

〉
+

1

τ

〈
ūt+1 − u⋆, ūt+1 − ut

〉
= −

〈
yK,t −Hx⋆, ūt+1 − u⋆

〉
+

1

τ

〈
∇ψt(yK,t), ūt+1 − u⋆

〉
(8)+(13)

≤ − 1

LF

∥∥ūt+1 − u⋆
∥∥2 + a

2τ

∥∥∇ψt(yK,t)
∥∥2 + 1

2aτ

∥∥ūt+1 − u⋆
∥∥2

= −
(

1

LF
− 1

2aτ

)∥∥ūt+1 − u⋆
∥∥2 + a

2τ

∥∥∇ψt(yK,t)
∥∥2

(34)

≤ −
(

1

LF
− 1

2aτ

)(
(1 + ω)E

[∥∥ut+1 − u⋆
∥∥2 | Ft

]
− ω

∥∥ut − u⋆
∥∥2)

+
a

2τ

∥∥∇ψt(yK,t)
∥∥2 ,
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we get

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµ)

∥∥xt − x⋆
∥∥2

+(1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u⋆
∥∥2

+

(
γ (1−B)M + γA− 1

τ

)∥∥ūt+1 − ut
∥∥2

+
LF

τ2
∥∥∇ψt(yK,t)

∥∥2 − µ

M

∥∥Hx̂t −Hx⋆
∥∥2 .

Where we made the choice a = LF

τ . Using Young’s inequality we have

− µ

3M

∥∥Hx̂t − y⋆,t + y⋆,t −Hx⋆
∥∥2 (10)

≤ µ

3M

∥∥y⋆,t −Hx⋆
∥∥2 − µ

6M

∥∥Hx̂t − y⋆,t
∥∥2 .

Noting the fact that y⋆,t = Hx̂t − 1
τ (û

t+1 − ut), we have

µ

3M

∥∥y⋆,t −Hx⋆
∥∥2 (9)

≤ 2
µ

3M

∥∥Hx̂t −Hx⋆
∥∥2 + 2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2 .

Combining those inequalities we get

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµ)

∥∥xt − x⋆
∥∥2

+(1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u⋆
∥∥2

+
2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2

−
(
1

τ
− (γ (1−B)M + γA)

)∥∥ūt+1 − ut
∥∥2

+
LF

τ2
∥∥∇ψt(yK,t)

∥∥2 − µ

6M

∥∥Hx̂t − y⋆,t
∥∥2 .

Assuming γ and τ can be chosen so that 1
τ − (γ(1−B)M + γA)) ≥ 4

τ2
µ

3M we obtain

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµ)

∥∥xt − x⋆
∥∥2

+(1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u⋆
∥∥2

+
4

τ2
µL2

F

3M

∥∥yK,t − y⋆,t
∥∥2 + LF

τ2
∥∥∇ψt(yK,t)

∥∥2
− µ

6M

∥∥Hx̂t − y⋆,t
∥∥2 .

The point yK,t is assumed to satisfy Assumption3:

4

τ2
µL2

F

3M

∥∥yK,t − y⋆,t
∥∥2 + LF

τ2
∥∥∇ψt(yK,t)

∥∥2 ≤ µ

6M

∥∥Hx̂t − y⋆,t
∥∥2 .
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Thus

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµ)

∥∥xt − x⋆
∥∥2

+(1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u⋆
∥∥2 .

By taking the expectation on both sides we get

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LF + ω

1+ω τ

LF + τ

}
E
[
Ψt
]
,

which finishes the proof. The requirement for stepsizes becomes:

1

τ
− γ(M +A−MB) ≥ 4

τ2
µ

3M
.

This inequality can be satisfied. Firstly note that for any R̃ we need to have A ≥MB. Then as long
as τ ≥ 8µ

3M we can set γ to satisfy γ = 1
2τ(M+A−MB) .

Given this inequality we can formulate a following convergence theorem for Algorithm 1, which is
practically just a corollary to the Theorem F.1.

Theorem. Consider Algorithm 1 (5GCS-CC) with the LT solver satisfying Assumption 3. Let
1
τ − γ(M + ωM

C ) ≥ 4
τ2

µ
3M , e.g. τ ≥ 8µ

3M and γ = 1

2τ(M+ωM
C )

. Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + M

C
(ω + 1)

(
1

τ
+

1

LF

)∥∥ut − u⋆
∥∥2 ,

the iterates satisfy E
[
ΨT
]
≤ (1− ρ)TΨ0, with ρ := min

{
γµ

1+γµ ,
C

M(1+ω)
τ

(LF+τ)

}
< 1.

Corollary. Choose any 0 < ε < 1 and τ = 8
3

√
Lµ
(
ω+1
C

)
1

(M+M
C ω)

and γ = 1

2τ(M+ωM
C )

. In order

to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ O

((
M

C
(ω + 1) +

(√
ω

C
+ 1

)√
(ω + 1)

M

C

L

µ

)
log

1

ε

)

communication rounds.

F.2 PROOF OF COROLLARY 4.2

Proof. First note that τ = 8
3

√
Lµ
(
ω+1
C

)
1

(M+M
C ω)

≥ 8µ
3M and γ = 3

16

√
1
Lµ

(
C

ω+1

)
1

(M+M
C ω)

≥
1

2τ(M+ωM
C )

, thus the stepsizes choices satisfy 1
τ −γ(M+ωM

C ) ≥ 4
τ2

µ
3M . Now we get the contraction

constant from Theorem 4.1 to be equal to:

1− ρ = max

{
1− γµ

1 + γµ
, 1− C

M

1

ω + 1

τ

LF + τ

}
.
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This gives us a communication complexity, let us define λ = M
C (ω + 1) :

T = O

((
M

C
(ω + 1) +

(√
ω

C
+ 1

)√
(ω + 1)

M

C

L

µ

)
log

1

ε

)

≥ max

{
1 +

16

3

(√
ω

C
+ 1

)√
(ω + 1)

M

C

L

µ
, λ+

3

8

(√
ω

C
+ 1

)√
(ω + 1)

M

C

L

µ

}
log

1

ε

= max

{
1 +

16

3

√
L

µ

ω + 1

C

(
M +

Mω

C

)
, λ

(
1 +

L

M

3

8

√
1

Lµ

M(C + ω)

ω + 1

)}
log

1

ε

≥ max

{
1 +

1

γµ
, (ω + 1)

M

C

L/M + τ

τ

}
log

1

ε
.

31


	Introduction
	Contributions
	Preliminaries
	Communication Compression
	General Client Sampling
	Sampling with Replacement (Multisampling)
	Sampling without Replacement (Independent Sampling)

	Experiments
	Appendix
	Basic Inequalities
	Young's inequalities
	Variance decomposition
	Conic compression variance
	Convexity and L-smoothness
	Dual Problem and Saddle-Point Reformulation

	Proof of Theorem 5.1
	Multisampling (Sampling with Replacement)
	Proof of Lemma 5.2
	Proof of Theorem 5.3
	Proof of Corollary 5.4
	Proof of Corollary 5.5

	Independent Sampling (Sampling without Replacement)
	Proof of Lemma 5.6
	Proof of Theorem ??
	Proof of Corollary 5.7
	Tau-Nice sampling
	Proof of Corollary E.3

	Analysis of 5GCS-CC
	Proof of Theorem 4.1
	Proof of Corollary 4.2


