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Abstract

Diffusion Large Language Models (DLLMs) have emerged as a new paradigm
of language modeling beyond autoregressive next-token prediction. Thanks to
their bidirectional attention mechanism, DLLMs are more capable of capturing
the connection of context, and thus show unique advantages in challenges like the
famous "reversal curse" or learning under data-constrained scenarios. On the other
hand, taking advantage of their inherent modeling foundations, parallel decoding
algorithms enable multi-token prediction per step for DLLMs, which can accelerate
the inference to the next level. However, the high generation quality often requires
a large number of decoding steps, which is usually equal to the sequence length,
and parallel decoding brings inference speedup at the cost of non-negligible per-
formance degradation. To overcome this challenge, we introduce Free Draft-and-
Verification (FreeDave), a novel fast sampling algorithm tailored for DLLMs that
achieves lossless parallel decoding. Specifically, we propose a pipeline of parallel-
decoded candidate generation and verification, which is guaranteed to reproduce the
same sequence generated by static decoding, without external modules, extra model
forward calls, or any post-training stage. By extensive evaluations on math reason-
ing and code generation benchmarks across different DLLMs, FreeDave is proven
to boost the inference throughput up to 3.78× without performance degradation.
Code is available at https://github.com/cychomatica/FreeDave.

1 Introduction

The advent of Large Language Models (LLMs) [1, 2, 3, 4, 5, 6] built on large transformers[7] and
autoregressive (AR) next-token prediction has marked a revolutionary milestone on the way to
artificial general intelligence. They have demonstrated an extraordinary capacity for text processing
and generation, achieving near-human performance on a vast spectrum of natural language tasks.
In recent years, their capabilities have been extending far beyond basic text completion, showing
remarkable proficiency in highly specialized and challenging tasks. For instance, LLMs have made
significant strides in mathematical reasoning [8, 9, 10], which requires deep logical and symbolic
understanding. Similarly, in the domain of software engineering, LLMs have shown promising
achievements on code generation [6, 11, 12, 13, 14], offering powerful tools to automate development
tasks and improve development productivity.

Diffusion Large Language Models (DLLMs) [15, 16, 17] have emerged as a compelling new paradigm
of language modeling. Inspired by their profound success in continuous data domains such as
high-fidelity image and audio synthesis [18, 19, 20], diffusion models have been adapted to the
discrete domain, especially language modeling [21, 22, 23, 24, 25, 26]. Due to their bidirectional
attention mechanism, DLLMs are more capable of capturing the connection of context, and thus
show their unique advantages in challenges like the famous "reversal curse" [15] or learning under
data-constrained scenarios [27]. On the other hand, taking advantage of their inherent modeling
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Figure 1: The overview of FreeDave decoding for DLLMs. Based on the estimated distribution
predicted by the DLLM at the current step, the remasking scheduler looks multiple steps ahead and
returns multiple draft candidates at those timesteps. Then, at the next step, the DLLM takes those
candidates as a batch of inputs in parallel and gets the estimated distribution for each candidate,
which is further processed by the remasking scheduler for one more step to get a target sequence.
The candidates, as well as their estimated distributions, are then accepted or rejected by matching
their targets. The generation and verification of the draft candidates can be understood as byproducts
during the normal static decoding without introducing extra cost, except for a slight memory overhead
from the batch forward. Empirically, with a high potential, the inference will get an appreciable
speedup.

foundations, parallel decoding algorithms [28, 29] enable multi-token prediction per step for DLLMs,
which can accelerate their inference to the next level.

However, despite their great potential, the practical application of DLLMs is hampered by the
challenge that a high generation quality often requires a large number of decoding steps, which is
usually equal to the sequence length, and parallel decoding brings inference speedup at the cost of
non-negligible performance degradation. On the other hand, without parallel decoding, the inference
efficiency is limited due to their bidirectional attention mechanism, which is incompatible with KV
Cache. Although specialized caching strategies[26, 28, 30] are proposed as a solution, the necessity
of frequently refreshing the KV Cache remains a drag on the inference speed. Thus, unleashing
the great potential of parallel decoding without sacrificing the generation quality remains a critical
challenge for DLLMs.

To cross this dilemma, we introduce Free Draft-and-Verification (FreeDave), a novel fast sampling
algorithm for DLLMs that achieves lossless parallel decoding. As a training-free and model-free
method, FreeDave requires no model modification or any extra modules, and can be seamlessly
incorporated with any existing efficient inference frameworks like DLLM caching[26, 28, 30]. Taking
advantage of the inherent capability of parallel decoding of DLLMs, and inspired by speculative
decoding applied on autoregressive LLMs for fast sampling[31], we reveal that:

Your DLLM is secretly a self-verifiable parallel decoder without extra cost.

We prove, by both theoretical analysis and empirical evaluations, that FreeDave can substantially
accelerate the inference of DLLMs without sacrificing the generation quality. Specifically, for
TraDo models[17], currently the state-of-the-art DLLM family, FreeDave can boost the throughput
up to 3.78×, while maintaining the performance on math reasoning (including MATH500[32],
GSM8K[33], and AIME2024[34]) and code generation (including HumanEval[35] and MBPP[36])
benchmarks.
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2 Related Work

2.1 Diffusion Large Language Models

Diffusion Large Language Models (DLLMs) emerge as a new language modeling paradigm beyond
autoregressive next token prediction. Early foundational frameworks like D3PM[21] generalize
diffusion models from the continuous domain to discrete state-spaces, and a key finding was that
using a special token as an absorbing state consistently yielded the best performance. This paved
the way for Masked Diffusion Language Models (MDLMs)[22, 23], with the simplification of the
complex Evidence Lower Bound (ELBO) training objective into a more stable weighted mixture of
masked language modeling (MLM) losses. Recent studies on DLLMs [15, 24, 16, 17], which scale
up to billions of parameters, have been making remarkable progress on closing the performance gap
with AR LLMs.

Compared to AR LLMs, the bidirectional nature of DLLMs allows them to overcome challenges like
the "reversal curse"[37]. Furthermore, recent studies have shown that DLLMs are significantly more
data-efficient in data-constrained settings[38]. On the other hand, the primary drawback of DLLMs
remains their slower inference speed due to the inherent incompatibility with KV Cache, which also
stems from their bidirectional nature. To address this problem, strategies like Block Diffusion[26]
interpolate between AR and diffusion paradigms by generating text in blocks, enabling the use of
inter-block KV caching. dLLM-Cache[30] introduces an adaptive caching mechanism by exploiting
the distinct redundancies in the internal features of DLLMs. Fast-dLLM[28] incorporates a novel
block-wise approximate KV Cache mechanism and a confidence-aware parallel decoding strategy to
further bridge this gap in inference speed with AR LLMs.

2.2 Parallel Decoding

Before the advent of DLLMs, to accelerate the inference of AR LLMs, speculative decoding [31,
39, 40, 41, 42] is designed to perform multi-token decoding in parallel with verifiable acceptance.
Generally, a lightweight draft model, which is much faster than the LLM, autoregressively performs
next-token prediction for multiple steps to generate multiple candidates, and then those candidates
are fed to the target model, i.e. the LLM itself, for verification, usually by rejection sampling, to
get accepted or rejected. After that, the process of candidate generation and verification is repeated,
starting from the first rejected token in the last turn. However, the draft model is required to be
aligned with the target models as much as possible, otherwise, the low acceptance rate of candidates
will instead bring inefficiency to the LLM inference by introducing extra draft model calls while
being unable to appreciably reduce the LLM calls.

For DLLMs, speculative decoding can be directly adopted in a similar manner, which still requires an
external draft model and an extra draft generation stage [43]. On the other hand, parallel decoding
tailored to the unique characteristics of DLLMs is a more promising research line. A popular method
is threshold-based parallel decoding: at each step, all unmasked positions where the confidence of
the predicted token exceeds a predefined threshold will be unmasked [28, 29]. However, compared
with static decoding that unmasks a fixed number of tokens with the highest confidence at each step,
threshold-based parallel decoding usually brings a non-negligible drop in generation quality. Israel
et al. [44] introduce Adaptive Parallel Decoding, which utilizes the DLLM itself and an external
autoregressive model to craft a multiplicative mixture of distributions, and then compare the parallel-
decoded tokens from the DLLM with tokens sampled from this multiplicative mixture to decide
which tokens should be accepted. However, it will still lead to a performance drop when the mixture
weight is too large, and the trade-off between throughput and generation quality remains.

3 Methodology

3.1 Preliminaries

Autoregressive language models In the past years, autoregressive (AR) language modeling has
been the predominant paradigm of LLMs. The joint distribution of generated tokens is modeled by

pθ(x) =

L∏
i=1

pθ(x
i|x<i), x<i =

{
{xj |j = 1, . . . , i− 1} if i ≥ 2

∅ if i = 1
, (1)
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where x is a response sequence of length L, xi is the one-hot vector of i-th token in the vocabulary
space, and x<i is the subsequence of all tokens before the i-th token.

Diffusion language models Like diffusion models on continuous spaces, DLLMs model the
transition from data distribution to noise distribution on discrete spaces by a forward noising process,
and generate data from noise by the corresponding reverse denoising process. Generally, the forward
process diffuses the data distribution toward a uniform distribution over the discrete space, or
an absorbing state, and the latter is usually adopted for language modeling[22, 23, 15, 16, 17].
Specifically, for a time level t evolving from 0 to 1, the forward process progressively replaces each
unmasked token in the original sequence x0 independently with a special mask token m with an
increasing probability w.r.t. t ∈ [0, 1], and once a token is masked, it will remain masked till t = 1.
Eventually, at t = 1, all the tokens in the sequence will be m. This forward process with the absorbing
state m can be formulated as

q(xt|x0) =

L∏
i=1

q(xi
t|xi

0) =

L∏
i=1

Cat
(
xi
t;αtx

i
0 + (1− αt)m

)
, (2)

where xt is the transferred sequence at the time level t, αt is the noising schedule monotonically
decreasing w.r.t. t ∈ [0, 1] and satisfies α0 = 1 and α1 = 0, and Cat represents the categorical
distribution.

The reverse process is induced to progressively recover the original sequence from an all-mask
sequence at t = 1. Specifically, the reverse process transferring the sequence xt at a time level
t conditioned on x0 to the sequence xs at an earlier time level s (where 0 ≤ s < t ≤ 1) can be
formulated as

q(xs|xt, x0) =

L∏
i=1

q(xi
s|xi

t, x
i
0) (3)

q(xi
s|xi

t, x
i
0) =

{
Cat(xi

s;x
i
t) if xi

t ̸= m
Cat(xi

s;
(1−αt)m+(αs−αt)x

i
0

1−αt
) if xi

t = m
, (4)

and once a token is unmasked, it will remain unchanged till t = 0. If we train a parameterized model
fθ(·, ·) : RL×|V | × R→ RL×|V | to estimate the distribution of x0 by fθ(xt, t), given the sequence
xt at time level t, the reverse process can be formulated as

pθ(x
i
s|xi

t) = q(xi
s|xi

t, x
i
0 = fθ(x

i
t, t)) =

{
Cat(xi

s;x
i
t) if xi

t ̸= m
Cat(xi

s;
(1−αt)m+(αs−αt)f

i
θ(xt,t)

1−αt
) if xi

t = m
(5)

pθ(xs|xt) =

L∏
i=1

pθ(x
i
s|xi

t) (6)

Generally, for better generation quality, the transition from xt to xs is not by directly sampling xs

from pθ(xs|xt). Instead, we have a remasking scheduler g (usually rule-based and unparameterized)
to decide which m tokens to be transferred to unmasked tokens at the current time level. 1 The
remasking scheduler g takes as input a source time level t, a target time level s, and the estimated
distribution of x0 at the source time level t (i.e. fθ(xt, t) here), and returns a decision set It→s =
{(a1, z1), . . . , (an, zn)}, where in each tuple aj is the transferred index and zj ∼ Cat(faj

θ (xt, t))
is the transferring target token sampled from the estimated distribution. Algorithm 1 demonstrates
the whole sampling pipeline by the reverse process with model fθ. Generally, for a high generation
quality, the total number of sampling steps is set equal to the response length, and at each step, among
all the masked positions, the one where the predicted token has the highest confidence is unmasked.
We denote this decoding strategy as static decoding.

1Empirically, greedily unmasking positions with the highest-confidence unmasked tokens usually yields
good quality of generation. Unless specified, in this paper, we focus on the greedy remasking scheduler.
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Algorithm 1 DLLM Static Sampling
Require: Model fθ, remasking scheduler g, total generation length L, total sampling steps N , time

schedule array T = {t0, . . . , tN |1 = t0 > t1 > · · · > tN−1 > tN = 0}
Ensure: The generated sequence x.

1: xt0 ← m1:L

2: for i in 0 : N − 1 do
3: x̃0 ← fθ(xti , ti)
4: Iti→ti+1

← g(x̃0, ti, ti+1) ▷ decision returned by the remasking scheduler
5: xti+1

← xti
6: for each (aj , zj) in Iti→ti+1

do
7: x

aj

ti+1
← zj ▷ replace masked tokens according to the decision

8: end for
9: end for

10: x← x0

11: return x

3.2 Free Draft-and-Verification Sampling

Definition 1 (Sampling Path and Oracle Path) For the reverse process of DLLM fθ, a sampling
path of N steps following a time schedule array [t0, . . . , tN |1 = t0 > t1 > · · · > tN−1 > tN = 0]
is defined as p = [It0→t1 , . . . , ItN−1→tN ], where Iti→ti+1

is the decision set given at time step ti.
Given a remasking scheduler g and a predefined time schedule array T = [t0, . . . , tN |1 = t0 >
t1 > · · · > tN−1 > tN = 0], we define the oracle path as poracle = [It0→t1 , . . . , ItN−1→tN ], where
Iti→ti+1

= g(fθ(xti , ti), ti, ti+1) is the decision set returned by the remasking scheduler g at time
step ti.

Definition 2 (Feasible Path and Optimal Path) For the reverse process of DLLM fθ, given a re-
masking scheduler g and a predefined time schedule array T = [t0, . . . , tN |1 = t0 > t1 > · · · >
tN−1 > tN = 0], if we can find a M -step subarray [ta0

, . . . , taM
|0 = a0 < a1 < · · · < aM−1 <

aM = N, ai ∈ {0, . . . , N}], such that

Itai
→tai+1

= g(fθ(xtai
, tai), tai , tai+1)

=

ai+1−ai−1⋃
j=0

g(fθ(xtai+j
, tai+j), tai+j , tai+j+1)

=

ai+1−ai−1⋃
j=0

Itai+j→tai+j+1

∀i ∈ {0, . . . ,M − 1},

(7)

then the sampling path p = [Ita0→ta1
, . . . , ItaM−1

→taM
] is defined as a feasible path. And con-

sequently, we define P(fθ, g,T), which consists of all possible feasible paths, as the feasible
space. There exists an optimal path p⋆ = [Ita⋆

0
→ta⋆

1
, . . . , Ita⋆

M−1
→ta⋆

M
] such that |p⋆| ≤ |p| ≤

|poracle|, ∀p ∈ P(fθ, g,T), i.e. among all feasible paths, the optimal path requires the fewest
sampling steps, while the oracle path requires the most sampling steps.

Definition 1 and 2 indicate the great potential of DLLMs for lossless parallel decoding. However,
except for the oracle path poracle, all of the other feasible paths are agnostic to us. We don’t know
which steps can be merged into one step. Empirically setting a fixed number of transferred tokens or a
fixed confidence threshold for parallel decoding is not guaranteed to get a feasible path that generates
the same sequence as sampling via the oracle path, and the experimental results from both Wang
et al. [17] and us demonstrate that threshold-based parallel decoding is very likely to result in a
non-negligible performance degradation.
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Theorem 1 (Verification-based Feasible Path Search) In the feasible space P(fθ, g,T), suppose
we have a verifier function h defined as

h(tn, d) =

{
1, if d = 1

min{i|Itn→tn+i+1
̸= Itn→tn+i

∪ Itn+i→tn+i+1
, i = 1, . . . , d− 1} if d ≥ 2

(8)

where tn is a timestep and d is a positive integer. Then we can find a feasible path p =
[Ita0

→ta1
, . . . , ItaM−1

→taM
], where a0 = 0, aM = N , and ai = h(tai−1

, d), i ∈ {1, . . . ,M − 1}.

Lemma 1 If we have d ≥ ∥p⋆∥∞ where p⋆ = [Ita⋆
0
→ta⋆

1
, . . . , Ita⋆

M−1
→ta⋆

M
] is the optimal path,

and ∥p⋆∥∞ = max{a⋆i+1 − a⋆i |i = 0, . . . , |p⋆| − 1}, then a⋆i = h(ta⋆
i−1

, d), i ∈ {1, . . . ,M − 1}.

Proof Sketch The proof of this Theorem 1 is quite intuitive. Starting from any tn, if d = 1,
we find just the oracle path, which is also a feasible path; if d ≥ 2, then from Equation 8
we have Itn→tn+i+1 = Itn→tn+i ∪ Itn+i→tn+i+1∀i ∈ {1, . . . , h(tn, d) − 1}. Thus, we have
Itn→tn+2 = Itn→tn+1 ∪ Itn+1→tn+2 , Itn→tn+3 = Itn→tn+2 ∪ Itn+2→tn+3 = Itn→tn+1 ∪
Itn+1→tn+2

∪ Itn+2→tn+3
, . . . , and recursively, we get Itn→tn+h(tn,d)

=
⋃h(tn,d)−1

i=1 Itn+i→tn+i+1
,

which by Definition 2 induces a feasible path. For Lemma 1, if we have a large enough d that covers
the largest number of decoded tokens, we can reproduce this optimal path by Theorem 1.

Given a verifier h satisfying Equation 8, Theorem 1 provides the guarantee of searching a lossless,
shorter (or equal) sampling path, and Lemma 1 indicates the condition of finding the optimal path, i.e.
d should be large enough to cover the size of the largest decision set in the optimal path. As p⋆ is
agnostic to us, we can find the sequence length as an upper bound such that L ≥ ∥p⋆∥∞. As long as
d ≥ L, we are guaranteed to find the optimal path.

Based on our theoretical analysis above, we propose Free Draft-and-Verification (FreeDave), a
fast sampling algorithm explicitly designed for DLLMs. Specifically, as shown in Figure 1 and
Algorithm 2, FreeDave iteratively utilizes the remasking scheduler to sample draft candidates with
different parallel decoding steps based on the estimated distribution predicted by the DLLM at the
current step, and further verifies those candidates by the DLLM itself in the next step.

Unlike speculative decoding algorithms designed for AR LLMs[31, 39], which also involve the
generation and verification of draft candidates, FreeDave does not require an external draft model and
an independent stage of draft candidate generation. Instead, the additional operations of candidates
drafting and verification are just the byproducts of the normal inference pipeline, and thus can be
seamlessly incorporated. From Definition 2, if we can find a feasible path with M steps, then
M ≤ N = |poracle| is guaranteed. And by Theorem 1 we are guaranteed to find a feasible path. On
the assumption of enough computation and memory budget, the time cost of a model f forward call
for a single example and a batch of examples should be almost equivalent, and we denote it as τ(f),
and consequently Mτ(f) ≤ Nτ(f). Since there is no external draft model, the FreeDave decoding
latency is just Mτ(f), which is proven to be less than or equal to the DLLM static decoding latency
Nτ(f).

On the other hand, for an AR LLM f generating a sequence of length L, the latency of the nor-
mal AR decoding is Lτ(f). After applying speculative decoding with a draft model fdraft, the
number of target model forward calls Ntarget is proven to be less than or equal to L, which im-
plies Ntargetτ(f) ≤ Lτ(f). However, when the acceptance rate is not high enough, the num-
ber of draft model forward calls Ndraft can be very large, and the latency from draft model
Ndraftτ(fdraft) will no longer be negligible. Consequently, the total speculative decoding la-
tency Ntargetτ(f) +Ndraftτ(fdraft) is not guaranteed to be less than or equal to the AR decoding
latency Lτ(f). Without this guarantee, it is possible that speculative decoding will instead hamper
the inference efficiency.

4 Experiments

4.1 Experimental Settings

Our evaluations focus on math reasoning and code generation tasks. For math reasoning benchmarks,
we choose MATH500 [32], GSM8K [33], and AIME2024 [34]. For code generation benchmarks,
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Algorithm 2 DLLM FreeDave Sampling
Require: Model fθ, remasking scheduler g, total generation length L, total sampling steps N , draft

steps d, time schedule array T = {t0, . . . , tN |1 = t0 > t1 > · · · > tN−1 > tN = 0}
Ensure: The generated sequence x.

1: i← 0
2: xt0 ← m1:L, x̃0 ← fθ(xt0 , t0) ▷ initialize sequence and its estimated distribution
3: while i < N do
4: di ← min(d,N − i) ▷ clip initial draft steps when no enough steps left
5: Xdraft ← [ ]
6: for k in 1 : di do
7: Iti→ti+k

← g(x̃0, ti, ti+k) ▷ decision for each draft candidate
8: xdraft,ti+k

← xti
9: for each (aj , zj) in Iti→ti+k

do
10: x

aj

draft,ti+k
← zj ▷ replace masked tokens according to decision

11: end for
12: Xdraft.append(xdraft,ti+k

)
13: end for
14: if i = N − 1 then
15: x0 ← X0

draft ▷ no verification needed in last step; sampling ends
16: break
17: end if

18: X̃draft,0 ← fθ(Xdraft, ti+1:i+di
) ▷ batch forward in parallel

19: Xtarget ← [ ]
20: for k = 1 : di do
21: Iti+k→ti+k+1

← g(X̃k
draft,0, ti+k, ti+k+1) ▷ one more step ahead each draft candidate

22: xtarget,ti+k+1
← Xk

draft

23: for each (aj , zj) in Iti+k→ti+k+1
do

24: x
aj

target,ti+k+1
← zj ▷ replace masked tokens according to decision

25: end for
26: Xtarget.append(xtarget,ti+k+1

)
27: end for

28: m← 0
29: for k in 1 : di − 1 do
30: if Xk+1

draft = Xk
target then ▷ draft candidate verification

31: m← m+ 1
32: else
33: break
34: end if
35: end for

36: i← i+m+ 1 ▷ jump to ti+m+1

37: xti ← Xm+1
draft, x̃0 ← X̃m+1

draft,0 ▷ update sequence and its estimated distribution
38: end while
39: x← x0

40: return x

we choose MBPP [36] and HumanEval [35]. We evaluate different DLLMs, including Dream-7B-
Instruct [16], TraDo-4B-Instruct, and TraDo-8B-Instruct [17]. All the models use semi-autoregressive
generation like Arriola et al. [26] and have already enabled specialized KV Cache. We compare our
method with static decoding, which follows the oracle path induced from a predefined time schedule,
and parallel decoding [28, 29], which at each step unmasks all positions where the transferring target
token confidence exceeds a predefined threshold. Our method is built on static decoding by default.

Following Wang et al. [17], for the Dream-7B-Instruct model, we use a temperature of 0.1, a further
horizon size of 128, and a response limit of 1600. For parallel decoding, we use a block size of 4 with
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a threshold of 0.95. Under static decoding, we use a block size of 32. For the TraDo models, we use
a temperature of 1.0, a default block size of 4, and a response limit of 2048. For parallel decoding,
we use a threshold of 0.9 and set top-k=0, and for static decoding, we use top-k = 1. We also use
the same prompt templates as Wang et al. [17] for different models, respectively. All the models are
evaluated on a single NVIDIA L40S GPU.

Regarding the number of draft steps d used for FreeDave, we set d = 8 for the TraDo models, and
d = 4 for the Dream-7B-Instruct model. According to Theorem 1 and Lemma 1, a larger d will
be more likely to find a shorter feasible path. Practically, if d is too large, although we can get a
high throughput over NFEs, a model forward call on a large batch of inputs might take more time
and memory and thus degrade the throughput over time, as the computation and memory budget is
limited. In Section 4.4, we investigate how different d can impact GPU memory usage, inference
time, and NFEs. Here, our choice of d can achieve a sweet spot between those metrics.

Table 1: Detailed comparison of performance and efficiency with static decoding, parallel decoding,
and FreeDave decoding for different DLLMs on math reasoning benchmarks, including MATH500,
GSM8K, and AIME2024.

Benchmark Model Decoding
Strategy Acc (%) ↑

Throughput
over time

(#tokens/s) ↑

Throughput
over NFEs
(#tokens) ↑

MATH500

Dream-7B-Instruct
Static 40.00 23.02 0.91

Parallel 37.00 (-3.00) 16.73 (0.73×) 1.88 (2.07×)
FreeDave 40.20 (+0.20) 30.00 (1.30×) 2.63 (2.89×)

TraDo-4B-Instruct
Static 74.20 7.26 0.26

Parallel 68.80 (-5.40) 18.94 (2.61×) 0.61 (2.35×)
FreeDave 76.40 (+2.20) 16.36 (2.25×) 0.67 (2.58×)

TraDo-8B-Instruct
Static 76.40 7.10 0.28

Parallel 74.00 (-2.40) 16.11 (2.27×) 0.60 (2.14×)
FreeDave 77.60 (+1.20) 15.99 (2.25×) 0.66 (2.36×)

GSM8K

Dream-7B-Instruct
Static 79.61 20.99 0.83

Parallel 68.16 (-11.45) 16.61 (0.79×) 1.81 (2.18×)
FreeDave 80.21 (+0.60) 27.39 (1.30×) 2.34 (2.82×)

TraDo-4B-Instruct
Static 91.58 4.41 0.15

Parallel 89.08 (-2.50) 9.82 (2.23×) 0.35 (2.33×)
FreeDave 91.05 (-0.53) 10.03 (2.27×) 0.39 (2.60×)

TraDo-8B-Instruct
Static 92.72 3.41 0.12

Parallel 92.34 (-0.38) 6.17 (1.81×) 0.23 (1.92×)
FreeDave 92.80 (+0.08) 6.92 (2.03×) 0.28 (2.33×)

AIME2024

Dream-7B-Instruct
Static 6.67 22.82 0.94

Parallel 3.33 (-3.34) 16.09 (0.71×) 1.92 (2.04×)
FreeDave 3.33 (-3.34) 24.08 (1.06×) 3.55 (3.78×)

TraDo-4B-Instruct
Static 10.00 11.38 0.41

Parallel 10.00 20.52 (1.80×) 0.75 (1.83×)
FreeDave 13.30 (+3.30) 26.07 (2.29×) 1.04 (2.54×)

TraDo-8B-Instruct
Static 13.33 15.39 0.51

Parallel 10.00 (-3.33) 24.00 (1.56×) 0.86 (1.67×)
FreeDave 16.66 (+6.66) 29.62 (1.92×) 1.18 (2.31×)

4.2 Evaluation on Math Reasoning Benchmarks

In this section, we compare the accuracy, throughput over time, and throughput over Number of
Function Evaluations (NFEs) of three different DLLMs on three math reasoning and two code
generation benchmarks. Specifically, the throughput is calculated by the number of valid generated
tokens (i.e. after removing all special tokens like m and <EOS>) per second or per model forward
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call. The reason why we use throughput instead of inference time or NFEs as our metric is that the
valid length of the generated sequence is also critical. For some questions, the DLLM might generate
longer responses with more valid tokens while taking more time and NFEs. Considering this point,
we think throughput is a more reasonable measurement of inference efficiency.

Shown in Table 1, FreeDave is able to substantially improve the efficiency of DLLM inference.
Specifically, for TraDo-4B-Instruct, it can boost the throughput either over time or over NFE to
over 2×, while even slightly improving the accuracy by 2.20% on MATH500. For comparison, the
parallel decoding, although able to get a similar speedup to our method, will significantly degrade the
performance of the DLLM with an accuracy drop of 5.40%. For Dream-7B-Instruct, since the block
size is set to 4, which requires more frequent KV Cache refreshing, parallel decoding will hamper
the throughput over time, while FreeDavestill brings remarkable speedup from either the perspective
of response time or NFEs and maintains the performance. Similar results can also be observed in
GSM8K.

For evaluations on the much more challenging AIME2024, our method is still able to maintain
the performance and bring a notable speedup. For Dream-7B-Instruct, both parallel decoding and
FreeDave decoding result in the same level of accuracy, while FreeDave brings a higher speedup to the
throughput over time and NFEs. For the TraDo models, in addition to decent inference acceleration,
FreeDave even brings higher accuracy.

Table 2: Detailed comparison of performance and efficiency with static decoding, parallel decoding,
and FreeDave decoding for different DLLMs on code generation benchmarks, including MBPP and
HumanEval.

Benchmark Model Decoding
Strategy Acc (%) ↑

Throughput
over time

(#tokens/s) ↑

Throughput
over NFEs
(#tokens) ↑

MBPP

Dream-7B-Instruct
Static 46.20 15.49 0.62

Parallel 37.40 (-8.80) 15.36 (0.99×) 1.70 (2.74×)
FreeDave 46.40 (+0.20) 20.32 (1.31×) 1.80 (2.90×)

TraDo-4B-Instruct
Static 57.40 1.63 0.06

Parallel 49.40 (-8.00) 4.28 (2.63×) 0.14 (2.33×)
FreeDave 56.60 (-0.80) 4.19 (2.57×) 0.15 (2.50×)

TraDo-8B-Instruct
Static 63.20 1.80 0.07

Parallel 57.00 (-6.20) 3.67 (2.04×) 0.13 (1.86×)
FreeDave 63.60 (+0.40) 3.86 (2.14×) 0.15 (2.14×)

HumanEval

Dream-7B-Instruct
Static 54.88 17.85 0.72

Parallel 35.37 (-19.51) 15.72 (0.88×) 1.77 (2.46×)
FreeDave 56.09 (+1.21) 24.40 (1.37×) 2.14 (2.97×)

TraDo-4B-Instruct
Static 59.76 4.33 0.17

Parallel 57.32 (-2.44) 7.36 (1.70×) 0.26 (1.53×)
FreeDave 60.98 (+1.22) 8.74 (2.02×) 0.38 (2.24×)

TraDo-8B-Instruct
Static 68.90 2.69 0.12

Parallel 65.24 (-3.66) 4.57 (1.70×) 0.22 (1.83×)
FreeDave 68.90 (+0.00) 4.28 (1.59×) 0.26 (2.17×)

4.3 Evaluation on Code Generation Benchmarks

In addition to the math reasoning benchmarks, we also evaluate our method on code generation
benchmarks, following the same configuration. As shown in Table 2, compared with math reasoning
tasks, threshold-based parallel decoding will bring a more drastic performance drop to all DLLMs
on code generation tasks. Particularly, for Dream-7B-Instruct evaluated on HumanEval, threshold-
based parallel decoding will even cut the accuracy from 54.88% to 35.37%. On the other hand,
FreeDave maintains the performance on each benchmark, but also brings an appreciable speedup,
with throughput boosted up to 2.97×.
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Figure 2: Evaluation of TraDo-4B-Instruct on MATH500 using different draft steps d. Specifically,
when d = 1, the decoding strategy is static decoding. We compare accuracy, throughput over time,
throughput over NFEs, and GPU memory peak usage in the inference stage.

4.4 Ablation on Draft Steps

In addition to the evaluations of our method on different benchmarks, we also investigate how to
choose an appropriate draft steps d such that we can get the best trade-off between memory usage,
inference time, and NFEs. As shown in Figure 2, we set d ∈ {1, 2, 4, 8, 16, 32}, and compare the
accuracy, throughput over time, throughput over NFEs, and GPU memory peak usage in the inference
of TraDo-4B-Instruct on MATH500. As d gets larger, the accuracy remains stable, which aligns with
our theoretical analysis of lossless feasible path in Section 3.2. On the other hand, a larger d means a
larger batch of draft candidates, which will allocate more GPU memory and occupy more streaming
multiprocessors. From Lemma 1, once d is large enough to cover the maximum decision size of the
optimal path, we will get the fewest NFEs, and the throughput over NFEs will converge. When the
computational resources are limited and compute bound or memory bound is reached, the choice of d
should be more careful , rather than indiscriminately defaulting to a larger value.

Note that the block size of TraDo-4B-Instruct is set to 4 by default. In order to use a larger d that
exceeds the predefined block size, we explicitly design in our implementation. Specifically, we allow
to pre-draft and pre-verify positions in future blocks, but still take all involved blocks in a left-to-right
priority, instead of just merging the current block and future blocks into a larger block.

5 Discussion

In this paper, we propose FreeDave, aiming to perform a lossless parallel decoding for DLLMs.
By both theoretical analysis and empirical evaluations on math reasoning and code generation
benchmarks, our method is proven to achieve lossless parallel decoding, substantially accelerating
the inference while maintaining the generation quality. Compared with the threshold-based parallel
decoding, FreeDave is able to bring more speedup, but also overcome the challenge of performance
degradation at the same time.

It is worth noting that, although the theoretical foundations of our method are built on static decoding,
from our observations on the TraDo models, FreeDave can still be compatible with threshold-based
parallel decoding, further boosting the throughput while maintaining the performance at the same
level. However, as threshold-based parallel decoding usually leads to non-negligible performance
degradation compared with static decoding, and we aim to perform lossless parallel decoding, we did
not discuss details about this combination in our paper.

There are still some limitations remaining in our current version. Firstly, when we use a very large
number of draft steps, a model forward call on a batch of inputs will take a longer time, as the
assumption of unlimited computation and memory budget is not practical. A simple solution is
Tensor Parallelism (TP) of Data Parallelism (DP) on multiple GPUs, but this will also bring an extra
communication time cost. Secondly, from our theoretical analysis, FreeDave should be able to fully
reproduce the sequences generated by static decoding. However, from our observations, it is not
always the case, although the performance does remain at the same level on different benchmarks.
Sometimes, we found FreeDave generated a sequence with pretty much the same semantics and
logic, but some words or expressions were slightly different. We think it might be caused by the
non-batch-invariant kernels in GPUs, like what is discussed in He and Thinking Machines [45]. We
leave those problems for future exploration.
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A Example of Static Decoding and FreeDave Decoding
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Figure 3: An example of DLLM static decoding and FreeDave decoding. In this example, at each
step, static decoding is set to unmask one masked position where the predicted token has the highest
confidence. For FreeDave decoding, V-Step takes as input all the candidate sequences in parallel and
outputs target sequences (one more decoding step over each candidate sequence) and their estimated
distributions, while D-Step samples from the estimated distribution of the maximum matched target
sequence.
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