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Abstract001

In heterogeneous clusters with varying capabilities002

and energy efficiency, sustainable use of mixed-003

generation resources is essential. We propose a004

method for adaptive management of machine learn-005

ing jobs, aiming to minimize energy while meeting006

performance targets which uses two neural networks007

to cope with hardware utilization uncertainties. We008

demonstrate the efficacy of this adaptive process via009

the Gavel benchmark [1].010

1 Introduction011

Recent advances in machine learning have led to012

large models and datasets, creating high compu-013

tational demands. While specialized accelerators014

address these needs, upgrading all infrastructure is015

impractical; thus, heterogeneous clusters combin-016

ing legacy and modern GPUs remain common [2,017

3]. Efficient scheduling is challenging due to di-018

verse job structures, resource contention, and lim-019

ited understanding of job–hardware interactions [4,020

5]. Historical performance data, however, can reveal021

patterns useful for predicting throughput across jobs022

and devices [6]. We present GOGH, a framework023

for scheduling deep learning jobs on heterogeneous024

GPU clusters by leveraging correlations across jobs025

and accelerators to predict throughput and guide026

allocations. Its key components include: (i) a neural027

predictor for initial and refined throughput estimates028

(using RNN, Feedforward (FF), and Transformer029

models), and (ii) an ILP-based optimizer that as-030

signs jobs to GPUs while meeting throughput guar-031

antees and minimizing power use. Using the Gavel032

dataset [1], we demonstrate that GOGH improves033

both prediction accuracy and scheduling efficiency034

over baselines.035

We make the following contributions: (1) A036

correlation-guided framework for heterogeneous037

GPU scheduling; (2) an ILP formulation balancing038

∗Corresponding Author.

throughput, efficiency, and guarantees; (3) evalua- 039

tion of neural architectures for prediction accuracy; 040

and (4) experimental validation showing significant 041

scheduling and prediction gains. We refer to the full 042

version of the article [7] for detailed discussions. 043

Related work. Heterogeneity-aware schedul- 044

ing. Gavel [1] introduced effective throughput for 045

accelerator-aware scheduling; Pollux [8] co-adapts 046

resource allocation and training configurations. Re- 047

source sharing. TGS [9] enables transparent GPU 048

sharing at the OS layer; HiveD [10] provides virtual 049

clusters for multi-tenant fairness and affinity. Elas- 050

tic/serverless training. ElasticFlow [11] shows 051

benefits of elasticity for deadline-aware training. 052

LLM serving. Parrot [12] exposes semantic sig- 053

nals to reduce redundancy during inference. Our 054

work differs by learning correlations to predict cross- 055

devicethroughput and refining estimates online to 056

guide energy-aware ILP-based allocation. 057

Figure 1. Architecture of GOGH.

2 GOGH Design 058

GOGH is a solution that dynamically decides 059

GPU–job assignments in a deep learning cluster, 060

as ML jobs arrive over time. Figure 1 illustrates the 061

architecture of GOGH. 062

At its core, GOGH has an ILP-based Optimizer 063

module that assigns jobs to GPUs subject to ca- 064

pacity and minimum-throughput constraints while 065

minimizing power. However, job throughput on each 066

GPU type is not known by the Optimizer apriori. 067

Thus, GOGH uses four helper modules to improve 068

its assignment in time. P1 provides initial per-(job, 069

accelerator, co-location) throughput estimates from 070

a continuously updated Catalog of historical runs. 071
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(a) Initial NN (P1). (b) Refinement NN (P2). (c) Validation

Figure 2. MAE of models; Combined validation of P1–P2 model pairs.

Monitor records realized throughput; P2 refines the072

Catalog using these observations, improving future073

allocations. To cast this as an optimization problem,074

let S be servers, AGPU types, and J ML jobs. GPU075

capacity of type a is Ka, which in practice for most076

GPUs is one or two. Define C ⊆ {c ⊆ J : |c| ≤ 2}077

as job combinations (job co-location) that can be078

assigned to GPUs. Let T c
a,j be throughput of job j079

on type a under co-location c. As is unknown, we080

define T̃ i,c
a,j as the i-th estimate of T c

a,j computed by081

P1 and P2. Specifically, P1 writes the initial esti-082

mate T̃ 0,c
a,j into the Catalog and P2 refines it after083

monitoring round i > 0.084

Given estimated or measured throughput values,085

we allocate GPUs to jobs via an integer linear pro-086

gram (ILP) that minimizes total power consumption087

while meeting throughput and capacity constraints.088

We define binary variables xc
a,s indicating whether089

job combination c is assigned to accelerator a on090

server s. The objective (1a) minimizes power γa(x),091

obtained from profiling. Constraints (1b)–(1e) en-092

sure that each job is scheduled, accelerator capacities093

are respected, and minimum throughput Tj is met.094

We solve the formulation with a standard ILP solver;095

more efficient algorithms are left for future work.096

min
xc
a,s∈{0,1}

∑
a∈A

γa

( ∑
c∈Cj

T c
a,jx

c
a,s

)
(1a)097

s.t. 1 ≤
∑

s,a,c∈Cj

xc
a,s ≤ Dj , (1b)098

∑
c∈C

|c|xc
a,s ≤ Ka, (1c)099

T j ≤
∑

a,c∈Cj

T c
a,jx

c
a,s, (1d)100

∑
c∈C

xc
a,s ≤ 1. (1e)101

3 Evaluation102

We use the Gavel benchmark [1], reporting through-103

put (iterations/sec) for diverse ML workloads (listed104

in Table 1) on six GPU types (k80, p100, v100105

and unconsolidated variants). As for models, we106

implemented FF, RNN, and Transformer variants107

Table 1. Workloads in simulation.

Application Batch Sizes

ResNet-18 {16, 32, 64, 128, 256}
ResNet-50 {16, 32, 64, 128, 256}
Transformer {16, 32, 128, 256}
LM {5, 10, 20, 80}

for both P1 and P2, with similar complexity.Models 108

were evaluated using the mean absolute error (MAE) 109

across the training, validation, and test sets. 110

Results. Initial Estimation (P1). On validation, 111

RNN achieved the lowest MAE, while on test the 112

Transformer generalized best. RNN fit training data 113

strongly, but Transformer was more robust to dis- 114

tribution shift. Refinement (P2). FF provided the 115

most consistent refinement with the lowest validation 116

and test MAE, outperforming RNN and Transformer 117

despite RNN’s lower training loss. Pairing P1 and 118

P2 shows that RNN→FF yields the best overall val- 119

idation MAE, outperforming Transformer→FF by 120

≈ 2.8% in our setting. Capturing temporal patterns 121

initially (RNN) and refining deterministically (FF) 122

provides strong accuracy and generalization; see [7] 123

for a detailed discussion. 124

Discussion. Estimates are stable under batch-size 125

perturbations and reflect co-scheduling contention: 126

similar jobs map to accelerators with comparable pre- 127

dicted throughput; conflicting co-locations show pre- 128

dicted degradation aligned with observations. These 129

behaviors indicate that GOGH captures structural 130

properties of workload–device interactions without 131

hand-tuned rules. 132

4 Conclusion 133

We propose GOGH, a correlation-guided frame- 134

work for managing GPUs in heterogeneous clus- 135

ters. GOGH estimates job throughput across GPU 136

types by leveraging inter-job and inter-GPU correla- 137

tions, refining predictions with runtime observations. 138

An ILP allocator minimizes power while meeting 139

throughput goals. Among tested architectures, the 140

RNN–FF pipeline achieved prediction errors as low 141

as 5%. Future work includes ILP approximations 142

and reinforcement learning for adaptive scheduling. 143
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