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Abstract

In heterogeneous clusters with varying capabilities
and energy efficiency, sustainable use of mixed-
generation resources is essential. We propose a
method for adaptive management of machine learn-
ing jobs, aiming to minimize energy while meeting
performance targets which uses two neural networks
to cope with hardware utilization uncertainties. We
demonstrate the efficacy of this adaptive process via
the Gavel benchmark [1].

1 Introduction

Recent advances in machine learning have led to
large models and datasets, creating high compu-
tational demands. While specialized accelerators
address these needs, upgrading all infrastructure is
impractical; thus, heterogeneous clusters combin-
ing legacy and modern GPUs remain common [2,
3]. Efficient scheduling is challenging due to di-
verse job structures, resource contention, and lim-
ited understanding of job—hardware interactions [4,
5]. Historical performance data, however, can reveal
patterns useful for predicting throughput across jobs
and devices [6]. We present GOGH, a framework
for scheduling deep learning jobs on heterogeneous
GPU clusters by leveraging correlations across jobs
and accelerators to predict throughput and guide
allocations. Its key components include: (i) a neural
predictor for initial and refined throughput estimates
(using RNN, Feedforward (FF), and Transformer
models), and (ii) an ILP-based optimizer that as-
signs jobs to GPUs while meeting throughput guar-
antees and minimizing power use. Using the Gavel
dataset [1], we demonstrate that GOGH improves
both prediction accuracy and scheduling efficiency
over baselines.

We make the following contributions: (1) A
correlation-guided framework for heterogeneous
GPU scheduling; (2) an ILP formulation balancing
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throughput, efficiency, and guarantees; (3) evalua-
tion of neural architectures for prediction accuracy;
and (4) experimental validation showing significant
scheduling and prediction gains. We refer to the full
version of the article [7] for detailed discussions.

Related work. Heterogeneity-aware schedul-
ing. Gavel [1] introduced effective throughput for
accelerator-aware scheduling; Pollux [8] co-adapts
resource allocation and training configurations. Re-
source sharing. TGS [9] enables transparent GPU
sharing at the OS layer; HiveD [10] provides virtual
clusters for multi-tenant fairness and affinity. Elas-
tic/serverless training. ElasticFlow [11] shows
benefits of elasticity for deadline-aware training.
LLM serving. Parrot [12] exposes semantic sig-
nals to reduce redundancy during inference. Our
work differs by learning correlations to predict cross-
devicethroughput and refining estimates online to
guide energy-aware ILP-based allocation.
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Figure 1. Architecture of GOGH.

2 GOGH Design

GOGH is a solution that dynamically decides
GPU—job assignments in a deep learning cluster,
as ML jobs arrive over time. Figure 1 illustrates the
architecture of GOGH.

At its core, GOGH has an ILP-based Optimizer
module that assigns jobs to GPUs subject to ca-
pacity and minimum-throughput constraints while
minimizing power. However, job throughput on each
GPU type is not known by the Optimizer apriori.
Thus, GOGH uses four helper modules to improve
its assignment in time. P; provides initial per-(job,
accelerator, co-location) throughput estimates from
a continuously updated Catalog of historical runs.
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Figure 2. MAE of models; Combined validation of P1-P2 model pairs.

Monitor records realized throughput; P refines the
Catalog using these observations, improving future
allocations. To cast this as an optimization problem,
let S be servers, A GPU types, and J ML jobs. GPU
capacity of type a is K, which in practice for most
GPUs is one or two. Define C C {¢ C J : || < 2}
as job combinations (job co-location) that can be
assigned to GPUs. Let Ty ; be throughput of job j
on type a under co-location c. As is unknown, we
define T, as the i-th estimate of Ty ; computed by
Py and P,. Specifically, P, writes the initial esti-
mate TIS:; into the Catalog and P, refines it after
monitoring round ¢ > 0.

Given estimated or measured throughput values,
we allocate GPUs to jobs via an integer linear pro-
gram (ILP) that minimizes total power consumption
while meeting throughput and capacity constraints.
We define binary variables z,  indicating whether
job combination c is assigned to accelerator a on
server s. The objective (1a) minimizes power ~y,(x),
obtained from profiling. Constraints (1b)—(1le) en-
sure that each job is scheduled, accelerator capacities
are respected, and minimum throughput 7} is met.
We solve the formulation with a standard ILP solver;
more efficient algorithms are left for future work.
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3 Evaluation

We use the Gavel benchmark [1], reporting through-
put (iterations/sec) for diverse ML workloads (listed
in Table 1) on six GPU types (k80, p100, v100
and unconsolidated variants). As for models, we
implemented FF, RNN, and Transformer variants

Table 1. Workloads in simulation.

Application Batch Sizes
ResNet-18 {16, 32,64, 128,256}
ResNet-50 {16, 32,64, 128,256}
Transformer {16, 32,128,256}
LM {5, 10,20, 80}

for both P; and Ps, with similar complexity.Models
were evaluated using the mean absolute error (MAE)
across the training, validation, and test sets.

Results. Initial Estimation (Pp). On validation,
RNN achieved the lowest MAE, while on test the
Transformer generalized best. RNN fit training data
strongly, but Transformer was more robust to dis-
tribution shift. Refinement (P,). FF provided the
most consistent refinement with the lowest validation
and test MAE, outperforming RNN and Transformer
despite RNN’s lower training loss. Pairing P, and
P; shows that RNN— FF' yields the best overall val-
idation MAE, outperforming Transformer— FF by
~ 2.8% in our setting. Capturing temporal patterns
initially (RNN) and refining deterministically (FF)
provides strong accuracy and generalization; see [7]
for a detailed discussion.

Discussion. Estimates are stable under batch-size
perturbations and reflect co-scheduling contention:
similar jobs map to accelerators with comparable pre-
dicted throughput; conflicting co-locations show pre-
dicted degradation aligned with observations. These
behaviors indicate that GOGH captures structural
properties of workload—device interactions without
hand-tuned rules.

4 Conclusion

We propose GOGH, a correlation-guided frame-
work for managing GPUs in heterogeneous clus-
ters. GOGH estimates job throughput across GPU
types by leveraging inter-job and inter-GPU correla-
tions, refining predictions with runtime observations.
An ILP allocator minimizes power while meeting
throughput goals. Among tested architectures, the
RNN-FF pipeline achieved prediction errors as low
as 5%. Future work includes ILP approximations
and reinforcement learning for adaptive scheduling.
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